Appendix Q - Semi-Annual Groundwater Remediation Progress Report

10 East Cambridge Circle Dr. Suite 250 Kansas City, Kansas 66103 Telephone: (913) 982-0457 Facsimile: (913) 905-0290 E-mail: saMcCormick@CVREnergy.com

August 31, 2016

By Federal Express (Tracking Number: 777123771690)

Adrian Simmons Land Protection Division Oklahoma Department of Environmental Quality 707 N. Robinson Oklahoma City, OK 73102

RE: Submission of the 2016 Semi-Annual Groundwater Remediation Progress Report Consent Order Case No. 15-056 Wynnewood Refining Company, LLC Wynnewood, Oklahoma

Dear Mr. Simmons:

On behalf of Wynnewood Refining Company (WRC), please find enclosed the Semi-Annual Groundwater Remediation Progress Report detailing groundwater monitoring and recovery and investigation activities at the Wynnewood Refinery in Wynnewood, Oklahoma. The report format reflects the requirements of Section B of the Consent Order (Case No. 15-056).

Groundwater monitoring samples were collected from June 13 to 16, 2016. From February 23 to April 2, 2016, WRC conducted two direct-push sampling event to characterize site geology and delineate dissolved-phase and LNAPL plumes at the site. On July 13, 2016, WRC submitted the Interior Delineation Summary and Recommendation Report. WRC will continue to provide a monthly report of activities conducted as part of the Comprehensive Remediation Plan (Consent Order 15-056). The next groundwater sampling event is scheduled for December 2016 with a monitoring report submittal date of March 1, 2017.

If you have any questions, please do not hesitate to contact me at the number listed above.

Sincerely c Sam A. McCormick

Project Manager

SAM:cew

 $\label{eq:control} K:\Coffeyville Resources\WRC\Reporting\Semi-Annual Groundwater Reports\2016 09 (September)\WRC_20160901_SemiAnnual Groundwater Remediation Report_cover letter.docx$

Enclosure

cc/encl: Stephen Baldridge – ODEQ Bob Morris – Wynnewood Refining Company, LLC Evan Hilburn – Wynnewood Refining Company, LLC Jerome McSorley – CVR Energy, Inc. LeAnn Johnson Koch, Esq. – Perkins Coie LLP Christine Warford – WSP | Parsons Brinckerhoff

SEMI-ANNUAL GROUNDWATER REMEDIATION PROGRESS REPORT JANUARY 1 THROUGH JUNE 30, 2016

Consent Order Case No. 15-056

WYNNEWOOD REFINING COMPANY, LLC

WYNNEWOOD, OKLAHOMA

EPA ID No. OKD000396549

Prepared by

CVR Energy, Inc. and

WSP | Parsons Brinckerhoff

August 31, 2016

WSP | Parsons Brinckerhoff 123 North Third Street Suite 507 Minneapolis, MN 55401

Tel: +1 612 343 0510 Fax: +1 612 343 0506 http://www.wsp-pb.com/usa

SEMI-ANNUAL GROUNDWATER REMEDIATION PROGRESS REPORT

JANUARY 1 THROUGH JUNE 30, 2016 CONSENT ORDER CASE NO. 15-056

WYNNEWOOD REFINING COMPANY, LLC WYNNEWOOD, OKLAHOMA

Prepared for Wynnewood Refining Company, LLC P.O. Box 305, 906 South Powell, Wynnewood, Oklahoma 73098

EPA ID No.: OKD000396549

Prepared by CVR Energy, Inc. 33075 West Airline Road, Pauls Valley, Oklahoma 73075 AND WSP | Parsons Brinckerhoff 123 N. 3rd Street, Suite 507, Minneapolis, Minnesota, 55401

August 31, 2016

Report Prepared By: 08/31/2016 Jerome McSorley, P.G. CVR Energy, Inc. 08/31/2016 srd. Christine Warford, P.E. WSP Report Reviewed By: 08/31/2016

Sam A. McCormick CVR Energy, Inc. Report Distribution: Adrian Simmons – ODEQ Stephen Baldridge – ODEQ Bob Morris – WRC Jerome McSorley – CVR Energy, Inc. Evan Hilburn – WRC LeAnn Johnson Koch, Esq. – Perkins Coie LLP Christine Warford – WSP | Parsons Brinckerhoff

Contents (continued)

Certification Page	i
Acronyms	v
1 Introduction	1
1.1 Purpose	1
1.2 Reporting Period	
1.3 Project Personnel	
1.4 Regulatory Contact and Requests	
2 Status of Investigation Activities Completed During the Reporting Period	
2.1 Groundwater Monitoring	
2.2 Groundwater Observations and LNAPL Distribution	
2.2.1 Groundwater Observations	
2.2.2 LNAPL Distribution	4
2.3 Groundwater Sampling	5
2.3.1 Sampling Procedure	5
2.3.2 Analytical Results	5
2.3.2.1 Gasoline Range Organics	5
2.3.2.2 Diesel Range Organics	6
2.3.2.3 Benzene	6
3 Comprehensive Remediation Plan	7
4 Groundwater Recovery Summary	8
4.1 Historical Hydrocarbon Recovery Systems	8
4.1.1 Tank 150 Area	8
4.1.2 Light Oils Terminal Area	8
4.1.3 Product Loading Facility Area	9
4.1.4 Laboratory and Control Building Area	10
4.1.5 South Alky Unit Area	10
4.1.6 Process Area	11
4.2 Existing Recovery System Operations	12
4.2.1 Product Loading Facility Recovery System	12
4.2.2 North Process Area Recovery System	13
4.2.3 South Process Area Recovery System	14
5 Existing Recovery System Enhancements	15
5.1 Product Loading Facility System Enhancements	

Contents (continued)

.2	Northern Process Area System Enhancements	16
Inter	rior Delineation	18
Add	litional Remediation	19
.1	North Boundary Investigation	
.2	South Boundary Remediation System	
.3	North Process Area System	
.4	Product Loading Facility System	21
.5	South Process Area System	21
Perf	formance Monitoring Plan	
Sum	nmary and Conclusions	23
.1	Groundwater Recovery	
Refe	erences	24
	Inte Add .1 .2 .3 .4 .5 Perf Sun .1	 South Boundary Remediation System North Process Area System Product Loading Facility System

Contents (continued)

Figures

Figure 1 – Site Location Figure 2 – Site Map Figure 3A – Water Table Elevation and LNAPL Thickness Map (March 2016) Figure 3B – Water Table Elevation and LNAPL Thickness Map (June 2016) Figure 4 – Perimeter Monitoring Analytical (June 2016) Figure 5 – Groundwater Recovery Areas (June 2016) Figure 6A – Product Loading Facility (March 2016) Figure 6B – Product Loading Facility (June 2016) Figure 7A – North Process Area (March 2016) Figure 7B – North Process Area (June 2016) Figure 8A – South Process Area (March 2016) Figure 8B – South Process Area (June 2016)

Tables

Table 1 – Monitoring and Recovery Well Data

- Table 2A Groundwater Elevations and LNAPL Thickness Measurements (March 2016)
- Table 2B Groundwater Elevations and LNAPL Thickness Measurements (June 2016)
- Table 3 Summary of Groundwater Analytical Results (March 2016)
- Table 4 LNAPL and Groundwater Recovery Summary

Appendices

Appendix 1.4 – Landowner Well Usage Forms

- Appendix 2.2 Well Gauging Logs (March and June 2016)
- Appendix 2.2.1 Hydrograph of Monitoring Wells
- Appendix 2.3.A Groundwater Analytical Reports
- Appendix 2.3.B Groundwater Sampling Field Logs for January 1 through June 30, 2016 Events
- Appendix 3 Comprehensive Remediation Plan Work Progress Diagram
- Appendix 4.2.A Recovery System Operation and Maintenance Field Logs
- Appendix 4.2.B Recovery Rate Calculation
- Appendix 4.2.C BTEX Trends for BMW-25 and BMW-26
- Appendix 6 Interior Delineation Summary and Recommendation Report (on CD)
- Appendix 7.1 Grain-size Distribution and Bench-scale Results

Acronyms

bgsbelow ground surfaceBTEXbenzene, toluene, ethylbenzene, and total xylenesDROdiesel range organicsEPAEnvironmental Protection Agency
DRO diesel range organics
EPA Environmental Protection Agency
•••
ft-bgs feet below ground surface
ft/ft foot per foot
ft/mile feet per mile
gpm gallons per minute
GRO gasoline range organics
ISCO in-situ chemical oxidation
LNAPL light non-aqueous phase liquid
MOC Management of Change
O&M operation and maintenance
ODEQ Oklahoma Department of Environmental Quality
OPDES Oklahoma Pollutant Discharge Elimination System
OWRB Oklahoma Water Resources Board
OWS oil/water separator
PLF product loading facility
POTW publicly owned treatment works
PVC polyvinyl chloride
QAPP Quality Assurance Project Plan
QA/QC Quality Assurance/Quality Control
RCRA Resource Conservation and Recovery Act
SVOC semi-volatile organic compounds
µg/l micrograms per liter
VOCs volatile organic compounds
WRC Wynnewood Refining Company, LLC
WWTP waste water treatment plant

1 Introduction

1.1 PURPOSE

In accordance with Paragraph 27 of Oklahoma Department of Environmental Quality (ODEQ) Consent Order Case No. 15-056, this Semi-Annual Groundwater Remediation Progress Report (Progress Report) is being submitted on behalf of Wynnewood Refining Company, LLC (WRC) for its refinery at Wynnewood, Oklahoma (the Refinery, Figure 1).

The Refinery covers approximately 560 acres located south and southwest of Wynnewood, Oklahoma. The Refinery is owned and operated by WRC, a wholly owned subsidiary of CVR Energy, Inc. WRC purchased the Refinery from the Gary-Williams Energy Company on December 15, 2011. The Refinery was originally built in 1923 by the Texas Pacific Coal and Oil Company. Subsequent owners included the Kerr-McGee Corporation, which sold the Refinery to Gary-Williams in 1995.

The Refinery operates in accordance with a Resource Conservation Recovery Act (RCRA) Permit (Permit No. 000396549) for the closed Storm Water Retention Pond and an operating hazardous waste storage tank (Tank 2007). On June 30, 2015, ODEQ and WRC entered into a Consent Order to resolve certain RCRA allegations. The Consent Order, among other things, requires WRC to address certain Legacy Environmental Issues involving soil and groundwater contamination.

This Progress Report details activities undertaken to comply with the Consent Order during the reporting period, including:

- Groundwater monitoring results
- Potentiometric water levels and light non-aqueous phase liquid (LNAPL) thickness measurements
- Preparation of the Comprehensive Remediation Plan
- Groundwater recovery summary
- Existing system enhancements
- Interior delineation
- Additional remediation
- Performance Monitoring Plan

1.2 REPORTING PERIOD

The Refinery began hydrocarbon recovery operations in 1986. Semi-annual progress reports have been submitted to the State of Oklahoma beginning in August 1990. This report covers activity during the period from January 1 to June 30, 2016. This progress report is being submitted under the Consent Order, which became effective June 30, 2015. The submittal deadline for this Progress Report is September 1, 2016.

1.3 PROJECT PERSONNEL

Daily operations and routine field work including groundwater sampling and groundwater and LNAPL recovery were supervised by Evan Hilburn and Jerome McSorley, Professional Geologist, of WRC. Sam A. McCormick, Professional Geologist, is the WRC project manager. Assistance with LNAPL recovery operations and maintenance (O&M) for WRC is provided by StanTech. WRC has contracted with WSP to provide environmental consulting and drafting services on this project. The WSP project manager is Christine Warford (OKPE 25621). Christine Warford and Judy Andrews of WSP assisted Mr. McCormick and Mr. McSorley in the preparation of this report.

1.4 REGULATORY CONTACT AND REQUESTS

In a letter dated April 27, 2016, ODEQ requested that the Refinery formalize communication with neighboring landowners that currently have and use private wells downgradient from the Refinery. The Refinery delivered letters and well use questionnaires to the owners of the South Martin Well and McLaughlin wells along with the analytical results for their respective wells from the September 2016 comprehensive sampling event. Both landowners signed the form indicating they did not use water from the well for human consumption. Copies of the signed land owner acknowledgment forms were sent to ODEQ in monthly email correspondence and are included in Appendix 1.4.

2 Status of Investigation Activities Completed During the Reporting Period

2.1 GROUNDWATER MONITORING

Since groundwater monitoring began in 1980, a total of 167 groundwater monitoring and/or recovery wells (including piezometers) have been installed at the Refinery (Figure 2, Table 1). There are currently 113 monitoring and recovery wells within the groundwater monitoring and remediation network. Fluid levels, including depth to groundwater and depth to LNAPL, are collected from each monitoring and recovery well on a quarterly basis in March, June, September, and December of each year. Groundwater monitoring is conducted in accordance with the Comprehensive Remediation Plan submitted to ODEQ on August 13, 2015, and formally approved by ODEQ on February 1, 2016. The results of the groundwater monitoring events conducted in March and June 2016 are included in Section 2.2 and Section 2.3 of this Progress Report.

2.2 GROUNDWATER OBSERVATIONS AND LNAPL DISTRIBUTION

Groundwater elevation and LNAPL thickness measurements were collected in March and June 2016. The observations are summarized on Tables 2A and 2B and included in Appendix 2.2. The extent of LNAPL plumes shown in Figures 3A and 3B incorporate the results of the Interior Delineation investigation with fluid level measurements collected in monitoring wells and recovery wells during the quarterly monitoring events. The footprints of the LNAPL plumes were extended or modified based on the presence or absence of LNAPL at temporary boring locations installed during the direct-push investigation conducted in February, March, and April 2016 as part of the Interior Delineation investigation. The distribution of LNAPL based on the findings of the direct-push investigation were generally consistent with the historic LNAPL plumes mapped at the Site. No new plumes were encountered during the direct-push investigation. Activities associated with the Interior Delineation are discussed in more detail in Section 6.

2.2.1 Groundwater Observations

Groundwater elevations across the Refinery were relatively stable throughout the reporting period. Groundwater elevations decreased by 0.17 foot on average between December 2015 and March 2016 and increased an average of 0.15 foot from March 2016 to June 2016. On average, groundwater elevation measurements in June 2016 were 0.57 foot lower than measurements collected in June 2015.

All wells exhibited a large increase in groundwater elevation in the spring of 2015 due to high amount of rain in the months preceding the gauging event that year. For most wells, the observed June 2015 groundwater elevations were the highest elevations ever recorded. The high groundwater elevations continue to persist, with measurements approximately 5 feet higher than the average across the Refinery. A hydrograph showing the groundwater fluctuations at the Site is included in Appendix 2.2.1.

Groundwater flow across the Refinery is generally toward the southwest, with some localized variations. The groundwater flow direction at the Product Loading Facility (PLF) is toward the west. The slight difference in flow direction in this area is attributed to the continuous pumping at the hydrocarbon recovery system. The groundwater flow direction at the southern boundary is to the south.

The average horizontal groundwater gradient across the northern part of the Refinery was calculated from monitoring well UMW-1 to UMW-3 (a distance of 2,530 feet) as 0.014 foot per foot (ft/ft) (76 feet per mile [ft/mile]) in March 2016 and 0.015 ft/ft (77 ft/mile) in June 2016. The average horizontal gradient across the southern part of the Refinery was calculated from monitoring well SMW-18 to BMW-19 (a distance of 3,700 feet) as 0.0028 ft/ft (14.8 ft/mile) in March 2016 and 0.0029 ft/ft (15.3 ft/mile) in June 2016. Consistent with the previous reporting periods, the gradient is steepest on the east side of the Refinery (east of U.S. Highway 77) and relatively low in the open vegetated areas west of the railroad tracks (including the PLF area).

2.2.2 LNAPL Distribution

As shown on Figures 3A and 3B, there are five general areas where LNAPL was identified at the Refinery during the reporting period. The LNAPL plumes shown on Figures 3A and 3B are generally consistent with the LNAPL plumes observed in previous reporting periods, although the footprints of the LNAPL plumes were extended or modified based on the presence or absence of LNAPL encountered in temporary wells during the direct-push investigation, discussed in Section 6.

A generally increasing trend in LNAPL thickness has been observed in the North Process Area and South Process Area during the last two reporting periods, likely resulting from hydrodynamic changes associated with the concurrent rise in the water table. LNAPL thickness at PLF monitoring wells has remained generally stable to decreasing.

In the northern part of the process area, an LNAPL plume has historically extended from NMW-12 in the north to NMW-4 in the south. The direct-push investigation confirmed that the LNAPL accumulations in the vicinity of NMW-6 and NMW-12 are now separate, smaller plumes, distinct from the LNAPL accumulation in the North Process Area. Measurable LNAPL was present in recovery wells NRW-4 and NRW-6 in March and June 2016. LNAPL was also present in several monitoring wells in the vicinity of the recovery wells. LNAPL thicknesses at wells in the North Process Area ranged from 0.01 foot (NMW-18 and NMW-19 in March 2016) to 3.94 feet (NMW-10, March 2016). The LNAPL in the North Process Area to the east of the highway resembles gasoline, while the LNAPL west of the highway, in the vicinity of NRW-6 and NRW-7, resembles diesel.

An LNAPL plume is present in the South Process Area, centered near monitoring wells OMW-3 and OMW-4 and extending southward to LMW-11. The plume in this area has historically contained the largest sustained LNAPL thicknesses at the Refinery, with observations frequently exceeding 5 feet in multiple wells. LNAPL during this reporting period was observed in wells in this area at thicknesses ranging from 0.13 foot (LMW-1, March and June 2016) to 11.70 feet (OMW-4, March 2016). The LNAPL plume footprint in this area during the reporting period was similar to the one observed during the previous reporting period. The LNAPL in this area resembles diesel.

The footprint of the LNAPL plume in the PLF Area was historically localized around BMW-5, with no LNAPL observed in any other wells in that area between 2006 and 2011. Beginning in June 2011 and continuing to the present, LNAPL has been observed in as many as 14 different wells. LNAPL was observed in wells at the PLF at thicknesses ranging from 0.09 foot (BMW-26, March and June 2016) to 2.86 feet (BMW-5, June 2016). The footprint of the LNAPL plume in the PLF Area is relatively stable. The LNAPL in the PLF Area resembles gasoline.

A small LNAPL plume is intermittently observed near monitoring well LMW-5-0. LNAPL was observed in this well at a thickness of 0.02 foot in June 2016.

2.3 GROUNDWATER SAMPLING

In accordance with the Comprehensive Remediation Plan submitted to ODEQ on August 12, 2015 (WRC, 2015), samples were collected from a total of 21 monitoring wells, two water supply wells (S Martin Well and McLaughlin Well), and Martin Pond. Groundwater sampling locations are shown on Figure 2.

2.3.1 Sampling Procedure

The groundwater sampling for this reporting period was conducted from June 13 to 16, 2016. Monitoring wells were sampled using dedicated pumps and low-flow sampling methods. The samples from the offsite water wells were collected as grab samples from a hose connected to the well. The sample from Martin Pond was collected as a grab sample via bailer inserted near the pond center.

Samples were analyzed for the following parameters:

- gasoline range organics (GRO) by Oklahoma method GRO (8015D modified)
- diesel range organics (DRO) by Oklahoma method DRO (8015D modified)
- volatile organic compounds (VOCs) by U.S. Environmental Protection Agency (EPA) Method 8260

Groundwater samples were collected, labeled, shipped, and analyzed in general conformance with the groundwater sampling procedures specified in the Quality Assurance Project Plan (QAPP) submitted to ODEQ as Appendix A of the Comprehensive Remediation Plan (WRC, 2015).

2.3.2 Analytical Results

Groundwater samples were submitted to Pace Analytical Services, Inc. of Salina, Kansas (Oklahoma State Lab ID No. 8815). The groundwater sampling results for this reporting period are summarized in Table 3, and shown on Figure 4. Complete laboratory analytical reports including chain-of-custody forms are included in Appendix 2.3.A, and a copy of the field sampling logs is included in Appendix 2.3.B.

In accordance with the data quality objectives outlined in the QAPP submitted with the Comprehensive Remediation Plan (WRC, 2015), two duplicate samples, one equipment rinsate blank, one matrix spike and matrix spike duplicate, and one trip blank were collected for quality assurance/quality control (QA/QC) purposes during the June 2016 sampling event. According to the laboratory sample receipt form, one or more sample vials for samples collected from UMW-6 and SMW-24 contained air bubbles larger than 6 millimeters. There were no other QA/QC issues related to field activities or sample shipping noted by the laboratory. Additional data qualifiers were reported by the laboratory in the Quality Control Report and are included with the sample results in Table 3. Details of laboratory QA/QC are included in the laboratory reports in Appendix 2.3.A. The results of the duplicate samples were consistent with the concentrations measured in the primary samples.

2.3.2.1 Gasoline Range Organics

GRO were detected in 11 of the 24 samples collected from the monitoring wells, private supply wells, and Martin Pond in June 2016. The concentration of GRO exceeded the ODEQ Cleanup Level of 1,000 micrograms per liter (μ g/l [ODEQ, 2004]) in samples collected from monitoring wells BMW-25, BMW-26, NMW-6, NMW-12, UMW-4, UMW-5, and UMW-6. The highest concentration of GRO was observed in monitoring well NMW-12 (37,000 μ g/l), located at the northeastern portion of the refinery, in the north side of the Light Oils Tank Farm.

The concentration of GRO in samples collected from BMW-26 and UMW-5 exhibit a generally decreasing trend since 2011, while the concentration of GRO in UMW-6 shows a slight increasing trend. GRO concentrations do not exhibit an increasing or decreasing trend elsewhere at the Site.

2.3.2.2 Diesel Range Organics

DRO were detected in 16 of the 24 samples collected from the monitoring wells, private supply wells, and Martin Pond in June 2016. The concentration of DRO exceeded the ODEQ Cleanup Level of 1,000 μ g/l (ODEQ, 2004) in samples collected from monitoring wells BMW-25, BMW-26, NMW6, NMW-12, UMW-1, UMW-4, and UMW-6. The highest concentration of DRO was observed in monitoring well NMW-6 (190,000 μ g/l), located in the northeast portion of the Refinery in the Light Oils Tank Farm. Monitoring well NMW-6 contained 0.20 foot of LNAPL when it was sampled.

The trend in DRO concentrations across the Refinery are generally stable or decreasing. The concentration of DRO in June 2016 in monitoring well UMW-4 (1,600 μ g/l), however, was the highest concentration detected since the well was installed in 2012. The detection of DRO in UMW-1 is the first time DRO have been detected in this well.

2.3.2.3 Benzene

Benzene was detected above the laboratory reporting limit and above the laboratory reporting limit in 8 of the 24 samples collected from the monitoring wells, private supply wells, and Martin Pond in June 2016. The concentration of benzene exceeded the EPA Drinking Water Standard (5 μ g/l) at samples collected from monitoring wells BMW-25, BMW-26, NMW-6, NMW-12, UMW-4, UMW-5, UMW-6, and Martin Pond. The highest concentration of benzene was observed in monitoring well NMW-12 (8,540 μ g/l), located at the northeastern portion of the refinery, in the north side of the Light Oils Tank Farm.

The trend in benzene concentrations across the Refinery are generally stable or decreasing. The concentration of benzene in monitoring well UMW-4 (903 μ g/l) during this reporting period, however, was the highest concentration detected since the well was installed in 2012.

3 Comprehensive Remediation Plan

As part of a Consent Order signed on June 30, 2015 (Case No. 15-056), a Comprehensive Remediation Plan was submitted to ODEQ for review and approval on August 12, 2015. The Plan describes the activities proposed to be undertaken to comply with the requirements of Section B of the Order, specifies preliminary remediation goals and final cleanup goals, and includes timelines for completion of the proposed work scope.

ODEQ issued a Notice of Deficiencies Letter regarding the Plan on November 24, 2015. WRC responded to the Notice on December 23, 2015 and modified select sections of the text and figures to correct the deficiencies identified by ODEQ in their letter. The Plan was approved by ODEQ on February 1, 2016.

Figure 6.1 of the Comprehensive Remediation Plan has been updated to show the work that has been completed by the end of the reporting period and is included in Appendix 3. Additionally, WRC has been providing informal monthly progress updates to the ODEQ project coordinator.

4 Groundwater Recovery Summary

The Refinery has historically operated six hydrocarbon recovery systems. WRC currently operates three recovery systems: the PLF System, North Process Area System, and South Process Area System (Figure 5).

The first part of this section describes the historical recovery systems and summarizes their cumulative production. The second part of this section describes the current recovery system configuration, operations and maintenance, and recovery results for the reporting period.

4.1 HISTORICAL HYDROCARBON RECOVERY SYSTEMS

4.1.1 Tank 150 Area

The Tank 150 Area is located west of U.S. Highway 77, northeast of the main processing area of the Refinery. In 1985, LNAPL was observed in monitoring well NMW-7. The LNAPL was similar in characteristic to gasoline and was assumed to have originated from the nearby gasoline blending area. LNAPL recovery operations began in 1987.

The Tank 150 Area recovery system consisted of a sump, an 8-foot length of 30-inch diameter steel culvert installed at the water table (as it existed in 1987, apparently a relatively high period for groundwater), and an ORS Scavenger recovery pump. The pump was connected through a 1-inch diameter flexible hose to an adjacent 1,000-gallon (25-barrel) aboveground storage tank located inside the Tank 150 dike area. In the past, the tank was emptied as needed by transfer to a vacuum truck for reprocessing in the Refinery.

The ORS Scavenger pump was operated intermittently when high water table conditions permitted recovery from the sump. The system was last operated in the second half of 2008.

The Tank 150 Area system recovered 14,225 gallons (339 barrels) of LNAPL between 1990 and 2008. Additional LNAPL was recovered in the period 1987 to1989, but the volume was not recorded.

In accordance with the Comprehensive Remediation Plan, the Tank 150 Sump was plugged on August 19, 2015. WRC obtained a variance from the Oklahoma Water Resources Board to plug the sump. The variance was necessary since the prescribed method of plugging a well in Oklahoma (overdrilling and pulling the casing) was impractical for this sump.

Recovery operations for this area have now been incorporated into those associated with the North Process Area (Section 4.2.2).

4.1.2 Light Oils Terminal Area

The Light Oils Terminal recovery system is located in the northwest corner of the Refinery, east of U.S. Highway 77 and east of the main Refinery office. The area is hydraulically upgradient from the main process areas of the Refinery. The Light Oils Terminal area consists of about a dozen large aboveground storage tanks and an associated product loading rack for truck transports.

Petroleum LNAPL was discovered in this area in 1987 during a soil boring program associated with the Refinery's RCRA Facility Investigation. The LNAPL is presumably gasoline.

The Light Oils Terminal Area recovery system initially consisted of pneumatic ejector pumps installed in two monitoring wells (NMW-9 and NMW-10). Discharge lines from the wells were routed to an adjacent tank truck that served as a recovery tank. When full, the recovered LNAPL in the tank truck was removed via vacuum truck and reprocessed at the Refinery. Groundwater was drained to a process sewer for treatment under the Refinery's Oklahoma Pollutant Discharge Elimination System (OPDES) permit.

LNAPL recovery began in December 1989. Initially, only the volume of recovered LNAPL was recorded. In January 1990, a flow meter was added to the discharge line to the tank truck, and recovered groundwater volumes were recorded thereafter. A new pneumatic pump was installed in NMW-9 in April 2005. At that time the ejector pumps were removed from NMW-9 and NMW-10.

After April 2005, the Light Oils Terminal Area recovery system consisted of one pneumatic pump in monitoring well NMW-9. The pump discharged though a ½-inch diameter flexible hose that is routed across the ground to a nearby process sewer connection. There was a flow meter on the discharge line; however, the volume of LNAPL produced along with the groundwater was not measured.

The Light Oils Terminal Area recovery system has not operated since June 2009. It appears that much of the LNAPL in this area has now migrated downgradient to the Process Area recovery system. The Light Oils Terminal Area recovery system has a cumulative recovery of 158,705 gallons (3,779 barrels) of LNAPL and 461,026 gallons of groundwater.

Recovery operations for this area have now been incorporated into those for the North Process Area (Section 4.2.2).

4.1.3 Product Loading Facility Area

The PLF is located on the western boundary of the Refinery, and the recovery system is located north of the PLF. During an expansion project for the PLF in 1986, the Refinery discovered LNAPL on groundwater. The source was a leaking underground pipe. A sample of the LNAPL was tested for American Society for Testing and Materials (ASTM) physical properties (specific gravity and boiling point distribution) and chromatographic analysis by the Refinery laboratory. The sample analysis indicated that the LNAPL is similar in characteristics to premium unleaded gasoline.

Initially, three metal culvert sumps and skimmer pumps were installed to recover LNAPL. These were operated until they were no longer effective. In June 1990, the PLF Area recovery system was installed, consisting of five recovery wells (BRW-1 through BRW-5) positioned to capture total fluids at the downgradient edge of the previously defined LNAPL plume.

The system initially included an oil/water separator (OWS), with a working capacity of 1,000 gallons, downstream from the recovery wells. However, due to maintenance concerns with the tank, the discharge line from the system was routed directly to the process sewer. In 1991, the Refinery installed two additional monitoring wells (BMW-25 and BMW-26) downgradient from the recovery system. These wells are sampled on a semi-annual basis for benzene, toluene, ethylbenzene, and total xylenes (BTEX) to track the long-term effectiveness of the recovery system.

On July 6, 2001, improvements to the PLF recovery system were put in service. The improvements included: installing three new recovery wells (BRW-6, BRW-7, and BRW-8) along the west side of the area between monitoring wells BMW-25 and BMW-26; replacing the pumps with new electrical submersible pumps in five recovery wells (BRW-1 through BRW-5); and installing an air sparging system

using seven existing monitoring wells. In December 2010, the air sparging wells were taken out of service as part of system enhancements and are now used as monitoring wells.

Current PLF recovery system operations are summarized in Section 4.2.1.

4.1.4 Laboratory and Control Building Area

The Laboratory and Control Building Area recovery system is located west of U.S. Highway 77, north of the gate into the Refinery Process Area. In 1989, LNAPL (presumably a hydrotreated heavy naphtha similar to kerosene, known by the trade name 100W) was observed in monitoring well NMW-8 (located 75 feet north of the laboratory building). The source of the release was not determined, but 100W is used at the laboratory as a solvent and is stored in aboveground storage tanks outside the laboratory.

In 1990, a process control building was constructed adjacent to the south side of the laboratory building. The lower floor of the process control building is approximately 5 feet below ground surface (bgs), and an air conditioning duct bank lies underneath the floor. During a period of high water table levels in 1990, groundwater and LNAPL entered the air conditioning duct bank, and the resulting vapors forced the evacuation of the process control building.

An emergency dewatering system was installed on the east side of the process control building. The system consisted of three dewatering wells (DRW-1, DRW-2, and DRW-3). The wells were installed at a depth of 20 ft-bgs and completed with 15 feet of 4-inch diameter polyvinyl chloride (PVC) screen. The wells were outfitted with Grundfos electric submersible pumps and operated on float-activated switches. The effluent from the three dewatering wells was piped directly to a process sewer. At the same time, the sub-floor air conditioning duct work was abandoned.

Four additional recovery wells (KRW-1 through KRW-4) were installed in 1990 along the outer walls of the laboratory building (two on the north side and two on the east side). The wells at the laboratory building were 4-inch diameter with 5 feet of slotted screen. The four wells were outfitted with ejector pumps. The intake level of the ejector pumps was designed to operate at a depth of 3 to 4 feet below the top of the static water table to maximize drawdown. The pumps were periodically raised or lowered in response to water table variations. Effluent from the ejector pumps was directed to an OWS. The LNAPL was recovered for reprocessing at the Refinery, and the groundwater was discharged to the Refinery's process sewer.

The four recovery wells at the laboratory building last operated continuously in December 2008. The four recovery wells were plugged on January 5, 2012, to make room to retrofit the laboratory with reinforced outer walls. Recovery operations for the laboratory and control building area are no longer productive, but the dewatering wells at the control building are presumably capable of being put back into service should the need arise. However, at the present time there is no need to do so.

The Laboratory and Control Building Area recovery system recovered 394,917 gallons of groundwater and 21,067 gallons (502 barrels) of LNAPL. The volume of groundwater removed by the three dewatering pumps was apparently not recorded.

4.1.5 South Alky Unit Area

The South Alky Unit Area recovery system was located west of the railroad tracks and west and south of the main processing units at the Refinery. The recovery system consisted of two 30-inch sumps installed to a depth of 20 ft-bgs. A skimmer and pump system (ORS Scavenger pump) was used for recovery at each sump. The two sumps were located 265 feet apart between the railroad tracks and the Refinery

service road that runs parallel to the tracks. The LNAPL was pumped to a 100-barrel aboveground storage tank. As needed, the tank was emptied via vacuum truck, and the LNAPL was reprocessed at the Refinery. Due to a conflict with Refinery expansion plans, the sumps were plugged in accordance with Oklahoma Water Resource Board (OWRB) guidance. A variance was granted from OWRB in May 2013 (VR 2013-08) to plug the sumps by grouting in place. The storage tank has been emptied and removed from the area.

The South Alky Unit Area recovery system was installed as an adjunct to the Process Area recovery system and was operational from the second half of 1992 to 2012. Based on the physical appearance of LNAPL in nearby monitoring wells, the LNAPL in the vicinity of the south sump is likely a heavy naphtha, and the LNAPL in the vicinity of the north sump is likely a gas-oil. The cumulative amount of recovered LNAPL is 33,169 gallons (790 barrels).

Recovery operations for this area have now been incorporated into those for the South Process Area (Section 4.2.3).

4.1.6 Process Area

The Process Area recovery system is located along U.S. Highway 77 (from near the northern boundary of Refinery property), past the WRC main office building, across the highway, down through the main process areas of the Refinery, and across the railroad tracks that form the western boundary of the main process area. LNAPL was discovered in a monitoring well (LMW-13) installed on the west side of the railroad tracks in 1981. The LNAPL resembled a mixture of crude oil and distillate.

Initially, the Process Area recovery system consisted of three wells (ORW-1, ORW-2, and ORW-3). These 4-inch diameter PVC recovery wells were installed in 1986 east of the railroad tracks in what was then considered to be the center of the LNAPL plume. The wells were outfitted with ejector pumps. The recovery system produced a small volume (840 gallons) of LNAPL and a considerable (but unrecorded) volume of water. In January 1990, the ejector pumps were replaced with smaller pumps to limit the production of groundwater. Between January 1 and March 31, 1990, the system produced 1,769 gallons of LNAPL and 5,697 gallons of groundwater. Between March 31 and June 6, 1990, the system operated sporadically due to rapidly fluctuating groundwater elevations, and the system was shut off in June 1990.

In 1992, the Process Area recovery system was expanded to include 10 new recovery wells (NRW-1 through NRW-7, LRW-3 and LRW-4, and ORW-4). The new recovery wells were outfitted with electric submersible pumps. The original three wells were abandoned as recovery wells. In addition to the distillate products being recovered in the southern part of this area, the northern recovery wells (NRW-1 through NRW-7) are recovering LNAPL resembling gasoline—apparently part of the LNAPL plume that has migrated downgradient from the Light Oils Terminal area.

The Process Area recovery system last operated consistently in September 2010. Since that time a few wells have operated sporadically, but the system suffered from a lack of long-term maintenance on the pumps and effluent piping. The system cumulatively recovered a volume of 78,091,001 gallons of groundwater and an estimated 36,120 gallons (860 barrels) of LNAPL. Beginning in July 2003, the volume of LNAPL recovered was estimated, based on laboratory analysis, as being a small percentage (0.25 percent) of the recovered groundwater volume.

For reporting purposes, the Process Area recovery system has been terminated as of December 31, 2011. It has been replaced by a North Process Area recovery system (Section 4.2.2) and a South Process Area recovery system (Section 4.2.3).

4.2 EXISTING RECOVERY SYSTEM OPERATIONS

There are currently three existing recovery systems operating at the Refinery, the PLF system, North Process Area System, and South Process Area System. Monthly O&M is conducted on each recovery system by StanTech. Appendix 4.2.A contains the O&M field data sheets for the reporting period.

Semi-annual product recovery rate tests were conducted on June 15 and 16, 2016 at recovery wells of each recovery system. The product recovery rate is used to determine the amount of LNAPL recovered from the recovery systems. Recovery rates are determined by isolating the recovery wells and filling graduated buckets with flow from each recovery well. The recovered LNAPL and water were allowed to settle for a period of approximately five minutes before the volumes of LNAPL and water were recorded. The product recovery rate calculations are discussed in further detail in the sections below. Appendix 4.2.B contains the product recovery rate calculation. Table 4 includes a summary of LNAPL and groundwater recovery for the recovery systems.

4.2.1 Product Loading Facility Recovery System

The PLF recovery system currently consists of eight recovery wells, BRW-1 through BRW-8. At this time, five of the eight wells (BRW-3 and BRW-5 through BRW-8) are outfitted with electric submersible pumps (Figures 6A and 6B). Recovery wells BRW-3 and BRW-5 are 4-inch diameter wells, and BRW-6 through BRW-8 are 6-inch diameter wells. Each well is operated on a float switch, and the pump cycles on and off. Effluent from these five recovery wells is combined and discharged directly to the Refinery's process sewer for treatment in the Refinery's wastewater treatment plant. A target flow rate of 10 gallons per minute (gpm) was established, based on a 2011 evaluation, to provide sufficient drawdown (WRC, 2011).

Routine O&M activities conducted by StanTech during the reporting period for the PLF recovery system included cleaning the flow meters and meter screen and restarting the system. Copies of the O&M field log sheets are included in Appendix 4.2.A. On November 13, 2015, the air sparge piping that had historically connected monitoring wells BMW-2, BMW-6, BMW-8, BMW-11, BMW-18, BMW-25, BMW-26 to an air sparge system that is no longer operable was removed from the wells.

Groundwater flow is recorded on an effluent meter, and the meter is read monthly. During the reporting period, the PLF recovery system produced 1,156,107 gallons of groundwater. The continuous average system flow rate for this reporting period was approximately 4.7 gpm, which is approximately 1 gpm lower than the flow rate during the last reporting period. Since 1992, the PLF recovery system has produced a cumulative volume of 48,909,393 gallons of groundwater.

The January 2016 recovery rate test results, indicating approximately 0.0023 percent of the metered effluent is LNAPL, was used in January and February 2016. The June 2016 recovery rate test results, indicating approximately 0.0089 percent of the metered effluent is LNAPL was applied beginning in March 2016 through the end of the reporting period. This recovery factor of 0.0089 percent is consistent with the June 2015 recovery rate, and slightly higher than the recovery rate calculated in the previous reporting period (0.0023 percent). An estimated 78 gallons of LNAPL were entrained in the groundwater during the reporting period, and an estimated 13,866 gallons (330 barrels) of LNAPL have been recovered from the system since 1992 (Table 4). The recovery rate calculation is shown in Appendix 4.2.B. Copies of the field log sheets are included in Appendix 4.2.A. The recovery estimates shown in Table 4 have been calculated using the applicable recovery estimates for each reporting period.

There was an increase in LNAPL thickness at monitoring wells BMW-2, BMW-5, and BMW-24 from the previous reporting period, which is partially attributed to accumulation of LNAPL that entered and became

entrapped in the wellbore during previous periods of decreased water table elevation and may not reflect the actual thickness of LNAPL in the subsurface.

Appendix 4.2.C contains total BTEX concentrations plotted over time for BMW-25 and BMW-26. The BTEX concentrations at the end of this reporting period (June 2016) decreased at both BMW-25 and BMW-26. BTEX concentrations at BMW-25 reduced by 72 percent from the previous reporting period (September 2015). BTEX concentrations at BMW-26 reduced by 24 percent from the previous reporting period, and has consistently decreased in the last three reporting periods (December 2014, June 2015, and September 2015). BTEX concentrations are the lowest concentrations since the June 2012 reporting period. The trends for BMW-25 and BMW-26, in conjunction with the LNAPL recovery factors, indicate that the PLF system is controlling the migration of contaminant plumes and capturing the free-phase and dissolved-phase contaminant plumes in this area. Upgrades for the PLF system are being reviewed through the Refinery's Management of Change (MOC) process. Planned enhancements to the PLF remediation system are discussed in Section 5.1.

4.2.2 North Process Area Recovery System

The North Process Area recovery system currently includes seven recovery wells (Figures 7A and 7B). The recovery wells (NRW-1 through NRW-7) are located along a roughly north-south axis on either side of U.S. Highway 77 on the western (downgradient) side of a LNAPL plume. Each recovery well is a 6-inch diameter well outfitted with an electric submersible pump.

The four wells east of U.S. Highway 77 (NRW-1 through NRW-4) are tied together at a common meter box located near the WRC main office. The effluent line from each well is 1½-inch diameter PVC pipe. Each well runs through individual piping to a common flow meter and then flows to a 4-inch diameter PVC discharge line. The discharge line crosses under U.S. Highway 77 and connects to the western wells and ultimately the Refinery's process sewer.

The three wells on the west side of U.S. Highway 77 (NRW-5 through NRW-7) are tied together at a common meter box on the highway fence line southeast of NRW-5. Before April 10, 2014, the 1½-inch diameter PVC effluent line from each of these three wells ran through individual flow meters before connecting to a 4-inch diameter PVC discharge line, and the process sewer. On April 10, 2014, a new meter box and flow meter were installed for the three recovery wells located west of U.S. Highway 77 (NRW-5 through NRW-7).

Routine O&M activities conducted during the reporting period for the North Process Area included cleaning the flow meter screens. Copies of the O&M field log sheets are included in Appendix 4.2.A.

During the reporting period, the North Process Area produced 3,181,435 gallons of groundwater. The continuous average system flow rate for this reporting period was 11.9 gpm, which is approximately 2 gpm higher than the flow rate reported during the last reporting period.

The June 2016 recovery rate test results indicated that approximately 0.49 percent of the metered effluent is LNAPL, slightly higher than the previous recovery rate of 0.12 percent calculated in January 2016. The January 2016 recovery rate test result was used in January and February 2016 and the June 2016 recovery factor of 0.49 percent was applied from March 2016 through the end of reporting period. An estimated 11,798 gallons of LNAPL were entrained in the groundwater recovered during the reporting period, and an estimated 60,204 gallons (1,433 barrels) of LNAPL have been recovered from the system since 2012 (Table 4). Copies of the field log sheets are included in Appendix 4.2.A. The recovery rate calculation is shown in Appendix 4.2.B.

WRC plans to upgrade the North Process Area recovery system based on a review of the existing infrastructure, boring logs, and hydrogeologic data. The focus of the initial improvements will be modifications to recovery wells NRW-1 through NRW-7. The proposed modifications for system enhancements were submitted to the Refinery as part of the MOC process. Planned enhancements to the North Process Area remediation system are discussed in Section 5.2.

4.2.3 South Process Area Recovery System

The South Process Area recovery system currently includes recovery well LRW-3, a 6-inch diameter well outfitted with an electric submersible pump (Figures 8A and 8B).

Recovery well LRW-3 previously discharged into a 6-inch diameter process sewer line that serves various storm water and process sumps on the west side of the railroad tracks. The 6-inch diameter sewer line crossed under the railroad tracks north of LRW-3 and joined the main Refinery process sewer at a sewer box near Tank 103, on the east side of the railroad tracks. Due to Refinery expansion projects in the area, the discharge line for LRW-3 was relocated to a new crossing under the railroad tracks. The recovery system was shut down in August 2013 and was restarted on June 30, 2014.

Routine O&M activities conducted during the reporting period for the South Process Area included cleaning and installation of a new strainer screen. The flow meter strainer screen was often clogged during the first half of the reporting period, causing the meter to not function properly. Copies of the O&M field log sheets are included in Appendix 4.2.B.

During the reporting period, the South Process Area is estimated to have produced 712,417 gallons of groundwater. Due to inaccurate meter readings when the flow meter screen was clogged, the recovered groundwater volume was estimated using the corresponding recovery rate test flow rates ranging from 1.7 gpm to 3.7 gpm, and the run time of the pump during the reporting period. The continuous average system flow rate for this reporting period was estimated to be 2.8 gpm.

The June 2016 recovery rate test results indicated that approximately 0.0089 percent of the metered effluent is LNAPL, an increase from the previous reporting period when no LNAPL recovery was indicated in January 2016. The January 2016 recovery rate test results was used in January and February 2016 and the June 2016 recovery factor of 0.0089 percent was applied from March 2016 through the end of reporting period. An estimated 46 gallons of LNAPL were entrained in the groundwater recovered during the reporting period, and an estimated 975 gallons (23 barrels) of LNAPL has been recovered from the system since 2012 (Table 4). Copies of the field log sheets are included in Appendix 4.2.A. The recovery rate calculation is shown in Appendix 4.2.B.

5 Existing Recovery System Enhancements

5.1 PRODUCT LOADING FACILITY SYSTEM ENHANCEMENTS

As discussed in Section 4.1.3, the existing system was installed in response to a release discovered in 1986. The system currently operates with five recovery wells outfitted with electric submersible pumps plumbed to a common header. In the Comprehensive Remediation Plan, the Refinery proposed enhancements to the PLF system in order to improve containment and capture of the dissolved-phase and LNAPL plumes by installing properly sized electric submersible pumps to maximize yield from individual recovery wells and lateral lines from individual recovery wells to a common header of sufficient size.

The focus of the initial improvements will be modifications to recovery wells BRW-6, BRW-7, and BRW-8, which are located along the western fence line. In February 2015, the Refinery conducted a thorough cleaning of biological deposits from the well screens and redeveloped recovery well BRW-8. After the well cleaning, a drawdown test (step-rate test) was conducted to determine the effective yield of the aquifer at the PLF for planning additional enhancements to the recovery system. The results of the drawdown test indicated there was good communication through the aquifer. However, recovery well BRW-8 was capable of pumping at a flow rate greater than the total flow rate of the current PLF remediation system, which indicates the remediation system piping is likely limiting the flow and needs to be replaced.

The enhancements to the system will use existing recovery wells BRW-6, BRW-7, and BRW-8. BRW-6 and BRW-7 will be redeveloped in a manner identical to how BRW-8 was developed prior to the pump test. The wells will be equipped with electric submersible pumps sized based on results from the pump test. Recovered fluids will be transferred underground via piping to an OWS that will be housed within a treatment equipment enclosure. Transfer piping will be installed within a carrier pipe. Whenever possible, transfer piping and electric lines will be installed in a common trench to limit the impact to underground utilities.

The OWS will be sized to manage total-fluids flow from the existing recovery wells and additional recovery wells that may be incorporated in the future. The purpose of the OWS is to separate the LNAPL from the groundwater. Recovered LNAPL will be transferred to a storage tank located within the treatment equipment enclosure. LNAPL will be reclaimed as necessary and blended back into the refining process. The recovered groundwater will be transferred from the OWS to an equalization tank.

Each wellhead will be reconstructed and housed in a 4-foot square subsurface steel vault. The base of the well vaults will be set in concrete with a concrete pad surrounding the well vault.

Recovery wells BRW-1 through BRW-5 will be shut off and will not be incorporated into the initial enhancements for the PLF system because the projected radius of influence of the enhancements to BRW-6 through BRW-8 should be sufficient to hydraulically control the LNAPL plume at the PLF. However, if information from the interior delineation or operational data indicates that the initial enhancements to the PLF are insufficient to hydraulically contain the dissolved-phase plume at the property boundary and/or recover the LNAPL plume, future enhancements of the PLF system may include redevelopment and use of BRW-1 through BRW-5.

The goals of the enhancement will be to hydraulically contain the dissolved-phase hydrocarbons at the Refinery boundary, recover LNAPL, and treat the recovered groundwater. The initial design concept for the enhancements assumed that the effluent water could be sent to the Refinery's wastewater plant for treatment. An initial MOC meeting was held on August 7, 2015. During the MOC meeting, the Refinery determined that other processing options should be considered for the effluent water, a separate treatment train will be designed for the PLF effluent water. Based on the Refinery's MOC process, the design may also need to be modified with respect to the location of the auxiliary equipment and specifications of the electrical components to meet the appropriate codes.

The Refinery decided to pursue a separate OPDES permit to discharge the water. The OPDES permit application was submitted to the Water Quality Division of ODEQ on June 15, 2016. The Refinery is working with the City of Wynnewood to discharge the treated recovered water from the PLF through the City's publicly owned treatment works (POTW) discharge pipe, downstream of the POTW compliance sampling point. The Refinery has met with the City of Wynnewood to procure an agreement to discharge water through their pipe, but an agreement has not been finalized at this time.

On May 6, 2016 ODEQ requested an engineering evaluation of the PLF groundwater recovery treatment system discharge pipe options. The purpose of the evaluation was to determine whether the existing City POTW discharge pipe is capable of accepting the Refinery PLF treatment water and that the Refinery's wastewater treatment plant (WWTP) piping does not have sufficient capacity to handle additional flow from the PLF treatment system.

The evaluation determined, that the City POTW flow rates are lower than the manufacturer allowed flow for the discharge, indicating that the discharge pipe is capable of handling all flow ranges observed in the recent history and beyond the extreme flow range. Additionally, operation of the PLF treatment system, discharging through the City POTW discharge pipe, will not be impacted by storm events except for highly irregular storm events on the order of a 10-year, 24-hour storm event.

The Refinery WWTP data indicates that the discharge pipe currently handles flow volumes outside of the recommended operational range from the Refinery WWTP. The addition of water from the PLF treatment system would tax the pipe further. Given the age of the pipe, the operational practices of the Refinery WWTP, and the unknowns associated with the existing pipe flow path and profile, WSP recommended not adding the additional 100 gpm of flow from the PLF treatment system into the 8-inch Refinery WWTP pipe due to risks of breakage.

WRC presented a connection agreement to the Wynnewood City Council on August 8, 2016. The city council tabled a motion to accept the agreement, postponing any further action until their September 2016 meeting.

On August 10, 2016, ODEQ approved the evaluation, contingent on the City of Wynnewood allowing the effluent from the PLF remediation system to be discharged via the City's POTW effluent pipe. The ODEQ requested the Refinery submit a copy of the official agreement between the City and the Refinery when it is approved.

5.2 NORTHERN PROCESS AREA SYSTEM ENHANCEMENTS

The focus of the initial enhancements for the Northern Process Area will be on recovery wells NRW-1 through NRW-4, which are located on the east side of the U.S. Highway 77. In February 2015, the Refinery conducted a thorough cleaning of biological deposits from the well screens and redeveloped

recovery well NRW-3. NRW-1, NRW-2, and NRW-4 will be redeveloped in a manner identical to how NRW-3 was developed prior to the yield test conducted in February 2015.

As described in the Comprehensive Remediation Plan, existing recovery wells NRW-1 through NRW-4 will be equipped with pneumatic pumps that will be sized based on results from testing conducted in February 2015. The pneumatic pumps will be operated by an air compressor housed in the treatment equipment enclosure. Recovered fluids will be transferred underground via piping to an OWS that will be housed within a treatment equipment enclosure. New transfer piping will be installed within a carrier pipe to the treatment equipment enclosure. Whenever possible, transfer piping and air lines will be installed in a common trench to limit the impact to underground utilities. Effluent water from the treatment equipment enclosure will be connected to an existing effluent line crossing under U.S. Highway 77 and discharge into an existing connection to the Refinery process sewer for treatment at the Refinery WWTP.

The OWS will be sized to manage total-fluids flow from the existing recovery wells and additional recovery wells that may be incorporated in the future. The purpose of the OWS is to separate the LNAPL from the groundwater. Recovered LNAPL will be transferred to a storage tank located within the treatment equipment enclosure. LNAPL will be reclaimed as necessary and blended back into the refining process. The recovered groundwater will be transferred from the OWS to an equalization tank and then transferred to the Refinery process sewer. Each wellhead will be reconstructed and housed in a 4-foot square subsurface steel vault. The base of the well vaults will be set in concrete with a concrete pad surrounding the well vault.

Recovery wells NRW-5 through NRW-7 on the west side of U.S. Highway 77 will remain in the North Process Area as-is.

The conceptual design for the North Process Area was submitted to the Refinery for review and approval as part of the MOC process. An initial meeting was held on January 13, 2016. Based on the MOC meeting, the design was modified slightly to move the location of the auxiliary equipment building to a more secure location, and specifications of the electrical components were modified to meet the appropriate codes. The MOC was approved for installation on June 1, 2016. The Refinery will proceed with the implementation of the North Process Area remediation system enhancements during the next reporting period.

The goals of the additional North Process system enhancements will be the containment and control of the LNAPL plume. Based on the results of the interior delineation activities, an additional two recovery wells were recommended for this area of the Refinery. The recommendations were included in the *Interior Delineation Summary and Recommendation Report* submitted to ODEQ on July 13, 2016 and are also briefly discussed in Section 7.3

6 Interior Delineation

Data gaps existed in the conceptual site model pertaining to geologic characterization and the extent and magnitude of both the LNAPL and dissolved-phase hydrocarbon plume at the Refinery. A work plan for Interior Delineation was included in the Comprehensive Remediation Plan. The work plan described tasks to complete to address data gaps through installation of additional monitoring wells, groundwater sampling, and direct-push soil and groundwater investigation. The information obtained from these tasks will be used to inform decision-making processes for recovery systems and the monitoring well network.

The following Interior Delineation activities were completed during the reporting period:

- A total of 83 temporary borings were installed as part of the direct-push delineation to characterize the geology of the North Process Area to fill data gaps left by incomplete boring log data; delineate the LNAPL plume in the South Process Area, North Process Area, and PLF; and delineate the dissolved-phase plumes in areas where insufficient data existed.
- In order to assess the extent of LNAPL at the site, borings were installed to determine whether additional monitoring or recovery wells are needed.
- Groundwater samples were collected from a total of 51 temporary wells for analysis of GRO, DRO, and BTEX by Pace Analytical Services of Salina, Kansas.
- From May 4 through May 7, 2016, LNAPL recovery tests were performed at five monitoring wells. At monitoring wells NMW-2, NMW-6, NMW-10, and OMW-4, manual skimming of LNAPL was used to recover LNAPL. A baildown test was performed at monitoring well OMW-3 because LNAPL recharge to OMW-3 was too slow to perform the manual skimming test.

The Interior Delineation Summary and Recommendation Report was submitted to ODEQ on July 13, 2016. WRC proposes to install eighteen additional monitoring wells at property boundary and interior locations to monitor LNAPL and dissolved-phase trends. The report also included recommendations for additional groundwater remediation activities in the North Process Area, PLF, South Process Area, and a manual LNAPL recovery program based on the findings of the interior delineation and transmissivity testing. A complete electronic copy of the Interior Delineation Summary and Recommendation Report, including boring logs, laboratory analytical report, and LNAPL recovery tests previously submitted to ODEQ, is included as Appendix 6.

The following interior delineation activities are scheduled to occur during the upcoming reporting period:

- Install recommended additional monitoring and recovery wells, if approved by ODEQ.
- Sample all newly installed monitoring wells that do not exhibit LNAPL for GRO by Oklahoma method GRO (8015D modified), DRO by Oklahoma method DRO (8015D modified), VOCs by EPA Method 8260, semi-volatile organic compounds (SVOCs) by EPA Method 8270, and RCRA metals by SW 846 methods, within 60 days of completion, or during the next semi-annual sampling event, whichever comes first.

7 Additional Remediation

7.1 NORTH BOUNDARY INVESTIGATION

On May 4 through 6, 2016 the tracer test was conducted, in accordance with the ODEQ Title 252, Chapter 652 regarding underground injection control, near existing monitoring well UMW-6 to evaluate variability in subsurface characteristics, with baseline and post-test groundwater monitoring to confirm tracer distribution and to determine if remedial amendment delivery (e.g., for in-situ chemical oxidation is feasible). A Class V Injection Well Permit application was submitted to ODEQ on March 4, 2016, with a copy of the Tracer Test Work Plan. ODEQ approved the permit application on March 24, 2016.

The tracer test was conducted in two locations adjacent to UMW-6 to evaluate variability in subsurface characteristics with baseline and post-test groundwater monitoring to confirm tracer distribution. To monitor baseline and post-injection conditions, temporary monitoring wells were installed around the injection points to a depth of approximately 28 ft-bgs, the depth of UMW-6.

The tracer test at injection point I-1 was conducted in accordance with the work plan, with two injection horizons and two step-rate injections. However based on the results of the first injection test, modifications were made to the second injection test at injection point I-2. The temporary well locations were modified to address the observed local groundwater flow direction, which differed from the direction assumed by the workplan, and only one injection step (10 gpm) and one injection horizon (25 ft-bgs) was used for injection point (I-2).

Prior to the tracer test, bench-scale soil and groundwater samples were collected near UMW-6. The samples were analyzed to ensure appropriate design and implementation of in-situ chemical oxidation (ISCO). Samples were collected from boreholes installed using direct-push technology by DeTech of Lawrence, Kansas. Groundwater and saturated soil were collected, packaged, and submitted for analysis to Terra Systems, Inc. of Wilmington, Delaware. A copy of the bench-scale test results, which includes the analytical results is included as Appendix 7.1.

A soil sample was collected from within the saturated zone and submitted to Geotechnics of East Pittsburgh, Pennsylvania for analysis of grain size distribution by ASTM method D 422-63 (2007). The laboratory report is included in Appendix 7.1. The soil was given the Unified Soil Classification System classification of SP-SM, for a poorly graded sand with silt, with the sand content primarily in the range of fine- to medium-grained. Insufficient fines were present for hydrometer analysis; therefore, the silt designation is an assumed one, not a quantitative one. The results correlate well with field observations during installation of monitoring well UMW-6. The results of the tracer test and bench-scale testing were favorable and the Refinery is moving forward with plans to conduct an ISCO pilot test in the area adjacent to monitoring well UMW-6. The results will be discussed in detail in the Tracer Test Results Report, which will be submitted in the upcoming reporting period.

A minimum of two temporary monitoring wells and four injection locations will be installed in the area adjacent to existing monitoring well UMW-6. Based on the results of the bench-scale test, the ISCO pilot test will be conducted with a sodium persulfate (Peroxychem Klozur®) activated with sodium hydroxide (Peroxychem Klozur® Caustic), applied using a direct-push drill rig and direct-push rods equipped with a pressure-activated injection point or similar device. The combination of the two chemicals will provide two treatment pathways. The first pathway is direct chemical oxidation of plume constituents by the persulfate radicle and the second pathway is anaerobic biodegradation stimulated by native microbes

respiring the reduction product of the persulfate radical, sulfate. Groundwater chemistry and water level monitoring will continue after the completion of the pilot test. Groundwater samples will be collected at select intervals after the injection to determine the treatment efficiency of the pilot test.

7.2 SOUTH BOUNDARY REMEDIATION SYSTEM

Recovery well SBR-1 was installed in the southwest corner of the WWTP surface impoundments on November 19, 2015. The well was installed to a total depth of approximately 28 ft-bgs. The well was constructed using a 4-inch diameter, flush-threaded schedule 40 PVC casing connected to 20 feet of 0.010-inch slot size PVC screen and included a three-foot sump constructed of 4-inch diameter PVC riser at the bottom of the boring. The screened interval is from 5 to 25 ft-bgs. A filter pack of #10-20 washed silica sand was placed within the annular space to approximately 1.5 feet above the top of the screened interval. The filter pack was overlain by 3.5 feet of hydrated bentonite pellets. The well was developed by surging and then by purging using a vacuum pump until discharged water was clear and free of sediment.

A step-drawdown pumping test was conducted at SBR-1 on December 16, 2015, and a constant rate pumping test was conducted from December 17 to December 18, 2015. The results of the pumping test were submitted to ODEQ in a letter report to the ODEQ on April 8, 2016. The letter report included a conceptual design for the full South Boundary remediation system and an assessment of technologies evaluated based on the results of the yield testing, the interior delineation results, and the ability to meet the cleanup goals.

Based on the results of the pumping test, the extent of the DRO plume, and the analytical results from the discharge sample, groundwater recovery from SBR-1 will likely be sufficient to achieve the objective of preventing migration of DRO-affected groundwater away from the Refinery property. SBR-1 will be equipped with an electric submersible pump that is capable of extracting groundwater and conveying it to the WWTP at the design flow rate of 2 gpm. Groundwater will be conveyed from SBR-1 to the eastern settling pond at the Refinery WWTP. The preferred point of discharge is the southeast corner of this lagoon.

Groundwater will be processed through the WWTP and discharged under WRC's existing Oklahoma discharge permit. Based on the analysis conducted during the pumping test, no additional treatment will be necessary before discharging the recovered groundwater to WWTP settling pond.

The conceptual design for the South Boundary Remediation System was submitted to the Refinery for review and approval as part of the MOC process. An initial meeting was held on April 15, 2016. Based on the MOC meeting, the specifications of the electrical components were modified to meet the appropriate codes. The MOC was approved for installation on July 15, 2016. The Refinery will proceed with the implementation of the South Boundary Remediation System during the next reporting period.

7.3 NORTH PROCESS AREA SYSTEM

Interior delineation activities were conducted in the North Process Area during the reporting period. The interior delineation activities in the North Process Area included direct-push sampling event for LNAPL delineation and dissolved-phase plume delineation as well as LNAPL transmissivity. The results were discussed in the *Interior Delineation Summary and Recommendation Report*, submitted to ODEQ on July 13, 2016.

As discussed in the Comprehensive Remediation Plan, additional remediation in the vicinity of the North Process Area may be installed to address the dissolved-phase plume to provide hydraulic control based on the results of the North Boundary Injection Test, or incorporate additional recovery wells. Based on the LNAPL transmissivity results and the interior delineation activities in the North Process Area, an additional two recovery wells, NRW-8 and NRW-9, were recommended for the North Process Area. If approved by ODEQ, the recovery wells will be included in the North Process Area Enhancement, which is in the process of being formally approved by the Refinery MOC process.

7.4 PRODUCT LOADING FACILITY SYSTEM

Interior delineation activities were conducted in the PLF during the reporting period. The interior delineation activities in the PLF included direct-push sampling event for LNAPL delineation and dissolved-phase plume delineation as well as LNAPL transmissivity. The results were discussed in the *Interior Delineation Summary and Recommendation Report*, submitted to ODEQ on July 13, 2016.

As discussed in the Comprehensive Remediation Plan, additional remediation in the vicinity of the PLF may be installed to address the need for additional containment and treatment of the dissolved-phase plume. The goal of the additional system modifications would be to improve hydraulic control and LNAPL recovery at the property boundary. The results from the interior delineation show there are no additional areas of LNAPL encountered in the PLF area, therefore no additional expansion of the PLF Remediation System is recommended at this time.

A total of four monitoring wells were recommended in the *Interior Delineation Summary and Recommendation Report* to address gaps in LNAPL and dissolved-phase monitoring at the site. Monitoring wells BMW-29 and BMW-30 were proposed to be installed to monitor for and delineate any previously unidentified LNAPL plumes resulting from historic releases in the tank farm north of the PLF. Monitoring well LMW-17 was proposed to be installed upgradient of the PLF tank farm to monitor dissolved-phase plume and LNAPL between the PLF and the South Process Area dissolved-phase plume. Monitoring well LMW-16 was proposed to be installed along the western property boundary to monitor downgradient of direct-push delineation point SW-DP-112.

7.5 SOUTH PROCESS AREA SYSTEM

Interior delineation activities were conducted in the South Process Area during the reporting period. The interior delineation activities in the South Process Area included direct-push sampling event for LNAPL delineation and dissolved-phase plume delineation as well as LNAPL transmissivity. The results were discussed in the *Interior Delineation Summary and Recommendation Report*, submitted to ODEQ on July 13, 2016.

As discussed in the Comprehensive Remediation Plan, additional remediation in the vicinity of the South Process Area may be installed to address the need for additional groundwater withdrawal for containment and treatment of the LNAPL and dissolved-phase plumes in the area. Based on the low LNAPL transmissivity results and the observed stability of both the LNAPL and dissolved-phase plumes in this area, no additional expansion of the South Process Area is recommended at this time. LNAPL thicknesses will be monitored quarterly and periodic manual LNAPL recovery may be conducted, as discussed in the *Interior Delineation Summary and Recommendation Report*. A total of four new monitoring wells, OMW-7 through OMW-10, were recommended for installation for LNAPL monitoring in the South Process Area.

8 Performance Monitoring Plan

ODEQ approved the Comprehensive Remediation Plan on February 1, 2016. WRC will submit a longterm Performance Monitoring Plan by February 1, 2017. The Performance Monitoring Plan will include details regarding the following elements, at a minimum:

- identification of the wells to be included in the semi-annual and 5-year comprehensive groundwater sampling networks
- semi-annual monitoring of the monitoring well network for GRO, DRO, and BTEX
- monthly operation and maintenance of the remediation systems
- quarterly fluid level measurements
- comprehensive sampling event of the monitoring well network once every 5 years for GRO, DRO, SVOCs, VOCs, and RCRA Metals

9 Summary and Conclusions

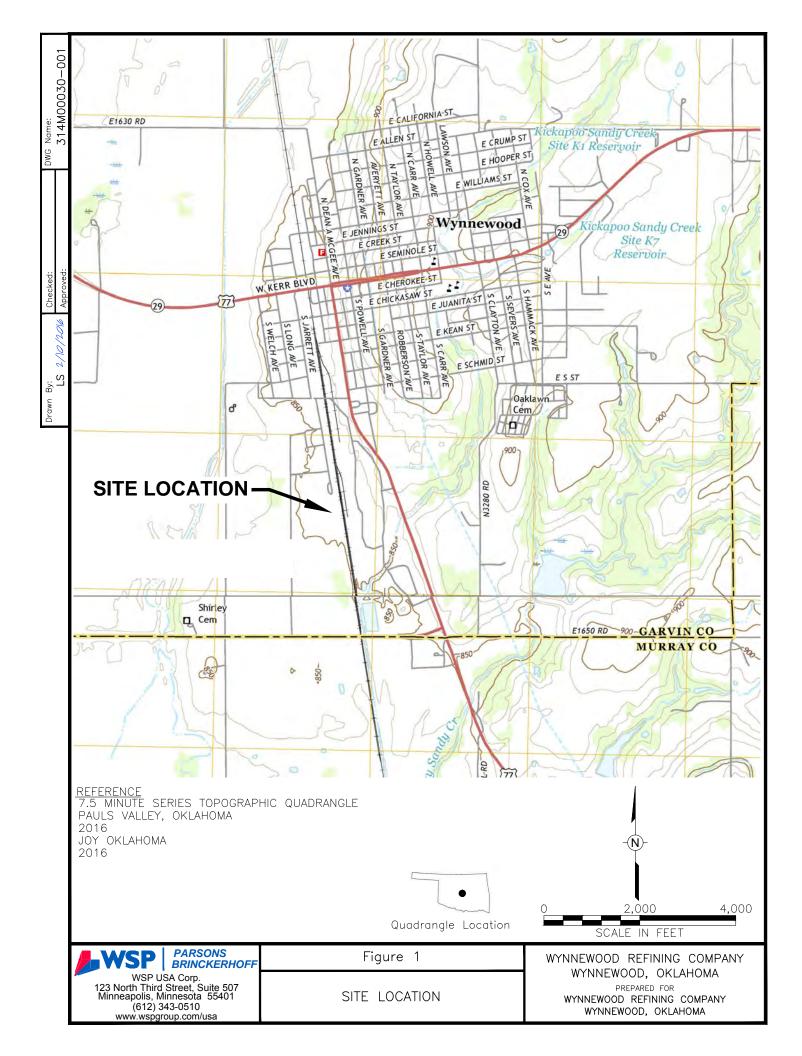
9.1 GROUNDWATER RECOVERY

The Refinery operates three hydrocarbon recovery systems: the PLF System, the North Process Area System, and the South Process Area System. During this reporting period, approximately 5,049,959 gallons of groundwater and an estimated 11,992 gallons of entrained LNAPL were recovered and treated in the wastewater treatment plant of the Refinery.

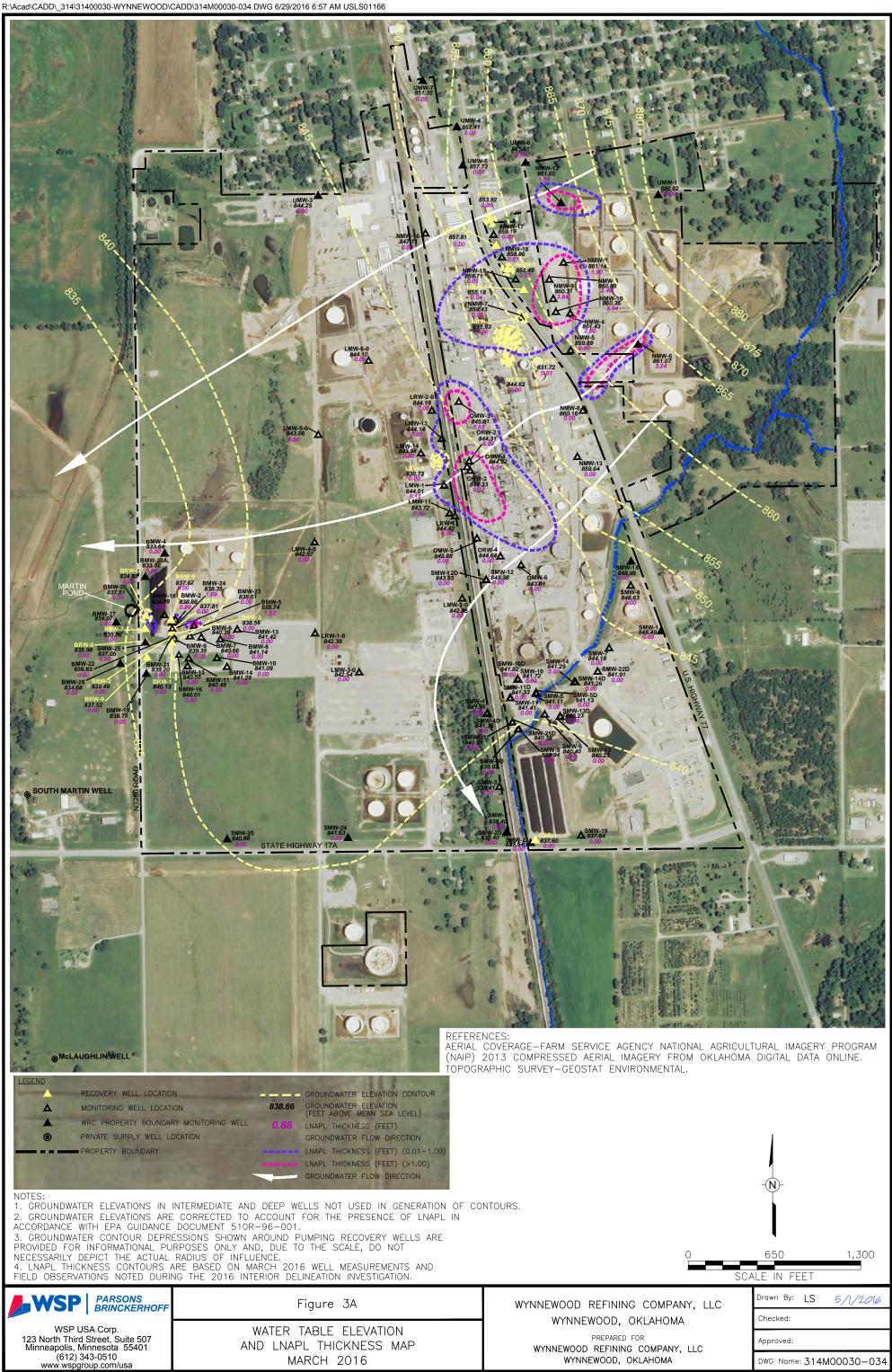
The Refinery is in the process of approving and implementing MOC documentation for the PLF remediation system enhancements, the South Boundary remediation system installation, and the North Process Area remediation system enhancements. An OPDES permit application for the PLF treated groundwater effluent has been submitted to ODEQ and negotiations continue with the City of Wynnewood on the management of the treated effluent.

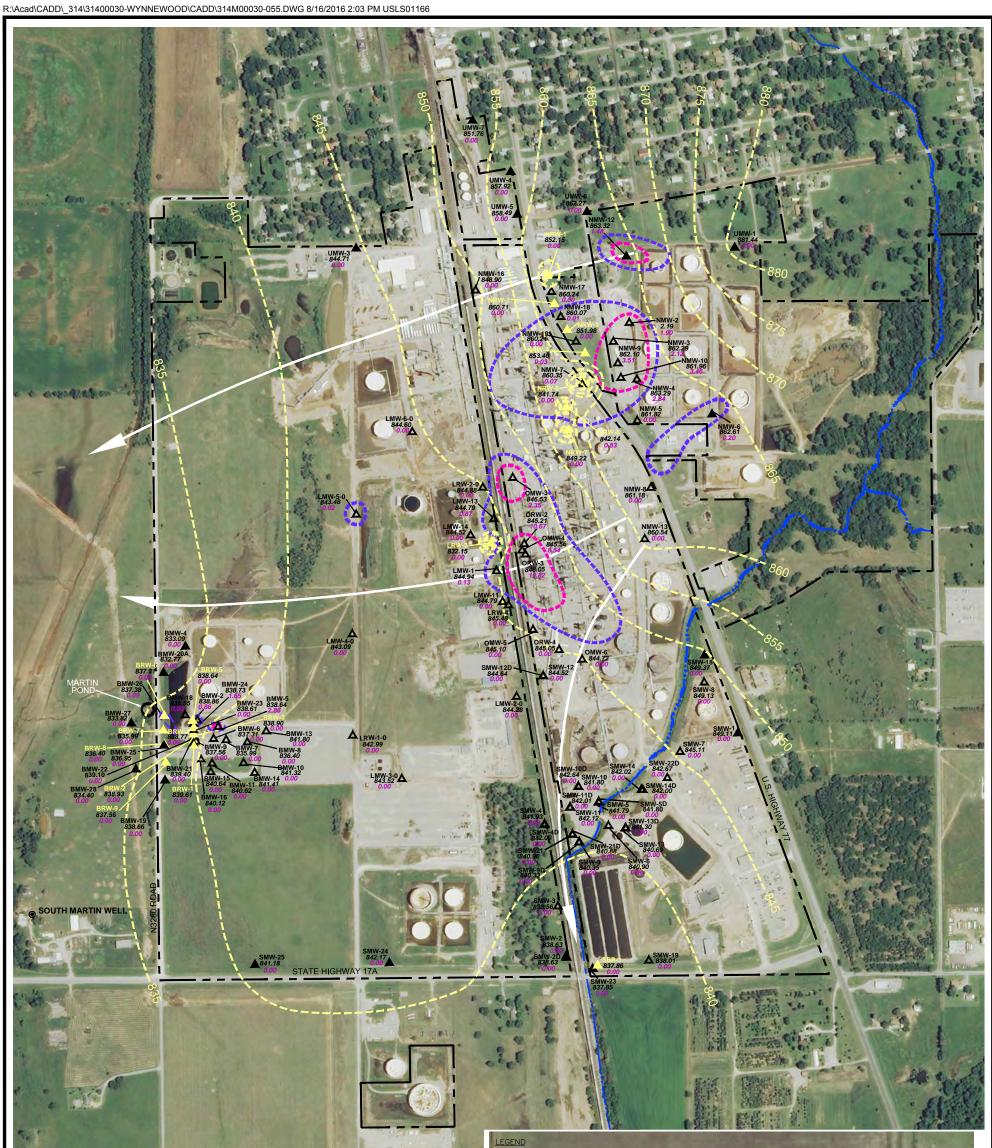
The Refinery has completed the tracer test and bench-scale testing of an ISCO regime as part of the North Boundary Investigation. The underground injection control application for the ISCO pilot test has been approved by ODEQ. The pilot test will be completed during the next reporting period.

10 References

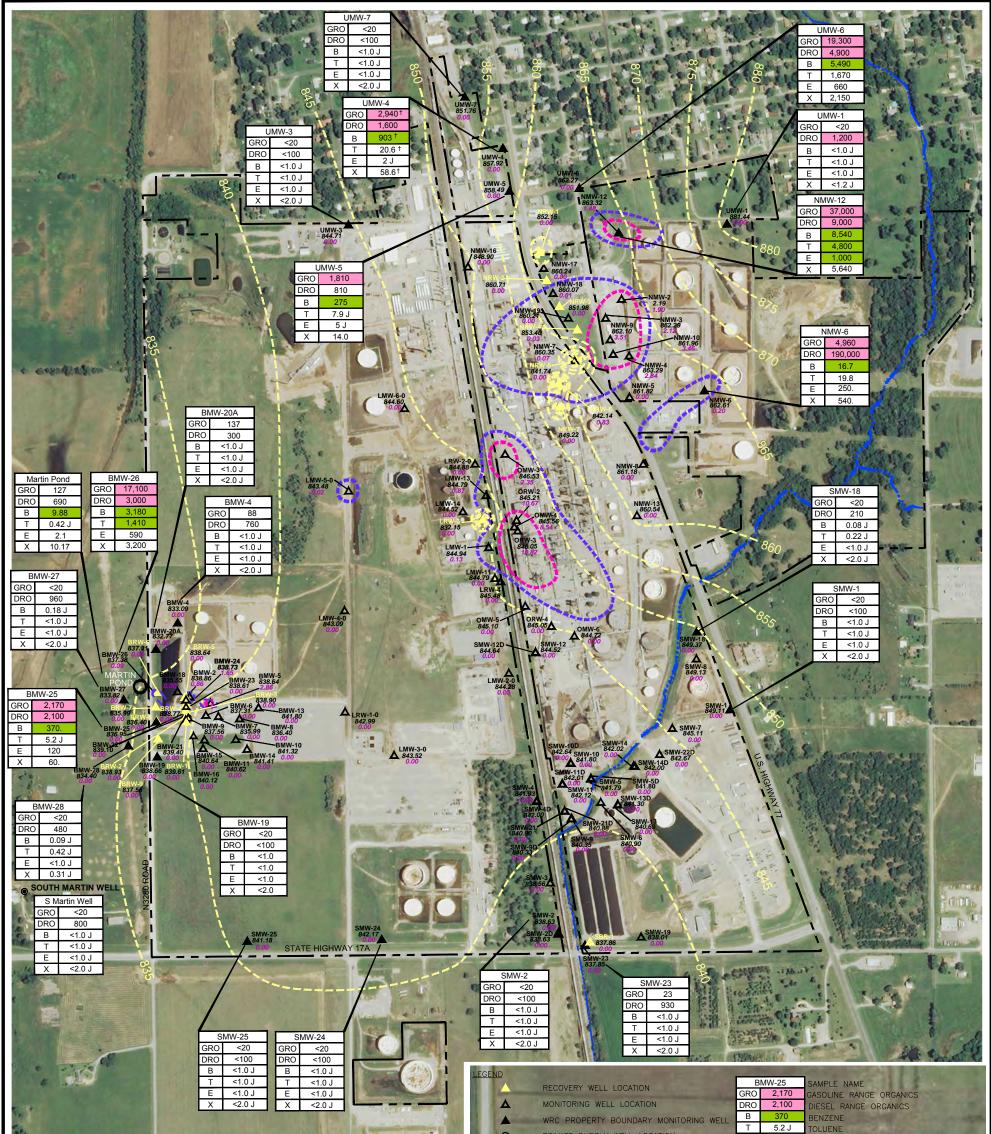

- CVR Energy, Inc. and WSP, 2014b. Semi-Annual Groundwater Remediation Report January 1 through June 30, 2014. August 27.
- CVR Energy, Inc. and WSP, 2015a. Semi-Annual Groundwater Remediation Report July 1 through December 31, 2014. February 27.
- CVR Energy, Inc. and WSP, 2015b. Comprehensive Remediation Plan, Consent Order Case No. 15-056. August 12.
- CVR Energy, Inc. and WSP, 2015c. Semi-Annual Groundwater Remediation Report January 1 through June 30, 2015. August 31.
- CVR Energy, Inc. and WSP, 2015d. Response to Notice of Deficiency for Comprehensive Remediation Plan Consent Order Case No. 15-056. December 23.
- CVR Energy, Inc. and WSP, 2016. Semi-Annual Groundwater Remediation Report July 1 through December 31, 2015. February 29.
- United States Environmental Protection Agency, 1996. How to Effectively Recover Free Product at Leaking Underground Storage Tank Sites, Solid Waste and Emergency Response Section. Publication 510-R-96-001, September.
- United States Environmental Protection Agency, 2012. Conceptual Model Scenarios for the Vapor Intrusion Pathway, EPA 530-R-10-003, Solid Waste and Emergency Response, Office of Superfund Remediation and Technology. February.
- United States Environmental Protection Agency, 2013. Evaluation of Empirical Data to Support Soil Vapor Intrusion Screening Criteria for Petroleum Hydrocarbon Compounds, Dr. Ian Hers and Robert S. Truesdale, Office of Underground Storage Tanks, Washington, DC 20460. January.
- United States Environmental Protection Agency. 2014a. U.S. EPA Primary Drinking Water Standard Maximum Contaminant Levels. http://www.epa.gov/reg3hscd/risk/human/rb concentration_table/usersguide.html. Last updated November 2015.
- United States Environmental Protection Agency. 2014b. U.S. EPA Regional Screening Levels for Tap Water. http://www.epa.gov/reg3hscd/risk/human/rb-concentration_table/usersguide.html. Last updated November 2015.
- WSP Environment & Energy, 2012a. Work Plan Quality Assurance Project Plan for Groundwater Monitoring and Investigation at Wynnewood Refining Company. January 30.
- WSP Environment & Energy, 2012b. Perimeter Groundwater Delineation Work Plan, Wynnewood Refining Company. January 30.

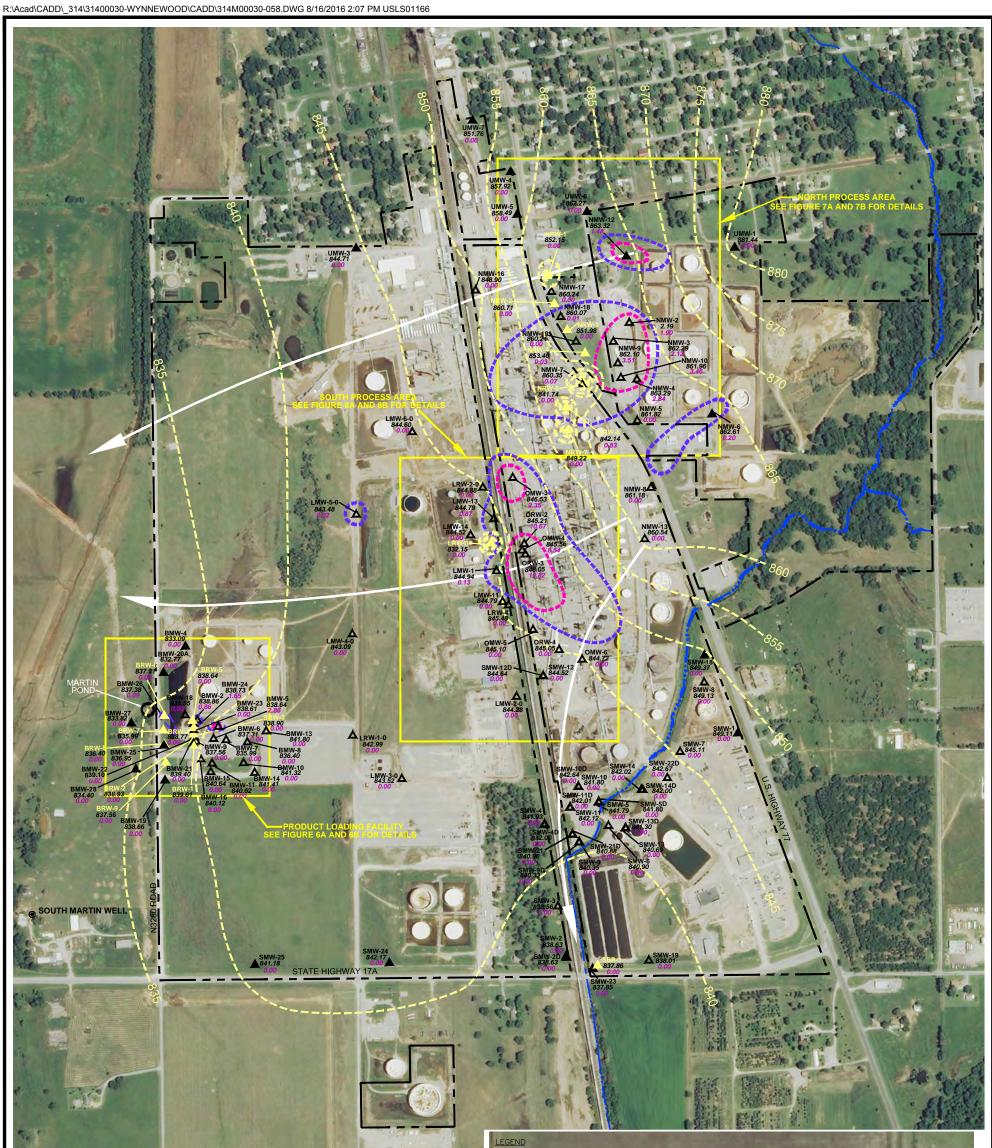
- WSP Environment & Energy, 2013a. Semi-Annual Hydrocarbon Recovery Report July 1 through December 31, 2012. February 27.
- WSP USA Corp, 2013b. Perimeter Groundwater Delineation Work Plan Supplemental Boundary Investigation, Wynnewood Refining Company. April 30.

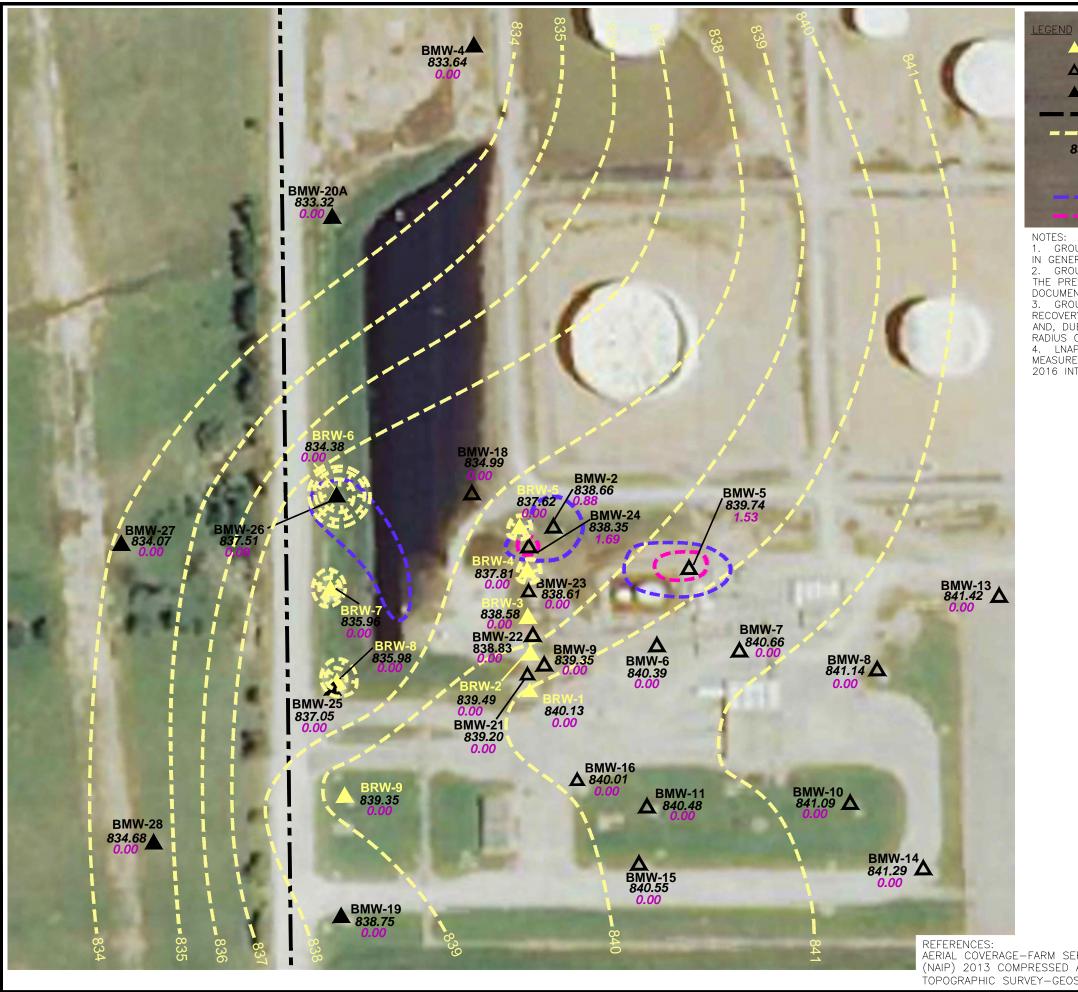

Wynnewood Refining Company, 2011. Semiannual Hydrocarbon Recovery Report. September 11.


Wynnewood Refining Company, 2012. Perimeter Groundwater Delineation Work Plan, Work Plan \ Addendum with Initial Findings and Proposed Well Locations, Wynnewood Refining Company. June 6.

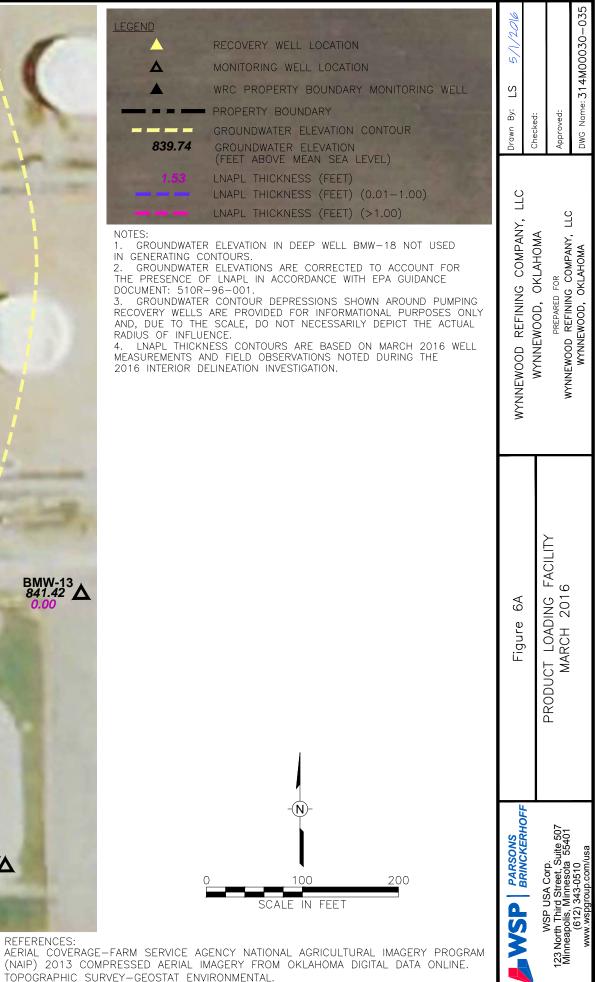
Figures

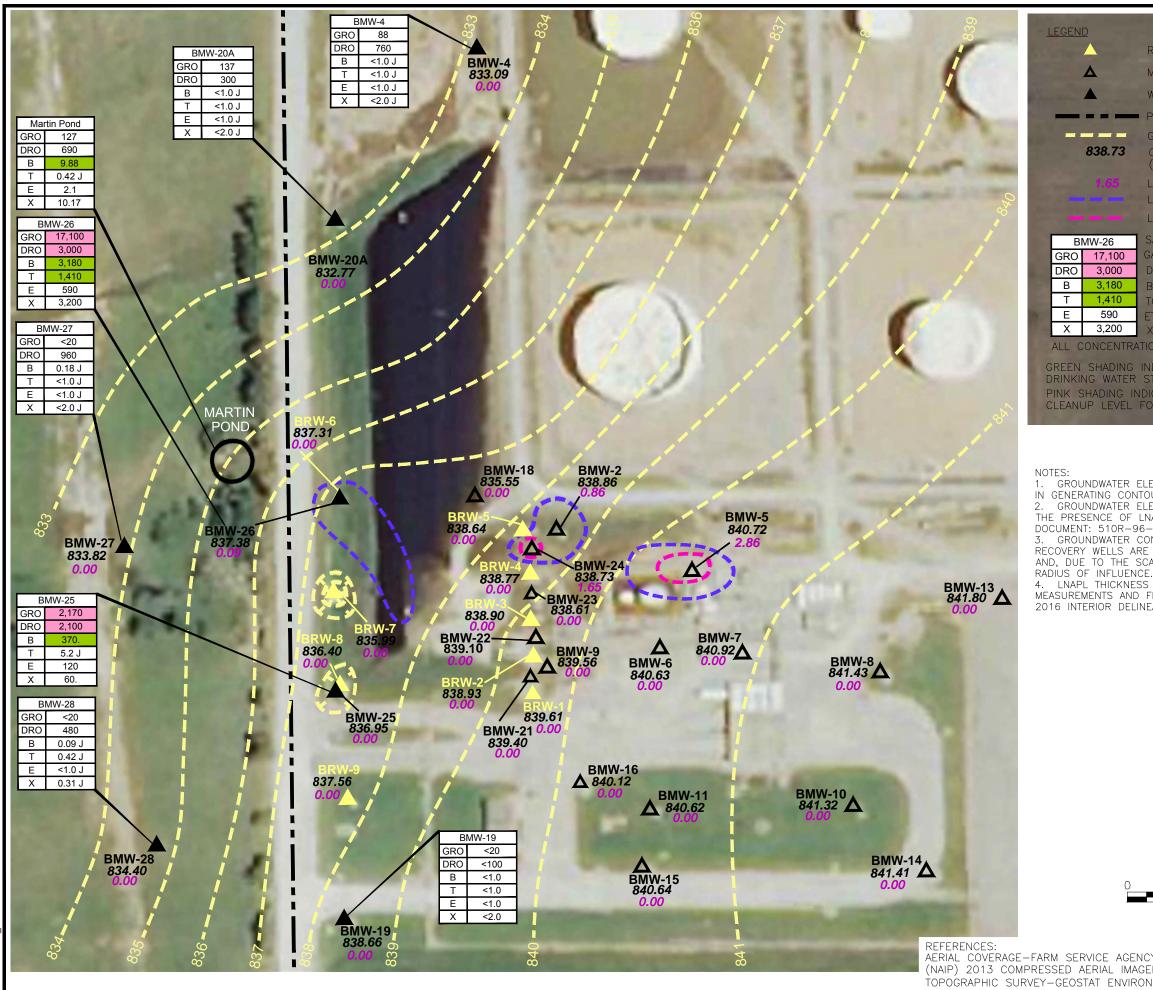





⊚ McLAUGHLIN WELL		MONITORING WELL LOCATION 863.32 GROU WRC PROPERTY BOUNDARY MONITORING WELL 1.48 LNAPH PRIVATE SUPPLY WELL LOCATION LNAPH PROPERTY BOUNDARY LNAPH	UNDWATER ELEVATION CONTOUR UNDWATER ELEVATION F ABOVE MEAN SEA LEVEL) L THICKNESS (FEET) L THICKNESS (FEET) (0.01-1.00) L THICKNESS (FEET) (>1.00) UNDWATER FLOW DIRECTION				
-(N)-	2. GRO ACCOR 3. GRO PROVIE NECES 4. LNA	DUNDWATER ELEVATIONS IN DEEP WELLS NOT USED IN GENE DUNDWATER ELEVATIONS ARE CORRECTED TO ACCOUNT FOR DANCE WITH EPA GUIDANCE DOCUMENT 510R-96-001. DUNDWATER CONTOUR DEPRESSIONS SHOWN AROUND PUMPII ED FOR INFORMATIONAL PURPOSES ONLY AND, DUE TO THE SARILY DEPICT THE ACTUAL RADIUS OF INFLUENCE. PL THICKNESS CONTOURS ARE BASED ON JUNE 2016 WELL DBSERVATIONS NOTED DURING THE 2016 INTERIOR DELINEAT	THE PRESENCE OF LNAPL IN NG RECOVERY WELLS ARE E SCALE, DO NOT L MEASUREMENTS AND				
0 650 Scale in	1,300 AERIA (NAIP	RENCES: L COVERAGE—FARM SERVICE AGENCY NATIONAL AGRICUL) 2013 COMPRESSED AERIAL IMAGERY FROM OKLAHOMA GRAPHIC SURVEY—GEOSTAT ENVIRONMENTAL.					
	Figure 3B	WYNNEWOOD REFINING COMPANY, LLC					
WSP USA Corp. 123 North Third Street, Suite 507 Minneapolis, Minnesota 55401	WATER TABLE ELEVATION AND LNAPL THICKNESS MAP	WYNNEWOOD, OKLAHOMA Prepared for Wynnewood Refining Company. LLC	Checked:				
(612) 343-0510 www.wspgroup.com/usa	JUNE 2016	WYNNEWOOD, OKLAHOMA DWG Name: 31					

McLAUGHLIN WELL McLaughlin Well GRO <20 DRO <100 B <1.0 J T <1.0 J E <1.0 J X <2.0 J	NOTES: 1. GROU	(FEET ABOVE MEAN SEA LEVEL) SAMPLE WHICH WAS SLIGHTLY HIGHER THAN THE RESULT OF THE PRIMARY SAMPLE 1.48 LNAPL THICKNESS (FEET) GREEN SHADING INDICATES AN EXCEEDANCE OF DRINKING WATER STANDARD FOR THAT COMPOUND INAPL THICKNESS (FEET) (0.01-1.00) PINK SHADING INDICATES AN EXCEEDANCE OF CLEANUP LEVEL FOR THAT COMPOUND NOTES: 1. GROUNDWATER ELEVATIONS IN DEEP WELLS NOT USED IN GENERATION OF CONTOR							
	-N	NDWATER ELEVATIONS ARE CORRECTED TO ACCOUNT FOR NCE WITH EPA GUIDANCE DOCUMENT 510R-96-001. NDWATER CONTOUR DEPRESSIONS SHOWN AROUND PUMPI) FOR INFORMATIONAL PURPOSES ONLY AND, DUE TO THE RILY DEPICT THE ACTUAL RADIUS OF INFLUENCE. . THICKNESS CONTOURS ARE BASED ON JUNE 2016 WELL SERVATIONS NOTED DURING THE 2016 INTERIOR DELINEAT NCES:	NG RECOVERY WELLS ARE E SCALE, DO NOT _ MEASUREMENTS AND						
0 SCA	650 1,300 AERIAL (NAIP)	AERIAL COVERAGE-FARM SERVICE AGENCY NATIONAL AGRICULTU (NAIP) 2013 COMPRESSED AERIAL IMAGERY FROM OKLAHOMA D TOPOGRAPHIC SURVEY-GEOSTAT ENVIRONMENTAL.							
WSP PARSONS BRINCKERHOFF	Figure 4	WYNNEWOOD REFINING COMPANY, LLC	Drawn By: LS 8/25/2016						
WSP USA Corp.	PERIMETER MONITORING ANALYTICAL	WYNNEWOOD, OKLAHOMA	Checked:						
123 North Third Street, Suite 507 Minneapolis, Minnesota 55401	(JUNE 2016)	PREPARED FOR WYNNEWOOD REFINING COMPANY, LLC	Approved:						
(612) 343-0510 www.wspgroup.com/usa	· · · · · · · · · · · · · · · · · · ·	WYNNEWOOD, OKLAHOMA	DWG Name: 314M00030-056						


		MONITORING WELL LOCATION 863.32 GRO WRC PROPERTY BOUNDARY MONITORING WELL 1.48 LNA PRIVATE SUPPLY WELL LOCATION LNAI PROPERTY BOUNDARY LNAI	NUNDWATER ELEVATION CONTOUR NUNDWATER ELEVATION ET ABOVE MEAN SEA LEVEL) PL THICKNESS (FEET) PL THICKNESS (FEET) (0.01-1.00) PL THICKNESS (FEET) (>1.00) NUNDWATER FLOW DIRECTION			
-N-	2. GRC ACCOR 3. GRC PROVID NECESS 4. LNA	UNDWATER ELEVATIONS IN DEEP WELLS NOT USED IN GEN UNDWATER ELEVATIONS ARE CORRECTED TO ACCOUNT FOR DANCE WITH EPA GUIDANCE DOCUMENT 510R-96-001. UNDWATER CONTOUR DEPRESSIONS SHOWN AROUND PUMF ED FOR INFORMATIONAL PURPOSES ONLY AND, DUE TO TH SARILY DEPICT THE ACTUAL RADIUS OF INFLUENCE. PL THICKNESS CONTOURS ARE BASED ON JUNE 2016 WEL DBSERVATIONS NOTED DURING THE 2016 INTERIOR DELINE	THE PRESENCE OF LNAPL IN PING RECOVERY WELLS ARE HE SCALE, DO NOT LL MEASUREMENTS AND			
0 650 Scale in	1,300 AERIA (NAIP	RENCES: L COVERAGE—FARM SERVICE AGENCY NATIONAL AGRICU) 2013 COMPRESSED AERIAL IMAGERY FROM OKLAHOM. GRAPHIC SURVEY—GEOSTAT ENVIRONMENTAL.				
	Figure 5	WYNNEWOOD REFINING COMPANY, LLC	Drawn By: LS 8/16/2016			
WSP USA Corp. 123 North Third Street, Suite 507 Minneapolis, Minnesota 55401	GROUNDWATER RECOVERY AREAS JUNE 2016	WYNNEWOOD, OKLAHOMA prepared for Wynnewood refining company, llc	Checked: Approved:			
(612) 343-0510 www.wspgroup.com/usa		WYNNEWOOD, OKLAHOMA DWG Name:				



839.74 NOTES: 1. DOCUMENT: 510R-96-001. 3

Δ

TOPOGRAPHIC SURVEY-GEOSTAT ENVIRONMENTAL.

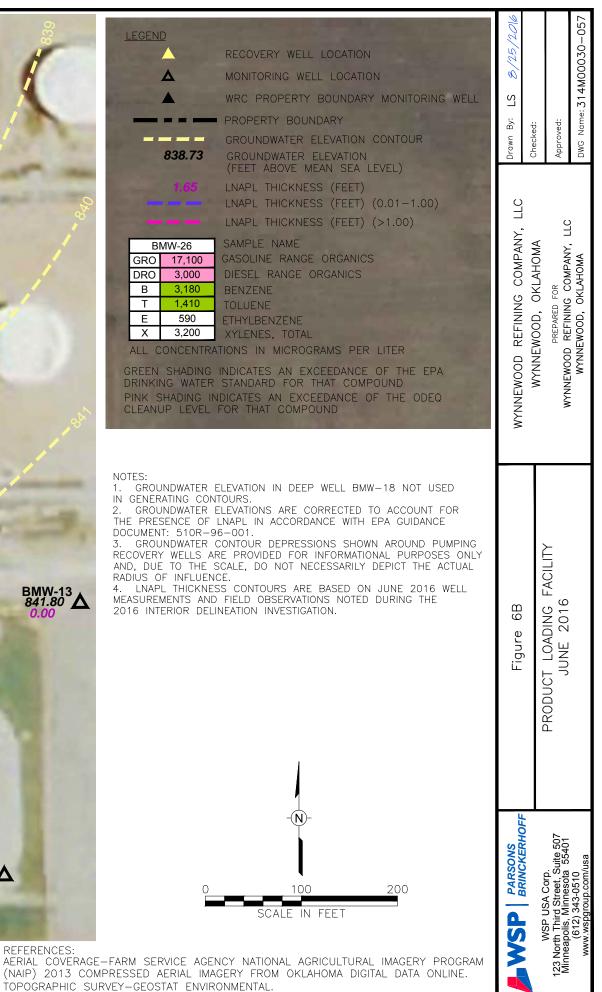
Δ

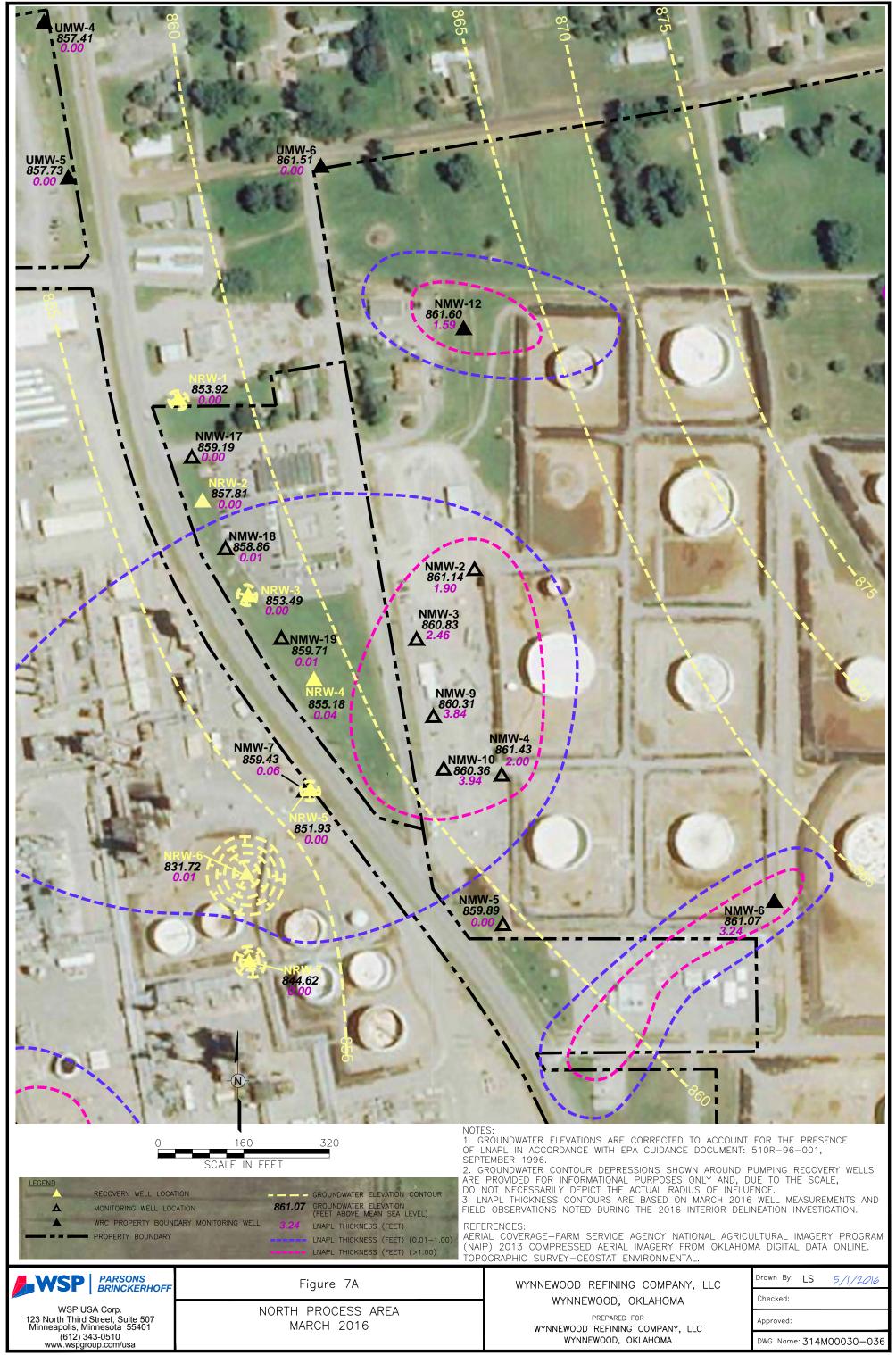
BMW-26

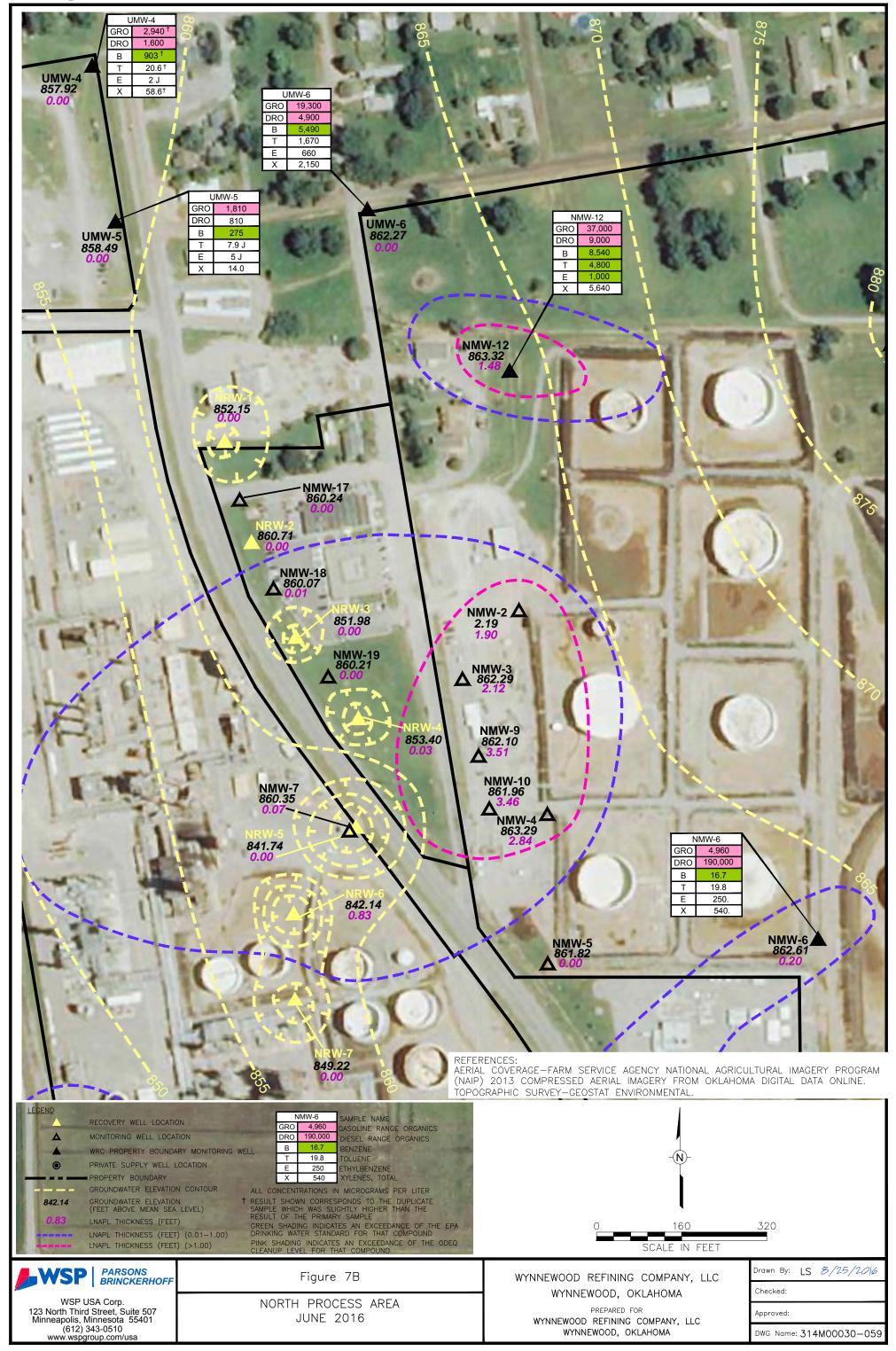
17,100

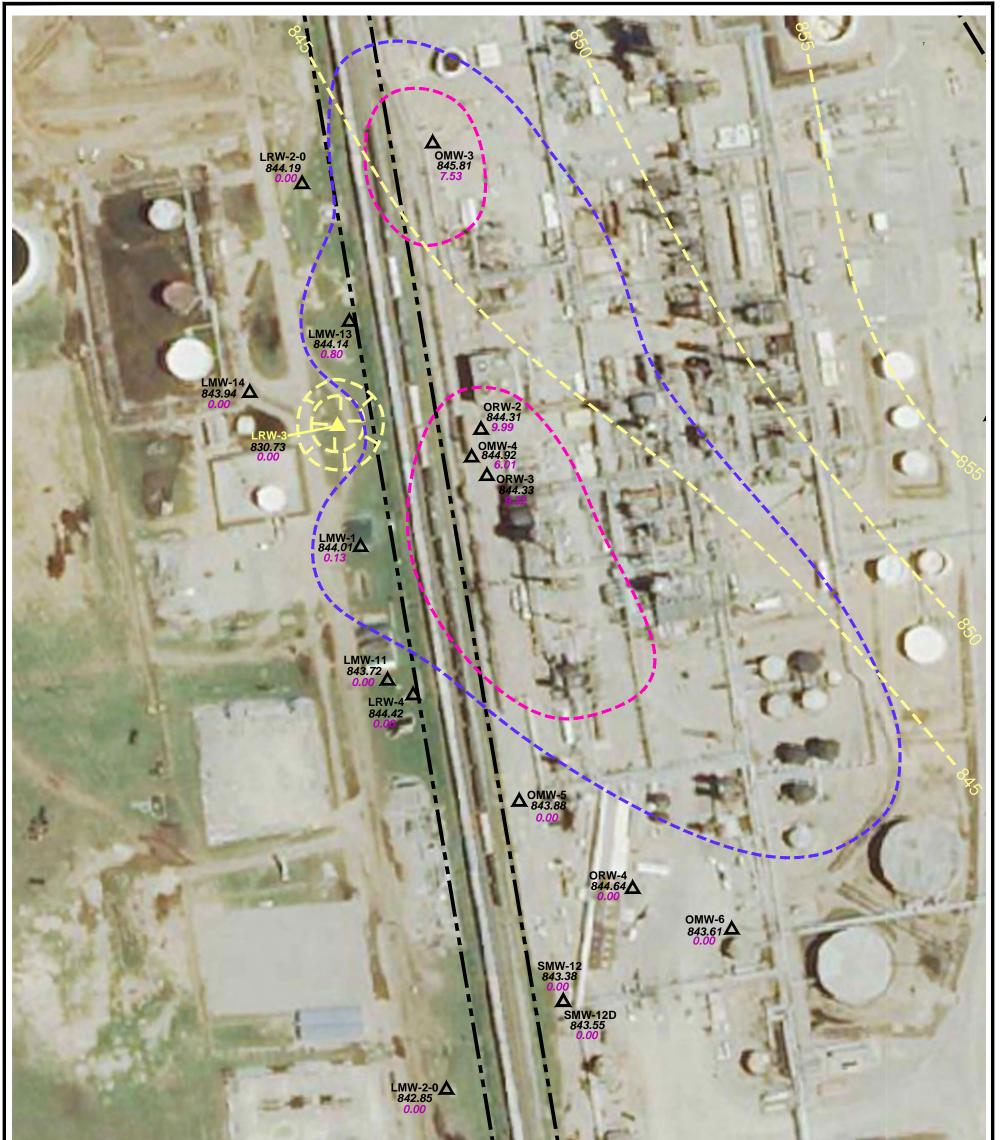
3,000

3 180

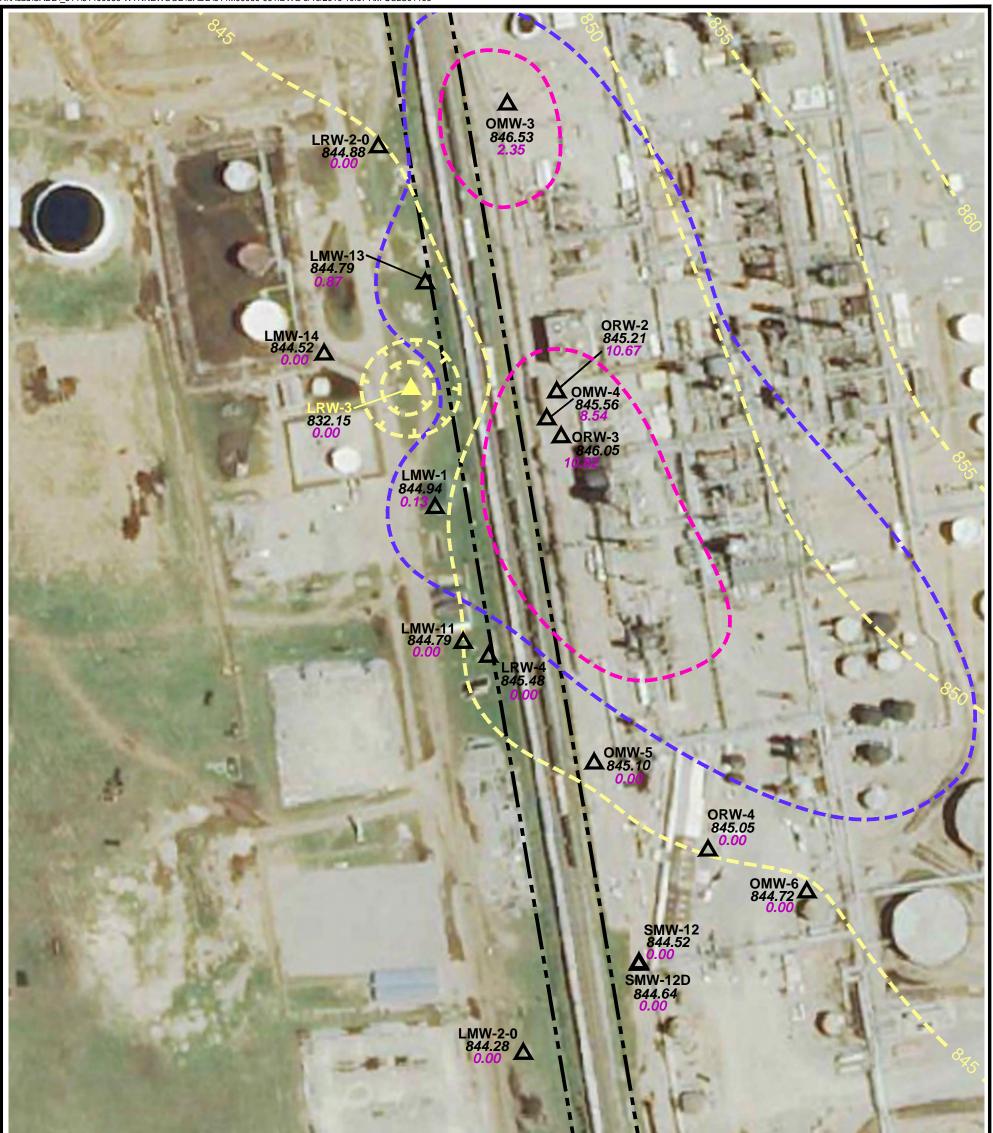

1.410

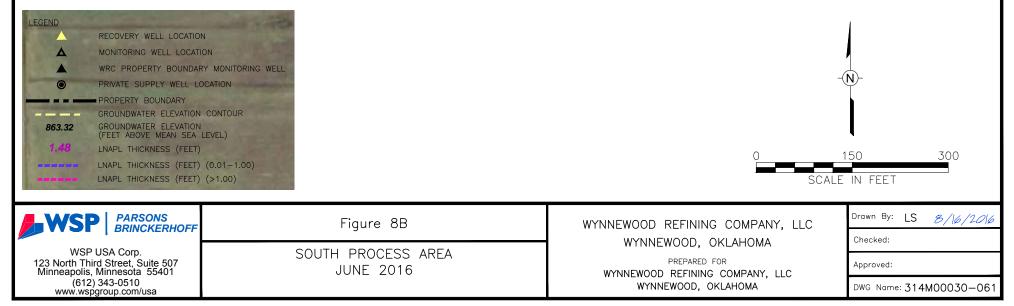

590


3,200


838.73

TOPOGRAPHIC SURVEY-GEOSTAT ENVIRONMENTAL





		REFERENCES: AERIAL COVERAGE-FARM SERVICE AGENCY NATIONAL AGRICULTUR/ (NAIP) 2013 COMPRESSED AERIAL IMAGERY FROM OKLAHOMA DIC TOPOGRAPHIC SURVEY-GEOSTAT ENVIRONMENTAL.	
ACCORDANCE WITH EPA GUIDANCE 2. GROUNDWATER ELEVATIONS IN 3. GROUNDWATER CONTOUR DEPR PROVIDED FOR INFORMATIONAL PU NECESSARILY DEPICT THE ACTUAL 4. LNAPL THICKNESS CONTOURS /	844.01 GROUNDWATER ELEVATION (FEET ABOVE MEAN SEA LEV ABOVE MEAN SEA LEV UNAPL THICKNESS (FEET) INAPL THICKNESS (FEET) INAPL THICKNESS (FEET)	VEL) 0.01–1.00) >1.00) - LNAPL IN URS. L ARE 0 1 AND	N - 50 300 IN FEET
	Figure 8A	WINNEWOOD REFINING COMPANY, LLC	wn By: LS 5/1/2016
WSP USA Corp. 123 North Third Street, Suite 507 Minneapolis, Minnesota 55401	SOUTH PROCESS AREA MARCH 2016	PREPARED FOR APP	ecked: proved:
(612) 343-0510 www.wspgroup.com/usa		WYNNEWOOD REFINING COMPANY, LLC WYNNEWOOD, OKLAHOMA DW	G Name: 314M00030-03

REFERENCES:

AERIAL COVERAGE-FARM SERVICE AGENCY NATIONAL AGRICULTURAL IMAGERY PROGRAM (NAIP) 2013 COMPRESSED AERIAL IMAGERY FROM OKLAHOMA DIGITAL DATA ONLINE. TOPOGRAPHIC SURVEY-GEOSTAT ENVIRONMENTAL.

Monitoring and Recovery Well Data Wynnewood Refining Company, LLC Wynnewood, Oklahoma (a)

				1		1		Cround		1	r - r	1		
				Total Drill	Completed	TOC	Stick-up	Ground Surface	Sereened	Filter Pack	Derehale	Cooing	Screen Slot Size	
		Drilling	Dete		Completed				Screened		Borehole	Casing		
		Drilling	Date	Depth	Well Depth	Elevation	Height	Elevation	Interval	Interval	Diameter	Diameter	and Type	Oceanity
Well ID	Well Function	Method	Installed	(ft-TOC)	(ft-TOC)	(ft-AMSL) (b)	(feet)	(ft-AMSL)	(ft-TOC)	(ft-TOC)	(inches)	and Type	(inches)	Comments
	PLF Monitoring Well	HSA	07/27/87	17.0	17.0	844.77	2.00	842.77	7.0 - 17.0	6.5 - 17.0		2" PVC	0.010 Slot PVC	Formark, TA4.0
	PLF Monitoring Well	HSA	07/27/87	18.9	18.9	842.98	2.67	840.31	8.9 - 18.9	7.9 - 18.9		2" PVC	0.010 Slot PVC	Formerly TA1-2
	PLF Monitoring Well	HSA	07/27/87	22.9	21.4	842.00	2.86	839.14	11.4 - 21.4	10.9 - 22.9		2" PVC	0.010 Slot PVC	Formerly TA1-3. Abandoned 08/21/15.
BMW-4	PLF Monitoring Well	HSA	07/27/87	17.0	17.0	838.65	1.97	836.68	7.0 - 17.0	6.5 - 17.0		2" PVC	0.010 Slot PVC	Formerly TA1-4
BMW-5	PLF Monitoring Well	HSA	07/27/87	15.9	13.9	847.03	3.30	843.73	3.9 - 13.9	3.9 - 13.9		2" PVC	0.010 Slot PVC	Formerly W5
BMW-6	PLF Monitoring Well	HSA	07/27/87	18.0	18.0	844.97	1.91	843.06	8.0 - 18.0	8.0 - 18.0		2" PVC	0.010 Slot PVC	Formerly W6
BMW-7	PLF Monitoring Well	HSA	10/24/88	19.9	17.9	847.31	2.89	844.41	7.9 - 17.9	6.9 - 19.9		2" PVC	0.020 Slot PVC	Formerly MW11
BMW-8	PLF Monitoring Well	HSA	10/24/88	19.0	19.0	846.92	3.07	843.85	9.0 - 19.0	7.0 - 19.0	4	2" PVC	0.020 Slot PVC	Formerly MW7
BMW-9	PLF Monitoring Well	HSA	10/24/88	16.1	16.1	845.03	3.10	841.93	6.1 - 16.1	5.0 - 16.1	4	2" PVC	0.020 Slot PVC	Formerly MW9
	PLF Monitoring Well	HSA	10/21/88	19.8	19.8	848.20	2.99	845.21	9.8 - 19.8	7.0 - 19.8	4	2" PVC	0.020 Slot PVC	Formerly MW6
	PLF Monitoring Well	HSA	10/21/88	20.4	18.4	847.13	2.96	844.17	8.4 - 18.4	7.4 - 20.4	4	2" PVC	0.020 Slot PVC	Formerly MW3
BMW-12	PLF Monitoring Well	HSA	07/28/87	18.1	16.1	842.87	3.13	839.75	6.1 - 16.1	6.1 - 16.1	10	2" PVC	0.010 Slot PVC	Formerly W3. Abandoned 08/21/15.
BMW-13	PLF Monitoring Well	HSA	03/15/90	36.5	22.3	846.63	2.48	844.15	7.3 - 21.3	6.5 - 22.3	12	2" PVC	0.020 Slot PVC	
BMW-14	PLF Monitoring Well	HSA	03/13/90	20.7	20.7	848.85	2.41	846.44	5.7 - 19.7	4.9 - 20.7	12	2" PVC	0.010 Slot PVC	
	PLF Monitoring Well	HSA	03/15/90	22.4	22.4	847.17	2.59	844.58	7.4 - 21.4	6.5 - 22.4	12	2" PVC	0.010 Slot PVC	
BMW-16	PLF Monitoring Well	HSA	03/14/90	21.1	21.1	846.95	2.75	844.20	6.1 - 20.1	5.3 - 21.1	12	2" PVC	0.010 Slot PVC	
	PLF Monitoring Well	HSA	04/09/90	17.9	17.9	842.66	2.89	839.77	3.9 - 17.9	3.6 - 17.9	8	2" PVC	0.010 Slot PVC	Abandoned 08/21/15.
	PLF Monitoring Well (Bedrock Well)	Mud Rotary	04/18/90	78.1	78.1	841.74	1.91	839.83	57.6 - 76.6	51.0 - 78.1	5.25	2" PVC	0.010 Slot PVC	
	PLF Monitoring Well	HSA	05/23/90	21.4	18.9	844.34	1.85	842.49	4.4 - 18.9	3.9 - 18.9	7.5	2" PVC	0.010 Slot PVC	
BMW-20	PLF Monitoring Well	HSA	05/23/90	17.0	17.0	836.73	2.48	834.25	3.5 - 17	3.3 - 17	7.5	2" PVC	0.010 Slot PVC	Abandoned 09/06/11
	PLF Monitoring Well	HSA	09/07/12	18.7	18.7	838.51	2.65	835.86	8.7 - 18.7	6.7 - 18.7	8.25	2" PVC	0.010 Slot PVC	
	PLF Monitoring Well	HSA	09/26/90	20.6	19.6	843.99	2.12	841.87	4.6 - 19.6	4.1 - 19.6	10.25	2" PVC	0.010 Slot PVC	
	PLF Monitoring Well	HSA	09/26/90	20.4	19.4	843.06	1.91	841.14	4.4 - 19.4	3.9 - 19.4	10.25	2" PVC	0.010 Slot PVC	
	PLF Monitoring Well	HSA	09/26/90	20.5	19.5	842.58	1.97	840.61	4.5 - 19.5	4.0 - 19.5	10.25	2" PVC	0.010 Slot PVC	
	PLF Monitoring Well	HSA	09/25/90	20.0	19.5	841.63	1.96	839.67	4.5 - 19.5	4.0 - 19.5	10.25	2" PVC	0.010 Slot PVC	
	PLF Monitoring Well	HSA	11/11/91	19.1	19.1	842.33	2.61	839.72	8.8 - 18.8	7.1 - 19.1	6.25	2" PVC	0.010 Slot PVC	
	PLF Monitoring Well	HSA	11/11/91	19.2	19.2	840.29	2.85	837.44	8.9 - 18.9	7.2 - 19.2	6.25	2" PVC	0.010 Slot PVC	
	PLF Monitoring Well	HSA	06/10/13	18.6	18.6	837.10	3.14	833.96	8.6 - 18.6	7.1 - 18.6	8.25	2" PVC	0.010 Slot PVC	
BMW-28	PLF Monitoring Well	HSA	06/10/13	18.6	18.6	842.07	3.10	838.97	8.6 - 18.6	7.1 - 18.6	8.25	2" PVC	0.010 Slot PVC	
	PLF Recovery Well	HSA	05/16/90	28.2	27.7	842.39	0.20	842.20	2.7 - 16.7	2.2 - 27.7	12	4" PVC	0.010 Slot PVC	Not in service
BRW-2	PLF Recovery Well	HSA	05/15/90	28.2	27.7	841.50	0.16	841.34	2.7 - 16.7	2.2 - 27.7	12	4" PVC	0.010 Slot PVC	Not in service
BRW-3	PLF Recovery Well	HSA	05/15/90	28.3	27.8	841.08	0.28	840.80	2.8 - 16.8	2.3 - 27.8	12	4" PVC	0.010 Slot PVC	
BRW-4	PLF Recovery Well	HSA/Rotary	09/25/90	34.3	32.8	840.44	0.31	840.13	2.8 - 22.8	2.3 - 32.8	12	4" PVC	0.010 Slot PVC	Not in service
BRW-5	PLF Recovery Well	HSA/Rotary	09/24/90	34.5	32.5	840.53	0.05	840.49	2.5 - 22.5	2.0 - 33.0	12	4" PVC	0.010 Slot PVC	
BRW-6	PLF Recovery Well	HSA/Rotary	12/19/00	17.7	17.4	837.31	-0.55	837.86	2.4 - 16.9	1.4 - 17.7	12.875	6" PVC	0.010 Slot PVC	
BRW-7	PLF Recovery Well	HSA/Rotary	12/20/00	17.9	17.4	838.40	-0.61	839.01	2.4 - 16.9	1.4 - 17.9	12.875	6" PVC	0.010 Slot PVC	
	PLF Recovery Well	HSA/Rotary	12/20/00	17.5	17.5	839.33	-0.50	839.83	2.5 - 17.0	1.5 - 17.5	12.875	6" PVC	0.010 Slot PVC	
BRW-9	PLF Recovery Well	HSA/Rotary	12/19/00	17.4	17.4	840.80	-0.60	841.40	2.4 - 16.9	1.4 - 17.4	12.875	6" PVC	0.010 Slot PVC	Not in service
LMW-1	Landfarm Monitoring Well	HSA	12/15/80	34.1	34.2	854.46	3.08	851.38	14.2 - 34.2	14.1 - 34.2	8.75	4" PVC	0.020 Slot PVC	
	Landfarm Monitoring Well	HSA	12/15/80	34.1	33.1	852.98	3.13	849.85	13.1 - 33.1	13.1 - 33.1	8.75	4" PVC	0.020 Slot PVC	Abandoned 08/22/15.
	Offset to LMW-2	HSA	05/07/86	14.8	14.8	851.67	1.77	849.90	7.3 - 14.8	6.3 - 14.8	8.5	4" PVC	0.010 Slot PVC	
LMW-3	Landfarm Monitoring Well	HSA	12/15/80	32.5	32.5	851.91	3.62	848.29	12.5 - 32.5	12.5 - 32.5	8.75	4" PVC	0.020 Slot PVC	Abandoned 08/20/15.
LMW-3-0	Offset to LMW-3	HSA	05/07/86	14.8	14.8	849.87	1.78	848.09	7.3 - 14.8	6.3 - 14.8	8.5	4" PVC	0.010 Slot PVC	
LMW-4	Landfarm Monitoring Well	HSA	12/15/80	33.3	33.3	851.50	3.34	848.16	13.3 - 33.3	13.3 - 33.3	8.75	4" PVC	0.010 Slot PVC	Abandoned 08/21/15.
	Offset to LMW-4	HSA	05/08/86	15.3	15.3	850.51	1.79	848.72	7.3 - 15.3	5.8 - 15.3	8.5	4" PVC	0.010 Slot PVC	
	Landfarm Monitoring Well	HSA	12/15/80	33.3	33.2	852.61	3.24	849.38	13.2 - 33.2	13.2 - 33.2	8.75	4" PVC	0.020 Slot PVC	Abandoned 08/21/15.
LMW-5-0	Offset to LMW-5	HSA	05/08/86	15.8	15.8	850.37	1.75	848.61	6.8 - 15.8	5.8 - 15.8	8.5	4" PVC	0.010 Slot PVC	

Monitoring and Recovery Well Data Wynnewood Refining Company, LLC Wynnewood, Oklahoma (a)

1		1		1	1	1		Cround		1				
				Total Drill	Completed	TOC	Stick up	Ground	Sereened	Filter Dook	Barabala	Cooing	Saraan Slat Siza	
		Drilling	Dete	Total Drill	Completed		Stick-up	Surface	Screened	Filter Pack	Borehole	Casing	Screen Slot Size	
	Mall Evensting	Drilling	Date	Depth	Well Depth	Elevation	Height	Elevation	Interval	Interval	Diameter	Diameter	and Type	O a mara a mta
Well ID	Well Function	Method	Installed	(ft-TOC)	(ft-TOC)	(ft-AMSL) (b)	(feet)	(ft-AMSL)	(ft-TOC)	(ft-TOC)	(inches)	and Type	(inches)	Comments
LMW-6	Landfarm Monitoring Well	HSA	09/17/84	36.9	36.9	851.46	1.88	849.58	11.9 - 36.9	5.9 - 36.9	8.75	4" PVC	0.010 Slot PVC	Abandoned 08/24/15.
LMW-6-0	Offset to LMW-6	HSA	05/08/86	18.9	18.9	853.55	2.88	850.67	10.9 - 18.9	7.9 - 18.9	8.5	4" PVC	0.010 Slot PVC	
LMW-7	Landfarm Monitoring Well	HSA	09/24/84	30.1	16.3	851.71	1.56	850.15	7.1 - 16.6	5.6 - 16.6	6.25	4" PVC	0.010 Slot PVC	Formerly TB2. Abandoned in 1996
LMW-8	Landfarm Monitoring Well	HSA	09/19/84	39.6	17.5	851.41	2.55	848.86	8.1 - 17.6	6.6 - 16.6	6.25	4" PVC	0.010 Slot PVC	Formerly TB3. Abandoned in 1996
LMW-9	Slop Oil Monitoring Well	HSA	03/15/85	15.0	12.6	852.16	2.47	849.69	5.0 - 15.0	5.0 - 15.0	6	2" PVC	0.010 Slot PVC	Formerly R1. Abandoned in 1996
LMW-10	Slop Oil Monitoring Well	HSA	03/14/85	18.9	18.2	852.20	2.44	849.76	3.9 - 18.9	3.9 - 18.9	6	2" PVC	0.010 Slot PVC	Formerly R2. Abandoned in 1996
LMW-11	Slop Oil Monitoring Well	HSA	03/15/85	18.6	18.8	852.90	1.84	851.06	7.8 - 18.8	7.8 - 18.8	6	2" PVC	0.010 Slot PVC	Formerly R3
LMW-12	Slop Oil Monitoring Well	HSA	03/13/85	20.9	18.5	851.16	1.85	849.31	9.9 - 19.9	9.9 - 19.9	6	2" PVC	0.010 Slot PVC	Formerly R4. Abandoned 05/08/13.
LMW-13	Slop Oil Monitoring Well	HSA	03/14/85	25.1	24.1	854.19	1.57	852.62	9.1 - 24.1	9.1 - 24.1	6	2" PVC	0.010 Slot PVC	Formerly R5
LMW-14	Slop Oil Monitoring Well	HSA	04/04/90	22.1	22.1	853.66	2.04	851.62	7.1 - 21.1	6.0 - 22.1	8	2" PVC	0.010 Slot PVC	
LMW-15	Slop Oil Monitoring Well	HSA	05/24/90	20.1	19.1	847.99	2.11	845.88	4.6 - 19.1	4.1 - 19.1	7.5	2" PVC	0.010 Slot PVC	Abandoned 09/06/11
				-	-	-	-		-	-				
LPZ-1	Piezometer	HSA	02/14/91	34.9	34.9	854.89	2.93	851.96	34.9	32.9 - 34.9	7.75	1" PVC	20-mesh SS screen	Abandoned 12/12/13
LPZ-2	Piezometer	HSA	02/18/91	37.0	37.0	854.33	3.02	851.31	37.0	35.0 - 37.0	7.75	1" PVC	20-mesh SS screen	Abandoned 12/12/13
LPZ-3	Piezometer	HSA	02/18/91	36.8	36.8	854.38	2.81	851.57	36.8	34.8 - 36.8	7.75	1" PVC	20-mesh SS screen	Abandoned 12/12/13
LPZ-4	Piezometer	HSA	03/07/91	34.1	34.1	853.94	2.56	851.38	34.1	32.1 - 34.1	7.75	1" PVC	20-mesh SS screen	Abandoned 08/20/15
LPZ-5	Piezometer	HSA	02/14/91	34.9	34.9	853.95	2.93	851.02	34.9	32.9 - 34.9	7.75	1" PVC	20-mesh SS screen	Abandoned 08/22/15
LPZ-6	Piezometer	HSA	02/14/91	34.9	34.9	853.45	2.92	850.53	34.9	32.9 - 34.9	7.75	1" PVC	20-mesh SS screen	Abandoned 08/22/15
LPZ-7	Piezometer	HSA	02/14/91	34.9	34.9	853.42	2.91	850.51	34.9	32.9 - 34.9	7.75	1" PVC	20-mesh SS screen	Abandoned 08/22/15
LPZ-8	Piezometer	HSA	02/14/91	35.0	35.0	853.57	3.05	850.52	35.0	33.0 - 35.0	7.75	1" PVC	20-mesh SS screen	Abandoned 08/22/15
		-			-				•					·
LRW-1	Landfarm Recording Monitoring Well	HSA	03/13/85	35.4	33.9	849.87	1.86	848.00	11.9 - 33.9	11.9 - 33.9	8.875	4" PVC	0.010 Slot PVC	Abandoned 08/21/15.
LRW-1-0	Offset to LRW-1	HSA	05/05/86	18.8	16.8	849.60	1.77	847.83	8.8 - 16.8	6.8 - 18.8	8.5	4" PVC	0.010 Slot PVC	
LRW-2	Landfarm Recording Monitoring Well	HSA	03/13/85	26.3	26.3	853.88	2.31	851.57	11.3 - 26.3	11.3 - 26.3	8.875	4" PVC	0.010 Slot PVC	Abandoned 08/21/15.
LRW-2-0	Offset to LRW-2	HSA	05/05/86	16.8	16.8	853.44	1.81	851.63	8.8 - 16.8	7.8 - 16.8	8.5	4" PVC	0.010 Slot PVC	
LRW-3	Recovery Well	Rotary Wash	01/30/91	43.9	40.4	855.05	2.94	852.11	9.2 - 35.0	5.4 - 40.4	10	6"#304 SS	0.020 Slot #304 SS	
LRW-4	Monitoring Well	Rotary Wash	02/05/91	44.9	40.4	853.70	2.94	850.76	9.1 - 40.4	7.1 - 40.4	10	6"#304 SS	0.020 Slot #304 SS	
<u>I</u>					.						<u>.</u>			
NMW-1	NE Tank Area Monitoring Well	HSA	07/30/87			882.96	2.76	880.20				2" PVC	0.010 Slot PVC	Formerly LDW168. Abandoned 08/20/15.
NMW-2	NE Tank Area Monitoring Well	HSA	07/30/87	22.3	22.3	879.98	2.78	877.20	12.1 - 22.3	12.1 - 22.3		2" PVC	0.010 Slot PVC	Formerly LDW157
NMW-3	NE Tank Area Monitoring Well	HSA	10/31/88	34.9	34.9	877.28	1.87	875.41	16.9 - 34.9	5.9 - 34.9		2" PVC	0.010 Slot PVC	Formerly SBW4
NMW-4	NE Tank Area Monitoring Well	HSA	07/30/87	27.8	21.3	878.72	2.79	875.93	11.3 - 21.3	11.3 - 21.3		2" PVC	0.010 Slot PVC	Formerly LDW146
NMW-5	NE Tank Area Monitoring Well	HSA	07/30/87	22.8	21.3	878.42	2.82	875.59	11.3 - 21.3	11.3 - 21.3		2" PVC	0.010 Slot PVC	Formerly LDW142
NMW-6	NE Tank Area Monitoring Well	HSA	07/30/87	-	-	881.72	2.87	878.85				2" PVC	0.010 Slot PVC	Formerly LDW144
NMW-7	NE Tank Area Monitoring Well	HSA	11/07/85	31.5	21.5	873.20	1.51	871.68	11.5 - 21.5	7.5 - 21.5	6	2" PVC	0.020 Saw-slot PVC	Formerly WR1
NMW-8	NE Plume Monitoring Well	Rotary Wash	10/28/88	64.5	36.5	876.45	1.49	874.96	6.5 - 36.5	5.5 - 36.5	<u> </u>	2" PVC	0.010 Slot PVC	Formerly SBW2
	NE Tank Area Monitoring Well	HSA	10/29/88	36.6	36.6	877.07	1.63	875.44	6.6 - 36.6	5.6 - 36.6		2" PVC	0.010 Slot PVC	Formerly SBW5
	NE Tank Area Monitoring Well	HSA	11/01/88	39.8	37.3	877.59	2.34	875.25	7.3 - 37.7	6.3 - 39.8		2" PVC	0.010 Slot PVC	Formerly SBW6
-	NE Tank Area Monitoring Well	HSA	03/30/90	32.3	32.0	878.75	2.34	876.41	12.3 - 31.3	10.6 - 32.3	8	2" PVC	0.010 Slot PVC	Abandoned 10/01/08
	NE Tank Area Monitoring Well	HSA	04/03/90	32.1	32.1	882.64	1.96	880.68	12.1 -31.1	10.5 - 32.1	8	2" PVC	0.010 Slot PVC	
	NE Plume Monitoring Well	HSA	04/06/90	27.5	27.5	869.23	2.02	867.21	8.5 - 27.5	6.1 - 27.5	8	2" PVC	0.010 Slot PVC	
	NE Plume Monitoring Well	HSA	04/09/90	22.1	22.2	872.10	2.14	869.96	7.1 - 21.1	6.1 - 22.1	8	2" PVC	0.010 Slot PVC	Abandoned 01/05/12
	NE Plume Monitoring Well	HSA	03/21/90	27.7	27.7	860.29	2.14	858.11	7.7 - 27.7	5.9 - 27.7	8	2 PVC 2" PVC	0.010 Slot PVC	Abandoned May 2010
-	NE Plume Monitoring Well	HSA	04/03/90	22.2	22.2	859.40	2.16	857.33	7.2 - 21.2	5.8 - 22.2	8	2 PVC 2" PVC	0.010 Slot PVC	
NMW-17	Monitoring Well	HSA	03/07/91	29.3	29.3	872.70	-0.19	872.89	9.3 - 28.8	4.8 - 29.3	7.75	2 PVC 2" PVC	0.010 Slot PVC	
NMW-17	Monitoring Well	HSA	03/07/91	29.8	29.3	870.62	-0.19	870.80	8.8 - 28.8	2.8 - 29.3	7.75	2 PVC 2" PVC	0.010 Slot PVC	
NMW-19	Monitoring Well	HSA	03/07/91	29.8	29.3	870.02	-0.18	872.14	8.8 - 28.8	2.8 - 29.3	7.75	2 PVC 2" PVC	0.010 Slot PVC	
		ПОЛ	00/01/01	29.0	29.0	071.00	-0.10	072.14	0.0 - 20.0	2.0 - 29.0	1.15	2100	0.010 SIULE VC	

Monitoring and Recovery Well Data Wynnewood Refining Company, LLC Wynnewood, Oklahoma (a)

	T			1	1					1				T
				TILLE		TOO	0111	Ground	0		D I I.	0	0	
			5.4	Total Drill	Completed	TOC	Stick-up	Surface	Screened	Filter Pack	Borehole	Casing	Screen Slot Size	
		Drilling	Date	Depth	Well Depth	Elevation	Height	Elevation	Interval	Interval	Diameter	Diameter	and Type	
Well ID	Well Function	Method	Installed	(ft-TOC)	(ft-TOC)	(ft-AMSL) (b)	(feet)	(ft-AMSL)	(ft-TOC)	(ft-TOC)	(inches)	and Type	(inches)	Comments
NPZ-1	Recovery System Piezometer	HSA	01/21/91	27.8	27.8	870.29	-0.24	870.53	27.8	26.8 - 27.8	7.75	1" PVC	24-mesh SS Screen	Unable to locate. Assumed abandoned.
NPZ-2	Recovery System Piezometer	HSA	01/21/91	27.8	27.8	869.92	-0.16	870.08	27.8	26.8 - 27.8	7.75	1" PVC	24-mesh SS Screen	Unable to locate. Assumed abandoned.
NPZ-3	Recovery System Piezometer	HSA	01/21/91	27.8	27.8	869.88	-0.17	870.05	27.8	26.8 - 27.8	7.75	1" PVC	24-mesh SS Screen	Unable to locate. Assumed abandoned.
NPZ-4	Recovery System Piezometer	HSA	01/21/91	17.3	17.3	859.44	-0.22	859.66	17.3	16.3 - 17.3	7.75	1" PVC		Abandoned 08/21/15
NPZ-5	Recovery System Piezometer	HSA	01/21/91	17.3	17.3	859.09	-0.21	859.30	17.3	16.3 - 17.3	7.75	1" PVC		Abandoned 08/20/15
NPZ-6	Recovery System Piezometer	HSA	01/21/91	17.3	17.3	858.98	-0.22	859.20	17.3	16.3 - 17.3	7.75	1" PVC	24-mesh SS Screen	Abandoned 08/20/15
NPZ-7	Recovery System Piezometer	HSA	01/21/91	17.2	17.2	858.90	-0.26	859.16	17.2	16.2 - 17.2	7.75	1" PVC	24-mesh SS Screen	Abandoned 08/20/15
		Detervitiesh	00/04/04	20 5	20.0	075 40	0.77	070.00	40 4 00 5	0.0.000	40	01#204.00	0.000 01-1 #204 00	
NRW-1	Recovery Well	Rotary Wash	03/01/91	39.5	36.0	875.10	2.77	872.33	10.1-30.5	8.0 - 36.0	10	6"#304 SS	0.020 Slot #304 SS	
NRW-2	Recovery Well	Rotary Wash	03/05/91	42.8	39.8	874.26	2.85	871.41	13.9 - 34.3	11.9 - 39.8	10	6"#304 SS	0.020 Slot #304 SS	
NRW-3	Recovery Well	Rotary Wash	03/06/91	42.3	38.3	873.60	2.78	870.82	12.4 - 32.8	7.8 - 38.3	10	6"#304 SS	0.020 Slot #304 SS	
NRW-4	Recovery Well	Rotary Wash	03/19/91	43.9	39.4	875.69	2.88	872.81	13.5 - 33.9	9.4 - 38.4	10	6"#304 SS	0.020 Slot #304 SS	
NRW-5	Recovery Well	Rotary Wash	03/25/91	39.4	36.4	873.51	2.38	871.12	10.1 - 30.9	8.9 - 36.4	10	6"#304 SS	0.020 Slot #304 SS	
NRW-6	Recovery Well	Rotary Wash	01/29/91	29.8	25.3	862.20	2.31	859.89	4.4 - 19.8	3.9 - 25.3	10	6"#304 SS	0.020 Slot #304 SS	
NRW-7	Recovery Well	Rotary Wash	02/27/91	28.5	25.5	861.25	2.51	858.75	4.6 - 20.0	3.5 - 25.5	10	6"#304 SS	0.020 Slot #304 SS	
OMW-1	Slop Oil Monitoring Well	HSA	11/07/85	24.8	22.2	855.51	2.31	853.20	12.3 - 22.3	12.3 - 22.3	6	2" PVC	0.020 Saw-slot PVC	Formerly WR4. Abandoned 10/01/08
OMW-2	Slop Oil Monitoring Well	HSA	11/08/85	24.9	24.8	855.34	2.44	852.90	14.9 - 24.9	14.9 - 24.9	6	2" PVC	0.020 Saw-slot PVC	Formerly WR3. Abandoned 08/26/05
OMW-3	Slop Oil Monitoring Well	HSA	11/08/85	24.9	22.7	857.83	2.44	855.08	12.7 - 22.7	12.7 - 22.7	6	2" PVC	0.020 Saw-slot PVC	Formerly WR2
OMW-4	Slop Oil Monitoring Well	HSA	11/08/85	28.1	23.1	857.47	3.11	854.36	13.1 - 23.1	13.1 - 23.1	6	2" PVC	0.020 Saw-slot PVC	Formerly WR5
OMW-5	Slop Oil Monitoring Well	HSA	04/06/90	27.6	27.6	855.96	2.09	853.87	7.6 - 26.6	6.4 - 27.6	8	2" PVC	0.010 Slot PVC	
OMW-6	Slop Oil Monitoring Well	HSA	04/09/90	27.1	27.0	857.70	2.03	855.63	7.1 - 26.1	6.1 - 27.1	8	2" PVC	0.010 Slot PVC	
		HOA	04/05/50	21.1	27.1	001.10	2.07	000.00	7.1 - 20.1	0.1 - 27.1	0	2100	0.010 0.011 10	
ORW-1	Recovery Well	HSA	12/02/86	27.2	26.2	855.58	1.18	854.40	11.7 - 24.2	10.7 - 26.2		4" PVC		Abandoned 08/26/05
ORW-2	Recovery Well	HSA	12/03/86	26.3	26.3	855.42	1.34	854.08	8.8 - 21.3	7.8 - 26.3		4" PVC		
ORW-3	Recovery Well	HSA	12/04/86	26.2	26.2	856.06	1.70	854.36	8.7 - 21.2	7.7 - 26.2		4" PVC		
ORW-4	Monitoring Well	Rotary Wash	02/25/91	45.8	42.3	856.74	1.80	854.95	6.0 - 36.8	4.8 - 42.3	10	6"#304 SS	0.020 Slot #304 SS	
	· · · · · ·	· · · ·								•				•
UMW-1	Facility Upgradient Well	Rotary Wash	10/28/88	62.2	42.2	905.97	2.22	903.74	7.2 - 42.2	6.2 - 42.2		2" PVC	0.010 Slot PVC	Formerly SBW01
UMW-2	North Background Well	Rotary Wash	10/28/88	87.3	26.3	858.01	1.25	856.76	6.3 - 26.3	6.3 - 26.3		2" PVC	0.010 Slot PVC	Formerly SBW03. Abandoned 09/06/11
UMW-3	Water Level Well	HSA	05/24/90	26.0	22.0	853.00	1.97	851.03	7.5 - 22.0	6.0 - 22.0	7.5	2" PVC	0.010 Slot PVC	
UMW-4	Water Level Well	HSA	09/09/12	25.3	24.8	868.78	2.82	865.96	14.8 - 24.8	12.8 - 25.3	8.25	2" PVC	0.010 Slot PVC	
UMW-5	Water Level Well	HSA	09/09/12	24.8	24.8	868.40	2.82	865.58	14.8 - 24.8	12.8 - 24.8	8.25	2" PVC	0.010 Slot PVC	
UMW-6	Water Level Well	HSA	09/08/12	33.7	33.7	882.79	2.72	880.07	23.7 - 33.7	21.7 - 33.7	8.25	2" PVC	0.010 Slot PVC	
UMW-7	Water Level Well	HSA	08/17/15	22.8	21.9	861.65	2.81	858.84	11.9 - 21.9	8.8 - 22.8	8.25	2" PVC	0.010 Slot PVC	
SMW-1	RFI Monitoring Well	HSA	06/26/89	21.9	21.9	863.15	1.86	861.30	11.6 - 21.6	10.2 - 21.9	8.875	2" PVC	0.010 Slot PVC	
	RFI Monitoring Well	HSA	06/28/89	22.8	22.8	849.17	2.51	846.66	12.5 - 22.5		8.875			
SMW-2D	RFI Monitoring Well	HSA	01/10/94	32.5	32.5	849.34	2.63	846.71	22.2 -31.9	21.2 - 32.4	8.75	2" PVC	0.010 Slot PVC	
SMW-3	RFI Monitoring Well	HSA	06/29/89	22.4	21.8	849.42	2.39	847.03	11.5 - 21.5	10.0 - 21.8	8.875	2" PVC	0.010 Slot PVC	
SMW-4	RFI Monitoring Well	HSA	06/29/89	18.6	18.6	851.70	2.30	849.39	8.3 - 18.3	7.3 - 18.6	8.875	2" PVC	0.010 Slot PVC	
SMW-4D	RFI Monitoring Well	HSA	01/10/94	31.2	31.2	851.11	1.65	849.46	19.7 - 29.4	17.7 - 31.2	8.75	2" PVC	0.010 Slot PVC	
SMW-5	SWRP Monitoring Well	HSA	06/27/89	26.0	22.2	854.69	2.04	852.64	11.9 - 21.9	10.5 - 22.2	8.875	2" PVC	0.010 Slot PVC	
SMW-5D	SWRP Monitoring Well	HSA	01/10/94	37.8	37.8	854.61	1.80	852.81	20.8 - 35.4	19.8 - 37.8	8.75	2" PVC	0.010 Slot PVC	
SMW-6	RFI Monitoring Well	HSA	05/25/90	26.1	22.1	854.48	2.08	852.39	7.1 - 22.1	6.1 - 22.1	7.5	2" PVC	0.010 Slot PVC	
SMW-7	Water Level Well	HSA	05/25/90	26.5	26.0	857.78	1.97	855.81	11.5 - 26.0	8.7 - 26.0	7.5	2" PVC	0.010 Slot PVC	
SMW-8	RFI Monitoring Well	HSA	07/18/91	24.5	24.5	858.70	2.34	856.36	7.4-22.5	5.35 - 24.5	12	2" PVC	0.010 Slot PVC	
SMW-9	SWRP Monitoring Well	HSA	11/23/92	22.3	19.3	853.27	2.34	850.93	9.0 - 19.0	7.3 - 19.3	8.5	2" PVC	0.010 Slot PVC	
SMW-9D	SWRP Monitoring Well	HSA	01/10/94	34.6	34.6	853.47	2.60	850.88	19.1 - 33.4	17.9 - 34.6	8.75	2" PVC	0.010 Slot PVC	
SMW-10	RFI Monitoring Well	HSA	01/19/94	20.6	20.6	853.71	1.47	852.24	8.0 - 20.1	7.0 - 20.6	8.75	2" PVC	0.010 Slot PVC	
SMW-10D	RFI Monitoring Well	HSA	01/19/94	36.4	35.2	853.72	1.42	852.29	20.4 - 34.8	19.0 - 36.4	8.75	2" PVC	0.010 Slot PVC]

Monitoring and Recovery Well Data Wynnewood Refining Company, LLC Wynnewood, Oklahoma (a)

								Ground			1			
				Total Drill	Completed	тос	Stick-up	Surface	Screened	Filter Pack	Borehole	Casing	Screen Slot Size	
		Drilling	Date	Depth	Well Depth	Elevation	Height	Elevation	Interval	Interval	Diameter	Diameter	and Type	
Well ID	Well Function	Method	Installed	(ft-TOC)	(ft-TOC)	(ft-AMSL) (b)	(feet)	(ft-AMSL)	(ft-TOC)	(ft-TOC)	(inches)	and Type	(inches)	Comments
-	SWRP Monitoring Well	HSA	01/18/94	21.1	21.1	853.13	1.47	851.66	8.5 - 20.6	7.5 - 21.2	8.75	2" PVC	0.010 Slot PVC	
	SWRP Monitoring Well	HSA	01/18/94	34.4	33.5	852.92	1.36	851.56	20.9 - 33.0	19.9 - 34.4	8.75	2" PVC	0.010 Slot PVC	
SMW-12	RFI Monitoring Well	HSA	01/20/94	20.5	20.5	855.02	1.38	853.64	7.9 - 20.0	6.9 - 20.5	8.75	2" PVC	0.010 Slot PVC	
SMW-12D	RFI Monitoring Well	HSA	01/20/94	35.9	35.4	855.04	1.40	853.64	20.4 - 34.9	19.4 - 35.9	8.75	2" PVC	0.010 Slot PVC	
SMW-13	RFI Monitoring Well	HSA	01/17/94	22.5	22.5	854.05	1.38	852.67	9.9 - 22.0	8.9 - 22.5	8.75	2" PVC	0.010 Slot PVC	
SMW-13D	RFI Monitoring Well	HSA	01/17/94	39.1	37.6	854.29	1.63	852.66	22.6 - 37.1	21.6 - 39.1	8.75	2" PVC	0.010 Slot PVC	
SMW-14	RFI Monitoring Well	HSA	01/17/94	22.2	22.1	854.70	1.61	853.09	7.1 - 21.6	6.1 - 22.2	8.75	2" PVC	0.010 Slot PVC	
SMW-14D	RFI Monitoring Well	HSA	01/14/94	36.7	34.8	854.71	1.66	853.06	22.2 - 34.3	21.2 - 36.7	8.75	2" PVC	0.010 Slot PVC	
SMW-15	RFI Monitoring Well	HSA	01/14/94	25.6	25.4	852.75	2.68	850.07	7.7 - 24.8	6.7 - 25.6	8.75	2" PVC	0.010 Slot PVC	Abandoned May 2010
SMW-16	RFI Monitoring Well	HSA	01/12/94	26.1	24.7	854.83	2.99	851.84	10.5 - 24.9	9.5 - 26.1	8.75	2" PVC	0.010 Slot PVC	Abandoned May 2010
SMW-17	RFI Monitoring Well	HSA	01/11/94	29.8	28.9	859.01	2.69	856.32	8.7 - 28.0	7.7 - 29.8	8.75	2" PVC	0.010 Slot PVC	Abandoned May 2010
SMW-18	RFI Monitoring Well	HSA	01/11/94	28.6	27.3	863.63	2.18	861.44	7.2 - 26.9	6.2 - 28.6	8.75	2" PVC	0.010 Slot PVC	
SMW-19	RFI Monitoring Well	HSA	01/13/94	27.4	27.5	847.91	1.37	846.53	7.4 - 26.8	6.4 - 27.4	8.75	2" PVC	0.010 Slot PVC	
SMW-20	RFI Monitoring Well	HSA	01/13/94	21.0	20.8	847.31	3.00	844.31	8.0 - 20.1	7.0 - 21.0	8.75	2" PVC	0.010 Slot PVC	Abandoned 10/23/12
	RFI Monitoring Well	HSA	01/13/94	31.5	30.6	847.02	2.47	844.55	18.0 - 29.9	17 - 31.5	8.75	2" PVC	0.010 Slot PVC	Abandoned 10/23/12
	SWRP Monitoring Well	HSA	01/10/94	21.2	20.9	851.99	1.18	850.81	8.2 - 20.5	7.2 - 21.2	8.75	2" PVC	0.010 Slot PVC	
	SWRP Monitoring Well	HSA	01/10/94	34.2	33.4	852.09	1.23	850.86	20.7 - 33.0	19.6 - 34.2	8.75	2" PVC	0.010 Slot PVC	
	RFI Monitoring Well	HSA	03/19/96	17.6	15.7	853.92	1.89	852.03	7.4 - 16.9	5.4 - 17.6	8.75	2" PVC	0.010 Slot PVC	Abandoned May 2010
	RFI Monitoring Well	HSA	03/19/96	34.0	34.0	855.07	1.85	853.23	18.8 - 33.3	16.8 - 33.9	8.75	2" PVC	0.010 Slot PVC	
	RFI Monitoring Well	HSA	10/23/12	20.0	20.0	844.61	3.01	841.61	10.0 - 20.0	8.0 - 20.0	8.25	2" PVC	0.010 Slot PVC	
SMW-24	Water Level Well	HSA	08/18/15	19.8	18.6	850.11	2.82	847.29	8.6 - 18.6	7.8 - 19.8	8.25	2" PVC	0.010 Slot PVC	
SMW-25	Water Level Well	HSA	08/18/15	19.8	19.6	848.63	2.78	845.85	9.6 - 19.6	7.8 - 19.8	8.25	2" PVC	0.010 Slot PVC	
SBR-1	Water Level Well	HSA	01/19/15	30.9	30.9	847.35	2.85	844.50	7.9 - 27.9	6.4 - 30.9	10.25	4" PVC	0.010 Slot PVC	
				-	-									
SPZ-1	Piezometer	HSA	06/26/89	23.0	22.6		3				6.625	1" PVC	Open Bottom	Abandoned (date unknown)
SPZ-2	Piezometer	HSA	06/27/89	23.0	22.0		3				6.625	1" PVC	Open Bottom	Abandoned (date unknown)
SPZ-3	Piezometer	HSA	06/28/89	22.0	22.0		3				6.625	1" PVC	Open Bottom	Abandoned (date unknown)
						.				1				
KRW-1	Laboratory Recovery Well			30.0										Abandoned 01/05/12
KRW-2	Laboratory Recovery Well			30.0										Abandoned 01/05/12
KRW-3	Laboratory Recovery Well			30.0										Abandoned 01/05/12
KRW-4	Laboratory Recovery Well			30.0										Abandoned 01/05/12

a\ ft-TOC = feet below top of casing.

ft-AMSL = feet above mean sea level.

PLF = Product Loading Facility.

HSA = hollow stem auger.

PVC = polyvinyl chloride.

SS = stainless steel.

RFI = Resource Conservation and Recovery Act Feasibility Investigation.

SWRP = Storm Water Retention Pond.

DPT = Direct-push technology.

b\ Elevations and stick-up height have been updated with most recent survey data collected in April 2014.

Shading descriptors:

Groundwater Sampling Well for Perimeter Monitoring.

Groundwater Sampling Well for SWRP.

Table 2A

Groundwater Elevations and LNAPL Thickness Measurements March 2016 Wynnewood Refining Company, LLC Wynnewood, Oklahoma (a)

Vell Measurement Date TOC (ft-MKLSL) Depth to (ft-MKLSL) LNAPL LNAPL Water Table Thickness Water Elevation API API Water (ft) Water Table Elevation Water API Water Thickness API Water Thickness API Water Thickness API Water Thickness API Water Thickness API API API API BMW-2 03/15/16 842.98 4.98 4.10 0.88 838.00 59.8 (c) BMW-6 03/15/16 844.97 4.58 NP 0.00 840.66 58.5 BMW-7 03/15/16 844.97 4.58 NP 0.00 841.14 14 BMW-8 03/15/16 846.92 5.78 NP 0.00 841.14 14 BMW-10 03/15/16 847.13 6.65 NP 0.00 841.42 14 BMW-10 03/15/16 847.13 6.65 NP 0.00 841.42 14 BMW-10 03/15/16 841.74 6.75 NP <t< th=""><th>Corrected Vater Table Elevation -AMSL) (b) 838.66 833.64 839.74 840.39 840.66 841.14 839.35 841.09 840.48 841.42</th></t<>	Corrected Vater Table Elevation -AMSL) (b) 838.66 833.64 839.74 840.39 840.66 841.14 839.35 841.09 840.48 841.42
Number Date (ft-AMSL) (ft-TOC) (ft) (ft-AMSL) Gravity (ft) BMW-2 03/15/16 842.98 4.98 4.10 0.88 838.00 59.8 (c) BMW-4 03/15/16 847.03 8.43 6.90 1.53 838.60 58.5 (c) BMW-5 03/15/16 847.03 8.43 6.90 1.53 838.60 58.5 (c) BMW-6 03/15/16 844.97 4.58 NP 0.00 840.39 58.5 (c) BMW-7 03/15/16 846.92 5.78 NP 0.00 841.04 E BMW-10 03/15/16 846.92 5.78 NP 0.00 841.09 E BMW-11 03/15/16 847.13 6.65 NP 0.00 841.42 E BMW-13 03/15/16 847.17 6.62 NP 0.00 841.42 E BMW-14 03/15/16 841.77 6.62 NP 0.00 833.32 E	-AMSL) (b) 838.66 833.64 839.74 840.39 840.66 841.14 839.35 841.09 840.48
BMW-2 03/15/16 842.98 4.98 4.10 0.88 838.00 59.8 (c) BMW-4 03/15/16 838.65 5.01 NP 0.00 833.64 9 BMW-5 03/15/16 844.97 4.58 NP 0.00 840.39 58.5 BMW-6 03/15/16 844.97 4.58 NP 0.00 840.39 58.5 (c) BMW-7 03/15/16 847.31 6.65 NP 0.00 841.14 1 BMW-80 03/15/16 845.03 5.68 NP 0.00 841.09 1 BMW-10 03/15/16 845.03 5.68 NP 0.00 841.09 1 BMW-13 03/15/16 847.17 6.65 NP 0.00 841.42 1 BMW-14 03/15/16 847.17 6.62 NP 0.00 840.45 5 BMW-16 03/15/16 843.99 NP 0.00 838.75 1 B BMW-20A	838.66 833.64 839.74 840.39 840.66 841.14 839.35 841.09 840.48
BMW-4 03/15/16 838.65 5.01 NP 0.00 833.64 BMW-5 03/15/16 844.70 8.43 6.90 1.53 838.60 58.5 BMW-6 03/15/16 844.97 4.58 NP 0.00 840.39 58.5 (c) BMW-7 03/15/16 844.97 4.58 NP 0.00 840.66 BMW-8 03/15/16 845.03 5.68 NP 0.00 839.35 BMW-10 03/15/16 848.20 7.11 NP 0.00 841.09 BMW-11 03/15/16 848.85 7.56 NP 0.00 841.42 BMW-13 03/15/16 847.17 6.62 NP 0.00 840.51 BMW-16 03/15/16 847.17 6.62 NP 0.00 840.01 BMW-16 03/15/16 844.34 5.59 NP 0.00 833.32 BMW-20A 03/15/16 844.34 5.59 NP 0.00 833.32 <tr< th=""><th>833.64 839.74 840.39 840.66 841.14 839.35 841.09 840.48</th></tr<>	833.64 839.74 840.39 840.66 841.14 839.35 841.09 840.48
BMW-5 03/15/16 847.03 8.43 6.90 1.53 838.60 58.5 BMW-6 03/15/16 844.97 4.58 NP 0.00 840.66 58.5 (c) BMW-7 03/15/16 846.92 5.78 NP 0.00 840.66 58.5 (c) BMW-9 03/15/16 846.92 5.78 NP 0.00 841.14 59.57 BMW-10 03/15/16 845.03 5.68 NP 0.00 841.09 59.57 BMW-10 03/15/16 847.13 6.65 NP 0.00 840.48 59.57 BMW-11 03/15/16 847.13 6.65 NP 0.00 841.42 59.58.5 (c) BMW-14 03/15/16 848.85 7.56 NP 0.00 840.55 58.5 (c) BMW-16 03/15/16 841.74 6.75 NP 0.00 833.32 58 BMW-20 03/15/16 843.34 5.59 NP 0.00 833.32 58 <td>839.74 840.39 840.66 841.14 839.35 841.09 840.48</td>	839.74 840.39 840.66 841.14 839.35 841.09 840.48
BMW-6 03/15/16 844.97 4.58 NP 0.00 840.39 58.5 (c) BMW-7 03/15/16 847.31 6.65 NP 0.00 840.66 BMW-8 03/15/16 846.92 5.78 NP 0.00 841.14 BMW-9 03/15/16 845.03 5.68 NP 0.00 839.35 BMW-10 03/15/16 844.20 7.11 NP 0.00 841.14 BMW-11 03/15/16 844.63 5.21 NP 0.00 841.42 BMW-14 03/15/16 844.63 5.21 NP 0.00 841.42 BMW-15 03/15/16 844.95 6.62 NP 0.00 840.55 58.5 (c) BMW-16 03/15/16 844.94 5.59 NP 0.00 834.99 B BMW-20 03/15/16 843.99 4.79 NP 0.00 838.75 E BMW-21 03/15/16 842.96 3.97 NP 0.00	840.39 840.66 841.14 839.35 841.09 840.48
BMW-7 03/15/16 847.31 6.65 NP 0.00 840.66 BMW-8 03/15/16 846.92 5.78 NP 0.00 841.14 BMW-9 03/15/16 845.03 5.68 NP 0.00 839.35 BMW-10 03/15/16 845.03 5.68 NP 0.00 841.09 BMW-11 03/15/16 847.13 6.65 NP 0.00 841.42 BMW-13 03/15/16 847.17 6.62 NP 0.00 841.29 BMW-14 03/15/16 847.17 6.62 NP 0.00 840.01 BMW-15 03/15/16 844.94 6.75 NP 0.00 840.01 BMW-18 03/15/16 844.34 5.59 NP 0.00 833.32 BMW-20 03/15/16 843.99 4.79 NP 0.00 838.83 BMW-21 03/15/16 843.06 4.23 NP 0.00 838.61 BMW-22 03/15/16 <td>840.66 841.14 839.35 841.09 840.48</td>	840.66 841.14 839.35 841.09 840.48
BMW-8 03/15/16 846.92 5.78 NP 0.00 841.14 BMW-9 03/15/16 845.03 5.68 NP 0.00 839.35 BMW-10 03/15/16 844.02 7.11 NP 0.00 841.09 BMW-11 03/15/16 847.13 6.65 NP 0.00 840.48 BMW-14 03/15/16 846.63 5.21 NP 0.00 841.29 BMW-14 03/15/16 844.64 5.21 NP 0.00 840.01 BMW-15 03/15/16 847.17 6.62 NP 0.00 840.01 BMW-16 03/15/16 844.34 5.59 NP 0.00 834.99 BMW-19 03/15/16 843.99 4.79 NP 0.00 833.20 BMW-21 03/15/16 843.99 4.79 NP 0.00 838.83 BMW-22 03/15/16 841.63 4.55 2.86 1.69 837.08 56.8 BMW-24 <td>841.14 839.35 841.09 840.48</td>	841.14 839.35 841.09 840.48
BMW-9 03/15/16 845.03 5.68 NP 0.00 839.35 BMW-10 03/15/16 848.20 7.11 NP 0.00 841.09 BMW-11 03/15/16 847.13 6.65 NP 0.00 840.48 BMW-13 03/15/16 846.63 5.21 NP 0.00 841.42 BMW-14 03/15/16 846.63 5.21 NP 0.00 841.29 BMW-15 03/15/16 847.17 6.62 NP 0.00 840.01 BMW-16 03/15/16 841.74 6.75 NP 0.00 843.99 BMW-19 03/15/16 844.34 5.59 NP 0.00 833.32 BMW-21 03/15/16 843.99 4.79 NP 0.00 838.83 BMW-22 03/15/16 843.06 4.23 NP 0.00 838.83 BMW-23 03/15/16 842.58 3.97 NP 0.00 837.08 56.8 BMW-24	839.35 841.09 840.48
BMW-10 03/15/16 848.20 7.11 NP 0.00 841.09 BMW-11 03/15/16 847.13 6.65 NP 0.00 840.48 BMW-13 03/15/16 846.63 5.21 NP 0.00 841.42 BMW-14 03/15/16 848.85 7.56 NP 0.00 841.29 BMW-15 03/15/16 847.17 6.62 NP 0.00 840.55 58.5 (c) BMW-16 03/15/16 844.34 5.59 NP 0.00 834.99 BMW-19 03/15/16 844.34 5.59 NP 0.00 833.72 BMW-20 03/15/16 843.36 5.19 NP 0.00 833.81 BMW-21 03/15/16 843.06 4.23 NP 0.00 838.83 BMW-22 03/15/16 842.58 3.97 NP 0.00 838.61 BMW-23 03/15/16 842.58 3.97 N	841.09 840.48
BMW-11 03/15/16 847.13 6.65 NP 0.00 840.48 BMW-13 03/15/16 846.63 5.21 NP 0.00 841.42 Image: Construction of the construction	840.48
BMW-13 03/15/16 846.63 5.21 NP 0.00 841.42 BMW-14 03/15/16 848.85 7.56 NP 0.00 840.55 58.5 (c) BMW-15 03/15/16 846.95 6.94 NP 0.00 840.55 58.5 (c) BMW-16 03/15/16 844.94 6.75 NP 0.00 834.99 BMW-18 03/15/16 844.34 5.59 NP 0.00 833.75 BMW-20A 03/15/16 843.34 5.59 NP 0.00 833.22 BMW-21 03/15/16 843.99 4.79 NP 0.00 838.83 BMW-22 03/15/16 843.06 4.23 NP 0.00 838.83 BMW-23 03/15/16 842.58 3.97 NP 0.00 838.61 BMW-24 03/15/16 841.63 4.55 2.86 1.69 837.08 56.8 BMW-26 03/15/16 840.29 2.85 2.76 0.09	
BMW-14 03/15/16 848.85 7.56 NP 0.00 841.29 BMW-15 03/15/16 847.17 6.62 NP 0.00 840.55 58.5 (c) BMW-16 03/15/16 846.95 6.94 NP 0.00 840.01 BMW-18 03/15/16 844.34 5.59 NP 0.00 834.99 BMW-19 03/15/16 843.34 5.59 NP 0.00 833.75 BMW-20A 03/15/16 843.99 4.79 NP 0.00 833.32 BMW-21 03/15/16 843.99 4.79 NP 0.00 838.83 BMW-22 03/15/16 844.58 3.97 NP 0.00 838.61 BMW-24 03/15/16 841.63 4.55 2.86 1.69 837.08 56.8 BMW-25 03/15/16 842.33 5.28 NP 0.00 834.07 BMW-26 03/15/16 842.07 7.39 NP 0.00 834.68	071.72
BMW-15 03/15/16 847.17 6.62 NP 0.00 840.55 58.5 (c) BMW-16 03/15/16 846.95 6.94 NP 0.00 840.01 Image: Constraint of the constrain	841.29
BMW-18 03/15/16 841.74 6.75 NP 0.00 834.99 BMW-19 03/15/16 844.34 5.59 NP 0.00 838.75 BMW-20A 03/15/16 838.51 5.19 NP 0.00 833.32 BMW-21 03/15/16 843.99 4.79 NP 0.00 833.32 BMW-22 03/15/16 843.06 4.23 NP 0.00 838.83 BMW-23 03/15/16 842.58 3.97 NP 0.00 838.61 BMW-24 03/15/16 842.58 3.97 NP 0.00 837.08 56.8 BMW-25 03/15/16 842.33 5.28 NP 0.00 837.05 54.9 (c) BMW-26 03/15/16 840.29 2.85 2.76 0.09 837.44 54.9 BMW-27 03/15/16 842.07 7.39 NP 0.00 834.68 0 BRW-1 03/15/16 841.08 2.50 NP 0.00 </td <td>840.55</td>	840.55
BMW-19 03/15/16 844.34 5.59 NP 0.00 838.75 BMW-20A 03/15/16 838.51 5.19 NP 0.00 833.32 BMW-21 03/15/16 843.99 4.79 NP 0.00 833.32 BMW-22 03/15/16 843.06 4.23 NP 0.00 838.61 BMW-23 03/15/16 842.58 3.97 NP 0.00 838.61 BMW-24 03/15/16 842.58 3.97 NP 0.00 837.08 56.8 BMW-25 03/15/16 842.33 5.28 NP 0.00 837.08 56.8 BMW-26 03/15/16 840.29 2.85 2.76 0.09 837.44 54.9 BMW-27 03/15/16 842.07 7.39 NP 0.00 834.68 1 BRW-1 03/15/16 841.50 2.01 NP 0.00 838.58 1 BRW-3 03/15/16 841.08 2.50 NP	840.01
BMW-20A 03/15/16 838.51 5.19 NP 0.00 833.32 BMW-21 03/15/16 843.99 4.79 NP 0.00 839.20 BMW-22 03/15/16 843.06 4.23 NP 0.00 838.83 BMW-23 03/15/16 842.58 3.97 NP 0.00 838.61 BMW-24 03/15/16 841.63 4.55 2.86 1.69 837.08 56.8 BMW-25 03/15/16 842.33 5.28 NP 0.00 837.05 54.9 (c) BMW-26 03/15/16 842.03 5.28 2.76 0.09 837.44 54.9 BMW-27 03/15/16 842.07 7.39 NP 0.00 834.68 BRW-1 03/15/16 842.39 2.26 NP 0.00 834.68 BRW-2 03/15/16 841.08 2.50 NP 0.00 837.81 BRW-3 03/15/16 840.53 2.91 NP	834.99
BMW-21 03/15/16 843.99 4.79 NP 0.00 839.20 BMW-22 03/15/16 843.06 4.23 NP 0.00 838.83 BMW-23 03/15/16 842.58 3.97 NP 0.00 838.61 BMW-24 03/15/16 841.63 4.55 2.86 1.69 837.08 56.8 BMW-25 03/15/16 842.33 5.28 NP 0.00 837.05 54.9 (c) BMW-26 03/15/16 842.33 5.28 NP 0.00 837.44 54.9 BMW-27 03/15/16 842.09 2.85 2.76 0.09 837.44 54.9 BMW-28 03/15/16 842.07 7.39 NP 0.00 834.68 D BRW-1 03/15/16 841.50 2.01 NP 0.00 839.49 D BRW-2 03/15/16 841.08 2.50 NP 0.00 837.81 D BRW-3 03/15/16 840.44	838.75
BMW-22 03/15/16 843.06 4.23 NP 0.00 838.83 BMW-23 03/15/16 842.58 3.97 NP 0.00 838.61 BMW-24 03/15/16 841.63 4.55 2.86 1.69 837.08 56.8 BMW-25 03/15/16 842.33 5.28 NP 0.00 837.05 54.9 (c) BMW-26 03/15/16 840.29 2.85 2.76 0.09 837.44 54.9 BMW-27 03/15/16 842.07 7.39 NP 0.00 834.68 BRW-1 03/15/16 842.39 2.26 NP 0.00 839.49 BRW-2 03/15/16 841.08 2.50 NP 0.00 838.58 BRW-3 03/15/16 841.08 2.50 NP 0.00 837.62 BRW-4 03/15/16 840.53 2.91 NP 0.00 837.62 BRW-5 03/15/16 837.31 2.93 NP 0.00 834.38	833.32
BMW-23 03/15/16 842.58 3.97 NP 0.00 838.61 BMW-24 03/15/16 841.63 4.55 2.86 1.69 837.08 56.8 BMW-25 03/15/16 842.33 5.28 NP 0.00 837.05 54.9 (c) BMW-26 03/15/16 840.29 2.85 2.76 0.09 837.44 54.9 BMW-27 03/15/16 842.07 7.39 NP 0.00 834.07 BMW-28 03/15/16 842.07 7.39 NP 0.00 834.68 BRW-1 03/15/16 842.39 2.26 NP 0.00 834.68 BRW-2 03/15/16 841.50 2.01 NP 0.00 839.49 BRW-3 03/15/16 841.08 2.50 NP 0.00 837.62 BRW-4 03/15/16 840.53 2.91 NP 0.00 837.62 BRW-5 03/15/16 837.31 2.93 NP 0.00 834.38	839.20
BMW-24 03/15/16 841.63 4.55 2.86 1.69 837.08 56.8 BMW-25 03/15/16 842.33 5.28 NP 0.00 837.05 54.9 (c) BMW-26 03/15/16 840.29 2.85 2.76 0.09 837.44 54.9 BMW-27 03/15/16 837.10 3.03 NP 0.00 834.07 BMW-28 03/15/16 842.07 7.39 NP 0.00 834.68 BRW-1 03/15/16 842.39 2.26 NP 0.00 839.49 BRW-2 03/15/16 841.50 2.01 NP 0.00 839.49 BRW-3 03/15/16 841.08 2.50 NP 0.00 837.81 BRW-4 03/15/16 840.44 2.63 NP 0.00 837.62 BRW-5 03/15/16 840.53 2.91 NP 0.00 837.62 BRW-6 03/15/16 837.31 2.93 NP 0.00 835.96<	838.83
BMW-25 03/15/16 842.33 5.28 NP 0.00 837.05 54.9 (c) BMW-26 03/15/16 840.29 2.85 2.76 0.09 837.44 54.9 BMW-27 03/15/16 837.10 3.03 NP 0.00 834.07 BMW-28 03/15/16 842.07 7.39 NP 0.00 834.68 BRW-1 03/15/16 842.39 2.26 NP 0.00 834.68 BRW-2 03/15/16 841.50 2.01 NP 0.00 839.49 BRW-3 03/15/16 841.08 2.50 NP 0.00 838.58 BRW-4 03/15/16 840.44 2.63 NP 0.00 837.62 BRW-5 03/15/16 840.53 2.91 NP 0.00 837.62 BRW-6 03/15/16 837.31 2.93 NP 0.00 835.96 54.9 (c) <td< td=""><td>838.61 838.35</td></td<>	838.61 838.35
BMW-26 03/15/16 840.29 2.85 2.76 0.09 837.44 54.9 BMW-27 03/15/16 837.10 3.03 NP 0.00 834.07 BMW-28 03/15/16 842.07 7.39 NP 0.00 834.68 BRW-1 03/15/16 842.07 7.39 NP 0.00 840.13 BRW-2 03/15/16 842.39 2.26 NP 0.00 839.49 BRW-3 03/15/16 841.08 2.50 NP 0.00 839.49 BRW-3 03/15/16 841.08 2.50 NP 0.00 838.58 BRW-4 03/15/16 840.53 2.91 NP 0.00 837.62 BRW-6 03/15/16 837.31 2.93 NP 0.00 834.38 54.9 (c) BRW-7 03/15/16 838.40 2.44 NP 0.00 835.96 54.9 (c) BRW-8	837.05
BMW-27 03/15/16 837.10 3.03 NP 0.00 834.07 BMW-28 03/15/16 842.07 7.39 NP 0.00 834.68 Image: constraint of the state of the stat	837.51
BMW-28 03/15/16 842.07 7.39 NP 0.00 834.68 Image: constraint of the state of the sta	834.07
BRW-1 03/15/16 842.39 2.26 NP 0.00 840.13 Image: constraint of the state of the stat	834.68
BRW-2 03/15/16 841.50 2.01 NP 0.00 839.49 Image: constraint of the state of the stat	840.13
BRW-3 03/15/16 841.08 2.50 NP 0.00 838.58 Image: constraint of the state of the stat	839.49
BRW-5 03/15/16 840.53 2.91 NP 0.00 837.62 BRW-6 03/15/16 837.31 2.93 NP 0.00 834.38 54.9 (c) BRW-7 03/15/16 838.40 2.44 NP 0.00 835.96 54.9 (c) BRW-8 03/15/16 839.33 3.35 NP 0.00 835.98 54.9 (c) BRW-9 03/15/16 840.80 3.28 NP 0.00 837.52 SMW-1 03/14/16 863.15 14.66 NP 0.00 838.40 SMW-2 03/15/16 849.17 10.77 NP 0.00 838.40 SMW-2D 03/15/16 849.34 10.94 NP 0.00 838.40	838.58
BRW-6 03/15/16 837.31 2.93 NP 0.00 834.38 54.9 (c) BRW-7 03/15/16 838.40 2.44 NP 0.00 835.96 54.9 (c) BRW-8 03/15/16 839.33 3.35 NP 0.00 835.98 54.9 (c) BRW-9 03/15/16 840.80 3.28 NP 0.00 837.52 SMW-1 03/14/16 863.15 14.66 NP 0.00 838.40 SMW-2 03/15/16 849.17 10.77 NP 0.00 838.40 SMW-2D 03/15/16 849.34 10.94 NP 0.00 838.40	837.81
BRW-7 03/15/16 838.40 2.44 NP 0.00 835.96 54.9 (c) BRW-8 03/15/16 839.33 3.35 NP 0.00 835.98 54.9 (c) BRW-9 03/15/16 840.80 3.28 NP 0.00 837.52 SMW-1 03/14/16 863.15 14.66 NP 0.00 848.49 SMW-2 03/15/16 849.17 10.77 NP 0.00 838.40 SMW-2D 03/15/16 849.34 10.94 NP 0.00 838.40	837.62
BRW-8 03/15/16 839.33 3.35 NP 0.00 835.98 54.9 (c) BRW-9 03/15/16 840.80 3.28 NP 0.00 837.52 SMW-1 03/14/16 863.15 14.66 NP 0.00 848.49 SMW-2 03/15/16 849.17 10.77 NP 0.00 838.40 SMW-2D 03/15/16 849.34 10.94 NP 0.00 838.40	834.38
BRW-9 03/15/16 840.80 3.28 NP 0.00 837.52 SMW-1 03/14/16 863.15 14.66 NP 0.00 848.49 SMW-2 03/15/16 849.17 10.77 NP 0.00 838.40 SMW-2D 03/15/16 849.34 10.94 NP 0.00 838.40	835.96
SMW-1 03/14/16 863.15 14.66 NP 0.00 848.49 SMW-2 03/15/16 849.17 10.77 NP 0.00 838.40 SMW-2D 03/15/16 849.34 10.94 NP 0.00 838.40	835.98
SMW-2 03/15/16 849.17 10.77 NP 0.00 838.40 SMW-2D 03/15/16 849.34 10.94 NP 0.00 838.40	837.52
SMW-2D 03/15/16 849.34 10.94 NP 0.00 838.40	848.49 838.40
	838.40
SMW-3 03/15/16 849.42 11.01 NP 0.00 838.41	838.41
SMW-4 03/15/16 851.70 10.35 NP 0.00 841.35	841.35
SMW-4D 03/15/16 851.11 9.76 NP 0.00 841.35	841.35
SMW-5 03/14/16 854.69 13.58 NP 0.00 841.11	841.11
SMW-5D 03/14/16 854.61 13.48 NP 0.00 841.13	841.13
SMW-6 03/14/16 854.48 14.08 NP 0.00 840.40	840.40
SMW-7 03/14/16 857.78 13.60 NP 0.00 844.18	844.18
SMW-8 03/14/16 858.70 10.07 NP 0.00 848.63	848.63
SMW-9 03/14/16 853.27 13.33 NP 0.00 839.94	839.94
SMW-9D 03/14/16 853.47 13.55 NP 0.00 839.92 SMW/ 40 02/14/16 852.71 14.00 ND 0.00 844.72	839.92
SMW-10 03/14/16 853.71 11.99 NP 0.00 841.72 SMW/ 10D 02/14/16 952.72 11.00 NP 0.00 841.82	841.72
SMW-10D 03/14/16 853.72 11.90 NP 0.00 841.82 SMW-11 03/14/16 853.13 11.72 NP 0.00 841.41	841.82
SMIV-11 03/14/16 853.13 11.72 NP 0.00 841.41 SMW-11D 03/14/16 852.92 11.59 NP 0.00 841.33	8/1 /1
SMW-11D 03/14/16 852.92 11.39 NP 0.00 641.33 SMW-12 03/14/16 855.02 11.64 NP 0.00 843.38	841.41
SMW-12D 03/14/16 855.04 11.49 NP 0.00 843.55	841.33
SMW-13 03/15/16 854.05 13.82 NP 0.00 840.23	841.33 843.38
SMW-13D 03/15/16 854.29 14.06 NP 0.00 840.23	841.33

Table 2A

Groundwater Elevations and LNAPL Thickness Measurements March 2016 Wynnewood Refining Company, LLC Wynnewood, Oklahoma (a)

			-		.,			Corrected
		тос	Depth to	Depth to	LNAPL	Water Table		Water Table
Well	Measurement	Elevation	Water	LNAPL	Thickness	Elevation	API	Elevation
Number	Date	(ft-AMSL)	(ft-TOC)	(ft-TOC)	(ft)	(ft-AMSL)	Gravity	(ft-AMSL) (b)
SMW-14	03/14/16	854.70	13.41	NP	0.00	841.29		841.29
SMW-14D	03/14/16	854.71	13.45	NP	0.00	841.26		841.26
SMW-18	03/14/16	863.63	14.68	NP	0.00	848.95		848.95
SMW-19	03/14/16	847.91	10.27	NP	0.00	837.64		837.64
SMW-21	03/14/16	852.09	11.56	NP	0.00	840.53		840.53
SMW-21D	03/14/16	851.99	11.61	NP	0.00	840.38		840.38
SMW-22D	03/14/16	855.07	13.16	NP	0.00	841.91		841.91
SMW-23	03/15/16	844.61	7.07	NP	0.00	837.54		837.54
SMW-24	03/15/16	850.11	8.48	NP	0.00	841.63		841.63
SMW-25	03/15/16	848.63	7.75	NP	0.00	840.88		840.88
SBR-1 LMW-1	03/14/16 03/15/16	847.35 854.46	9.75 10.56	NP 10.43	0.00 0.13	837.60 843.90	34.2 (c)	837.60 844.01
LMW-2-0	03/15/16	851.67	8.82	10.43 NP	0.13	842.85	34.2 (0)	842.85
LMW-3-0	03/15/16	849.87	7.33	NP	0.00	842.85		842.54
LMW-4-0	03/15/16	850.51	7.94	NP	0.00	842.57		842.57
LMW-5-0	03/15/16	850.37	7.31	NP	0.00	843.06	40.8 (c)	843.06
LMW-6-0	03/14/16	853.55	9.45	NP	0.00	844.10	10.0 (0)	844.10
LMW-11	03/15/16	852.90	9.18	NP	0.00	843.72	34.2 (c)	843.72
LMW-13	03/15/16	854.19	10.72	9.92	0.80	843.47	37.4	844.14
LMW-14	03/14/16	853.66	9.72	NP	0.00	843.94		843.94
LRW-1-0	03/15/16	849.60	7.22	NP	0.00	842.38		842.38
LRW-2-0	03/14/16	853.44	9.25	NP	0.00	844.19		844.19
LRW-3	03/15/16	855.05	24.32	NP	0.00	830.73		830.73
LRW-4	03/15/16	853.70	9.28	NP	0.00	844.42	34.2 (c)	844.42
UMW-1	03/10/16	905.97	25.15	NP	0.00	880.82		880.82
UMW-3	03/15/16	853.00	8.75	NP	0.00	844.25		844.25
UMW-4	03/15/16	868.78	11.37	NP	0.00	857.41		857.41
UMW-5	03/15/16	868.40	10.67	NP	0.00	857.73		857.73
UMW-6	03/15/16	882.79	21.28	NP	0.00	861.51		861.51
UMW-7	03/15/16	861.65	10.30	NP	0.00	851.35	40.0	851.35
OMW-3	03/14/16	857.83	18.21	10.68	7.53	839.62	40.8	845.81
OMW-4 OMW-5	03/14/16	857.47 855.96	17.71 12.08	11.70 NP	6.01 0.00	839.76	33.1	844.92 843.88
OMW-6	03/14/16 03/14/16	857.70	12.08	NP	0.00	843.88 843.61		843.61
ORW-2	03/14/16	855.42	19.64	9.65	9.99	835.78	34.2	844.31
ORW-3	03/14/16	856.06	19.63	10.31	9.32	836.43	35.5	844.33
ORW-4	03/14/16	856.74	12.10	NP	0.00	844.64	00.0	844.64
NRW-1	03/15/16	875.10	21.18	NP	0.00	853.92		853.92
NRW-2	03/15/16	874.26	16.45	NP	0.00	857.81		857.81
NRW-3	03/15/16	873.60	20.11	NP	0.00	853.49	49.5 (c)	853.49
NRW-4	03/15/16	875.69	20.54	20.50	0.04	855.15	49.5 (c)	855.18
NRW-5	03/15/16	873.51	21.58	NP	0.00	851.93		851.93
NRW-6	03/15/16	862.20	30.49	30.48	0.01	831.71	32.1	831.72
NRW-7	03/15/16	861.25	16.63	NP	0.00	844.62	32.1	844.62
NMW-2	03/10/16	879.98	20.34	18.44	1.90	859.64	48.2	861.14
NMW-3	03/10/16	877.28	18.44	15.98	2.46	858.84	43.5	860.83
NMW-4	03/10/16	878.72	19.44	17.44	2.00	859.28		861.43
NMW-5	03/10/16	878.42	18.53	NP	0.00	859.89	40.0	859.89
NMW-6	03/10/16	881.72	23.46	20.22	3.24	858.26	40.3	861.07
NMW-7	03/14/16	873.20	13.82	13.76	0.06	859.38	32.1 (c)	859.43
NMW-8 NMW-9	03/14/16 03/10/16	876.45	16.29	NP	0.00 3.84	860.16 857.53	64.2	860.16 860.31
NMW-10	03/10/16	877.07 877.59	19.54 19.99	15.70 16.05	3.84	857.53 857.60	64.3 70.9	860.31
NMW-10	03/10/16	882.64	22.23	20.64	3.94 1.59	857.60	57.0	861.60
	03/10/10	002.04	22.23	20.04	1.59	000.41	57.0	001.00

Table 2A

Groundwater Elevations and LNAPL Thickness Measurements March 2016 Wynnewood Refining Company, LLC Wynnewood, Oklahoma (a)

Well Number	Measurement Date	TOC Elevation (ft-AMSL)	Depth to Water (ft-TOC)	Depth to LNAPL (ft-TOC)	LNAPL Thickness (ft)	Water Table Elevation (ft-AMSL)	API Gravity	Corrected Water Table Elevation (ft-AMSL) (b)
NMW-13	03/14/16	869.23	9.59	NP	0.00	859.64		859.64
NMW-16	03/14/16	859.40	12.29	NP	0.00	847.11		847.11
NMW-17	03/15/16	872.70	13.51	NP	0.00	859.19		859.19
NMW-18	03/15/16	870.62	11.77	11.76	0.01	858.85	49.5 (c)	858.86
NMW-19	03/15/16	871.96	12.25	12.24	0.01	859.71	49.5	859.71

a\ LNAPL = light non-aqueous phase liquid.

TOC = top of casing.

ft-AMSL = feet above mean sea level.

ft-TOC = feet from top of casing.

ft = feet.

API = American Petroleum Institute.

NP = No LNAPL detected.

b\ Groundwater Elevation is corrected for the presence of LNAPL according to EPA Publication 510-R-96-001, 1996.

c\ API Gravity interpolated from nearby wells.

Table 2B

Groundwater Elevations and LNAPL Thickness Measurements June 2016 Wynnewood Refining Company, LLC Wynnewood, Oklahoma (a)

								Corrected
		тос	Depth to	Depth to	LNAPL	Water Table		Water Table
Well	Measurement	Elevation	Water	LNAPL	Thickness	Elevation	API	Elevation
Number	Date	(ft-AMSL)	(ft-TOC)	(ft-TOC)	(ft)	(ft-AMSL)	Gravity	(ft-AMSL) (b)
BMW-2	06/08/16	842.98	4.77	3.91	0.86	838.21	59.8 (c)	838.86
BMW-4	06/08/16	838.65	5.56	NP	0.00	833.09		833.09
BMW-5	06/08/16	847.03	8.44	5.58	2.86	838.59	58.5	840.72
BMW-6	06/08/16	844.97	4.34	NP NP	0.00	840.63	58.5 (c)	840.63 840.92
BMW-7 BMW-8	06/08/16 06/08/16	847.31 846.92	6.39 5.49	NP	0.00	840.92 841.43		840.92
BMW-9	06/08/16	845.03	5.47	NP	0.00	839.56		839.56
BMW-10	06/08/16	848.20	6.88	NP	0.00	841.32		841.32
BMW-11	06/08/16	847.13	6.51	NP	0.00	840.62		840.62
BMW-13	06/08/16	846.63	4.83	NP	0.00	841.80		841.80
BMW-14	06/08/16	848.85	7.44	NP	0.00	841.41		841.41
BMW-15	06/08/16	847.17	6.53	NP	0.00	840.64	58.5 (c)	840.64
BMW-16	06/08/16	846.95	6.83	NP	0.00	840.12		840.12
BMW-18	06/08/16	841.74	6.19	NP	0.00	835.55		835.55
BMW-19	06/08/16	844.34	5.68	NP	0.00	838.66		838.66
BMW-20A	06/08/16	838.51	5.74	NP	0.00	832.77		832.77
BMW-21	06/08/16	843.99	4.59	NP	0.00	839.40		839.40
BMW-22	06/08/16	843.06	3.96	NP	0.00	839.10		839.10
BMW-23 BMW-24	06/08/16 06/08/16	842.58 841.63	2.64 4.14	NP 2.49	0.00	839.94 837.49	56.8	839.94 838.73
BMW-24 BMW-25	06/08/16	842.33	5.38	2.49 NP	0.00	836.95	54.9 (c)	836.95
BMW-26	06/08/16	840.29	2.98	2.89	0.00	837.31	54.9	837.38
BMW-20	06/08/16	837.10	3.28	NP	0.00	833.82	04.0	833.82
BMW-28	06/08/16	842.07	7.67	NP	0.00	834.40		834.40
BRW-1	06/08/16	842.39	2.78	NP	0.00	839.61		839.61
BRW-2	06/08/16	841.50	2.57	NP	0.00	838.93		838.93
BRW-3	06/08/16	841.08	2.18	NP	0.00	838.90		838.90
BRW-4	06/08/16	840.44	1.67	NP	0.00	838.77		838.77
BRW-5	06/08/16	840.53	1.89	NP	0.00	838.64		838.64
BRW-6	06/08/16	837.31	0.00	NP	0.00	837.31	54.9 (c)	837.31
BRW-7	06/08/16	838.40	2.41	NP	0.00	835.99	54.9 (c)	835.99
BRW-8	06/08/16	839.33	2.93	NP	0.00	836.40	54.9 (c)	836.40
BRW-9 SMW-1	06/08/16 06/08/16	840.80 863.15	3.24 14.04	NP NP	0.00 0.00	837.56 849.11		837.56 849.11
SMW-2	06/08/16	849.17	14.04	NP	0.00	838.63		838.63
SMW-2D	06/08/16	849.34	10.71	NP	0.00	838.63		838.63
SMW-3	06/08/16	849.42	10.86	NP	0.00	838.56		838.56
SMW-4	06/08/16	851.70	9.77	NP	0.00	841.93		841.93
SMW-4D	06/08/16	851.11	9.11	NP	0.00	842.00		842.00
SMW-5	06/06/16	854.69	12.90	NP	0.00	841.79		841.79
SMW-5D	06/06/16	854.61	12.81	NP	0.00	841.80		841.80
SMW-6	06/06/16	854.48	13.58	NP	0.00	840.90		840.90
SMW-7	06/06/16	857.78	12.67	NP	0.00	845.11		845.11
SMW-8	06/08/16	858.70	9.57	NP	0.00	849.13		849.13
SMW-9	06/06/16	853.27	12.92	NP	0.00	840.35		840.35
SMW-9D SMW-10	06/06/16 06/06/16	853.47	13.14 11.91	NP NP	0.00	840.33 841.80		840.33 841.80
SMW-10 SMW-10D	06/06/16	853.71 853.72	11.08	NP NP	0.00	841.80 842.64		841.80 842.64
SMW-10D	06/06/16	853.13	11.00	NP	0.00	842.12		842.12
SMW-11D	06/06/16	852.92	10.91	NP	0.00	842.01		842.01
SMW-112	06/07/16	855.02	10.50	NP	0.00	844.52		844.52
SMW-12D	06/07/16	855.04	10.40	NP	0.00	844.64		844.64
SMW-13	06/06/16	854.05	13.36	NP	0.00	840.69		840.69
SMW-13D	06/06/16	854.29	12.99	NP	0.00	841.30		841.30

Table 2B

Groundwater Elevations and LNAPL Thickness Measurements June 2016 Wynnewood Refining Company, LLC Wynnewood, Oklahoma (a)

Well Number	Measurement Date	TOC Elevation (ft-AMSL)	Depth to Water (ft-TOC)	Depth to LNAPL (ft-TOC)	LNAPL Thickness (ft)	Water Table Elevation (ft-AMSL)	API Gravity	Corrected Water Table Elevation (ft-AMSL) (b)
SMW-14	06/06/16	854.70	12.68	NP	0.00	842.02		842.02
SMW-14D	06/06/16	854.71	12.71	NP	0.00	842.00		842.00
SMW-18	06/07/16	863.63	14.26	NP	0.00	849.37		849.37
SMW-19	06/06/16	847.91	9.90	NP	0.00	838.01		838.01
SMW-21	06/06/16	852.09	11.19	NP	0.00	840.90		840.90
SMW-21D	06/06/16	851.99	11.11	NP	0.00	840.88		840.88
SMW-22D	06/06/16	855.07	12.40	NP	0.00	842.67		842.67
SMW-23	06/07/16	844.61	6.76	NP	0.00	837.85		837.85
SMW-24	06/07/16	850.11	7.94	NP	0.00	842.17		842.17
SMW-25	06/07/16	848.63	7.45	NP	0.00	841.18		841.18
SBR-1	06/07/16	847.35	9.49	NP	0.00	837.86		837.86
LMW-1	06/07/16	854.46	9.63	9.50	0.13	844.83	34.2 (c)	844.94
LMW-2-0	06/07/16	851.67	7.39	NP	0.00	844.28		844.28
LMW-3-0	06/07/16	849.87	6.35	NP	0.00	843.52		843.52
LMW-4-0	06/07/16	850.51	7.42	NP	0.00	843.09		843.09
LMW-5-0	06/07/16	850.37	6.90	6.88	0.02	843.47	40.8 (c)	843.48
LMW-6-0	06/07/16	853.55	8.95	NP	0.00	844.60		844.60
LMW-11	06/07/16	852.90	8.11	NP	0.00	844.79	34.2 (c)	844.79
LMW-13	06/07/16	854.19	10.13	9.26	0.87	844.06	37.4	844.79
LMW-14	06/07/16	853.66	9.14	NP	0.00	844.52		844.52
LRW-1-0	06/07/16	849.60	6.61	NP	0.00	842.99		842.99
LRW-2-0	06/07/16	853.44	8.56	NP	0.00	844.88		844.88
LRW-3	06/07/16	855.05	22.90	NP	0.00	832.15		832.15
LRW-4	06/07/16	853.70	8.22	NP	0.00	845.48	34.2 (c)	845.48
UMW-1	06/06/16	905.97	24.53	NP	0.00	881.44		881.44
UMW-3	06/07/16	853.00	8.29	NP	0.00	844.71		844.71
UMW-4	06/07/16	868.78	10.86	NP	0.00	857.92		857.92
UMW-5	06/07/16	868.40	9.91	NP	0.00	858.49		858.49
UMW-6	06/07/16	882.79	20.52	NP	0.00	862.27		862.27
UMW-7	06/07/16	861.65	9.89	NP	0.00	851.76		851.76
OMW-3	06/07/16	857.83	13.23	10.88	2.35	844.60	40.8	846.53
OMW-4	06/07/16	857.47	19.25	10.71	8.54	838.22	33.1	845.56
OMW-5	06/07/16	855.96	10.86	NP	0.00	845.10		845.10
OMW-6	06/07/16	857.70	12.98	NP	0.00	844.72		844.72
ORW-2	06/07/16	855.42	19.32	8.65	10.67	836.10	34.2	845.21
ORW-3	06/07/16	856.06	19.18	8.36	10.82	836.88	35.5	846.05
ORW-4	06/07/16	856.74	11.69	NP	0.00	845.05		845.05
NRW-1	06/07/16	875.10	22.95	NP	0.00	852.15		852.15
NRW-2	06/07/16	874.26	13.55	NP	0.00	860.71		860.71
NRW-3	06/07/16	873.60	21.62	NP	0.00	851.98	49.5 (c)	851.98
NRW-4	06/08/16	875.69	22.31	22.28	0.03	853.38	49.5 (c)	853.40
NRW-5	06/06/16	873.51	31.77	NP	0.00	841.74		841.74
NRW-6	06/06/16	862.20	20.78	19.95	0.83	841.42	32.1	842.14
NRW-7	06/07/16	861.25	12.03	NP	0.00	849.22	32.1	849.22
NMW-2	06/06/16	879.98	18.92	16.73	2.19	861.06	48.2	862.78
NMW-3	06/06/16	877.28	16.70	14.58	2.12	860.58	43.5	862.29
NMW-4	06/06/16	878.72	18.49	15.65	2.84	860.23		863.29
NMW-5	06/06/16	878.42	16.60	NP	0.00	861.82	40.0	861.82
NMW-6	06/06/16	881.72	19.29	19.09	0.20	862.43	40.3	862.61
NMW-7	06/06/16	873.20	12.91	12.84	0.07	860.29	32.1 (c)	860.35
NMW-8	06/06/16	876.45	15.27	NP	0.00	861.18	04.0	861.18
NMW-9	06/06/16	877.07	17.51	14.00	3.51	859.56	64.3	862.10
NMW-10	06/06/16	877.59	18.05	14.59	3.46	859.54	70.9	861.96
NMW-12	06/06/16	882.64	20.43	18.95	1.48	862.21	57.0	863.32

Table 2B

Groundwater Elevations and LNAPL Thickness Measurements June 2016 Wynnewood Refining Company, LLC Wynnewood, Oklahoma (a)

Well Number	Measurement Date	TOC Elevation (ft-AMSL)	Depth to Water (ft-TOC)	Depth to LNAPL (ft-TOC)	LNAPL Thickness (ft)	Water Table Elevation (ft-AMSL)	API Gravity	Corrected Water Table Elevation (ft-AMSL) (b)
NMW-13	06/06/16	869.23	8.69	NP	0.00	860.54		860.54
NMW-16	06/06/16	859.40	10.50	NP	0.00	848.90		848.90
NMW-17	06/08/16	872.70	12.46	NP	0.00	860.24		860.24
NMW-18	06/08/16	870.62	10.55	NP	0.00	860.07	49.5 (c)	860.07
NMW-19	06/08/16	871.96	11.75	NP	0.00	860.21	49.5	860.21

a\ LNAPL = light non-aqueous phase liquid.

TOC = top of casing.

ft-AMSL = feet above mean sea level.

ft-TOC = feet from top of casing.

ft = feet.

API = American Petroleum Institute.

NP = No LNAPL detected.

NM = Not measured

b\ Groundwater Elevation is corrected for the presence of LNAPL according to EPA Publication 510-R-96-001, 1996.

c\ API Gravity interpolated from nearby wells.

Summary of Groundwater Analytical Results June 2016 Wynnewood Refining Company, LLC Wynnewood, Oklahoma

					Total Petroleum	-				BTEX	_	
					(Oklahoma Methods 802	· · ·	_			Method 8260B	,	X I X X X X X X X X X X
					Gasoline Range Organics	Diesel Range Organics	Benzene	Toluene	Ethylbenzene	m+p-Xylene	o-Xylene	Xylenes (Total) (a)
	Monitoring Well	Field Sample ID	Laboratory Sample ID	Sample Date	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
	BMW-4	WRCBMW-4	16061471	06/15/16	88 G	760 QC	<1.0 J	<1.0 J	<1.0 J	<1.0 J	<1.0 J	<2.0 J
	BMW-4	WRCDUP2	16061472	06/15/16	72 G	750	<1.0 J	<1.0 J	<1.0 J	<1.0 J	<1.0 J	<2.0 J
	BMW-19	WRCBMW-19	16061469	06/15/16	<20	<100 QC	<1.0 J	<1.0 J	<1.0 J	<1.0 J	<1.0 J	<2.0 J
	BMW-20A	WRCBMW-20A	16061474	06/16/16	137 G	300	<1.0 J	<1.0 J	<1.0 J	<1.0 J	<1.0 J	<2.0 J
S	BMW-25	WRCBMW-25	16061473	06/15/16	2,170	2,100	370.	5.2 J	120 QC	50.0 QC	10 J QC	60. QC
Samples	BMW-26	WRCBMW-26	16061475	06/16/16	17,100	3,000	3,180	1,410	590	2,420	780	3,200
m	BMW-27	WRCBMW-27	16061479	06/16/16	<20	960	0.18 J	<1.0 J	<1.0 J	<1.0 J	<1.0 J	<2.0 J
	BMW-28	WRCBMW-28	16061478	06/16/16	<20	480	0.09 J	0.42 J	<1.0 J	0.21 J	0.1 J	0.31 J
iter	NMW-6	WRCNMW-6	16061463	06/14/16	4,960	190,000 QC	16.7	19.8	250.	406	134	540
Groundwater	NMW-12	WRCNMW-12	16061464	06/14/16	37,000	9,000 QC	8,540	4,800	1,000	4,140	1,500	5,640
pu	SMW-1	WRCSMW-1	16061459	06/13/16	<20	<100	<1.0 J	<1.0 J	<1.0 J	<1.0 J	<1.0 J	<2.0 J
no	SMW-2	WRCSMW-2	16061458	06/13/16	<20	<100	<1.0 J	<1.0 J	<1.0 J	<1.0 J	<1.0 J	<2.0 J
	SMW-18	WRCSMW-18	16061477	06/16/16	<20	210	0.08 J	0.22 J	<1.0 J	0.13 J	<1.0 J	<2.0 J
Recovery	SMW-23	WRCSMW-23	16061470	06/15/16	23	930 QC	<1.0 J	<1.0 J	<1.0 J	<1.0 J	<1.0 J	<2.0 J
ð	SMW-24	WRCSMW-24	16061476	06/16/16	<20	<100	<1.0 J	<1.0 J	<1.0 J	<1.0 J	<1.0 J	<2.0 J
sec	SMW-25	WRCSMW-25	16061468	06/15/16	<20	<100 QC	<1.0 J	<1.0 J	<1.0 J	<1.0 J	<1.0 J	<2.0 J
L L	UMW-1	WRCUMW-1	16061462	06/14/16	<20	1,200	<1.0 J	<1.0 J	<1.0 J	<1.0 J	0.2 J	<1.2 J
Hydrocarbon	UMW-3	WRCUMW-3	16061461	06/13/16	<20	<100	<1.0 J	<1.0 J	<1.0 J	<1.0 J	<1.0 J	<2.0 J
car	UMW-4	WRCUMW-4	16061455	06/13/16	2,860	1,600	812	18.4	2 J	42.7	10.	52.7
ě	UMW-4	WRCDUP1	16061454	06/13/16	2,940	1,600 QC	903	20.6	2 J	47.6	11	58.6
łyd	UMW-5	WRCUMW-5	16061456	06/13/16	1,810	810	275	7.9 J	5 J	12.0	2 J	14.0
-	UMW-6	WRCUMW-6	16061457	06/13/16	19,300	4,900	5,490	1,670	660	1,600	550	2,150
	UMW-7	WRCUMW-7	16061453	06/13/16	<20	<100	<1.0 J	<1.0 J	<1.0 J	<1.0 J	<1.0 J	<2.0 J
	McLaughlin Well	WRC McLaughlin Well	16061467	06/14/16	<20	<100 QC	<1.0 J	<1.0 J	<1.0 J	<1.0 J	<1.0 J	<2.0 J
	Martin Pond	WRC-Martin Pond	16061465	06/14/16	127	690 QC	9.88	0.42 J	2.1	7.87	2.3	10.17
	S Martin Well	WRC-S Martin Well	16061466	06/14/16	<20	800 QC	<1.0 J	<1.0 J	<1.0 J	<1.0 J	<1.0 J	<2.0 J
es			10001400	00/40/40	100	450		0.00	-10	0.00 1	-11.0	10.0
Sd	Equipment Blank	WRCEB	16061460	06/13/16	<20	150	<1.0 J	0.38 J	<1.0 J	0.06 J	<1.0 J	<2.0 J
QC Samples	Trip Blank	Trip Blank	16061452	06/13/16	<20	<100	<1.0 J	<1.0 J	<1.0 J	<1.0 J	<1.0 J	<2.0 J
	EPA Primary Drinking Water Regulations				NE	NE	5	1,000	700	NE	NE	10,000
Screening Criteria	EPA Regional Screening Levels (Tap Water)				NE	NE	0.46	110	1.5	19	19	19
Scré		ODEQ Clear	nup Levels	1,000	1,000	NE	NE	NE	NE	NE	NE	

Bold values indicate a detection above the reporting limit.

Shading descriptors:

Detected concentration exceeds the EPA Primary Drinking Water Regulations Maximum Contaminant Level, updated May 2009.

Detected concentration exceeds the EPA Regional Screening Level for Tap Water, updated November 2015.

Detected concentration exceeds ODEQ cleanup levels (2004).

BTEX = benzene, toluene, ethylbenzene, and xylenes.

EPA = United States Environmental Protection Agency.

µg/I = micrograms per liter.

NE = not established.

ODEQ = Oklahoma Department of Environmental Quality.

a\ The value of total xylenes is calculated as the sum of m+p-xylene and o-xylene.

b\ Lab data qualifiers:

G = The reported concentration includes a significant amount of individual compound(s) at concentrations not typically found in petroleum hydrocarbon patterns.

QC = Quality control data qualifiers were noted. See the laboratory quality control report.

J = The concentration or not detected value is below the limit of quantification and is considered an estimate.

LNAPL and Groundwater Recovery Summary Wynnewood Refining Company, LLC Wynnewood, Oklahoma

					REC	OVERY SYSTE	М					
			Hydrocarbon y Systems				Current Recov	ery Systems (a)				
	Light Oils, Taı Laboratory a Building, Sou	nd Control	Process Area		Product Loading Facility		South Process Area		North Process Area		Total LNAPL Recovery	
	Groundwater (gallons)	LNAPL (gallons)	Groundwater (gallons)	LNAPL (gallons) (d)	Groundwater (gallons)	LNAPL (b,c) (gallons)	Groundwater (gallons)	LNAPL (gallons) (d)	Groundwater (gallons)	LNAPL (gallons) (e)	Groundwater (gallons)	LNAPL (barrels)
Fotal for Reporting Period	0	0	0	0	1,156,107	78	712,417	46	3,181,435	11,798	11,922	284
Cumulative	•	Ū	v	v	1,130,107	70	712,417	40	3,101,433	11,750	11,522	204
Fotal	856,068	227,166	78,091,001	36,120	48,909,393	13,866	1,816,567	975	17,116,232	60,204	326,409	7,772
Jun-16					151,595	13.5	111,394	9.9	561,717	2,744	2,767	65.9
May-16					193,994	17.3	113,297	10.1	549,338	2,684	2,711	64.5
Apr-16					205,884	18.4	141,077	12.6	533,060	2,604	2,635	62.7
Mar-16					218,804	19.5	147,348	13.2	521,528	2,548	2,580	61.4
Feb-16					206,264	4.7	110,235	0.00	475,770	571	576	13.7
Jan-16					179,566	4.1	89,066	0.00	540,023	648	652	15.5
Dec-15					167,116	3.8	89,668	0.00	496,423	596	600	14.3
Nov-15					242,341	5.5	87,902	0.00	386,795	464	470	11.2
Oct-15					260,643	6.0	91,925	0.00	270,912	325	331	7.9
Sep-15					254,980	22.7	90,986	0.00	225,364	1,262	1,285	30.6
Aug-15 Jul-15					265,669	23.6	102,142	0.00	631,617	3,537	3,561	84.8
				-	263,891	23.5	117,148	0.00	662,112	3,708	3,731	88.8
Jun-15					241,790	21.5 23.7	95,695	0.00	588,625	3,296	3,318	79.0
May-15 Apr-15					266,234 285,129	23.7 998.0	64,114 35,689	0.00 89.22	517,817 409,675	2,900 2,294	2,923 3,381	69.6 80.5
Mar-15					205,129	1,041.2	217	0.54	413,812	2,294	3,359	80.0
Feb-15					307,192	1,075.2	11,346	28.36	357,591	2,003	3,106	74.0
Jan-15					419,354	1,467.7	7,444	18.61	935,502	5,239	6,725	160.1
Dec-14					512,214	1,792.7	4	0.01	549,960	1,375	3,168	75.4
Nov-14					437,052	1,529.7	0	0.00	905,329	2,263	3,793	90.3
Oct-14					342,855	1,200.0	0	0.00	379,605	949	2,149	51.2
Sep-14					241,480	845.2	0	0.00	350,873	877	1,722	41.0
Aug-14					28,769	100.7	4	0.01	402,757	1,007	1,108	26.4
Jul-14					548,637	1,920.2	611	1.53	467,358	1,168	3,090	73.6
Jun-14					500,069	300.0	0	0	342,549	856	1,156	27.5
May-14					475,552	285.3	0	0	179,537	449	734	17.5
Apr-14					327,813	196.7	0	0	464,135	1,160	1,357	32.3
Mar-14					491,086	294.7	0	0	262,958	657	952	22.7
Feb-14					406,846	244.1	0	0	90,701	227	471	11.2
Jan-14					341,086	204.7	0	0	117,903	295	499	11.9

LNAPL and Groundwater Recovery Summary Wynnewood Refining Company, LLC Wynnewood, Oklahoma

					REC	OVERY SYSTE	М					
			Hydrocarbon y Systems				Current Recove	ery Systems (a)				
	Light Oils, Ta Laboratory a Building, Sou	and Control	Process Area		Product Loading Facility		South Pro	ocess Area	North Pro	cess Area	Total LNAP	L Recovery
	Groundwater (gallons)	LNAPL (gallons)	Groundwater (gallons)	LNAPL (gallons) (d)	Groundwater (gallons)	LNAPL (b,c) (gallons)	Groundwater (gallons)	LNAPL (gallons) (d)	Groundwater (gallons)	LNAPL (gallons) (e)	Groundwater (gallons)	LNAPL (barrels)
Dec-13					571,308	1.4	0	0.00	256,970	642.42	644	15.3
Nov-13					233,904	0.6	0	0.00	292,356	730.89	731	17.4
Oct-13					469,472	1.2	0	0.00	167,349	418.37	420	10.0
Sep-13					216,082	0.5	0	0.00	146,715	366.79	367	8.7
Aug-13					100,091	0.3	143	0.36	41,740	104.35	105	2.5
Jul-13					549,277	1.4	1,519	3.80	368,847	922.12	927	22.1
Jun-13					369,742	0.9	2,009	5	163,921	410	416	9.9
May-13					365,400	0.9	2,900	25	145,492	364	390	9.3
Apr-13					510,037	1.3	3,015	8	165,518	414	423	10.1
Mar-13					513,349	1.3	3,275	8	196,979	492	502	12.0
Feb-13					439,347	1.1	0	0	11,538	29	30	0.7
Jan-13					369,060	0.9	0	0	18,936	47	48	1.1
Dec-12					454,800	1.1	46,080	115	24,567	61	178	4.2
Nov-12					281,191	0.7	50,400	126	443,915	1,110	1,236	29.4
Oct-12					144,000	0.4	0	0	188,008	470	470	11.2
Sep-12					99,020	0.2	0	0	171,968	430	430	10.2
Aug-12 Jul-12					280,792 372,723	0.7 0.9	0 12,162	0 30	66,868 188,045	167 470	168 501	<u>4.0</u> 11.9
					,							
Jun-12					550,117	1.4	20,127	50	88,018	220 220	272 272	6.5
May-12 Apr-12					550,117 567,172	1.4 1.4	20,127 110,124	50 275	88,018 158,343	671.2	948	6.5 22.6
Mar-12					507,079	1.4	26,999	67	88,696	289.2	358	8.5
Feb-12					587,344	1.5	10,378	26	42,079	131.1	159	3.8
Jan-12					410,131	1.0	0	0	42,079	0	139	0.0
Dec-11	0	0	0	0	680,108	1.7	<u> </u>				2	0.0
Nov-11	75	0	0	0	519,765	1.3					1	0.0
Oct-11	50	0	2	0.0	458,692	1.1					1	0.0
Sep-11		0	94	0.2	542,969	1.4					2	0.0
Aug-11		0	0	0.0	417,039	1.0					1	0.0
Jul-11		0	7	0.0	442,000	1.1					1	0.0
Jun-11	-	0	12	0.0	598,999	1.5					2	0.0
May-11		0	3,126	7.8	605,998	1.5					9	0.2
Apr-11	0	0	4	0.0	476,999	1.2					1	0.0
Mar-11	0	0	0	0.0	675,998	1.7					2	0.0
Feb-11	0	0	80	0.2	608,998	1.5					2	0.0
Jan-11		162	0	0.0	485,999	1.2					163	3.9

LNAPL and Groundwater Recovery Summary Wynnewood Refining Company, LLC Wynnewood, Oklahoma

					REC	OVERY SYSTE	M					
			lydrocarbon y Systems				Current Recove	ery Systems (a)				
	Light Oils, Ta Laboratory a Building, Sou	and Control	Process Area		Product Loading Facility		South Pro	cess Area	North Pro	cess Area	Total LNAPL Recovery	
	Groundwater (gallons)	LNAPL (gallons)	Groundwater (gallons)	LNAPL (gallons) (d)	Groundwater (gallons)	LNAPL (b,c) (gallons)	Groundwater (gallons)	LNAPL (gallons) (d)	Groundwater (gallons)	LNAPL (gallons) (e)	Groundwater (gallons)	LNAPL (barrels)
Dec-10	0	0		0.0	30,000	0.1					0	0.0
Nov-10	0	0		0.0	42,000	0.1					0	0.0
Oct-10	0	0		0.0	127,000	0.3					0	0.0
Sep-10	0	0	49,621	124.1	91,000	0.2					124	3.0
Aug-10	0	0	2,722	6.8	105,000	0.3					7	0.2
Jul-10	0	0		0.0	91,000	0.2					0	0.0
Jun-10	0	0	37,219	93.0	17,000	0.0					93	2.2
May-10	0	0	17,850	44.6	0	0.0					45	1.1
Apr-10	0	0	21,427	53.6	84,000	0.2					54	1.3
Mar-10	0	138	46,988	117.5	77,000	0.2					256	6.1
Feb-10	0	552	138,783	347.0	16,500	0.0					899	21.4
Jan-10	0	162	72,029	180.1	0	0.0					342	8.1
Dec-09	0	116	37,712	94.3	65,000	0.2					210	5.0
Nov-09	0	0	81,167	202.9	65,000	0.2					203	4.8
Oct-09	0	0	43,658	109.1	65,000	0.2					109	2.6
Sep-09	0	64	36,471	91.2	65,000	0.2					155	3.7
Aug-09	0	70	53,446	133.6	1,000	0.0					204	4.8
Jul-09	0	120	65,252	163.1	12,000	0.0					283	6.7
Jun-09	838	290	332,871	832	1,000	0.1					1,122	26.7
May-09	630	584	54,831	137	0	0.0					721	17.2
Apr-09	1,193	0	30,790	77	0	0.0					77	1.8
Mar-09	39	0	771	2	0	0.0					2	0.0
Feb-09	0	0	17 37,718	0 94	1,000 1,000	0.0					0 94	0.0
Jan-09	÷	0										
Dec-08		445	293,440	735	300,000	1.0					1,181	28.1
Jun-08	490	345	713,348	1784	300,000	1.0					2,130	50.7
Dec-07 Jun-07		832	690,337	1726 1644	104,160 300,400	0.0					2,558	60.9
Dec-06		61 51	657,428 423,989	1044	343,480	1.0 1.0					1,706 1,112	40.6 26.5
Jun-06		100	220,403	551	525,760	1.0					652	26.5
Dec-05	1 = -	129	389,400	974	540,120	1.0					1,104	26.3
Jun-05		547	1,058,428	2646	663,200	2.0					3,195	76.1
Dec-04		160	440,039	1100	495,879	1.0					1,261	30.0
Jun-04		45	414,991	1038	735,440	2.0					1,085	25.8
Dec-03		147	656,287	1641	970,880	2.0					1,790	42.6
Jun-03		367	578,917	4	760,640	2.0					373	8.9
Dec-02	-) -	375	671,558	2	809,599	2.0					379	9.0
Jun-02		875	611,622	2	389,160	1.0					878	20.9
Dec-01		267	718,024	3	677,120	2.0					272	6.5
Jun-01		400	1,069,106	286	137,080	0.0					686	16.3
Dec-00		150	830,817	53	280,600	1.0					204	4.9
Jun-00		85	2,361,684	8	398,360	1.0					94	2.2

LNAPL and Groundwater Recovery Summary Wynnewood Refining Company, LLC Wynnewood, Oklahoma

					REC	OVERY SYSTE	Μ					
			Hydrocarbon y Systems				Current Recove	ery Systems (a)				
	Light Oils, Tank 150 Area, Laboratory and Control Building, South Alky Unit		Process Area		Product Loading Facility		South Process Area		North Process Area		Total LNAPL Recovery	
	Groundwater (gallons)	LNAPL (gallons)	Groundwater (gallons)	LNAPL (gallons) (d)	Groundwater (gallons)	LNAPL (b,c) (gallons)	Groundwater (gallons)	LNAPL (gallons) (d)	Groundwater (gallons)	LNAPL (gallons) (e)	Groundwater (gallons)	LNAPL (barrels)
Dec-99	35,130	369	3,944,994	267	774,638	8.0					644	15.3
Jun-99	17,880	1,347	4,012,484	527	745,198	2.0					1,876	44.7
Dec-98	20,245	212	2,980,852	165	420,440	1.0					378	9.0
Jun-98	29,127	4,117	4,662,673	2343	833,516	3.0					6,463	153.9
Dec-97	125,966	2,872	10,507,289	1582	1,102,157	3.0					4,457	106.1
Jun-97	52,980	729	0	0	374,439	7.3					736	17.5
Dec-96	7,285	3,150	5,077,897	445	95,680	0.1					3,595	85.6
Jun-96	20,172	1,139	3,760,060	49	340,390	10.2					1,198	28.5
Dec-95	38,041	4,107	4,950,467	2939	645,840	1.7					7,048	167.8
Jun-95	22,675	8,661	3,864,183	755	1,086,520	2.6					9,419	224.3
Dec-94	11,175	5,974	4,481,990	3632	897,920	4.9					9,611	228.8
Jun-94	35,319	9,465	4,577,841	3001	1,089,280	13.7					12,480	297.1
Dec-93	14,012	23,212	4,429,642	1006	685,400	6.4					24,224	576.8
Jun-93	25,965	7,717	5,988,809	1165	1,382,757	15.1					8,897	211.8
Dec-92	175,648	146,456	887,335	76	3,640,347	18.0					146,550	3489.3
TOTAL	856,068	227,166	78,091,001	36,120	48,909,393	13,866	1,816,567	975	17,116,232	60,204	326,409	7,772

a\ Beginning January 2013, monthly recovery system data was interpolated from field measurements collected during the reporting period.

b\ LNAPL = Light non-aqueous phase liquid.

c\ From January 2000 to December 2013, hydrocarbon recovery for the product loading facility (PLF) was estimated using a factor of 0.00025% LNAPL per gallon of water recovered. Beginning in January 2014, WRC has estimated a recovery factor based on concurrent field testing using standard methodology. The estimated recovery factors and relevant time periods are as follows: January 2014-July 2014: 0.06% LNAPL per gallon of water recovered.

July 2014 - April 2015: 0.35% LNAPL per gallon of water recovered.

May 2015 - September 2015: 0.0089% LNAPL per gallon of water recovered.

October 2015 - February 2016: 0.00229% LNAPL per gallon of water recovered.

March 2016 - June 2016: 0.00893% LNAPL per gallon of water recovered.

d\ Beginning in July 2003, hydrocarbon recovery for the south process area (SPA) was estimated using a factor of 0.25% LNAPL per gallon of water recovered. Beginning in January 2014, WRC has estimated a recovery factor based on concurrent field testing using standard methodology. The estimated recovery factors and relevant time periods are as follows: January 2014 - April 2015: 0.25% LNAPL per gallon of water recovered.

May 2015 - February 2016: no recovery based on field testing.

March 2016 - June 2016: 0.0089% LNAPL per gallon of water recovered.

e\ Beginning in July 2003, hydrocarbon recovery for the north process area (NPA) was estimated using a factor of 0.25% LNAPL per gallon of water recovered. Beginning in January 2014, WRC has estimated a recovery factor based on concurrent field testing using standard methodology. The estimated recovery factors and relevant time periods are as follows:

January 2014 - December 2014: 0.25% LNAPL per gallon of water recovered.

January 2015 - September 2015 : 0.56% LNAPL per gallon of water recovered.

October 2015 - February 2016: 0.12% LNAPL per gallon of water recovered.

March 2016 - June 2016: 0.4885% LNAPL per gallon of water recovered.

Appendix 1.4 – Landowner Well Usage Forms

Private Water Supply Well Questionnaire

The Oklahoma Department of Environmental Quality (ODEQ) has requested Wynnewood Refining Company, LLC conduct a survey of private water supply wells. The purpose of this survey is to determine whether or not the well is used for human consumption. We would greatly appreciate if you would take a minute to provide the answers to the following questions.

Name of well owner:

LeRoy W. MchAnoislin

Address of property where the well is located:

- Wynnewood OK. 73098 Yes____ No Ocelum 7641 FROMAN KANE

This well is NOT used for human consumption:

Wheim Mr Lagher

Private Water Supply Well Questionnaire

The Oklahoma Department of Environmental Quality (ODEQ) has requested Wynnewood Refining Company, LLC conduct a survey of private water supply wells. The purpose of this survey is to determine whether or not the well is used for human consumption. We would greatly appreciate if you would take a minute to provide the answers to the following questions.

Name of well owner:

R Marte Corrata Martin

Address of property where the well is located:

<u>X 73098</u> Hwy MA Wynnewood 37885

This well is NOT used for human consumption:

Yes X No___

24-16

Appendix 2.2 – Well Gauging Logs (March and June 2016)

Well Grauging - March 2016

Well Number	Measurement Date	TOC Elevation (ft-AMSL) (a)	Depth to Water (ft-TOC)	Depth to Free Product (ft-TOC)	Total Depth (ft-TOC)	Notes
BMW-2	3-15	844.23	4.98	4.10		
CALLER A	<u> </u>	842.00				· · · · · · · · · · · · · · · · · · ·
BMW-4	3-15	838.65	5.01			
BMW-5	3-15	844.28	8.43	6.9		
BMW-6	3-15	846.05	4.58			
BMW-7	3-15	847.31	6.65			
BMW-8	3-15	848.21	5,78			
BMW-9	3-15	844.02	5.68			
BMW-10	3-15	. 848.20	7.11		·······	
BMW-11	3-15	848.59	6.65			
BMW-12		842.87				
BMW-13	3-15	846.63	5.21			
BMW-14	3-15	848.85	7.56			
BMW-15	3-15	847.17	6.42			
BMW-16	3-15	846.95	6.94			
BRANDENT		842.66				
BMW-18	3-15	842.97	6.75			
BMW-19	3-15	844.34	5.59			
BMW-20A	3-15	838.51	5.19			
BMW-21	3-15	843.99	4.79			
BMW-22	3-15	843.06	4.23			•
	3-15	842.58	3.97			
	3-15	841.63	4.55	2.86		
	3-15	843.75	5.28			
BMW-26	3-15	841.63	2.55	2:76		
BMW-27	3-15	837.10	3.03			
BMW-28	3-15	842.07	1.39			
BRW-1	3-15	842.39	2.26			
BRW-2	3-15	841.50	201			
BRW-3	3-15	841.08	250			
BRW-4	3-15	840.44	263			
BRW-5	3-15	840.53	2.91			
BRW-6	3-15	837.31	2.93			
BRW-7	3-15	838.40	2.44			
BRW-8	3-15	839.33	105 3.35			
BRW-9	3-15	840.80	3.28			
SMW-1	3-14	863.15	14.66			
SMW-2	3-15	849.17	10.77			
SMW-2D	3-15	849.34	10.94			
SMW-3	3-15	849.42	11.01			
	3-15	851.70	10.35			
	3-15	851.11	9.76			
	3-14	854.69	13.55			
and the second se	3-14	854.61	13.48			
	3-14	854.48	14.08			
	3-14	857.78	13.6			
SMW-8 SMW-9	3-14	858.70 853.27	10.07			
	3-14		13.33			
	3-14	853.47 853.71	13.55			
SMW-10D		853.71	11.99			
SMW-10D	3-14	853.12	11.90	· · · · · · · · · · · · · · · · · · ·		
SMW-11D	2 4	852.92	11.72			
	3-14	855.02				
SMW-12D	2-14	855.04	11.64			
	3-15	854.05	13.22			
SMW-13D	2~15	854.29	14.06			
	3~15	854.70	14.00			
SMW-14D	2.14	854.71	13.45			
SMW-18	3-14	863.63	14.68			
-	3-14	847.91	10.27			
SMW-21	3-14	852.09	11.56			
	12-14	002.03	111.34	I		

Later

1

)

SMW-21D	2.4	054.00			
		851.99	11.61		
SMW-22D	3-14	855.07	13.14		
SMW-23	3-15	844.61	7.07		
LMW-1	3-15	854.46	10.56	10.43	
C C C C C C C C C C C C C C C C C C C		852.98			
LMW-2-0	3-15	851.67	8,82		
LOBER LO		851.91			
LMW-3-0	3-15	849.87	7.33		
DURCA		851.50			
LMW-4-0	3-15	850.51	7,94		
400000		852.61			
LMW-5-0	3-15	850.37	7.31		
SECTOR DE		851.46			
LMW-6-0	3-14	851.48	9.45		
LMW-11	3-15	852.90	9.18		
LMW-13	3-15	854.19	10:72	9.92	
LMW-14	3-14	853.66	9,72		
BARA		849.87			
	3-15	849.60	7.22		
SERVICE CO		853.88			
LRW-2-0	3-14	853.44	9.25		
LRW-3	3-15	855.05	24.32		
LRW-4	3-15	853.70	9.28		
UMW-1	3-10	905.97	25.15	+	
UMW-3	3-15	853.00			
UMW-4	3-15	868.78	8.75		
UMW-5	3-15	868.40			
UMW-6	3-15	882.79	10.67		
OMW-3	3-12	857.83	21.28	1000	
OMW-4	3-14	857.47	18.21	10.68	
OMW-5			17.71	11.70	
OMW-6	3-14 3-14	855.96	12.08		
ORW-2	3-14	857.70	14.09		
ORW-2 ORW-3		855.42	19.64	9,65	
ORW-3 ORW-4	3-14	856.06	19.63	16.31	
	3-14	856.74	12.10		
NRW-1 NRW-2	3-15	875.10	21.18		
	3-15	874.26	16-45		
NRW-3	3-15	873.60	20.11		
NRW-4	3-15	875.69	20.54	20.50	
NRW-5	3-15	873.51	21.53		Product likely
NRW-6	3-15	862.20	30.49		-
NRW-7	3-15	861.25	16.63		
MANNER		882.96			
NMW-2	3-10	879.98	20.34	18.44	
NMW-3	3-10	877.28	18.44	15.98	
NMW-4	3-10	878.72	19.44	17.44	
NMW-5	3-10	878.42	18.53		
NMW-6	3-10	881.72	23.46	20.22	
	3-14	873.20	13.82	13.76	···
NMW-8	3-14	876.45	16-29		
NMW-9	3-10	877.07	19,54	15:70	
	3-10	877.59	19.99	16.05	
NMW-12	3-10	882.64	72.23	20.64	
	3-14	869.23	9.59		
NMW-16	3-14	859.40	12.29		
NMW-17	3-15	872.70	13.51		
	3-15	870.62	11.77	11.76	
	3-15	871.96	12.25	12,24	
CO CO		853.94	16.00		
GALLE		853.95			
CCC .		853.45	+		
CEED	· · · · · · · · · · · · · · · · · · ·	853.42			
100000	- 3-15 - 81	853 57	-		
XAMAGR					

- 416-14

 $\frac{853.57}{5000}$ $\frac{5000}{25} = \frac{3-15}{3-15} = \frac{3.48}{7.75} + \frac{11}{20}$ $\frac{5000}{5000} = \frac{3-15}{3-14} = 9.75 + \frac{10}{20}$

Groundwater Elevations and LNAPL Thickness Measurements

Wynnewood Refining Company, LLC Wynnewood, Oklahoma

Well Number	Measurement Date	TOC Elevation (ft-AMSL) (a)	Depth to Water (ft-TOC)	Depth to Free Product (ft-TOC)	e Product Thickness (ft)	Notes
BMW-2	6-8-16	842.98	4.77	3.91		
BMW-4	6-8-16	838.65	5.56			
BMW-5	6-3-16	847.03	8.44	5.58		
BMW-6	6-8-16	844.97	4.34	<u></u>		
BMW-7	6-8-1L	847.31	6.39			
BMW-8	6-8	846,92	5.49			
BMW-9	6.8	845.03	5.47			·
BMW-10	6-8	848.20	6.88			
BMW-11	6-8	847.13	6.51			
BMW-13	6-8	846.63	4,83			
BMW-14	68	848.85	7.44			
BMW-15	6-8	847.17	6.53			
BMW-16	6-8	846.95	6.83			
BMW-18	6-8	841.74	6.19			
BMW-19	6-8	844.34	5.68			
BMW-20A	6.8	838.51	5.74			
BMW-21	68	843.99	4.59			
BMW-22	6-8	843.06	3.46			
BMW-23	6-55	842.58	2.64			······································
BMW-24	68	841.63	4.14	2.49		
BMW-25	6-8	842.33	5.38			
BMW-26	6-8	840.29	2.98	2.89		
BMW-27	68	837.10	3.28			
BMW-28	6-8	842.07	7.67			
BRW-1	6-8	842.39	2.78			
BRW-2	6-8	841.50	2.51			
BRW-3	6-8	841.08	2.18			
BRW-4	6-8	840.44	1.67			
BRW-5	6-5	840.53	1.87			
BRW-6	6-8	837.31	Bustace			
BRW-7	6-8		2.41			
BRW-8	68	839.33	2.93			,
BRW-9	68	840.80	3.24			
SMW-1	68	863.15	14.04			
SMW-2	6-8	849.17	10.54			
	6-8		10.71			
	6-8		10.86			
	6-8	851.70	9.77			
SMW-4D	6-5	851.11	9.11			
SMW-5	6-6-16	854.69	12.90			
SMW-5D	6-6-16	854.61	12:81			
SMW-6	6-6-16	854.48	13.58			
SMW-7	6-6-16	857.78	12.67			
SMW-8	6-8-16	858.70	9.57			
SMW-9	6-6-16	853.27	12.92			
SMW-9D	0-6-16	853.47	13.14			
SMW-10	6-6-16	853.71	1.91			······

Groundwater Elevations and LNAPL Thickness Measurements

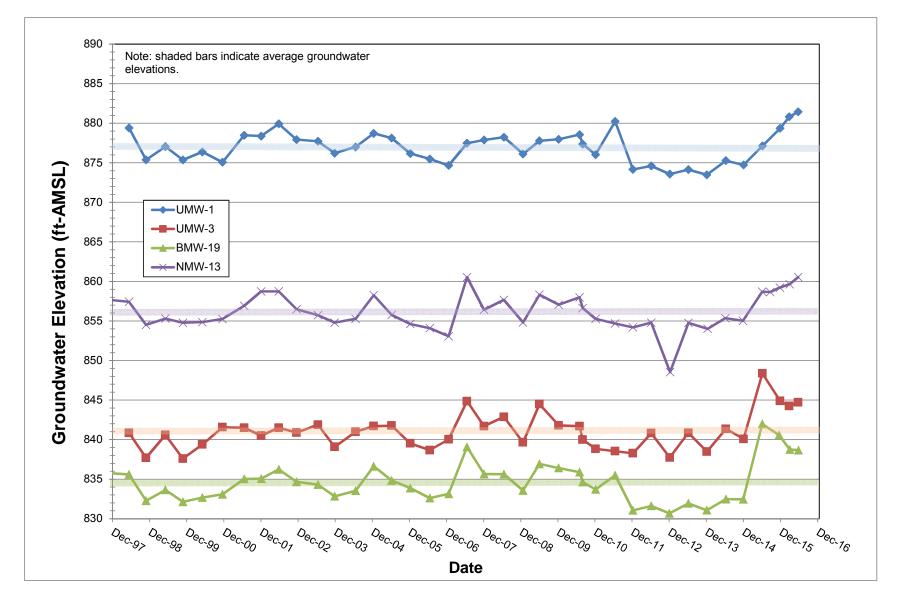
Wynnewood Refining Company, LLC Wynnewood, Oklahoma

Weli Number	Measurement Date	TOC Elevation (ft-AMSL) (a)	Depth to Water (ft-TOC)	Depth to Free Product (ft-TOC)	Product Thickness (ft)	Notes
SMW-10D	6-6-16	853.72	11.08		-	
SMW-11	6-6-16	853.13	ILOI			
SMW-11D	6-6-16	852.92	10.91			
SMW-12	6-7	855.02	10.5			
SMW-12D	6-7	855.04	10.4			
SMW-13	6-6-16	854.05	13.36			
SMW-13D	10-6-16	854.29	12.99			
SMW-14	6-6-16	854.70	12.68			
SMW-14D	6-6-16	854.71	12.71			
SMW-18	6-7	863.63	14.26			
SMW-19	6-6-16	847.91	9.90			
SMW-21	6-6-16	852.09	11.19			
SMW-21D	6-6-16	851.99	11.11			
	10-6-16	855.07	12.40			
SMW-23	6-7	844.61	6.76			
SMW-24	6-7	850.11	7.94			
SMW-25	6-7	848.63	7.45			
SBR-1	6-7	847.35	9.49			
LMW-1	6-7	854.46	9.63	9,50		
L.MW-2-0	6-7	851.67	7.39			
LMW-3-0	6-7	849.87	6.55			
LMW-4-0	67	850.51	7,42			
LMW-5-0	6-7	850.37	6.90	6.88		
LMW-6-0	6-7	853,55	8.95			
LMW-11	6-7	852.90	8.11			
LMW-13	6-7	854.19	10.13	9.26		
LMW-14	6-7	853.66	9.14			
LRW-1-0	6-7	849.60	6.61			
LRW-2-0	67	853.44	9.56			
LRW-3	6-7	855.05	22.90			
LRW-4	67	853.70	8:22			
UMW-1	6-6-16	905.97	14.53			
UMW-3	27	853.00	8.21			
UMW-4	6.7	868.78	10.86			
UMW-5	<u>[-</u>]	868.40	9.91			
UMW-6	6-7	882.79	20.52			
UMW-7	6-7	861.65	RezA.S	15588		
OMW-3	6-7	857.83	13-23	16.88		
OMW-4		857.47	19.25	10.71		
OMW-5	6-7	855.96	10.86			· · · · · · · · · · · · · · · · · · ·
OMW-6	-7	857.70	12.98			
	6-7	855.42	19.32	8.65		
ORW-3	2-7	856.06	19.18	8.36		
	6-7	856.74	N.69			
NRW-1	6-7	875.10	22.95			
NRW-2	6-7	874.26	13.55			
NRW-3	6-7	873.60	21.62			

a_

Groundwater Elevations and LNAPL Thickness Measurements

·


Wynnewood Refining Company, LLC Wynnewood, Oklahoma

Well Number	Measurement Date	TOC Elevation (ft-AMSL) (a)	Depth to Water (ft-TOC)	Depth to Free Product (ft-TOC)	Product Thickness (ft)	Notes
NRW-4	6-8	875.69	72.31	22.28		
NRW-5	6-6-16	873.51	31.77			
NRW-6	6-6-16	862.20	19.95			Has product
NRW-7	627	861,25	12.03			
NMW-2	6-6-16	879.98	18.92	16.73		
NMW-3	6-6-16	877.28	16.70	14.58		
NMW-4	6-6-16	878.72	18.49	15.65		
NMW-5	6-6-16	878.42	16.60			
NMW-6	6-6-16	881.72		19.09		
NMW-7	6-6-16	873.20	12.91	12.84		
NMW-8	6-6-16	876.45	15.21			
NMW-9	6-6-16	877.07	11.57	14.0		
NMW-10	6-6-16	877.59	18.05	14.59		
NMW-12	6-6-16	882.64	20.43	18.95		
NMW-13	6-6-16	869.23	8.69			
NMW-16	6-6-16		10.50			
	6-8	872.70	12-84	12280	12.46	
NMW-18	6-8	870.62	10.85			
NMW-19	6-8	871.96	11.25			

Appendix 2.2.1 – Hydrograph of Monitoring Wells

Appendix 2.2.1

Monitoring Well Hydrographs Wynnewood Refining Company, LLC Wynnewood, Oklahoma

Appendix 2.3.A – Groundwater Analytical Reports

07/01/2016

Page: 1

Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103

Date and Time Received: 06/17/2016 1750 Pace File No.: 8462 Pace Order No.: 133938 Project ID: WRC Wynnewood

Dear Mr. McCormick:

This laboratory report, containing the samples indicated below, includes 33 pages for the analytical report, 3 page(s) for the chain of custody and/or analysis request, and 6 page(s) for the sample receipt form.

PACE LAB ID #	SAMPLE DESCRIPTION	SAMPLE TYPE	DATE SAMPLED
<u>16061452</u>	Trip Blank	Liquid	6/13/2016
16061453	WRCUMW-7(061316)	Liquid	6/13/2016
16061454	WRCDUP1	Liquid	6/13/2016
16061455	WRCUMW-4(061316)	Liquid	6/13/2016
16061456	WRCUMW-5(061316)	Liquid	6/13/2016
16061457	WRCUMW-6(061316)	Liquid	6/13/2016
16061458	WRCSMW-18(061316)	Liquid	6/13/2016
16061459	WRCSMW-18(001310) WRCSMW-1(061316)	Liquid	6/13/2016
16061460	WRCEB(061316)		6/13/2016
16061461		Liquid	
	WRCUMW-3(061316)	Liquid	6/13/2016
16061462	WRCUMW-1(061416)	Liquid	6/14/2016
16061463	WRCNMW-6(061416)	Liquid	6/14/2016
16061464	WRCNMW-12(061416)	Liquid	6/14/2016
16061465	WRC-Martin Pond	Liquid	6/14/2016
16061466	WRC-S Martin Well	Liquid	6/14/2016
16061467	WRC-McLaughlin Well	Liquid	6/14/2016
16061468	WRCSMW-25(061516)	Liquid	6/15/2016
16061469	WRCBMW-19(061516)	Liquid	6/15/2016
16061470	WRCSMW-23(061516)	Liquid	6/15/2016
16061471	WRCBMW-4(061516)	Liquid	6/15/2016
16061472	WRCDUP2	Liquid	6/15/2016
16061473	WRCBMW-25(061516)	Liquid	6/15/2016
16061474	WRCBMW-20A(061616)	Liquid	6/16/2016
16061475	WRCBMW-26(061616)	Liquid	6/16/2016
16061476	WRCSMW-24(061616)	Liquid	6/16/2016
16061477	WRCSMW-2(061616)	Liquid	6/16/2016
16061478	WRCBMW-28(061616)	Liquid	6/16/2016
16061479	WRCBMW-27(061616)	Liquid	6/16/2016
10001777	((KCD)(() 2/(001010))	Liquid	0/10/2010

The Appendix and Quality Control sections are integral parts of this laboratory report and may contain important data qualifiers.

All results are reported on a wet weight basis unless otherwise stated.

525 N. Eighth St. - Salina, KS 67401 785-827-1273 800-535-3076 Fax 785-823-7830 KDHE Environmental Laboratory Accreditation No. E-10146

07/01/2016

Page: 2

Samples will be retained for thirty days unless Pace is otherwise notified. Pace is accredited by the State of Kansas through the National Environmental Laboratory Accreditation Program (NELAP). The results contained in this report were obtained using Pace's Standard Operating Procedures. These procedures are in substantial compliance with the approved methods referenced and the standards published by NELAP unless otherwise noted in the Appendix and Quality Control sections of this report.

This report may not be reproduced, except in full, without written approval from Pace Analytical Services, Inc.

Thank you for choosing Pace for this project.

Juegan J. Husene

Gregory J. Groene Project Manager Gregory.Groene@pacelabs.com

525 N. Eighth St. - Salina, KS 67401 785-827-1273 800-535-3076 Fax 785-823-7830 KDHE Environmental Laboratory Accreditation No. E-10146

Date Reported: 07/01/2016 Date Received: 06/17/2016 Pace File No: 8462 Pace Order No: 133938

Date Sampled: 06/13/2016 Time Sampled: 0830

Client: **Coffeyville Resources** Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103

Lab Number: 16061452	
Sample Description: Trip Blank	

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrati</u> ND ND	<u>on Un</u> μg/ μg/	L	Dilution <u>Factor</u> 1.0 1.0	<u>Reportir</u> <u>LOD</u> 20 100	n <u>g Limit</u> LOQ 20 100
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	ND ND ND ND ND	μg/ μg/ μg/	L L L	$ \begin{array}{r} 1.0 \\ 1$	0.04 0.06 0.1 0.06 0.1	1.0 1.0 1.0 1.0 1.0
<u>Analysis</u>	Date/Time <u>Prepared</u>	Date/Time <u>Analyzed</u>	QC <u>Batch</u>	Inst. Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Me OK DRO Preparation Method		06/21/16 1406 06/26/16 2039 06/20/16 2241	1GC2173 160620-4 1MS9172	1GC2173 2EX4178 1MS9172	SPA SPA RKR	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16061452

Lab Number: 16061453 Sample Description: WRCUMW-7(061316)

Date Sampled: 06/13/2016 Time Sampled: 0915

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	Concentrati ND ND	ion	<u>Units</u> μg/L μg/L	Dilution <u>Factor</u> 1.0 1.0	<u>Reportir</u> <u>LOD</u> 20 100	ng <u>Limit</u> LOQ 20 100
BTEX						
Benzene	ND		μg/L	1.0	0.04	1.0
Toluene	ND		μg/L	1.0	0.06	1.0
Ethylbenzene	ND		μg/L	1.0	0.1	1.0
m+p-Xylene	ND		μg/L	1.0	0.06	1.0
o-Xylene	ND		µg/L	1.0	0.1	1.0
	Date/Time	Date/Time	QC	Inst.		
<u>Analysis</u>	Prepared	Analyzed	Batch	Batch	<u>Analyst</u>	Method(s)

-Continued-

Date Reported: 07/01/2016 Date Received: 06/17/2016 Pace File No: 8462 Pace Order No: 133938

Analysis	Date/Time Prepared	Date/Time <u>Analyzed</u>	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Met OK DRO Preparation Method		06/21/16 1744 06/26/16 2107 06/20/16 2306	1GC2173 160620-4 1MS9172	1GC2173 2EX4178 1MS9172	SPA SPA RKR	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16061453

Lab Number: 16061454 Sample Description: WRCDUP1				Date Sampled: 06/13/2016 Time Sampled: 1005		
<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentration</u> 2940 1600 QC	μ	f <u>nits</u> g/L g/L	Dilution <u>Factor</u> 10 4.0	<u>Reportir</u> <u>LOD</u> 200 400	n <u>g Limit</u> LOQ 200 400
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	903 20.6 2 J 47.6 11	ր հ հ	g/L g/L g/L g/L g/L	10 10 10 10 10	0.4 0.6 1 0.6 1	10 10 10 10 10
Analysis	Date/Time <u>Prepared</u>	Date/Time <u>Analyzed</u>	QC Batch	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Met OK DRO Preparation Method		06/22/16 1553 06/28/16 0218 06/20/16 2217	1GC2174 160620-5 1MS9172	1GC2174 5EX4178 1MS9172	SPA SPA RKR	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16061454

Client:

Coffeyville Resources

Attn: Sam McCormick

Kansas City, KS 66103

10 E. Cambridge Circle Dr.

Date Reported: 07/01/2016 Date Received: 06/17/2016 Pace File No: 8462 Pace Order No: 133938

Date Sampled: 06/13/2016 Time Sampled: 1005

Lab Number: 16061455	
Sample Description: WRCUMW-4(061316)	

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrati</u> 2860 1600	<u>on</u> <u>Uni</u> μg/ μg/	L	Dilution <u>Factor</u> 10 4.0	<u>Reportir</u> <u>LOD</u> 200 400	n <u>g Limit</u> LOQ 200 400
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	812 18.4 2 J 42.7 10.	μg/ μg/ μg/ μg/	L L L	10 10 10 10 10	0.4 0.6 1 0.6 1	10 10 10 10 10
Analysis	Date/Time <u>Prepared</u>	Date/Time <u>Analyzed</u>	QC Batch	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Me OK DRO Preparation Method		06/21/16 1713 06/27/16 2229 06/20/16 1833	1GC2173 160620-4 1MS9172	1GC2173 5EX4178 1MS9172	SPA SPA RKR	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16061455

Lab Number: 16061456 Sample Description: WRCUMW-5(061316)

Date Sampled: 06/13/2016 Time Sampled: 1044

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrat</u> 1810 810	ion	<u>Units</u> μg/L μg/L	Dilution <u>Factor</u> 4.0 1.0	<u>Reportii</u> <u>LOD</u> 80 100	n <u>g Limit</u> LOQ 80 100
BTEX						
Benzene	275		μg/L	10	0.4	10
Toluene	7.9 J		µg/L	10	0.6	10
Ethylbenzene	5 J		μg/L	10	1	10
m+p-Xylene	12.0		μg/L	10	0.6	10
o-Xylene	2 J		μg/L	10	1	10
	Date/Time	Date/Time	QC	Inst.		
<u>Analysis</u>	Prepared	Analyzed	Batch	Batch	<u>Analyst</u>	Method(s)

-Continued-

Date Reported: 07/01/2016 Date Received: 06/17/2016 Pace File No: 8462 Pace Order No: 133938

Analysis	Date/Time Prepared	Date/Time Analyzed	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Met OK DRO Preparation Method		06/22/16 1521 06/26/16 2302 06/21/16 1415	1GC2174 160620-4 1MS8173	1GC2174 2EX4178 1MS8173	SPA SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16061456

Lab Number: 16061457 Sample Description: WRCUMW-6(061316)

Coffeyville Resources

Attn: Sam McCormick

Kansas City, KS 66103

10 E. Cambridge Circle Dr.

Client:

Date Sampled: 06/13/2016 Time Sampled: 1132

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrati</u> 19300 4900	<u>on Uni</u> μg/ μg/	L	Dilution <u>Factor</u> 50 10	<u>Reportir</u> <u>LOD</u> 1000 1000	n <u>g Limit</u> LOQ 1000 1000
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	5490 1670 660 1600 550	μg/ μg/ μg/ μg/	L L L	200 200 200 200 200	8 10 20 10 20	200 200 200 200 200
Analysis	Date/Time Prepared	Date/Time Analyzed	QC Batch	Inst. Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Me OK DRO Preparation Method		06/22/16 1449 06/27/16 2258 06/20/16 1923	1GC2174 160620-4 1MS9172	1GC2174 5EX4178 1MS9172	SPA SPA RKR	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16061457

Date Reported: 07/01/2016 Date Received: 06/17/2016 Pace File No: 8462 Pace Order No: 133938

Date Sampled: 06/13/2016

Lab Number: 16061458 Sample Description: WRCSMW-18(061316)

	1	Time Sampled: 1327					
	Dilution	<u>Reportin</u>	<u>g Limit</u>				
s	Factor	LOD	LOO				

				Dilution	Reportin	<u>ig Linni</u>
<u>Analysis</u>	<u>Concentrati</u>	on <u>U</u>	<u>nits</u>	Factor	LÔD	LOQ
Oklahoma GRO	ND	μβ	g/L	1.0	20	20
Oklahoma DRO	ND		g/L	1.0	100	100
BTEX						
Benzene	ND	μg	g/L	1.0	0.04	1.0
Toluene	ND	μβ	g/L	1.0	0.06	1.0
Ethylbenzene	ND		g/L	1.0	0.1	1.0
m+p-Xylene	ND		g/L	1.0	0.06	1.0
o-Xylene	ND		g/L	1.0	0.1	1.0
-						
	Date/Time	Date/Time	QC	Inst.		
Analysis	Prepared	Analyzed	Batch	Batch	Analyst	Method(s)
Oklahoma GRO	N/A	06/21/16 1611	1GC2173	1GC2173	SPA	OK GRO
Oklahoma DRO	06/20/16 1320	06/27/16 0028	160620-4	2EX4178	SPA	OK DRO
BTEX	N/A	06/20/16 1948	1MS9172	1MS9172	RKR	8260B
Volatile Analysis Preparation Me	thod					5030B
GC/FID Volatile Preparation Met						5030B
OK DRO Preparation Method	liiou					OK DRO
on Dro i reparation method						OK DKU

Conclusion of Lab Number: 16061458

Lab Number: 16061459 Date Sampled: 06/13/2016 Sample Description: WRCSMW-1(061316) Time Sampled: 1400 Dilution Reporting Limit Analysis Concentration LOD Units Factor LOQ Oklahoma GRO ND μg/L 1.0 20 20 Oklahoma DRO ND μg/L 1.0 100 100 BTEX 0.04 Benzene ND 1.0 1.0 μg/L Toluene ND 1.0 0.06 1.0 μg/L Ethylbenzene ND 1.0 0.1 1.0 μg/L m+p-Xylene ND 0.06 1.0 1.0 μg/L o-Xylene ND 1.0 0.1 1.0 μg/L Date/Time QC Date/Time Inst. **Analysis** Prepared Analyzed Batch Batch <u>Analyst</u> Method(s)

-Continued-

Date Reported: 07/01/2016 Date Received: 06/17/2016 Pace File No: 8462 Pace Order No: 133938

Analysis	Date/Time Prepared	Date/Time Analyzed	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Met OK DRO Preparation Method		06/21/16 1539 06/27/16 0057 06/20/16 2012	1GC2173 160620-4 1MS9172	1GC2173 2EX4178 1MS9172	SPA SPA RKR	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16061459

Lab Number: 16061460 Sample Description: WRCEB(061316)				Date Samp Time Samp	pled: 06/13/2016 pled: 1445		
<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrati</u> ND 150	<u>on Un</u> μg μg	/L	Dilution <u>Factor</u> 1.0 1.0	<u>Reportin</u> <u>LOD</u> 20 100	<u>lg Limit</u> <u>LOQ</u> 20 100	
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	ND 0.38 J ND 0.06 J ND	0.38 J μg/L ND μg/L 0.06 J μg/L		$ \begin{array}{c} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0 \end{array} $	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0 1.0 1.0	
Analysis	Date/Time Prepared	Date/Time Analyzed	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)	
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Met OK DRO Preparation Method	N/A 06/20/16 1320 N/A ethod thod	06/21/16 1335 06/27/16 0125 06/20/16 2037	1GC2173 160620-4 1MS9172	1GC2173 2EX4178 1MS9172	SPA SPA RKR	OK GRO OK DRO 8260B 5030B 5030B OK DRO	

Conclusion of Lab Number: 16061460

Client:

Coffeyville Resources

Attn: Sam McCormick

Kansas City, KS 66103

10 E. Cambridge Circle Dr.

Date Reported: 07/01/2016 Date Received: 06/17/2016 Pace File No: 8462 Pace Order No: 133938

Lab Number: 16061461 Sample Description: WRCUMW-3(061316)

Date Sampled: 06/13/2016	
Time Sampled: 1449	

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrati</u> ND ND	<u>on</u> <u>Un</u> μg/ μg/	L	Dilution <u>Factor</u> 1.0 1.0	<u>Reportir</u> <u>LOD</u> 20 100	n <u>g Limit</u> LOQ 20 100
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	ND ND ND ND	μg/ μg/ μg/ μg/	L L L	$ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 $	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0
<u>Analysis</u>	Date/Time <u>Prepared</u>	Date/Time <u>Analyzed</u>	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Me OK DRO Preparation Method		06/21/16 1508 06/27/16 0154 06/20/16 2102	1GC2173 160620-4 1MS9172	1GC2173 2EX4178 1MS9172	SPA SPA RKR	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16061461

Lab Number: 16061462 Sample Description: WRCUMW-1(061416)

Date Sampled: 06/14/2016 Time Sampled: 0815

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrati</u> ND 1200	<u>on</u>	<u>Units</u> μg/L μg/L	Dilution <u>Factor</u> 1.0 2.0	<u>Reportir</u> LOD 20 200	ng <u>Limit</u> LOQ 20 200
BTEX						
Benzene	ND		μg/L	1.0	0.04	1.0
Toluene	ND		μg/L	1.0	0.06	1.0
Ethylbenzene	ND		μg/L	1.0	0.1	1.0
m+p-Xylene	ND		μg/L	1.0	0.06	1.0
o-Xylene	0.2 J		μg/L	1.0	0.1	1.0
	Date/Time	Date/Time	QC	Inst.		
<u>Analysis</u>	Prepared	Analyzed	Batch	Batch	<u>Analyst</u>	Method(s)

-Continued-

Date Reported: 07/01/2016 Date Received: 06/17/2016 Pace File No: 8462 Pace Order No: 133938

Analysis	Date/Time Prepared	Date/Time Analyzed	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Met OK DRO Preparation Method		06/22/16 1315 06/27/16 2326 06/20/16 2127	1GC2174 160620-4 1MS9172	1GC2174 5EX4178 1MS9172	SPA SPA RKR	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16061462

Lab Number: 16061463 Sample Description: WRCNMW-6(061416)

Coffeyville Resources

Attn: Sam McCormick

Kansas City, KS 66103

10 E. Cambridge Circle Dr.

Client:

Date Sampled: 06/14/2016 Time Sampled: 0853

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrati</u> 4960 190000 Q	μg		Dilution <u>Factor</u> 20 400	<u>Reportir</u> <u>LOD</u> 400 40000	n <u>g Limit</u> LOQ 400 40000
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	16.7 19.8 250. 406 134	អន អន អន	/L /L /L	10 10 10 10 10	0.4 0.6 1 0.6 1	10 10 10 10 10
<u>Analysis</u>	Date/Time <u>Prepared</u>	Date/Time Analyzed	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Me OK DRO Preparation Method		06/22/16 1243 06/28/16 0149 06/21/16 1451	1GC2174 160620-5 1MS8173	1GC2174 5EX4178 1MS8173	SPA SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16061463

Sample Description: WRCNMW-12(061416)

Lab Number: 16061464

Date Reported: 07/01/2016 Date Received: 06/17/2016 Pace File No: 8462 Pace Order No: 133938

Date Sampled: 06/14/2016

Time Sampled: 0936

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrati</u> 37000 9000 QC	μ	<u>nits</u> g/L g/L	Dilution <u>Factor</u> 100 10	<u>Reportir</u> <u>LOD</u> 2000 1000	ng <u>Limit</u> <u>LOQ</u> 2000 1000
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	8540 4800 1000 4140 1500	អរ អរ	g/L g/L g/L g/L g/L	500 500 500 500 500	20 30 50 30 50	500 500 500 500 500
<u>Analysis</u>	Date/Time <u>Prepared</u>	Date/Time <u>Analyzed</u>	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Me OK DRO Preparation Method		06/22/16 1212 06/28/16 0316 06/21/16 1526	1GC2174 160620-5 1MS8173	1GC2174 5EX4178 1MS8173	SPA SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16061464

Lab Number: 16061465 Sample Description: WRC-Martin Pond				Date Sampled: 06/14/2016 Time Sampled: 1030			
<u>Analysis</u> Oklahoma GRO Oklahoma DRO	Concentrati 127 690 QC	<u>on</u>	<u>Units</u> μg/L μg/L		Dilution <u>Factor</u> 1.0 1.0	<u>Reportir</u> LOD 20 100	ng Limit LOQ 20 100
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	9.88 0.42 J 2.1 7.87 2.3		μg/L μg/L μg/L μg/L μg/L		1.0 1.0 1.0 1.0 1.0	0.04 0.06 0.1 0.06 0.1	1.0 1.0 1.0 1.0 1.0
Analysis	Date/Time Prepared	Date/Time <u>Analyzed</u>	QC Batel	<u>h_</u>	Inst. Batch	<u>Analyst</u>	Method(s)

-Continued-

Pace Analytical Services, Inc. 525 N. Eighth St. - Salina, KS 67401 785-827-1273 800-535-3076 Fax 785-823-7830

C

Date Reported: 07/01/2016 Date Received: 06/17/2016 Pace File No: 8462 Pace Order No: 133938

Analysis	Date/Time Prepared	Date/Time Analyzed	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Met OK DRO Preparation Method		06/22/16 1140 06/28/16 0344 06/22/16 1509	1GC2174 160620-5 1MS8174	1GC2174 5EX4178 1MS8174	SPA SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16061465

					Date Sampled: 06/14/2016 Time Sampled: 1100		
<u>Analysis</u> Oklahoma GRO Oklahoma DRO	Concentration ND 800 QC	<u>on Un</u> μg μg	/L	Dilution <u>Factor</u> 1.0 1.0	<u>Reportin</u> <u>LOD</u> 20 100	<u>ig Limit</u> LOQ 20 100	
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	ND ND ND ND	ND μg/L ND μg/L ND μg/L		$ \begin{array}{c} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0 \end{array} $	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0 1.0 1.0	
Analysis	Date/Time Prepared	Date/Time Analyzed	QC Batch	Inst. Batch	<u>Analyst</u>	Method(s)	
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Met GC/FID Volatile Preparation Met OK DRO Preparation Method		06/22/16 1108 06/27/16 1742 06/21/16 1638	1GC2174 160620-5 1MS8173	1GC2174 4EX4178 1MS8173	SPA SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO	

Conclusion of Lab Number: 16061466

Client:

Coffeyville Resources

Attn: Sam McCormick

Kansas City, KS 66103

10 E. Cambridge Circle Dr.

Date Reported: 07/01/2016 Date Received: 06/17/2016 Pace File No: 8462 Pace Order No: 133938

Lab Number: 16061467	
Sample Description: WRC-McLaughlin Well	

Date Sampled: 06/14/2016
Time Sampled: 1130

Analysia	Concentrati	on I	Inita	Dilution	<u>Reportir</u>	
<u>Analysis</u> Oklahoma GRO	<u>Concentrati</u> ND		<u>Inits</u> g/L	Factor 1.0	<u>LOD</u> 20	<u>LOQ</u> 20
Oklahoma DRO	ND QC		g/L g/L	1.0	100	100
BTEX						
Benzene	ND	μ	g/L	1.0	0.04	1.0
Toluene	ND		g/L	1.0	0.06	1.0
Ethylbenzene	ND		g/L	1.0	0.1	1.0
m+p-Xylene	ND	μ	g/L	1.0	0.06	1.0
o-Xylene	ND	μ	g/L	1.0	0.1	1.0
	Date/Time	Date/Time	QC	Inst.		
<u>Analysis</u>	Prepared	Analyzed	Batch	Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation M GC/FID Volatile Preparation Method		06/22/16 1037 06/27/16 1908 06/21/16 1714	1GC2174 160620-5 1MS8173	1GC2174 4EX4178 1MS8173	SPA SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16061467

Lab Number: 16061468 Sample Description: WRCSMW-25(061516)				Date Sampled: 06/15/2016 Time Sampled: 1028			
<u>Analysis</u> Oklahoma GRO Oklahoma DRO	Concentrat ND ND QC	ion	<u>Units</u> μg/L μg/L		Dilution <u>Factor</u> 1.0 1.0	<u>Reportin</u> <u>LOD</u> 20 100	n <u>g Limit</u> LOQ 20 100
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	ND ND ND ND		μg/L μg/L μg/L μg/L μg/L		1.0 1.0 1.0 1.0 1.0	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0
Analysis	Date/Time <u>Prepared</u>	Date/Time <u>Analyzed</u>	QC <u>Ba</u>	C utch	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)

-Continued-

Date Reported: 07/01/2016 Date Received: 06/17/2016 Pace File No: 8462 Pace Order No: 133938

Analysis	Date/Time Prepared	Date/Time <u>Analyzed</u>	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Met GC/FID Volatile Preparation Met OK DRO Preparation Method		06/22/16 1006 06/27/16 1937 06/21/16 1750	1GC2174 160620-5 1MS8173	1GC2174 4EX4178 1MS8173	SPA SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16061468

Lab Number: 16061469 Sample Description: WRCBMW-19(061516)

Coffeyville Resources

Attn: Sam McCormick

Kansas City, KS 66103

10 E. Cambridge Circle Dr.

Client:

Date Sampled: 06/15/2016 Time Sampled: 1115

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrati</u> ND ND QC	<u>on Uni</u> μg/ μg/	L	Dilution <u>Factor</u> 1.0 1.0	<u>Reportir</u> <u>LOD</u> 20 100	ng <u>Limit</u> LOQ 20 100
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	ND ND ND ND ND	μg/ μg/ μg/ μg/	L L L	1.0 1.0 1.0 1.0 1.0	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0
Analysis	Date/Time <u>Prepared</u>	Date/Time <u>Analyzed</u>	QC Batch	Inst. Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Me OK DRO Preparation Method		06/27/16 1716 06/27/16 2006 06/21/16 1825	1GC2179 160620-5 1MS8173	1GC2179 4EX4178 1MS8173	SPA SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16061469

Date Reported: 07/01/2016 Date Received: 06/17/2016 Pace File No: 8462 Pace Order No: 133938

Lab Number: 16061470	
Sample Description: WRCSMW-23(061516)	

Date Sampled: 06/15/2016
Time Sampled: 1358

				Dilution		n <u>g Limit</u>
<u>Analysis</u>	Concentrati		<u>nits</u>	<u>Factor</u>	LOD	LOQ
Oklahoma GRO	23		ς/L	1.0	20	20
Oklahoma DRO	930 QC	μg	ς/L	1.0	100	100
BTEX						
Benzene	ND	μg	r/L	1.0	0.04	1.0
Toluene	ND	μg		1.0	0.06	1.0
Ethylbenzene	ND		ζ/L	1.0	0.1	1.0
m+p-Xylene	ND	με		1.0	0.06	1.0
o-Xylene	ND	με	μ/L	1.0	0.1	1.0
	Date/Time	Date/Time	QC	Inst.		
<u>Analysis</u>	Prepared	<u>Analyzed</u>	Batch	Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO	N/A	06/23/16 1748	1GC2175	1GC2175	SPA	OK GRO
Oklahoma DRO	06/20/16 1500	06/27/16 1811	160620-5	4EX4178	SPA	OK DRO
BTEX	N/A	06/21/16 2347	1MS8173	2MS8173	GMA	8260B
Volatile Analysis Preparation Me	ethod					5030B
GC/FID Volatile Preparation Me	thod					5030B
OK DRO Preparation Method						OK DRO
-						

Conclusion of Lab Number: 16061470

Lab Number: 16061471 Sample Description: WRCBMW-4(061516)

Date Sampled: 06/15/2016 Time Sampled: 1504

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrati</u> 88 G 760 QC	on	<u>Units</u> μg/L μg/L	Dilution <u>Factor</u> 1.0 1.0	<u>Reportir</u> LOD 20 100	ng <u>Limit</u> LOQ 20 100
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	ND ND ND ND ND		μg/L μg/L μg/L μg/L μg/L μg/L	1.0 1.0 1.0 1.0 1.0	0.04 0.06 0.1 0.06 0.1	1.0 1.0 1.0 1.0 1.0
<u>Analysis</u>	Date/Time <u>Prepared</u>	Date/Time <u>Analyzed</u>	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)

-Continued-

Date Reported: 07/01/2016 Date Received: 06/17/2016 Pace File No: 8462 Pace Order No: 133938

Analysis	Date/Time Prepared	Date/Time Analyzed	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Met OK DRO Preparation Method		06/23/16 1614 06/27/16 1840 06/21/16 1901	1GC2175 160620-5 1MS8173	1GC2175 4EX4178 1MS8173	SPA SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16061471

Lab Number: 16061472 Sample Description: WRCDUP2				Date Samp Time Samp		2016
<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentration</u> 72 G 750	με	<u>nits</u> g/L g/L	Dilution <u>Factor</u> 1.0 2.0	<u>Reportir</u> <u>LOD</u> 20 200	n <u>g Limit</u> LOQ 20 200
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	ND ND ND ND	μg/L μg/L μg/L μg/L μg/L		1.0 1.0 1.0 1.0 1.0	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0
Analysis	Date/Time Prepared	Date/Time Analyzed	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Met GC/FID Volatile Preparation Met OK DRO Preparation Method		06/23/16 1543 06/27/16 2355 06/21/16 1937	1GC2175 160622-1 1MS8173	1GC2175 5EX4178 1MS8173	SPA SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16061472

Client:

Coffeyville Resources

Attn: Sam McCormick

Kansas City, KS 66103

10 E. Cambridge Circle Dr.

Date Reported: 07/01/2016 Date Received: 06/17/2016 Pace File No: 8462 Pace Order No: 133938

Date Sampled: 06/15/2016 Time Sampled: 1558

Lab Number: 16061473
Sample Description: WRCBMW-25(061516)

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	2170		<u>Units</u> 1g/L 1g/L	Dilution <u>Factor</u> 10 4.0	<u>Reportir</u> <u>LOD</u> 200 400	ng <u>Limit</u> <u>LOQ</u> 200 400
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	370. 5.2 J 120 QC 50.0 QC 10 J QC	4 4 4	ug/L ug/L ug/L ug/L ug/L	40 40 40 40 40	2 2 4 2 4	40 40 40 40 40
Analysis	Date/Time <u>Prepared</u>	Date/Time Analyzed	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation M GC/FID Volatile Preparation Me OK DRO Preparation Method		06/23/16 1512 06/28/16 0052 06/21/16 2012	2 160622-1	1GC2175 5EX4178 1MS8173	SPA SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16061473

Lab Number: 16061474 Sample Description: WRCBMW-20A(061616)

Date Sampled: 06/16/2016 Time Sampled: 0853

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrati</u> 137 G 300	<u>on</u>	<u>Units</u> μg/L μg/L	Dilution <u>Factor</u> 1.0 1.0	<u>Reportir</u> <u>LOD</u> 20 100	n <u>g Limit</u> LOQ 20 100
BTEX Benzene Toluene Ethylbenzene	ND ND ND		μg/L μg/L μg/L	1.0 1.0 1.0	0.04 0.06 0.1	$1.0 \\ 1.0 \\ 1.0 \\ 1.0$
m+p-Xylene o-Xylene	ND ND Date/Time	Date/Time	μg/L μg/L QC	1.0 1.0 Inst.	0.06 0.1	1.0 1.0
<u>Analysis</u>	Prepared	Analyzed	Batch	Batch	<u>Analyst</u>	Method(s)

-Continued-

Date Reported: 07/01/2016 Date Received: 06/17/2016 Pace File No: 8462 Pace Order No: 133938

Analysis	Date/Time Prepared	Date/Time Analyzed	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Met GC/FID Volatile Preparation Met OK DRO Preparation Method		06/23/16 1441 06/27/16 0807 06/22/16 0023	1GC2175 160622-1 1MS8173	1GC2175 3EX4178 2MS8173	SPA SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16061474

Lab Number: 16061475 Sample Description: WRCBMW-26(061616)

Coffeyville Resources

Attn: Sam McCormick

Kansas City, KS 66103

10 E. Cambridge Circle Dr.

Client:

Date Sampled: 06/16/2016 Time Sampled: 0930

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	17100		i <u>ts</u> L L	Dilution <u>Factor</u> 50 4.0	<u>Reportir</u> <u>LOD</u> 1000 400	n <u>g Limit</u> LOQ 1000 400
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	3180 1410 590 2420 780	μg/ μg/ μg/	L L L	200 200 200 200 200	8 10 20 10 20	200 200 200 200 200
<u>Analysis</u>	Date/Time <u>Prepared</u>	Date/Time <u>Analyzed</u>	QC Batch	Inst. Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Me OK DRO Preparation Method		06/28/16 1555 06/28/16 0121 06/22/16 0059	2GC2180 160622-1 1MS8173	2GC2180 5EX4178 2MS8173	SPA SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16061475

Date Reported: 07/01/2016 Date Received: 06/17/2016 Pace File No: 8462 Pace Order No: 133938

Date Sampled: 06/16/2016 Time Sampled: 1041

Lab Number: 16061476
Sample Description: WRCSMW-24(061616)

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrati</u> ND ND	<u>on Un</u> μg/ μg/	L	Dilution <u>Factor</u> 1.0 1.0	<u>Reportir</u> <u>LOD</u> 20 100	ng <u>Limit</u> LOQ 20 100
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	ND ND ND ND ND	μg/ μg/ μg/ μg/	L L L	1.0 1.0 1.0 1.0 1.0	0.04 0.06 0.1 0.06 0.1	1.0 1.0 1.0 1.0 1.0
Analysis	Date/Time <u>Prepared</u>	Date/Time <u>Analyzed</u>	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Me OK DRO Preparation Method		06/23/16 1338 06/27/16 0934 06/22/16 0134	1GC2175 160622-1 1MS8173	1GC2175 3EX4178 2MS8173	SPA SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16061476

Lab Number: 16061477 Sample Description: WRCSMW	Date Samp Time Sam	oled: 06/16/ pled: 1123	2016			
<u>Analysis</u> Oklahoma GRO Oklahoma DRO	Concentrati ND 210	ion	<u>Units</u> μg/L μg/L	Dilution <u>Factor</u> 1.0 1.0	<u>Reportir</u> <u>LOD</u> 20 100	ng Limit LOQ 20 100
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	0.08 J 0.22 J ND 0.13 J ND		μg/L μg/L μg/L μg/L μg/L	1.0 1.0 1.0 1.0 1.0	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0
<u>Analysis</u>	Date/Time <u>Prepared</u>	Date/Time <u>Analyzed</u>	QC <u>Batch</u>	Inst. Batch	<u>Analyst</u>	Method(s)

-Continued-

Date Reported: 07/01/2016 Date Received: 06/17/2016 Pace File No: 8462 Pace Order No: 133938

Analysis	Date/Time Prepared	Date/Time Analyzed	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Met OK DRO Preparation Method		06/23/16 1306 06/27/16 1002 06/22/16 0210	1GC2175 160622-1 1MS8173	1GC2175 3EX4178 2MS8173	SPA SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16061477

Lab Number: 16061478 Sample Description: WRCBMW-28(061616)

Coffeyville Resources

Attn: Sam McCormick

Kansas City, KS 66103

10 E. Cambridge Circle Dr.

Client:

Date Sampled: 06/16/2016 Time Sampled: 1404

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	ND		i <u>ts</u> L L	Dilution <u>Factor</u> 1.0 1.0	<u>Reportir</u> <u>LOD</u> 20 100	n <u>g Limit</u> LOQ 20 100
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	0.09 J 0.42 J ND 0.21 J 0.1 J	μg/ μg/ μg/	L L L	$ \begin{array}{c} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0 \end{array} $	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0
Analysis	Date/Time Prepared	Date/Time Analyzed	QC Batch	Inst. Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Me OK DRO Preparation Method		06/23/16 1234 06/27/16 1031 06/22/16 0246	1GC2175 160622-1 1MS8173	1GC2175 3EX4178 2MS8173	SPA SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16061478

Lab Number: 16061479

Date Reported: 07/01/2016 Date Received: 06/17/2016 Pace File No: 8462 Pace Order No: 133938

Date Sampled: 06/16/2016

Sample Description: WRCBMW-27(061616)					oled: 1440	_010
<u>Analysis</u> Oklahoma GRO Oklahoma DRO	Concentration ND 960		<u>Units</u> μg/L μg/L		<u>Reportir</u> <u>LOD</u> 20 100	n <u>g Limit</u> <u>LOQ</u> 20 100
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	0.18 J µ ND µ ND µ ND µ		μg/L μg/L μg/L μg/L μg/L		$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0
<u>Analysis</u> Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Me OK DRO Preparation Method		Date/Time <u>Analyzed</u> 06/23/16 1202 06/27/16 1100 06/22/16 1545	QC <u>Batch</u> 1GC2175 160622-1 1MS8174	Inst. Batch 1GC2175 3EX4178 1MS8174	<u>Analyst</u> SPA SPA GMA	Method(s) OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16061479

Appendix

Page: 22

Date Reported: 07/01/2016 Date Received: 06/17/2016 Pace File No: 8462 Pace Order No: 133938

Client: Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103

ND indicates not detected with the Limit of Detection (LOD) in parentheses. The Method Detection Limit (MDL) is a calculated value representing the lowest concentration, that based on a statistical calculation represents the lowest concentration that theoretically, can be detected. The MDL is equivalent to the LOD. The Limit of Quantitation (LOQ) is the lowest concentration of the analytical standard that was used for calibrating the instrument. If an analytical standard is analyzed at the LOQ, an error of as much as +/- 50% can be expected. The MDL and LOQ values have been adjusted for the dilution factor and percent solids, as applicable. Due to rounding differences these values may vary slightly from the reported concentration. N/A, if present, indicates Not Applicable.

All samples which require cooling were received at a temperature of less than 6 degrees Celsius.

No analysis with a holding time of seventy-two hours or less was performed in this Pace order.

J - The concentration or not detected (ND) value is below the Limit of Quantitation (LOQ) and is considered an estimated value.

G - The reported concentration includes a significant amount of individual compound(s) at concentrations not typically found in petroleum hydrocarbon patterns.

QC - QC data qualifiers were noted. See the Quality Control Report.

Accreditation Summary

Client: Coffeyville Resources Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103 Page: 23

Date Reported: 07/01/2016 Date Received: 06/17/2016 Pace File No: 8462 Pace Order No: 133938

NELAP accreditation is issued under each EPA regulatory program for a given matrix/analyte/method combination. Pace is NELAP accredited for each matrix/analyte/method and EPA program cited in this Laboratory Report, except for those listed in the table below and for analyses performed in the field. For most of the analyses listed in the table, NELAP accreditation is not offered under the listed EPA program and Pace is NELAP accredited for the analysis, using the same analytical technology, but under a different EPA program. Pace's full NELAP accreditation status may be viewed at www.kdheks.gov/envlab. Note that unless qualified otherwise in the Laboratory Report, Pace performs all analyses, including each analysis listed in the table below, utilizing NELAP protocol.

<u>Test</u> <u>Analysis</u> Pace is accredited for all analytes. Matrix-Regulatory <u>Program</u>

Method

Pace NELAP Accredited in Other <u>Reg. Program</u>

Quality Control Report Batch Summary

Page: 24

			-		
Client:	Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103				Date Reported: 07/01/2016 Date Received: 06/17/2016 Pace File No: 8462 Pace Order No: 133938
Test Code	Testname	QC Batch	Method Blank Date/Time Analyzed	LCS Date/Time Analyzed	MS Lab No. Date/Time Analyzed
	Oklahoma GRO	1GC2173	BLK1GC2173 06/21/16 0848	LCS1GC2173 06/21/16 0817	16061453MS 06/21/16 1815
	nbers associated with this batch: 52 16061453 16061455 16061458	16061459	16061460 16061461		
	Oklahoma GRO	1GC2174	BLK1GC2174 06/22/16 0934	LCS1GC2174 06/22/16 0903	16061462MS 06/22/16 1346
	nbers associated with this batch: 54 16061456 16061457 16061462	16061463	16061464 16061465	16061466 1606146	67 16061468
	Oklahoma GRO	1GC2175	BLK1GC2175 06/23/16 1130	LCS1GC2175 06/23/16 1059	16061471MS 06/23/16 1645
	nbers associated with this batch: 70 16061471 16061472 16061473	16061474	16061476 16061477	16061478 1606147	79
CL108	Oklahoma GRO	1GC2179	BLK1GC2179 06/27/16 1645	LCS1GC2179 06/27/16 1613	16061469MS 06/27/16 1747
Lab num 1606146	nbers associated with this batch: 59		00/27/10 10 10	00/27/10 1010	00/27/10 17 17
CL108	Oklahoma GRO	2GC2180	BLK2GC2180 06/28/16 1524	LCS2GC2180 06/28/16 1452	16061475MS 06/28/16 1627
Lab num 1606147	nbers associated with this batch: 75			00,20,101.00	
CL122	Oklahoma DRO	160620-4	160620BLK4 06/26/16 1912	160620LCS4 06/26/16 1941	16061453MS 06/26/16 2136
	nbers associated with this batch: 52 16061453 16061455 16061456	16061457	16061458 16061459	16061460 1606146	61 16061462
CL122	Oklahoma DRO	160620-5	160620BLK5 06/27/16 1323	160620LCS5 06/27/16 1352	16061454MS 06/28/16 0247
	nbers associated with this batch: 54 16061463 16061464 16061465	16061466	16061467 16061468	16061469 1606147	70 16061471
CL122	Oklahoma DRO	160622-1	160622BLK1 06/27/16 0446	160622LCS1 06/27/16 0515	16061472MS 06/28/16 0024
	nbers associated with this batch: 72 16061473 16061474 16061475	16061476			
MS295	BTEX	1MS9172	BLK1MS9172 06/20/16 1450	LCS1MS9172 06/20/16 1401	16061453MS 06/20/16 2331
Lab num 1606145	nbers associated with this batch: 52 16061453 16061454 16061455	16061457			
MS295	BTEX	1MS8173	BLK1MS8173 06/21/16 1339	LCS1MS8173 06/21/16 1228	16061473MS 06/21/16 2048
1606145	nbers associated with this batch: 56 16061463 16061464 16061466 74 16061475 16061476 16061477				

Quality Control Report Batch Summary

Client: Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103 Page: 25

Date Reported: 07/01/2016 Date Received: 06/17/2016 Pace File No: 8462 Pace Order No: 133938

Test Code	Testname	QC Batch	Method Blank Date/Time Analyzed	LCS Date/Time Analyzed	MS Lab No. Date/Time Analyzed
MS295	BTEX	1MS8174	BLK1MS8174 06/22/16 1434	LCS1MS8174 06/22/16 1322	16061599MS 06/22/16 2255
	mbers associated with this batch: 165 16061479		00/22/10 1434	00/22/10 1322	00/22/10 2255

Quality Control Report Method Blank, LCS, MS/MSD Data

Client: Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103

Page: 26

Date Reported: 07/01/2016 Date Received: 06/17/2016 Pace File No: 8462 Pace Order No: 133938

Analysis	Blank Data	Control (% Rec LCS	Sample overy) LCSD	Spike Level	Limite	Cont Preci RPD		Spiked S (% Reco MS	-	Spike Level	Limits	Precis	l Sample ion Data Limit	Units
Anarysis	Data	LCS	LCSD	Lever	Linints	KI D	Linnt	MB	MSD	Level	Linits	КD		Onte
QC Batch: 160620-4			ed on: 06/2					ple: 160614						
Oklahoma DRO	ND(100)	88.3	93.3	500	80.0-120	5.5	#	93.9	80.9	500	80.0-120	14.9	20.0	μg/L
QC Batch: 160620-5	For sam	ples prepar	ed on: 06/2)/2016 150	0		Spiked san	ple: 160614	54					
Oklahoma DRO	ND(100)	90.9	79.2 LL	500	80.0-120	13.8	#	84.9	F	500	80.0-120	**	20.0	μg/L
QC Batch: 160622-1	For sam	ples prepar	ed on: 06/22	2/2016 090	0		Spiked san	ple: 160614	72					
Oklahoma DRO	ND(100)	90.2	87.6	500	80.0-120	2.9	#	103	F	500	80.0-120	**	20.0	$\mu g/L$
QC Batch: 1GC2173	For sam	ple analyze	d on: 06/21/	2016			Spiked san	ple: 160614:	53					
Oklahoma GRO	ND(20)	102	109	200	80.0-120	6.6	#	102	103	200	80.0-120	1.00	20.0	μg/L
Surrogate Data:														
4-BFB (8015D)	88.7	89.3	93.5	20.0	84.0-121			90.5	90.8	20.0	84.0-121			μg/L
FLUOROBENZENE (8015D)	97.5	96.7	95.4	20.0	71.7-132			94.9	95.7	20.0	71.7-132			μg/L
(0015D)	27.0	,	,	2010	152					2010				r6 2
QC Batch: 1GC2174			d on: 06/22/		00 C		-	ple: 1606140					a o -	_
Oklahoma GRO	ND(20)	100.	104	200	80.0-120	3.9	#	91.2	95.8	200	80.0-120	4.90	20.0	μg/L
Surrogate Data:														
4-BFB (8015D)	92.5	93.7	94.1	20.0	84.0-121			90.7	93.0	20.0	84.0-121			μg/L
FLUOROBENZENE (8015D)	102	101	99.4	20.0	71.7-132			101	97.7	20.0	71.7-132			μg/L
QC Batch: 1GC2175	For sam	ple analyze	d on: 06/23/	2016			Spiked san	ple: 160614'	71					
Oklahoma GRO	ND(20)	102	94.6	200	80.0-120	7.5	#	94.5	98.1	200	80.0-120	3.70	20.0	μg/L
Surrogate Data:														
4-BFB (8015D)	90.8	92.8	91.1	20.0	84.0-121			92.8	93.6	20.0	84.0-121			μg/L
FLUOROBENZENE (8015D)	100.	98.6	98.1	20.0	71.7-132			101	101	20.0	71.7-132			μg/L
QC Batch: 1GC2179	For sam	nle analyze	d on: 06/27/	2016			Sniked san	ple: 160614	59					
Oklahoma GRO	ND(20)	101	95.5	200	80.0-120	5.6	#	88.6	96.0	200	80.0-120	8.00	20.0	μg/L
Surrogate Data:	()													10-
4-BFB (8015D)	89.9	92.9	92.7	20.0	84.0-121			92.6	92.1	20.0	84.0-121			μg/L
	98.7	92.9 99.6	92.7 99.3	20.0	71.7-132			92.0 98.6	92.1 98.1	20.0	71.7-132			
FLUOROBENZENE (8015D)	98.7	99.0	99.5	20.0	/1./-132			98.0	98.1	20.0	/1./-132			µg/L
QC Batch: 1MS8173	For sam	ple analyze	d on: 06/21/	2016			Spiked san	ple: 160614	73					
BTEX		105		10 -	00.0				100	100	BO 4 117	a		-
Benzene	ND(0.04)	102		10.0	80.0-120		#	112	109	400	79.6-118	2.70	9.8	μg/L
Toluene	ND(0.06)	110.		10.0	80.0-120		#	110.	108	400	89.7-116	1.80	8.0	μg/L
Ethylbenzene	ND(0.1)	114		10.0	80.0-120		#	117 MH	115 MH	400	89.1-114	1.70	6.5	μg/L
m+p-Xylene	ND(0.06)	116		20.0	80.0-120		#	119 MH	117 MH	800	88.6-116	1.70	6.7	μg/L
o-Xylene	ND(0.1)	111		10.0	80.0-120		#	116 MH	112	400	88.3-115	3.50	8.1	μg/L
Surrogate Data:														
1,2-DICHLOROETHANE-d4	98.0	90.6		10.0	74.3-123			106	105	400	74.3-123			μg/L
TOLUENE-d8	104	110.		10.0	80.0-120			110.	110.	400	80.0-120			$\mu g/L$
QC Batch: 1MS8174	For sam	ple analyze	d on: 06/22/	2016			Spiked san	ple: 1606159	99					
BTEX		-						MN	MN			**		
Benzene	ND(0.04)	110.		10.0	80.0-120		#			1000	79.6-118	**	9.8	μg/L
Toluene	ND(0.06)	108		10.0	80.0-120		#			1000	89.7-116	**	8.0	μg/L
Ethylbenzene	ND(0.1)	113		10.0	80.0-120		#			1000	89.1-114	**	6.5	μg/L
m+p-Xylene	ND(0.06)	117		20.0	80.0-120		#			2000	88.6-116	**	6.7	μg/L
o-Xylene	ND(0.0)	111		10.0	80.0-120		#			1000	88.3-115	**	8.1	μg/L μg/L
Surrogate Data:	11D(0.1)	111		10.0	00.0-120		π			1000	30.5-115		0.1	μg/L
Surrogate Data: 1,2-DICHLOROETHANE-d4	109	101		10.0	74.3-123			MN	MN	1000	74.3-123	**		ца/I
1,2-DICHLOKOLINANE-04	109	101		10.0	/4.3-123			IVII N	IVIIN	1000	/+.3-123			μg/L

Quality Control Report Method Blank, LCS, MS/MSD Data

Client: Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103

Page: 27

Date Reported: 07/01/2016 Date Received: 06/17/2016 Pace File No: 8462 Pace Order No: 133938

Analysis	Blank Data	Contro (% Rec LCS	l Sample overy) LCSD	Spike Level	Limits	Control Precisio RPD		-	Sample covery) MSD	Spike Level	Limits	-	d Sample ion Data Limit	Units
QC Batch: 1MS8174	For sam	ple analyze	d on: 06/22/	2016		Sp	iked san	16061 nple:	599					
Surrogate Data:														
TOLUENE-d8	102	107		10.0	80.0-120			MN	MN	1000	80.0-120	**		$\mu g/L$
QC Batch: 1MS9172	For sam	ple analyze	d on: 06/20/	2016		Sp	iked san	19le: 16061	453					
BTEX														
Benzene	ND(0.04)	107		10.0	80.0-120		#	111	110.	10.0	79.6-118	0.90	9.8	μg/L
Toluene	ND(0.06)	112		10.0	80.0-120		#	113	111	10.0	89.7-116	1.80	8.0	μg/L
Ethylbenzene	ND(0.1)	112		10.0	80.0-120		#	110.	112	10.0	89.1-114	1.80	6.5	μg/L
m+p-Xylene	ND(0.06)	111		20.0	80.0-120		#	112	114	20.0	88.6-116	1.80	6.7	μg/L
o-Xylene	ND(0.1)	109		10.0	80.0-120		#	111	114	10.0	88.3-115	2.70	8.1	μg/L
Surrogate Data:														
1,2-DICHLOROETHANE-d4	94.6	95.5		10.0	74.3-123			96.3	99.1	10.0	74.3-123			μg/L
TOLUENE-d8	106	111		10.0	80.0-120			112	108	10.0	80.0-120			μg/L
QC Batch: 2GC2180	For sam	ple analyze	d on: 06/28/	2016		Sp	iked san	19le: 16061	475					
Oklahoma GRO	ND(20)	98.0	98.3	200	80.0-120	0.3	#	93.4	90.1	10000	80.0-120	3.60	20.0	μg/L
Surrogate Data:														
4-BFB (8015D)	91.6	94.2	94.8	20.0	84.0-121			91.7	93.2	1000	84.0-121			μg/L
FLUOROBENZENE (8015D)	98.6	98.0	101	20.0	71.7-132			97.9	99.7	1000	71.7-132			µg/L

Data Qualifiers:

LL - The Laboratory Control Sample (LCS) recovery for this analyte was below the method or laboratory quality control limit. The reported sample concentration may be biased low.

F - MS and/or MSD sample data are not available due to insufficient sample volume.

MH - The matrix spike and/or matrix spike duplicate recovery for this analyte was above the method or laboratory control limit. See LCS data for the basis for acceptance of this sample. The reported sample concentration is estimated.

MN - The MS/MSD sample analyses were not performed on a sample from this Pace order number.

** - RPD calculation not applicable/not available for this analysis.

Quality Control Report Sample Surrogate Data

Client: Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103 Date Reported: 07/01/2016 Date Received: 06/17/2016 Pace File No: 8462 Pace Order No: 133938

Surrogate	Date Date Prepared Analyzed	Spike Level	Units	% Recovery	Acceptable % Limits	
Lab Number: 16061452	Sample Descri	otion: Trip Blank				
GC/FID Volatile	·····	···· · ·				
4-BFB (8015D)	06/21/202	6 20	μg/L	86.0	84.0-121	
FLUOROBENZENE (8015D)	06/21/202	6 20	μg/L	93.7	71.7-132	
BTEX						
1,2-DICHLOROETHANE-d4	06/20/202		μg/L	104	74.3-123	
TOLUENE-d8	06/20/20	16 10	μg/L	107	80.0-120	
Lab Number: 16061453	Sample Descri	otion: WRCUMW-7	(061316)			
GC/FID Volatile	Sumple Descrip		(001010)			
4-BFB (8015D)	06/21/202	6 20	μg/L	89.7	84.0-121	
FLUOROBENZENE (8015D)	06/21/202	16 20	μg/L	96.7	71.7-132	
BTEX						
1,2-DICHLOROETHANE-d4	06/20/202		μg/L	100.	74.3-123	
TOLUENE-d8	06/20/202	16 10	μg/L	107	80.0-120	
Lab Number: 16061454	Samula Descri	otion: WRCDUP1				
GC/FID Volatile	Sample Descrip					
4-BFB (8015D)	06/22/202	16 200	μg/L	92.4	84.0-121	
FLUOROBENZENE (8015D)	06/22/20		μg/L	104	71.7-132	
BTEX						
1,2-DICHLOROETHANE-d4	06/20/202	16 100	μg/L	105	74.3-123	
TOLUENE-d8	06/20/202	16 100	μg/L	105	80.0-120	
Lab Number: 16061455	Somulo Deceni	otion: WRCUMW-4	(061216)			
GC/FID Volatile	Sample Descrip	Juon: WKCUMW-4	(001310)			
4-BFB (8015D)	06/21/202	16 200	μg/L	90.0	84.0-121	
FLUOROBENZENE (8015D)	06/21/20		μg/L	99.5	71.7-132	
BTEX						
1,2-DICHLOROETHANE-d4	06/20/202	16 100	μg/L	101	74.3-123	
TOLUENE-d8	06/20/202	16 100	μg/L	106	80.0-120	
Lab Number: 16061456	Somulo Docori	otion: WRCUMW-5	(061216)			
GC/FID Volatile	Sample Descrip	Juon: WKCOWW-3	(001310)			
4-BFB (8015D)	06/22/202	6 80	μg/L	95.8	84.0-121	
FLUOROBENZENE (8015D)	06/22/20		μg/L	105	71.7-132	
BTEX						
1,2-DICHLOROETHANE-d4	06/21/202		μg/L	98.7	74.3-123	
TOLUENE-d8	06/21/202	16 100	μg/L	109	80.0-120	
Lab Number: 16061457	Somulo Degori	tion WDCUMW 6	(061216)			
GC/FID Volatile	Sample Descrip	otion: WRCUMW-6	(001310)			
4-BFB (8015D)	06/22/202	16 1000	μg/L	95.0	84.0-121	
FLUOROBENZENE (8015D)	06/22/20		μg/L	105	71.7-132	
BTEX			10			
1,2-DICHLOROETHANE-d4	06/20/202	16 2000	μg/L	88.7	74.3-123	
TOLUENE-d8	06/20/20	16 2000	μg/L	106	80.0-120	
Lab Number: 16061458	Samula Dogari	otion: WRCSMW-18	8(061316)			
GC/FID Volatile	Sample Descrip	Juon: WKC5WW-10	0(001310)			
4-BFB (8015D)	06/21/20	16 20	μg/L	89.2	84.0-121	
FLUOROBENZENE (8015D)	06/21/20		μg/L	96.3	71.7-132	
BTEX						
1,2-DICHLOROETHANE-d4	06/20/20	16 10	μg/L	102	74.3-123	

Date Reported: 07/01/2016 Date Received: 06/17/2016 Pace File No: 8462 Pace Order No: 133938

Surrogate		ate nalyzed	Spike Level	Units	% Recovery	Acceptable % Limits
Lab Number: 16061458	Sample	Description: W	RCSMW-18(0613	316)		
BTEX TOLUENE-d8	06	6/20/2016	10	µg/L	107	80.0-120
Lab Number: 16061459 GC/FID Volatile	Sample 1	Description: W	RCSMW-1(0613)	16)		
4-BFB (8015D)	06	6/21/2016	20	μg/L	89.3	84.0-121
FLUOROBENZENE (8015D) BTEX		6/21/2016	20	µg/L	97.1	71.7-132
1,2-DICHLOROETHANE-d4	06	6/20/2016	10	μg/L	103	74.3-123
TOLUENE-d8	06	6/20/2016	10	µg/L	106	80.0-120
Lab Number: 16061460 GC/FID Volatile	Sample 1	Description: W	RCEB(061316)			
4-BFB (8015D)	06	6/21/2016	20	μg/L	89.4	84.0-121
FLUOROBENZENE (8015D) BTEX	06	5/21/2016	20	µg/L	96.8	71.7-132
1,2-DICHLOROETHANE-d4	06	6/20/2016	10	μg/L	100.	74.3-123
TOLUENE-d8	06	6/20/2016	10	µg/L	105	80.0-120
Lab Number: 16061461 GC/FID Volatile	Sample	Description: W	RCUMW-3(0613	16)		
4-BFB (8015D)	06	6/21/2016	20	μg/L	88.4	84.0-121
FLUOROBENZENE (8015D) BTEX	06	6/21/2016	20	µg/L	96.0	71.7-132
1,2-DICHLOROETHANE-d4	06	6/20/2016	10	μg/L	105	74.3-123
TOLUENE-d8	06	6/20/2016	10	µg/L	110.	80.0-120
Lab Number: 16061462 GC/FID Volatile	Sample 1	Description: W	RCUMW-1(0614	16)		
4-BFB (8015D)	06	6/22/2016	20	μg/L	93.1	84.0-121
FLUOROBENZENE (8015D) BTEX		6/22/2016	20	µg/L	98.8	71.7-132
1,2-DICHLOROETHANE-d4	06	6/20/2016	10	μg/L	105	74.3-123
TOLUENE-d8	06	6/20/2016	10	µg/L	108	80.0-120
Lab Number: 16061463 GC/FID Volatile	Sample	Description: W	RCNMW-6(0614	16)		
4-BFB (8015D)	06	6/22/2016	400	μg/L	98.5	84.0-121
FLUOROBENZENE (8015D) BTEX		6/22/2016	400	µg/L	100.	71.7-132
1,2-DICHLOROETHANE-d4	06	6/21/2016	100	μg/L	104	74.3-123
TOLUENE-d8	06	6/21/2016	100	µg/L	109	80.0-120
Lab Number: 16061464 GC/FID Volatile	Sample	Description: W	RCNMW-12(061	416)		
4-BFB (8015D)	06	6/22/2016	2000	μg/L	96.4	84.0-121
FLUOROBENZENE (8015D) BTEX		6/22/2016	2000	μg/L	106	71.7-132
1,2-DICHLOROETHANE-d4		6/21/2016	5000	μg/L	96.1	74.3-123
TOLUENE-d8	06	5/21/2016	5000	μg/L	110.	80.0-120
Lab Number: 16061465 GC/FID Volatile	Sample	Description: W	RC-Martin Pond			
4-BFB (8015D)	06	5/22/2016	20	µg/L	92.9	84.0-121

Date Reported: 07/01/2016 Date Received: 06/17/2016 Pace File No: 8462 Pace Order No: 133938

Surrogate		Date Analyzed	Spike Level	Units	% Recovery	Acceptable % Limits	
Lab Number: 16061465	Sample	Description:	WRC-Martin l	Pond			
GC/FID Volatile	~	F					
FLUOROBENZENE (8015D)	0	6/22/2016	20	μg/L	99.0	71.7-132	
BTEX							
1,2-DICHLOROETHANE-d4	0	6/22/2016	10	μg/L	105	74.3-123	
TOLUENE-d8	0	6/22/2016	10	μg/L	107	80.0-120	
Lab Number: 16061466	Sample	Description:	WRC-S Martin	n Well			
GC/FID Volatile							
4-BFB (8015D)	0	6/22/2016	20	μg/L	91.6	84.0-121	
FLUOROBENZENE (8015D)	0	6/22/2016	20	μg/L	99.2	71.7-132	
BTEX							
1,2-DICHLOROETHANE-d4		6/21/2016	10	μg/L	97.8	74.3-123	
TOLUENE-d8	0	6/21/2016	10	μg/L	104	80.0-120	
Lab Number: 16061467 GC/FID Volatile	Sample	e Description:	WRC-McLaug	hlin Well			
4-BFB (8015D)	0	6/22/2016	20	μg/L	94.0	84.0-121	
FLUOROBENZENE (8015D)		6/22/2016	20	μg/L μg/L	102	71.7-132	
BTEX	Ŭ	0,22,2010	20	µg/1	102	/1./ 152	
1,2-DICHLOROETHANE-d4	0	6/21/2016	10	μg/L	100.	74.3-123	
TOLUENE-d8		6/21/2016	10	μg/L	105	80.0-120	
				10			
Lab Number: 16061468 GC/FID Volatile	Sample	e Description:	WRCSMW-25	(061516)			
4-BFB (8015D)	0	6/22/2016	20	μg/L	92.1	84.0-121	
FLUOROBENZENE (8015D)		6/22/2016	20 20	μg/L μg/L	100.	71.7-132	
BTEX	0	0/22/2010	20	μg/L	100.	/1./-132	
1,2-DICHLOROETHANE-d4	0	6/21/2016	10	μg/L	97.9	74.3-123	
TOLUENE-d8	0	6/21/2016	10	μg/L	103	80.0-120	
Lab Number: 16061469	Sample	e Description:	WRCBMW-19	(061516)			
GC/FID Volatile				_			
4-BFB (8015D)		6/27/2016	20	μg/L	92.2	84.0-121	
FLUOROBENZENE (8015D) BTEX	0	6/27/2016	20	μg/L	101	71.7-132	
1,2-DICHLOROETHANE-d4	0	6/21/2016	10	μg/L	98.5	74.3-123	
TOLUENE-d8		6/21/2016	10	μg/L	103	80.0-120	
Lab Number: 16061470 GC/FID Volatile	Sample	e Description:	WRCSMW-23	(061516)			
4-BFB (8015D)	0	6/23/2016	20	μg/L	92.9	84.0-121	
FLUOROBENZENE (8015D)	0	6/23/2016	20	μg/L	102	71.7-132	
BTEX							
1,2-DICHLOROETHANE-d4		6/21/2016	10	μg/L	106	74.3-123	
TOLUENE-d8	0	6/21/2016	10	μg/L	102	80.0-120	
Lab Number: 16061471 GC/FID Volatile	Sample	e Description:	WRCBMW-4(061516)			
4-BFB (8015D)	0	6/23/2016	20	μg/L	90.4	84.0-121	
FLUOROBENZENE (8015D)		6/23/2016	20	μg/L	101	71.7-132	
BTEX	Ŭ			r.o			
1,2-DICHLOROETHANE-d4	0	6/21/2016	10	μg/L	98.8	74.3-123	
TOLUENE-d8		6/21/2016	10	μg/L	106	80.0-120	

Quality Control Report Sample Surrogate Data

Client: Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103 Date Reported: 07/01/2016 Date Received: 06/17/2016 Pace File No: 8462 Pace Order No: 133938

Surrogate	Date <u>Prepared</u>	Date Analyzed	Spike Level	Units	% Recovery	Acceptable % Limits	
Lab Number: 16061472	Sami	ple Description:	WRCDUP2				
GC/FID Volatile		FF					
4-BFB (8015D)		06/23/2016	20	μg/L	84.0	84.0-121	
FLUOROBENZENE (8015D)		06/23/2016	20	μg/L	97.6	71.7-132	
BTEX							
1,2-DICHLOROETHANE-d4		06/21/2016	10	μg/L	102	74.3-123	
TOLUENE-d8		06/21/2016	10	µg/L	103	80.0-120	
	a						
Lab Number: 16061473	Samj	ple Description:	WRCBMW-25	(061516)			
GC/FID Volatile 4-BFB (8015D)		06/22/2016	200	Л	02.0	84.0.121	
4-BFB (8015D) FLUOROBENZENE (8015D)		06/23/2016 06/23/2016	200 200	μg/L ug/I	92.0 102	84.0-121 71.7-132	
BTEX		00/23/2010	200	µg/L	102	/1./-132	
1,2-DICHLOROETHANE-d4		06/21/2016	400	µg/L	108	74.3-123	
TOLUENE-d8		06/21/2016	400	μg/L	102	80.0-120	
				10			
Lab Number: 16061474	Samj	ple Description:	WRCBMW-20	A(061616)			
GC/FID Volatile							
4-BFB (8015D)		06/23/2016	20	μg/L	90.1	84.0-121	
FLUOROBENZENE (8015D)		06/23/2016	20	µg/L	98.2	71.7-132	
BTEX 1,2-DICHLOROETHANE-d4		06/22/2016	10	ug/I	112	74.3-123	
TOLUENE-d8		06/22/2016	10	μg/L μg/L	102	80.0-120	
TOLOENE-00		00/22/2010	10	µg/L	102	80.0-120	
Lab Number: 16061475	Samj	ple Description:	WRCBMW-26	(061616)			
GC/FID Volatile							
4-BFB (8015D)		06/28/2016	1000	μg/L	96.0	84.0-121	
FLUOROBENZENE (8015D)		06/28/2016	1000	μg/L	103	71.7-132	
BTEX							
1,2-DICHLOROETHANE-d4		06/22/2016	2000	μg/L	112	74.3-123	
TOLUENE-d8		06/22/2016	2000	µg/L	103	80.0-120	
Lab Number: 16061476	Sami	ple Description:	WRCSMW.24	(061616)			
GC/FID Volatile	Sum	pie Description.		(001010)			
4-BFB (8015D)		06/23/2016	20	μg/L	92.3	84.0-121	
FLUOROBENZENE (8015D)		06/23/2016	20	μg/L	101	71.7-132	
BTEX				10			
1,2-DICHLOROETHANE-d4		06/22/2016	10	μg/L	112	74.3-123	
TOLUENE-d8		06/22/2016	10	µg/L	101	80.0-120	
	7						
Lab Number: 16061477	Samj	ple Description:	WRCSMW-2(0)61616)			
GC/FID Volatile		06/23/2016	20		92.7	84.0-121	
4-BFB (8015D) FLUOROBENZENE (8015D)		06/23/2016	20 20	μg/L μg/Ι	92.7 100.	71.7-132	
BTEX		00/23/2010	20	µg/L	100.	/1./-132	
1.2-DICHLOROETHANE-d4		06/22/2016	10	µg/L	113	74.3-123	
TOLUENE-d8		06/22/2016	10	μg/L	102	80.0-120	
		00,22,2010	10	µB, 23	102	000 120	
Lab Number: 16061478	Samj	ple Description:	WRCBMW-28	(061616)			
GC/FID Volatile							
4-BFB (8015D)		06/23/2016	20	µg/L	92.7	84.0-121	
FLUOROBENZENE (8015D)		06/23/2016	20	µg/L	102	71.7-132	
BTEX				_			
1,2-DICHLOROETHANE-d4		06/22/2016	10	μg/L	110.	74.3-123	

Quality Control Report Sample Surrogate Data

Client: Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103 Page: 32

Date Reported: 07/01/2016 Date Received: 06/17/2016 Pace File No: 8462 Pace Order No: 133938

Surrogate	Date Prepared	Date Analyzed	Spike Level	Units	% Recovery	Acceptable % Limits	
Lab Number: 16061478	Sa	mple Description:	WRCBMW-2	28(061616)			
BTEX TOLUENE-d8		06/22/2016	10	μg/L	104	80.0-120	
Lab Number: 16061479 GC/FID Volatile	Sa	mple Description:	WRCBMW-2	27(061616)			
4-BFB (8015D)		06/23/2016	20	μg/L	93.6	84.0-121	
FLUOROBENZENE (8015D)		06/23/2016	20	μg/L	102	71.7-132	
BTEX		06/00/2016	10	α	104	74.2.122	
1,2-DICHLOROETHANE-d4 TOLUENE-d8		06/22/2016 06/22/2016	10 10	μg/L μg/L	104 105	74.3-123 80.0-120	

Quality Control Report Continuing Calibration Report

Client: Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103 Page: 33

Date Reported: 07/01/2016 Date Received: 06/17/2016 Pace File No: 8462 Pace Order No: 133938

	Date of	Instrument	Amount in Amount Percent
<u>Analysis</u>	<u>Analysis</u>	Batch ID	Standard Detected Units Recovery
Oklahoma GRO	06/21/2016	1GC2173	CCV recovery acceptable for this Instrument Batch.
Oklahoma GRO	06/21/2016	2GC2173	CCV recovery acceptable for this Instrument Batch.
Oklahoma GRO	06/22/2016	1GC2174	CCV recovery acceptable for this Instrument Batch.
Oklahoma GRO	06/22/2016	2GC2174	CCV recovery acceptable for this Instrument Batch.
Oklahoma GRO	06/23/2016	1GC2175	CCV recovery acceptable for this Instrument Batch.
Oklahoma GRO	06/23/2016	2GC2175	CCV recovery acceptable for this Instrument Batch.
Oklahoma GRO	06/27/2016	1GC2179	CCV recovery acceptable for this Instrument Batch.
Oklahoma GRO	06/27/2016	2GC2179	CCV recovery acceptable for this Instrument Batch.
Oklahoma GRO	06/28/2016	2GC2180	CCV recovery acceptable for this Instrument Batch.
Oklahoma GRO	06/28/2016	3GC2180	CCV recovery acceptable for this Instrument Batch.
Oklahoma DRO	06/26/2016	2EX4178	CCV recovery acceptable for this Instrument Batch.
Oklahoma DRO	06/27/2016	3EX4178	CCV recovery acceptable for this Instrument Batch.
Oklahoma DRO	06/27/2016	4EX4178	CCV recovery acceptable for this Instrument Batch.
Oklahoma DRO	06/27/2016	5EX4178	CCV recovery acceptable for this Instrument Batch.
Oklahoma DRO	06/28/2016	6EX4178	CCV recovery acceptable for this Instrument Batch.
BTEX	06/21/2016	1MS8173	CCV recovery acceptable for this Instrument Batch.
BTEX	06/21/2016	2MS8173	CCV recovery acceptable for this Instrument Batch.
BTEX	06/22/2016	3MS8173	CCV recovery acceptable for this Instrument Batch.
BTEX	06/22/2016	1MS8174	CCV recovery acceptable for this Instrument Batch.
BTEX	06/23/2016	2MS8174	CCV recovery acceptable for this Instrument Batch.
BTEX	06/20/2016	1MS9172	CCV recovery acceptable for this Instrument Batch.
BTEX	06/21/2016	2MS9172	CCV recovery acceptable for this Instrument Batch.

			OLICY	INCE PO	CEPTA	SAMPLE AC	INENTAL:) CONT	ACHEI	THE ATT	PLEASE NOTE THE ATTACHED CONTINENTAL SAMPLE ACCEPTANCE POLICY	PL		91005151 Du "annund" Dam spinannat "900 mm 200 000 B
	SEAL DATE:					AIRBILL:	NO VI		776	(1)				- Konnart Kathe
	SEAL #:					SHIPPED VIA:				DATE:				HALEN AND AND AND AND AND AND AND AND AND AN
							S N	7	n	N/N				GAN K
TIME	DATE	۱		١	-	Generation of the		TIME:		DATE:		N	C	RELINGUSTED BY:
Š	$\frac{r}{v}$		N		<u> </u>		(255	-	ē	91-11-9		N		(124)
記述	DALE: 1					RECEIVED BY:		TIME:	:	J NTE		١		RELINQUERED BY
jač ježi	omeroand. Rash & Emergency subject to additional theory) Rash TAP: (5 working days) Emergency TAP: (5 working days)		(Please note if non-standard t dand TAT- (13 working days)	(Plea Second 1		A IMW	LE-Non RCRA JMW	•	2 =Other,	sludge,	r, <u>SL</u> =503 Shudge,	D=Drinking Water,	D= Dri	Regulatory Program: <u>N</u> =NPDES, <u>R</u> =RCRA,
	wher,	Liquid, 0=0ther,	OL= Oil/Organic Liquid,		A≃Air,	SL=Sludge,	S-Solid/Soil,		W=Wipe,		WW=Waste Water,	GW=Ground Water,	G₩=Gro	Matrix (Sample Type): DW=Drinking Water,
			X	X	X			- <u></u>	ີ ດ	1449	Jun 13, 2016	¢	GW	WRCUMW-3(061316)
WRC Lub DI Water			×		<u> </u>			•	6	1445	Jun 13, 2016	¢	•	WRCEB(061316)
				×	×				ĥ	14 8	Jun 13, 2016	0	GW	WRCSMW-1(061316)
			X	×	×				6	13:27	Jun 13, 2016	0	GW	WRCSMW-18(061316)
			×		×			 	¢	11:32	Jun 13, 2016	0	GW	WRCUMW-6(061316)
			X	X	×				Ġ	10,44	Jun 13, 2016	0	GW	WRCUMW-5(061316)
			X	X	X			8 8	۵.	10:05	Jun 13, 2016	0	GW	WRCUMW-4(061316)
Duplicate			X	X	×			*	۵	10:05	Jun 13, 2016	o	GW	WRCDUPI
			X	X	\times				<u>ہ</u>	915	Jun 13, 2016	0	GW	WRCUMW-7(061316)
, .			×	×	X			\$ \$	6	915	Jun 13, 2016	٥	GW	WRCUMW-7 MS/MSD
Provided by lab			×					* *	â	830	Jun 13, 2016	0	0	TRIP BLANK
							N# HN H25		0	Ĩ	Strengted	Begalatory Program	(Sample Type)	SAMPLE EDENTIFICATION
			(verden de	Okiahoma (Okiabor	BTEX	NE S	07 Preserve	italioens I	empresito -Grab Fotal) (, ox	Project Name: WRC Perimeter Wells WRC Wynnewood, OK
	Ð		nge 1.2444		(8020/		inger.	Purchase Order Number.	Purchas	八 		11 2	Sumpler's Name (Sig	ns / Company:(Printed) tey CVR Energy
	140		, lavin		3015)-		Fax Number:	Fax 7			Phone Number: 913-982-0457)		Phone Number For Number 9 3-982-0457
6			/4100)*		3x gluss	:					E-mail;		WIENERSY.	E-mail: sanccomick@evrenergy.com/jdmesorley@evrenergy.com
-		Discrepa	τ ν (μηθ	-	40 ml v						Conso: Sans McCormick			connar Sant McCormick / Jerome McSorley
			₽ 16(k		riais (H¢	66103 249		saac: Kanses			Cays Kansas City		66103	City Kansas
			106)		CL)			Suite 2	cke Dr	ridge Cin	10 East Cambridge Circle Dr. / Suite 250			ast Cambridge Circle Dr. / Suite 250
				L)					E	esottices,	Address:			Address
									5		Company Name:	-		Company Name:
COMMENTS	E (preservative)	PARAMETERS/CONTAINER TYPE (preservative)	METERSICO	PAR				Invoice Information	woice la	Ē				Client/Reporting Information
Page 1 of 3	CHAIN OF CUSTODY RECORD	NUSTODY	CHAIN OF CUSTOI Continental Order Number:	CH/A Conti		-7830	ь, КS 67401 Fai (785)823-7830 ме	h Sireet, Salina, F (800)535-3076 - Fi www.cas-lab.com	8th Street, Salina (800)535-3076 www.cas-lab.cs	_ 2	. (785)827		Service ICI	Analytical Services,

		-	TANCE POLICY	TANCE	ACCEP	SAMPLE	VENTAL	CONTR	ACHED	THE ATT.	PLEASE NOTE THE ATTACHED CONTINENTAL SAMPLE ACCEP	PE	/	'mmeter_PG 2.6.16/2036	HOOCCOC Lass 2016 Princerich WRC Princers, PE 26 16 2016
	SIAL DATE:					AIRBILL:	8		Š	61				A Saw	
	SEAL W	:				SHIPPED VIA		TIME		DATE:					BREENERGENERATION BY
							C	2	ŝ	6171				0	A A
TIME	DATE		Y	Å	N	RECEIVED BY		긢		π			Ň		RELINICATISTICS &Y
1255	6/20	L	6				Ś	12	, C	11-9		ļ	J		
na asini Tuvje:	g days) Emergency LAU (0 works)	tantan () : [5] ann (cún fantan (CI LI V L DAT	Stand		RECEIVED BY:	26	H		DATE		d	ľ	N	
1	argenty subject to additional cher	(Please note if non-southed tempored, Rash & Emergency subject to additional charge)	(Please note a			AIMW	a R=Non RCRA 3MW		0-Othar	Sludge.	SL=503 Sludge.	D=Drinking Water.		DES, RIRCRA.	Regulatory Program: N=NPDES
		OL= Oll Organic Liquid, O=Other,	L= Oil/Or	Air	a -	SL=Sludge,	S=Solid/Soil,		W=Wipe,		WW=Waste Water,	GW=Ground Water,	GW=Gro	BW =Drinking Water,	Matrix (Sample Type); DW
	-		X	Χ	X				6 8	15:04	Jun 15, 2016	0	GW		WRCDUP2
			X	×	×			645	6 	15:04	Juga 15, 2016	0	GW		WRCBMW-4(061516)
			X	X	×			. 00	6 *	33:58	Jun 15, 2016	0	GW		WRCSMW-23(061516)
			Χ	Х	X			60	6 8	11:15	Jun 15 , 2016	0	GW		WRCBMW-19(061516)
			Х	X	×				6 8	10:28	Jun 15, 2016	0	GW		WRCSMW-25(061516)
			Х	X	X			87	G B	11:30	J un 14, 2016	0	GW		WRC-McLaughlin Well
			Х	X	X			8	6 8	11:00	Jun 14, 2016	0	GW		WRC-S Martin Well
Surface Water			Х	Х	Х			-	6 8	10:30	Jun 14, 2016	0	0		WRC-Martin Pond
Deiosized Water			×	×	×	 			ې ۳	9:36	Jun 14, 2016	0	GW		WRCNMW-12(061416)
			X	×	×				다 #	8.53	Jun 14, 2016	0	GW		WRCNMW-6(061416)
			×	×	×				୍ଦ କ	8:15	Jun 14, 2016	¢	GW		WRCUMW-1(061416)
						NO? OTHER:	NaC HING H254	HO	6- 11	Time Sumpled	Base Sempled	Begdater; Pregna	Mairis (Sample Type)	ATION H)	SAMPLE IDENTIFICATION (30 Characters of Key)
			Oklahor	Oklahoma (BTEX	<u>1</u> 81	of Bratery		mposite Grab cent	\bigcup			, OK	Facility Name / Address WRC Wynnewood, OK	Project Name: WRC Perimeter Wells
			ua DRC	GRO (8	(8020/1		nbar:	Purchase Order Number:	Purchase	N	Ŋ	TE Name	Sunnyar		Sampler's Name / Company:(Printed) Jerome McSorley CVR Energy
) (8000	020/80	3015) -		TIDET	Fax Number			Phone Number: 913-982-0457			inst Number	2000 Strader: 913-982-0457
			/8100)	15) - 3)	3x glee								VICALERY	m/jdmcsorley@c	sancoomnick@cvrenergy.com / jdmcsorky/@cvrenergy.com
			- 2x	(gla	1 8 40						D				Famall
			ambe	ss. 40	nıl vi					~	Contact: Sam McCormick			Ę	Contact: Sam McCorntick / Jerome McSorley
			π 11, (F	mi vial	als (HC	66103 2015		State: Kansas			City: Kansas City		66103	Karisas	Cuy: Kansas City
			ICL)	s (HC	1 1L)			Suite 25	cle Dr. /	bridge Cin	10 East Cambridge Circle Dr. / Suite 250		!		10 East Cambridge Circle Dr. / Suite 250
				L)	I ,						Address:				Address:
					 -				E.	esources	Company Name: Cofferville Resources, LLC	<u> </u>			Company Name: Coffeyville Resources, LLC
COMMENTS	(avitavas	PARAMETERS/CONTAINER TYPE (preservative)	ARAMET	5				Ministion	invoice information	F				Client/Reporting Information	
Page 2 of 3	CORD	CHAIN OF CUSTODY RECORD Continental Order Number: 133938	HAIN .	<u>ç</u>		17830	8th Street, Salina, KS 67401 (800)535-3076 Fax (785)823-7830 www.cas-lab.com	kalina, KJ 1076 - Fan 195. com	h Street, Sallina, E 800)535-3076 - F 97ww.ckf-lab.com		. (785)82			Analytical Sci	

Image: Start Ansigned Sciences, LLC: The sector of the Dr. / Subject 2000 Continental Order Number: TSS 75.55 Intermed Control of the Dr. / Subject 2000 The sector of the Dr. / Subject 2000 The Subject 2000 The Subject 2000				CEPOL	(PTAN)	EACCI	SAMPL	ENTAL:	ONEINI	ELED C	EATTAC	NOTE TH	PLEASE NOTE THE ATTACHED CONTINENTAL SAMPLE ACCEPTANCE POLICY			men dr. WRC Primerr PG 36(162015	HEORCOCCURE MIS THE
Inc. (respectivity) (respectivity) <th(respectivity)< th=""> (respectivity)<th></th><th>SEAL DATE:</th><th></th><th></th><th></th><th></th><th>UBILL:</th><th></th><th>27</th><th>N</th><th>ý</th><th>6</th><th></th><th></th><th></th><th></th><th></th></th(respectivity)<>		SEAL DATE:					UBILL:		27	N	ý	6					
Inc. Creating is of order (and any line) Device functional (and any line) Device functional (any line) <thdevice functional<br="">(any li</thdevice>		SEAL #:				5	THE THE	HS	TIME:	ا اب	III A	DA:					NUMBER OF A DESCRIPTION
Construction Unsub Reserved. Served. Served. <ths< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Č"</td><td>K</td><td><u>^</u></td><td>シン</td><td></td><td></td><td>``</td><td>(</td><td></td><td></td></ths<>								Č"	K	<u>^</u>	シン			``	(
Inc. Uspannen Charlos Server, Salam, LSS 69/64 Continental Order Number: Continental Order Number: Server, Salam, LSS 69/64 Computer Name: Involve Information Continental Order Number: Server, Salam, LSS 69/64 Continental Order Number: Server, Salam, LSS 69/64 Computer Name: Involve Information Number: Server, Salam, LSS 69/64 Server, Salam, LSS 69/64 Server, Salam, LSS 69/64 Computer Name: Involve Information Number: Server, Salam, LSS 69/64 Server, Salam, LSS 69/64 Server, Salam, LSS 69/64 Contraint Involve Information Number: Server, Salam, LSS 69/64 Server, Salam, LSS 69/64 Server, Salam, LSS 69/64 Server, Salam, LSS 69/64 Contraint Involve Information Involve Information Server, Salam, LSS 69/64 Server, Salam, LSS 69/64 Server, Salam, LSS 69/64 Contraint Involve Information Involve Information Server, Salam, LSS 69/64 Server, Salam, LSS 69/64 Server, Salam, LSS 69/64 Contraint Involve Information Involve Information Server, Salam, LSS 69/64 Server, Salam, LSS 69/64 Server, Salam, LSS 69/64 Contraint Involve Information Involve Information Server, Salam, LSS 69/64 Server, Salam, LSS 69/64 Server, Salam, LSS 69/64 Contraint Involve Information </td <td></td> <td>DATE:</td> <td></td> <td></td> <td>Å,</td> <td>N</td> <td></td> <td>_</td> <td></td> <td></td> <td> -</td> <td>20</td> <td></td> <td>ψ</td> <td>$\left \right$</td> <td></td> <td>Burnard Instantin BV</td>		DATE:			Å,	N		_			-	20		ψ	$\left \right $		Burnard Instantin BV
Construction Construction Construction Construction Construction Inc. Involve Information Involve Information Involve Information Construction Internet Internet State Zight State Zight Internet Internet State Zight Zight Zight Internet Internet Internet		1.1.		0	•	\mathbf{i}		<u> </u>			<u> </u>					5	1
Inc. Stars Min Shoret, Shalan, NS Shoret, Shalan, Sha	3 working dapa) TRAIE:	(5 working days) Emergency TAT: 6 DATE:	(15 working days) - Baste TAT:	undied EAT:	5	×	A IMW					L=SO3 SIM		Finking W		N=NPDES,	Regulatory Program:
Channel Company Name: Three Holomation For Water Advance Continental Oder Number: Continental Oder Number:<	al dan ge)	Ruch & Emergency subject to addition	We if non-standard turnary and B	()Heaters		1											Sinting (Semilar of hele
Inc. Stark Min Street, Salara, NS 67641 Continental Oder Number: Continental Oder Number: Continental Oder Number: Continental Oder Number: Street, Salara, NS 67641 Inc.		Other,		01/= 0i					S=Sol	ŝ	- H	√≂Waste W	ſ	mund Wah	- H		Matrit (Sample To
CLAIN OF CUSTODY RECORD INC. CHAIN OF CUSTODY RECORD Configuration Invoice lifemuidat																	

Continuental Amplettics	I Campiego Inc	CAS Order No.:
Continental Analytica Cooler/Sample Receip		133938
	Ile Resources	CAS File No.: 8462
Sample ID's in cooler:	ILA TY SUUT (12	
	Blanks	
2-LIA WIRL		
- 21 the WICI	IMUL-7 MS-MS	∕∆
Cooler of	for this CAS Order No.	· · · · · · · · · · · · · · · · · · ·
Cooler Identification:	•	Client's Cooler / Box / Letter / Hand-delivered
Date/Time Cooler Received:	6.17.11c	·
Delivered By:		d Svor/ Mail / Walk-In / Other:
Custody Seal:	Present: Intact / Broken Al	beent: Seal No:
	Seal Name:	Seal Date:
	Seal matches Chain of Custody	y: Yes / No / NA
Type of Packing Material:	Blue Ice / Ce Melted Ice 🕫	ubble/ Foam / Paper / Peanuts / Vermiculite / None / Other
Cooler Temperature (°C):	Original Reading (°C)	✓.8 Corrected Reading (°C)
SKK. (-17-16	Temperature. By: Temperat Thermo. ID No.:	ture Blank Surface Temperature Thermo. Correction Factor (°C):
6777-	Evidence of Cooling and o	х
C-mala Dessint Dise		(See below for discrepancies.)
Note: If discrepancies are	present, CAS will proceed v	vith analyses until/unless directed otherwise by the client.
Chain of Custody not pre	esent - information taken from:	Sample excluded from Chain of Custody
Cover Letter		Sample listed on Chain of Custody, not received
PO 🗖	CAS Proj. Mgr. 🛛	Sample identification on container and Chain of Custody do not agree
Container label absent		Air bubbles in Aqueous VOA vials larger than pea-size [approx. 6 mm]
Chain of Custody incomp	plete [see detail below] iste/time sampled (excl. TB or Dup.	Cooler temperature exceeded 0.1 - 6.0 °C requirement [Do not mark if samples do not require cooling to 0.1 - 6.0 °C.]
Date or Time sampled obta		 Broken or leaking containers (detail actions below)
Chain of Custody missin		Sample container type or labeled chemical preservation inappropriate
Chain of Custody missin	• •	Other discrepancies:
Missing relinquished inf	ormation: signature date tin	ne
Detail to discrepancies/comr.	nents:	
		· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	
·	<u> </u>	
Str.	Date Completed:	-17-11-
Completed by:	Date Completed:	<u> </u>

Continental Analytical Cooler/Sample Receipt			CAS Order No.: 13373 &
	14 Resources		CAS File No.: 8462
Sample ID's in cooler.			
WRCBMW	-24 (2LA) W	RC	LANW-27 (2LA)
	-201A(211A) W		SHW-2 (22A)
WRCSMW)-24(2LA)		
WRCBMI	P-28(21A)		
· · · · · · · · ·	<u>-</u>		· · · · · · · · · · · · · · · · · · ·
Cooler of			
Cooler Identification:	Other:		/ Client's Cooler / Box / Letter / Hand-delivered
Date/Time Cooler Received:	<u>le: 17:16</u>		
Delivered By:	UPS / FedX / AB Express / Fig	ri Sv	/ Mail / Walk-In / Other:
Custody Seal:	Present: Intact / Broken Ab	sent:	Seal No:
l ¹ .			Scal Date:
	Seal matches Chain of Custody:		
Type of Packing Material:			Foam / Paper / Peanuts / Vermiculite / None / Other:
Cooler Temperature (°C):	÷ –		Z Corrected Reading (°C) 2.8
SKK.	Temperature. By: Pemperatu Thermo. ID No.: 58	ue B	Surface Temperature Thermo. Correction Factor (°C):
	Evidence of Cooling and da		
Samula Receipt Discours			e below for discrepancies.)
-			
		ith a	nalyses until/unless directed otherwise by the client.
	sent - information taken from:		Sample excluded from Chain of Custody
Cover Letter D PO D	Container 🗖 CAS Proj. Mgr. 🗖		Sample listed on Chain of Custody, not received Sample identification on container and Chain of Custody do not agree
Container label absent			Air bubbles in Aqueous VOA vials larger than pea-size [approx, 6 mm]
Chain of Custody incomp	lete (see detail below)	σ	Cooler temperature exceeded 0.1 - 6.0 °C requirement
Chain of Custody missing da	ate/time sampled (excl. TB or Dup.)	_	[Do not mark if samples do not require cooling to 0.1 - 6.0 °C.]
Date or Time sampled obtain			
Chain of Custody missing	·· ·		Sample container type or labeled chemical preservation inappropriate Other discrepancies:
	g matrix (sample type) ormation: signature date time	_	
Detail to discrepancies/comm	Ť	_	· · · · · · · · · · · · · · · · · · ·
	· · · · ·		
·	·		
Completed by:	Date Completed:	<u>,-/</u>	

Continental Analytical Service Cooler/Sample Receipt Form (-	CAS Order No.: 133938
Client Name of Gyuille A	SJ SOURCES	
Sample ID's in cooler: VOCS	· · · · · · · · · · · · · · · · · · ·	
WRCEB->2LA		
		· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·
Cooler of for this	CAS Order No.	
		/ Client's Cooler / Box / Letter / Hand-delivered
Date/Time Cooler Received:/	17 1/2 1	7.50
Delivered By: UPS / Fed	X / AB Express / Field S	202/ Mail / Walk-In / Other:
Custody Seal: Present: In	itact / Broken Absent	Seal No:
- Seal Name	: 	Seal Date:
Seal match	es Chain of Custody: Y	7es / No / N
		Foam / Paper / Peanuts / Vermiculite / None / Other:
Cooler Temperature (°C): Original R	- eading (°C) 3 , (Corrected Reading (°C)
Temperate	ire. By: Temperature B	Into Surface Temperature
6-17-16 Thermo. I	DNo.: 385	Thermo. Correction Factor (°C):
🗆 Evide	nce of Cooling and date r	eceived = date sampled
Sample Receipt Discrepancies:	KNO TYES -71	ee below for discrepancies.)
Note: If discrepancies are present, C	AS will proceed with a	nalyses until/unless directed otherwise by the client.
Chain of Custody not present - inform		
Cover Letter 🖾 Container	_	
PO D CAS Proj. j	Mgr. 📮 👘 🖓	Sample identification on container and Chain of Custody do not agree
Container label absent		Air bubbles in Aqueous VOA vials larger than pea-size [approx. 6 mm]
Chain of Custody incomplete [see det	ail below]	Cooler temperature exceeded 0.1 - 6.0 °C requirement
Chain of Custody missing date/time sam		[Do not mark if samples do not require cooling to 0.1 - 6.0 °C.]
Date or Time sampled obtained from con		Broken or leaking containers (detail actions below) Sample container type or labeled chemical preservation inappropriate
Chain of Custody missing sampler's to Chain of Custody missing matrix (sam		Other discrepancies:
 Missing relinquished information: s 		
Detail to discrepancies/comments:	• · · ·	

2-VOCWRC	umi-le	
1-VOC WIRCS	1W-24	
Completed by: SCR	Date Completed: 6-1	7-16

Continental Analytica	1 Services. Inc.		CAS Order No.:
Cooler/Sample Receip			133938
	The Resources	5	
Sample ID's in cooler:	ILE MASQUICE		······································
2.170 1.00.	Bin 11-10	, <u>,</u> ,	2-LTAWACBMW-4
A JARA WEGI	DM11-25.		2114 WICSMW-23
	MN-25		
	NUP2		
Cooler 4 of 6	for this CAS Order No.		
Cooler Identification:	CAS Cooler #: 3/89		/ Client's Cooler / Box / Letter / Hand-delivered
	Other:	 •. •	7 60
Date/Time Cooler Received:	<u>le: 17:16</u>		
Delivered By:	UPS / FedX / AB Express / Fi	ud Sv	Mail / Walk-In / Other:
Custody Seal:	Present: Intact / Broken Al	bsent;	Seal No:
			Seal Date:
	Seal matches Chain of Custody		-
Type of Packing Material:			/ Foam / Paper / Peanuts / Vermiculite / None / Other:
Cooler Temperature (°C):			Corrected Reading (°C) <u>1.4</u>
SKK. 1-17-16	Temperature, By: Pemperat Thermo. ID No.:	ure B	Lank Surface Temperature Thermo. Correction Factor (°C):
	Evidence of Cooling and c	-	
Cample Dessiet Diam			ee below for discrepancies.)
· ·	· .		
Note: If discrepancies are	present, CAS will proceed w	vith a	unalyses until/unless directed otherwise by the client.
Chain of Custody not pre	esent - information taken from:		Sample excluded from Chain of Custody
Cover Letter	Container 🗆		Sample listed on Chain of Custody, not received
РОП	CAS Proj. Mgr. 📮		Sample identification on container and Chain of Custody do not agree
Container label absent	Naka Fase di Città di Città		Air bubbles in Aqueous VOA vials larger than pea-size [approx. 6 mm]
Chain of Custody incomp	plete [see detail below] date/time sampled (excl. TB or Dup.]	, U	Cooler temperature exceeded 0.1 - 6.0 °C requirement [Do not mark if samples do not require cooling to 0.1 - 6.0 °C.]
 Chain of Custody missing d Date or Time sampled obta 	•	.) D	
Chain of Custody missin			Sample container type or labeled chemical preservation inappropriate
Chain of Custody missin			Other discrepancies:
Missing relinquished inf	formation: signature date tim	ne	
Detail to discrepancies/comm	nents:		
	· · · ·		
	<u> </u>		
· · · · · · · · · · · · · · · · · · ·		-	
_	<u></u> -	u	
	Date Completed:		7-1/-
Completed by:	Date Completed:		<u></u>
· · ·		_	· · · · · · · · · · · · · · · · · · ·

Continental Analytics	al Services, Inc.	CAS Order No.;
Cooler/Sample Receip		<u> </u>
Client Name of Gyu	ille Resources	CAS File No.: 8467_
Sample ID's in cooler.		
WRCDUPL >	(2LA) WR	CSMW-18-X 2LA)
	$\dot{\rho} \rightarrow (2 LA) = \omega R$	2CSHW-1→(2LA)
WECUMW-3	→ (B1LA)	· · · · · · · · · · · · · · · · · · ·
WP.CUMW-1	<u>2 2(2(A)</u>	
Cooler of	for this CAS Order No.	
Cooler Identification:		/ Client's Cooler / Box / Letter / Hand-delivered
Date/Time Cooler Received:	Other:	17.50
		A Syco/ Mail / Walk-In / Other:
Delivered By:		sent: Seal No:
Custody Seal:	<u>rresent</u> ; intact / broken AD	sent:
	Seal matches Chain of Custody	-
Type of Packing Material:	· · · · · · · · · · · · · · · · · · ·	bble / Foam / Paper / Peanuts / Vermiculite / None / Other:
Cooler Temperature (°C):		3. / Corrected Reading (°C) <u>3. Ø</u>
Cooler Temperature (C).	• •	rre Blank Surface Temperature
1 strale	Thermo, ID No.:	Thermo. Correction Factor (°C):
6777-	Evidence of Cooling and d	
o de Receint Disser		(See below for discrepancies.)
		·
Note: If discrepancies ar	e present, CAS will proceed w	ith analyses until/unless directed otherwise by the client.
Chain of Custody not pr	resent - information taken from:	Sample excluded from Chain of Custody
Cover Letter	Container 🛛	Sample listed on Chain of Custody, not received
PO D	CAS Proj. Mgr. 🗖	 Sample identification on container and Chain of Custody do not agree Air bubbles in Aqueous VOA vials larger than pea-size fannors 6 mm
Container label absent	plete [see detail below]	 Air bubbles in Aqueous VOA vials larger than pea-size [approx. 6 mn Cooler temperature exceeded 0.1 - 6.0 °C requirement
	date/time sampled (excl. TB or Dup.)	
	tained from container label	Broken or leaking containers (detail actions below)
Chain of Custody missi		Sample container type or labeled chemical preservation inappropriat
Chain of Custody missi	ng matrix (sample type)	Other discrepancies:
Missing relinquished in	formation: signature date time	e
Detail to discrepancies/com	unents:	
	· · · · · ·	
		-
Completed by:	Date Completed:	
· · · · · · · · · · · · · · · ·		

Continental Analytica	l Services, Inc.	CA\$ Order No.3
Cooler/Sample Receip		CAS Order No.: 133938
Client Name of Gyu	ille Resource	s CAS File No.: 8462
Sample ID's in cooler.	·	
2-1 TA. WRC.	NMW-6 ,2-LT	A- WILC-MALTIN Kongel, 2-1TA. WEL
Milaughin wa	11 21 th. WRC	2-LTA THEAT WEENMW-12
2-LTA. WIC.	SMANIN WOIL	2-LIA THECKENT WECNMW-12
Cooler Cooler	2 for this CAS Order No.	
Cooler Identification:	CAS Cooler #: Other:	/ Client's Cooler / Box / Letter / Hand-delivered
Date/Time Cooler Received:	6,17,16	
Delivered By:		
-		peent: Seal No:
	Seal Name	Seal Date:
	Seal matches Chain of Custody	
Type of Packing Material:		Bole / Foam / Paper / Peanuts / Vermiculite / None / Other:
Cooler Temperature (°C):		3.7 Corrected Reading (°C) 2.6
Couler Temperature (C).	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •
1.1716	Thermo ID No :	ure Blank Surface Temperature Thermo, Correction Factor (°C):
GALLE	Evidence of Cooling and d	
		6
Sample Receipt Discrepa	ancies: INO Tes	(See below for discrepancies.)
Note: If discrepancies are	present CAS will proceed w	ith analyses until/unless directed otherwise by the client.
	sent - information taken from:	Sample excluded from Chain of Custody
Cover Letter	Container	Sample listed on Chain of Custody, not received
POD	CAS Proj. Mgr.	 Sample identification on container and Chain of Custody do not agree
Container label absent	· • .	- Air bubbles in Aqueous VOA vials larger than pea-size [approx. 6 mm]
Chain of Custody incomp	lete [see detail below]	Cooler temperature exceeded 0.1 - 6.0 °C requirement
Chain of Custody missing da	ate/time sampled (excl. TB or Dup.)	[Do not mark if samples do not require cooling to 0.1 - 6.0 °C.]
Date or Time sampled obtain		Broken or leaking containers (detail actions below)
Chain of Custody missing	•	Sample container type or labeled chemical preservation inappropriate
Chain of Custody missing	• • • • •	Other discrepancies:
	ermation: signature date tim	e
Detail to discrepancies/comm	ents:	
2.11110	<u> </u>	- Frither Landle
- ~ VUC W/	camai-to A	Cheller W.
· · · · · · · · · · · · · · · · · · ·	,,,,,	
Str.	Date Completed:	-17-11-
Completed by:	Date Completed:	· · · · · · · · · · · · · · · · · · ·

Appendix 2.3.B – Groundwater Sampling Field Logs for January 1 through June 30, 2016 Events

	WRC - Wynnewood, OK AARON GILBERT (KPS) Jerome McSorley. Evan Hillburn
Date/Time	Description of Activities
6-13-16 0750	CUR UNSITE TO LOCATE AND ORGANIZE LAB COOLERS MD BOTTLES,
OBac	451 CALIBRATED - NO OUT OF RALER 50
*0830	TRIP BLANK APPED TO COOLERS
0840	* PACE SUPPLIED PREFILLED BOTTLES (9 FOTT) BEGIN PERIMETER WELL SAMPLING.
0850	BEGIN PURGE AT UMW-7
*0915	
*	*MS/MSD COLLECTED (9 BOTTLES)
0940	BEGIN PURGE AT UMW 4
* 1005	SAMPLE: WRCHMW-4/061316)
*1005	SAMPLE: WREDUPI
	DUPLICATE OF UMW-4
1025	BEGIN PURGE AT UMW-5
* 1044	SAMPLE: WREUMW-5(061316)
1100	BEGIN PURGE AT UMW-60
# 1132	SAMPLE: WRC UMW6 (001316)
11:45-12:3	0 - 41- 6 1-1
1230	MOB TO OBTAIN PERMIT AT ASPITALT BLELDER
1305	BEGIN PURCE AT JAW-18
* 1327	SAMPLE : MARCHANA WRC SMW-18 (061316)
1340	BEGIN PURIOE AT SMW-1

16

10

H:/LYB/KANSAS/CFFYVIL/2010 Revised_FIELD FORMS_WRC.xlsx...Daily Log

Site Location	WRC-Wynnewood, OK AARE- GILBERT (KPS)
Prepared By _	AAREN GILBERT (KPS) Jerome McSorley, Evan Hillburg
Date/Time	Description of Activities
6-13-16 1400	SAMPLE: WRC SMW-1 (061316)
1410	SIGN OUT AT ASPIMIT BLENDER
1430	BEGIN PURGE AT UMW-3
1445	EQUIPMENT BLANK COLLECTED FROM INTERFACE
	PROBE USING WECLAB DI WATER.
¥	10: WRCEB (061316)
1449	SAMPLE: WEGUMW-3 (061316)
1510	MOB TO V-DITCH WASTH PAD FOR PURGE WATER
	DISPOJAL.
1530	MOD TO WAC LAB FOR ICE
1540	COOLERS PACKED MO STORED OVERNIGHT
1600	CUR/KPS OPFSTIFE.
10-14-16 0720	CUR INSTRE TO CONTINUE SAMPLING. MRET KPS
	AND LOAD COOLERS MO EQUIPTMENT.
0745	PERMIT OBTAINED AT LIGHT OILS
0755	BEGIN PURGE AT UMW-1
0815	SAMPLE ! WRCUMW-1 (061416)
0830	BEGIN PURGE AT NMW-6 - VERYLOWFLOW DUE TO
	FREE PRODUCT ABOVE PUMP - (164 @ PREPURGE)
0853	SIMPLE: UPCNMW-6 (061416)
0910	BEGIN PURGE AT NMW-12 - VERY LOW FLOW DUE TO
	FREE PRODUCT ABOVE PUMP - (ICAL PREPUNGE)
0936	SAMPLE: WACNMW-12 (061416)

Prepared By	Jerome McSorley, Evan Hillburn
Date/Time	Description of Activities
6-14-16 6940	- 1020 RAIN/LIGHTMING DRUNY.
1030	SAMPLE: WRC-MARTIN POND
6011	SAMPLE WRC-MADAGISTOTIC DODOL
1130	SAMPLE WRC- MCLAUGHLIN WELL
1140	MOB TO DISPOSE OF PURGE WATER AT V-DITCH PAD
1150	KPS OFFSTTE
1200	109 ADDED TO COULERS - STORED AT WAL OFFICES
1230	CUR OPPSIDE
6-15-160720	Pre-use Calibration of VSI Machine
the second se	
1028	Begon purge at SMU-25 Collected Somple at SMW-25
	started purge at BMW19
	Collected Sample at BMW-19
1215	went to hunch
	Studied purge at smu-28
1358	SAMPLE: WRC SMW-23 (06/5/6)
1400	NUB TO OBTIMIN PERMIT FOR PLF
1440	BEGIN PURGE AT BMW-4
	SAMPLE: WRC BMW-4 (061516)
1504	SAMPLE' WREDUP 2 - DUPLICATE OF BMW-4
1525	BEGIN PURGE AT BAW-25
	SAMPLE: WRCBMW-25(061516)
1610	MOB TO PACK COOLER ON ICE

H:/LYB/KANSAS/CFFYVIL/2010 Revised_FIELD FORMS_WRC.xlsx...Daily Log

Well(s) PER	21M&TT& R Project/No. Semi-Annual Sampling Page of
Site Location	WRC - Wynnewood, OK
Prepared By_	Jerome McSorley, Evan Hillburn-
Date/Time	Description of Activities
616-16 0720	CUR ONSTITE, KPS IS OBTIMNING AN ATV FOR
	DAMPLING IN HARD TO REACH AMERS. ATU WILL
	BE RELIED FROM KAS. (\$5/HA.).
0800	MOB TO PLF FOR PERMIT
0820	
0853	SAMPLE: WRCBMW-20A (061616)
0910	BEGIN PURCE AT BMW-26 - LOW FLOW (220044)
	DUE TO FREE PRODUCT IN WELL
0930	SAMPLE : WRCBMW-26(001616)
<i>6</i> 945	BOD SIGN OUT AT PLF - OBTAIN PERMIT FOR SMW-24
1005	BEGIN PURGE AT JMW-24
[04]	SAMPLE : WRC &MW-24 (061616)
1050	510N OUT AT TEXONA-NOR TH (STYW-24)
1100	BEGIN PURGE AT SMW-2
1123	SAMPLE: WRCSMW-2 (061616)
1200-130	O Lynch
1340	BEGIN PURGE AT BMW-28
1404	2001014: WROMW-28 (261616)
1415	BEGIN PURGE AT BMW-27
1440	5 MPLE: VIRC BMW-27 (061614)
1510	MOB TO DISPOSE OF PURGE WATER.
1530	MOB TO GET ICE AND PACK COOLERS
1600	CUR/KPS OFFST TR.

H:/LYB/KANSAS/CFFYVIL/2010 Revised_FIELD FORMS_WRC.xlsx...Daily Log

Weather Conditions	Days since last precip. Ø	Air Temp. 72 Wind Sinp	<u>H</u>		
Well ID	UMW-7	UMW-4	UMN-5	umw-6	
Well Inspection (verify co				1	
-Lock		llowing.)	V	1	
-Well Pad	V		V	V	
-Protective Casing	V	V	V	1	
-Well Cap	V V	V	V	1 V	
-Measurement Mark	V	V		1	
-Well Identification	V	V	V	1	
Water Level Date/Time	6-7-16	4-7-16	6-7-16	6-7-16	
Water Level	9.89	10.86	9.91	20.82	
Durgo Start Dato/Timo		0940 14-13-16	1015/6-13-16	1 1	
Purge Start Date/Time	0850/0-13-16			1100 6-13-16	
Temperature	18.42 18.25	19.71 19.66	19.70	19.39 18.79	
(time/reading) C	18.32	19.64	19,54	18.99 19.01	
+/- 0.6	18.29	19.63	19,48	19.01 19.03	
	18.28	19.64	19.48	19.01	
	18.29	19.61	19.47	19.00	
	18.25	19,61	19.45	18.99	
	18.24	19.63	· · · · · · · · · · · · · · · · · · ·	18.98	
Specific	1.027 0.956	1.232 1.231	1.762	1.420 1.215	
Conductance ms/cm3	1,002	1.244	1.798	1.223 1.215	
time/reading)	0.986	1.234	1,804	1.215 1.215	
3%	0.978	1.233	1.809	1.214	
	0.971	1.232	1.811	1.214	
	0.964	1.232	1.8/2	1.214	
	0.959	1.231		1.215	
Dissolved Oxygen	49.1 23.3	26.4 14.0	24.1	9.5 10.0	
time/reading)	38.9	22.0	19.2	8,8 10.3	
10%	33.3	18.8	17.3	9.1 10.5	
	30.5	17.5	16.3	9.3	
	28.3	15.7	16.5	9.4	
	25:7	15.1	16.1	9.7	
	24.3	14.5		9.9	
H	7.17 7.22	7.43 8.17	8.39	8.60 10.46	
time/reading)	7.19	7.83	8.44	8.72 10:40	
+/- 0.2	7.22	8.01	8.49	10.30 10.41	
	7.23	8.08	8.52	10.66	
	7.22	8,12	8.54	10.95	
	7.22	8.16	8.54	10.83	
	7.22	8,17		16.53	
Purge Volume	4 Gral	4 Grai	2 42 Gal		
Sample Date/Time	6-13-16/0915	6-13-16/1005	6-13-16/ 1044	6-13-16/ 1132	
Comments	Purge Rate: 400 Mh MSMSD Collected	Purge Rate: 400 ml Duplicate Collected		Purase Rate: 400 ML	
Deviations from plan e.g., well bailed)					

This form presumes use of dedicated purge/sample pumps and in-line flow cell for data retrieval. Please fully describe any variation from the written sampling plan.

L:\WRC\2012 Investigation\WRC WPQAPP\Attachments\CD_1-30-12_WRC_WPQAPP_Attachments\Attachment E_Fleld Documentation\2010 Revised_FIELD FORMS_WRC.xlsx

Well ID	SMW-18	SmW-1	Umw-3	elmis-1
Well Inspection (verify co	ondition of each of the fo	llowing:)		
-Lock	N			V
-Well Pad	V	1	V	1/
-Protective Casing	Ń	1	V	1
-Well Cap	1	1	V	1
-Measurement Mark	V	1	1	V
-Well Identification	V V		1	V
Water Level Date/Time	6-7-16	6-7-16	6-7-16	6-6-16
Water Level	14.26	14.04	\$129	21.53
Purge Start Date/Time	6-13-16/1305	6-13-16/1340	6-13-16/1430	6-14-16 10755
Temperature	18.54	19.30	20.31	12.92
time a luce a diment 0	18.37	19.21	19.48	18.59
	18.33	19.19	19.74	18.36
+/- 0.6	18.40	19.21	19.87	18.34
	18.39	19.19	19.95	18.83
	18.39	19.22	19.98	18.84
	18:40			
Specific	1.083	1.222	1,237	1.197
Conductance ms/cm3	1.073	1.269	0.938	1.380
time/reading)	1.073	1.272	0.671	1.49
	1.672	1.271	0-640	1.431
3%	1.073	1.271	0.644	1.434
	1.073	1.270	0.654	1.435
	1.073			
Dissolved Oxygen	14.1	8.8	1.89	55.9
time/reading)	11.1	12.4	17.1	50.2
10%	9.9	14.3	16.9	49.7
	9.4	14.9	17.2	49.4
	9.0	15:4	17.2	49.7
	8.9	15.8	17.3	49.7
	8.5			
Н	8.25	7.86	7.70	5.41
ime/reading)	7.96	7.81	7-49	5.84
+/- 0.2	7.92	7.79	7.51	5.99
	7.91	7.76	7.49	6.64
	7.88	7.78	7.46	6.09
	7.87	7.76	7.52	6.11
Purge Volume	4 Gal	2 V2 Gal	212 6191	1 Vz Gral
Sample Date/Time	6-13-16/ 2000 1327	6-13-16/1400	6-13-16/1499	6-14-16/0815
Comments	Purge Rate: 400 ML	Purge Rode: 400 ML	Purge Rote: 400 M.	Puroje Roite: 400 ML

This form presumes use of dedicated purge/sample pumps and in-line flow cell for data retrieval. Please fully describe any variation from the written sampling plan.

L:\WRC\2012 Investigation\WRC WPQAPP\Attachments\CD_1-30-12_WRC_WPQAPP_Attachments\Attachment E_Field Documentation\2010 Revised_FIELD FORMS_WRC.xlsx

Weather Conditions	Days since last precip.	Air Temp. 69° Wind 31		1		
Well ID	NMW-12	Almus-6	MARTIN POND	5 MARTIN WE		
Well Inspection (verify co	ondition of each of the fo	bllowing:)				
-Lock	1	V				
-Well Pad	V	V				
-Protective Casing	V	1				
-Well Cap		V				
-Measurement Mark	V	V				
-Well Identification		V				
Water Level Date/Time	6-6-16	6-6-16	A			
Water Level	20.43	19.29		14		
Purge Start Date/Time	6-14-16/0910	6-14-16/0830				
Temperature	19.93	19.53				
time/reading) °C	19.28	19:76				
+/- 0.6	19.14	20.48				
	19.09	20.46	+ +			
	19.06	20.41				
		20.37	<u> </u>			
		20.37				
Specific	1.675	1.437				
Conductance ms/cm3	1.475	1.436				
time/reading)	1.420	1.639				
3%	1.410	1.659				
3%	1,402	1.677				
	A THUS IN SHORE A	1,691		1		
		1.698		1		
	a. /					
Dissolved Oxygen	38.4	52.7				
time/reading)	32.9	34.9				
10%	31.1	37.6				
	31.5	35.0				
	36-4	32.4				
		34.3				
		21.9	1			
H	7.30	6.31				
ime/reading)	8.03	6.45				
+/- 0.2	8.21	7.30				
	8.28	7.31				
	8.27	7.34				
4		7.46	· · · · · · · · · · · · · · · · · · ·	in the second		
		7.49				
urge Volume	2. End .	2 bral	V,	¥,		
ample Date/Time	6-14-16/0936	6-14-16/0853	6-14-16 / 1030	6-14-16/1100		
Comments	Puraje Roche ; 200 MG	Purge Rate: Zeo ML	VIN BAILER	HOUSE WELL HOSE CONNEL		
Deviations from plan e.g., well bailed)						

This form presumes use of dedicated purge/sample pumps and in-line flow cell for data retrieval. Please fully describe any variation from the written sampling plan.

L:WRC/2012 Investigation/WRC WPQAPP/Attachments/CD_1-30-12_WRC_WPQAPP_Attachments/Attachment E_Field Documentation/2010 Revised_FIELD FORMS_WRC.xlsx

	Aller	111.111.111		0.00	
Well ID	MCLAUGHLIN WA	4 SMD	-25	BMN-19	Smu - 23
Well Inspection (verify c	ondition of each of the fo	ollowing:)			·
-Lock		V	/		XX
-Well Pad		2	/		X
-Protective Casing		1	7	/	V
-Well Cap -Measurement Mark	1	V /	~	× v	1
-Well Identification	the second second	V			V
		V		V	N N
Water Level Date/Time		6-7-	-16	6-8-16	6-8-14
Water Level	1	7.4	15	5.59	6.76
Purge Start Date/Time		0955/	6-15-16	1050/6-15-16	6-15-16/ 1830
Temperature		18,97	18.82	19.12	20.44
(time/reading) °C		18.80	18.81	19.18	20.15
+/- 0.6		18.51		19.20	20.13
		18.81		19.20	20,18
		18.84		19.15	26.19
		18.80		19.33	20.18
		18.79	-		
Specific		0.243	0.235	0.656	2.698
Conductance ms/cm3		0.229	0.237	0.905	2.653
time/reading)		0.227		0.907	2.624
3%		C.225		0.905	2.608
570		0.227		0.904	2.596
		0.228		0.903	2.591
		0.231			
Dissolved Oxygen		47.9	37.9	\$2.9	32.3
(time/reading)	· · · · · · · · · · · · · · · · · · ·	39.1	38.3	46.2	25.6
10%		41.4		43.9	28.5
		40.4		42.6	22.2
		31.5		41.1	21.2
	Sector Carbon	37.3		39.7	21.0
		40.1		· · · · · ·	
рΗ		8.43	6.98	6.95	7.87
time/reading)		7.90	6.96	6.93	8.16
+/- 0.2		7.60	10000	2.01	8,30
		7.82	_	7.00	8,30
		7.34		7.65	8.40
		7.21		7.16	8.44
		7.07			
Purge Volume	NV.	4420	Stel	3641	3 12 bial
Sample Date/Time	6-14-16/1130	1	1	6-15-16/1112	
Comments	HOUSE WELL -FALLET	6-15-16/ 1028 Purge Rate: 400 ML		6-15-16/1115 Purge Rate: 300 Mh	Purye Poles 300 ml
Deviations from plan (e.g., well bailed)					

This form presumes use of dedicated purge/sample pumps and in-line flow cell for data retrieval. Please fully describe any variation from the written sampling plan.

L:\WRC\2012 Investigation\WRC WPQAPP\Attachments\CD_1-30-12_WRC_WPQAPP_Attachments\Attachment E_Field Documentation\2010 Revised_FIELD FORMS_WRC.xlsx

Weather Conditions	Days since last precip.	Air Temp. 90 Wind 5 MP	A	
Well ID	BMus-ef	BMW-25	BMIN-26	BMUS - ZOA
Nell Inspection (verify co	ndition of each of the fo	llowina:)		
-Lock		V	<i>\</i>	\checkmark
-Well Pad	V		V	V
-Protective Casing	V		1	V
-Well Cap	V	1		
-Measurement Mark -Well Identification	V			V
Water Level Date/Time	6-8-16	6-8-16	6-8-40	6-8-16
Water Level	\$ 5.56	3.28	2.98	5.74
Purge Start Date/Time	6-15-16/1440	6-15-16/1525	8-16-16 1020	6-16-16/0820
Temperature	15.49	21.62 21.45	22. 20.41	21,72 12,62
time/reading)	20.23	21,54	20.49	17.75 17.60
	20.18	21,43	20.47	17.65 17.60
	19.98	21,45	20.42	17.02 17,60
	17.09	21,45	20.40	17,60
	20.06	21.47		17.62
	7.3	4.51		17.01
Specific	2.806	1.160 1.244	0.962	1.175 0.975
Conductance	2.039	1.171	1.183	1.039 0.975
time/reading)	1:735	1,205	1.259	1.013 0.973 0.992 0.974
3%	1.774	1.224	1.265	0.992 0.974
	1.767	1.246	1.000	0.981
		1.148		0.978
	101		050	145.3 21.1
Dissolved Oxygen time/reading)	17.3	14.0 23.9	95.2	145.3 21.1
	16.0	28.2	7,3	49.2 16.9
± 10%	18.9	20.9	7.4	39.3 16.9
	18.7	22.8	1.7	34.7
	19.0	23.9		29.3
		23.4		25.0
рΗ	8.15	7.13 1.53	7.19	7.06 6.94
time/reading)	7.67	7.0	8.76	6.97 6.94
	1.53	1.65	9.04	7.06 6.94
0.7	7.49	7.06	9.16	6.39 6.94
	7.50	7.22	9,19	6.86
	7.46	7.44		6.92
				<u> </u>
Purge Volume	31641	4 Gal	242 600)	4 Yz 6791
Sample Date/Time	6-15-16/1364	6-15-16/1558	6-16-16/0930	6-16-16 0853
Comments	Purge Rate: 400 ML	Purge Rate: 400ML		Purge Rete: 500
	Duplicate 2 Collected		Pre Purge 2 Gral	

This form presumes use of dedicated purge/sample pumps and in-line flow cell for data retrieval. Please fully describe any variation from the written sampling plan.

/ell ID				
	Smu - 24	SmB-2	Bm1 - 27	BMW-28
All Inspection (verify co	ndition of each of the fol			1
-Lock		V	V	VI
-Well Pad	V	\checkmark	V	V
-Protective Casing	V	\sim	V	V
-Well Cap	\checkmark	V.	V,	N
-Measurement Mark		V	V	V
-Well Identification	V	V	V	V
/ater Level Date/Time	6-7-16	6-7-16	6-8-16	6-8-16
/ater Level	7.96	10.54	3.28	7.67
urge Start Date/Time	1005/6-16-16	6-16-16/1100	6-16-16 (1415	10-16-16/1340
emperature	22.44 19.32	22.94	52676 19119	32.76
ime/reading)	14.23 15.30	18.64	21.43 19.19	19,18
	19.28 19.27	15.60	19.36	18,92
	19.17 19.29	18.59	19.03	18.91
		18.50	19.10	18.95
	19.32	18:50	19,72	18.81
	(1.36		11/26	10.70
pecific	0.187 8-235	0.426	20092 1.701	2.019
onductance	0 269 0.133	21070	1.340 1.700	1.320
ime/reading)	0-252 0-232	2.161	1.467	1.372
	0.749 0.236	20142	1.720	1,335
	0.244 0.231	2,180	1.768	1.339
	0.139	01 014	1,705	1,337
issolved Oxygen	78.2 50,5	60.9	19.4 64.9	5914
ime/reading)	39.9 52.8	19.9	97,5 63.3	54.0
	41.3 51.9	18.1	92.2	43
	42.4 50.9	16.8	51.8	131,8
	45.8 52.8	17.2	15.6	80.3
	457	1907	68.5	78.3
	413		- yana -	
Ĥ	13.64 7.71	6.33	732 8.96	4.89
ime/reading)	10.07 9.52	4.93		5.46
	91.10 1,38	6.98	7.57	5199
	6.37 7.26	6.96	8.27	3.93
	8.11 7.22	6.95	8186	6.20
	7-80		8,89	6.21
(45	Think .		9.07	
urge Volume	442 Gral	3 Gal	3 hah	ZYZ Geerl
ample Date/Time	6-12-16/1041	0-16-14 /1123	6-16-10/1440	
comments	Purge Rule: 400m L	forge Rate 34400 ML	Runge Rode 300 ML	Runge Rode: Asomi

This form presumes use of dedicated purge/sample pumps and in-line flow cell for data retrieval. Please fully describe any variation from the written sampling plan.

L:\WRC\2012 Investigation\WRC WPQAPP\Attachments\CD_1-30-12_WRC_WPQAPP_Attachments\Attachment E_Field Documentation\2010 Revised_FIELD FORMS_WRC.xlsx

Pre-Use Calibration

Date: <u>6-10-16</u> Time:	0730	am/pm
Instrument Serial Number: Barometric Pressure (source?) <u>29.98</u> - <u>correction (inHg)</u>	737.41	•
Get correction: <u>http://www.csgnetwork.com/barcorrecthcalc.html</u> [0.9483 at WRC office Convert: mmHg = inHg x 25.4 Dissolved Oxygen Reading in saturated air	97	26.25
ConductivityRange one calibration, e.g. (717 μ S) (clear) pH low point calibration, (e.g., 4.0 (pink))	1.409 4.0	23.62° 23.59°
pH mid point calibration, (e.g., 7.0 (yellow))	6.94	23.46°
pH high point calibration, (e.g.,10.0 (blue)) Temperature is factory calibrated:	9.63	23.24°

Post-Use Calibration

Date: 6-10-16	Time:	1000	Apm
Dissolved Oxygen Reading in saturated air		97	22.600
ConductivityRange one calibration, e.g. (717 μ S) (clear)		1,409	21.690
pH low point calibration, (e.g., 4.0 (pink))		4.0	22.54°
pH mid point calibration, (e.g., 7.0 (yellow))		6.97	22.01
pH high point calibration, (e.g.,10.0 (blue))		9,58	22.36

Comments and/or description of work activities performed with instrument:

bioundwater Sampling

Calibrated by: Aaron Gilbert

Pre-Use Calibration

Date: <u>6-13-16</u>	Time:	0800	pm
Instrument Serial Number:			
Barometric Pressure (source?) <u>30.0/</u> Get correction: <u>http://www.csgnetwork.com/barcorrecthcalc.html</u> Convert: mmHg = inHg x 25.4	- correction (inHg) 0.9483 at WRC office	738,17	<u></u>
Dissolved Oxygen Reading in saturated air		97.1	21.73°
ConductivityRange one calibration, e.g. (717 μ S) pH low point calibration, (e.g., 4.0 (pink))	(clear)	1,408 4.0	21.600
pH mid point calibration, (e.g., 7.0 (yellow))		7.0	21.64 °
pH high point calibration, (e.g.,10.0 (blue)) Temperature is factory calibrated:		9.79	21.780

Post-Use Calibration

Date: 6-13-16	Time:	1510	am (om)
Dissolved Oxygen Reading in saturated air		97.1	19.40°
ConductivityRange one calibration, e.g. (717 μ S) (clear)		1.408	21.54
pH low point calibration, (e.g., 4.0 (pink))		4.01	21.680
pH mid point calibration, (e.g., 7.0 (yellow))		7.0	21.91 *
pH high point calibration, (e.g.,10.0 (blue))		10.01	21.75 0

Comments and/or description of work activities performed with instrument:

Changed the	Membrane	on the	DO	probe.	
Graindwater	Semning				
	- 1 5				

Calibrated by: <u>Ann Sillet</u>

Pre-Use Calibration

	Date: 6-14-11	Time:	0730	fpm
	Instrument Serial Number:			
	: http://www.csgnetwork.com/barcorrecthcalc.html	ection (inHg) 183 at WRC office	738,17	
Convent. mmr	lg = inHg x 25.4 Dissolved Oxygen Reading in saturated air		97.1	<u>21.73</u> °
	ConductivityRange one calibration, e.g. (717 μ S) (clear pH low point calibration, (e.g., 4.0 (pink))	ar)	1.408 4.0	21.60° 21.78°
	pH mid point calibration, (e.g., 7.0 (yellow))		7.0	21.640
	pH high point calibration, (e.g.,10.0 (blue)) Temperature is factory calibrated:		9,79	<u>21.78</u> °

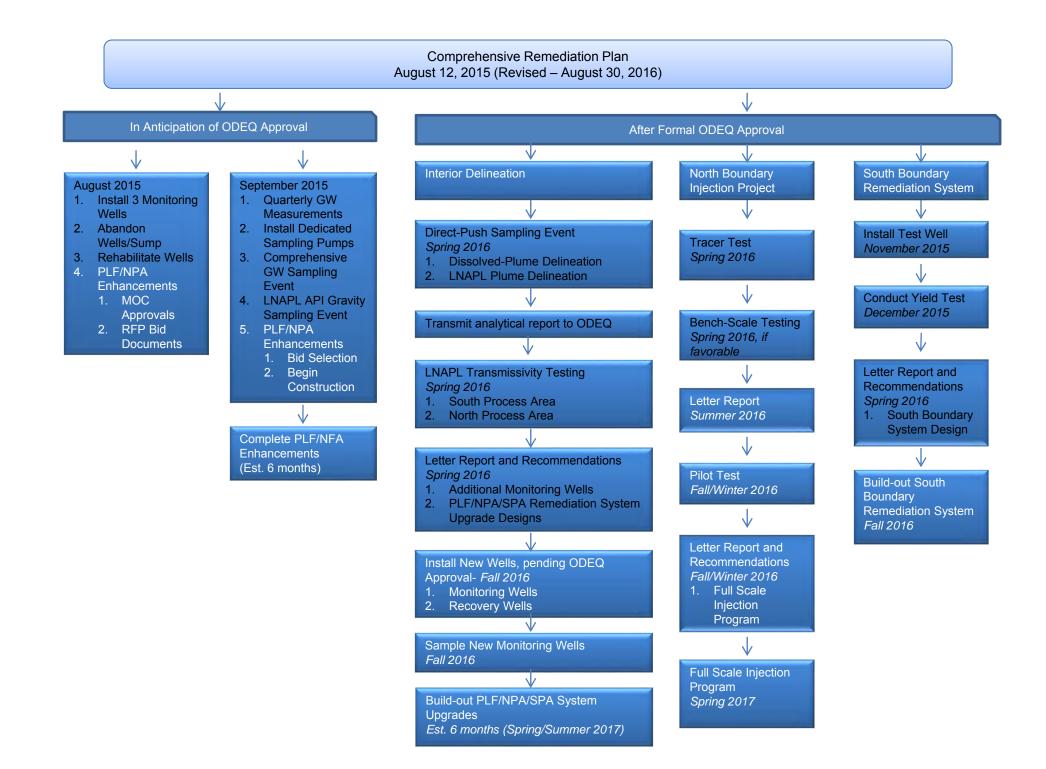
Post-Use Calibration

Date:6	Time:	1300	am/pm
Dissolved Oxygen Reading in saturated air		96.5	21.86
ConductivityRange one calibration, e.g. (717 μ S) (clear)		1.417	<u>22.5</u> 7°
pH low point calibration, (e.g., 4.0 (pink))		4.61	22.37°
pH mid point calibration, (e.g., 7.0 (yellow))		7.0	22.37
pH high point calibration, (e.g.,10.0 (blue))		9.78	22.460

Comments and/or description of work activities performed with instrument:

DO and High point PH where both out of range

Calibrated by: Acre filmt



Pre-Use Calibration

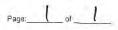
	Date: _	6-15-	16					Time:	0720		am/pm
	Instrum	nent Sei	ial Numbe	er:							
Get correction: Convert: mmH	: http://w	ww.csg	essure (so network.c	· –			correction 0.9483 a	i (inHg) t WRC office		60	
		-	gen Read	ing in sa	turated air				96.5		21.860
			ange one o alibration,		on, e.g. (717 ^{bink}))	7μS) (clear)		1.417 4.01	+** · · · · · · · · · · · · · · · · · ·	
	pH mid	d point c	alibration,	(e.g., 7.0 (vellow))				7.0		22.37
		•	alibration factory c	•					9.78	- <u>.</u>	72.46
	<u>Post-U</u>	Jse Cali	<u>bration</u>								
	Date: _		66 & 100 00 00 00 00 00 00 00 00 00 00 00 00					Time:	M-VANT-	,	am/pm
	Dissolv	ved Oxy	gen Readi	ing in sa	turated air						
	Conduc	ctivityRa	inge one d	calibratio	on, e.g. (717	7μS) (clear)				
	pH low	point ca	alibration,	(e.g., 4.0 (p	ink))						
	pH mid	l point c	alibration,	(e.g., 7.0 ()	/ellow))						
	pH high	h point c	alibration,	, (e.g.,10.0	(blue))						
	Comme	ents and	l/or descri	ption of	work activit	ies pei	formed v	with instrume	ent:		
								<u></u>			

Calibrated by:

Appendix 3 – Comprehensive Remediation Plan Work Progress Diagram

Appendix 4.2.A – Recovery System Operation and Maintenance Field Logs

Date: 1-76-16 Project #: 3192GENERAL Stanflech


Page: / of /

DAILY PROJECT LOG

lient:	
TEMP. WEATHER	AM NOON PM 3D's Mostly Cloudy 45°F Mostly Cloudy 50% Mostly Cloudy Nwinds 10+5mph Nwinds 10-15mph Nwinds 15-20mg
>715	Euroute to gite : Refueled vehicle
>845	Activity Enroute to gite . Refueled vehicle At Refinery: Met with Evan Hilburn: discussed sou; obtained permit For PLF area
915	Break (Z. 50 hrs)
145	Break (2.50 hrs) Lunch Meeting (-1.25) hrs.
300	At NRW-1-4; Met with sately; obtained permit to access vault. System readings & O'EM: Performed Recovery Rate test on NRW-1, 2, 3, 4.4
	Recovery Rate test on NRW-1, 2, 3, 44
1430	Jerome Mchorley offite; continued OKM activities
450	Signed out of light oils & signed off on permit to accept permit to accept permit for accept permit
530	Received approved from Serry Merrell to enter plant. u can pick up new permits around lunch-time tomorrow Enroute to LRW-3
540	At LRW-3: DEM & haften rendings; Performed Recary Rate Test
630	Euronte to dispose of water
1715	Disposed of water; stored equipment in Env office Euronte to OKC
845	Secured vehicle & equipment; End-Time

NOTE. Please use ink. Record general progress of project. Detail problems and actions taken, injuries, equipment breakdown, unusual conditions or situations, out of scope work, inspections, hiringifiring of personnel and any other occurrences which may affect this project. This log may be utilized as a legal document.

Date: 1-26-16 Project #: 3192 VRU

DAILY PROJECT LOG Wymenood ok CVR Wynnewood Retiling Co. Project Name: Client: NOON AM PM 30's Mostly Claudy TEMP. NWinds 10-15 uph WEATHER Time Activity At Light Diks; Met with operator regarding SOW; obtained 0915 permit : Began DEM on URU. System OFF: High Level Alam trisgered. Reset Alarm -Listen started up: observed moisture pulling into Moisture Separator Tark : shut off system for OKM. 2 1000 Jerone Mchonley at UR4 Removed clean out cap from discharge pipe: no sediment or water resting in and clean out line. Cleaned out Moisture Seperator Took; thin layer of sediment resting in the bottom of MGT. Flushed 240 gallons of clean water through MST & discharge line. Observed water draining out of discharge line into gener cup. Genered and cap on clean out line. Rangsembled VRU; obtained system data, System Rendings: North: -20.1"Hz0 Stack: 2.3.6 PPM East: -755" -11.5"HzD Vacuum Mater: 2.6"Hg West: -7.1"HzD 1145 Completed DEM on VRU; signed out of Light Oils area

SIGNATURE:

NOTE: Please use ink. Record general gargest or project. Detail problems and actions taken, injuries, equipment breakdown, unusual conditions or situations, out of scope work, inspections, hiringifiring of personnel and any other occurrences which may affect this project. This log may be utilized as a legal document.

Date: 1-27-16 Project #: 3192 GENERAL **Stanfech**

Page:_____ of _____

Project Name:	CVR Wynn	enod Refining Co.	Wyneuoc
Client:			t ·
	AM	NOON	PM
TEMP. 34	PF Gunny	50°F Sunny	505 Sunny
WEATHER 1	sw Winds 5-10-	pl sw winds 1- Smph	SW Winds !!
Time		Activity	
0730 6	Suroute to	alte	
0945 0	ngite: obtain-		Env, office, Me
		0.16 operator very 50	w at NRW-5,6,
4	igned into Light	ork area	
	1.16	1	
0930 A	170 1	box Fo- NRW-5,6,57	; OEM on system
	Recovery Rate	Tests on pumps	
		1.1	1
	brahed new ve		15
	110	to access PLF area	
	gned out of	Light Dils	a to Par
	gues into PLI	Farea Began OSM	1111 10
for	ower to BRW.	-67.8; Continued 2	EM and Recover
1630 5	greet out of	MF. Enroute to d	isose of water.
	1. Ditch	I ENDULE ID a	your of wall
	- Witco		
1655 41	fored tote und	er stairs of equiphen	t trailer near th
	ate: Euronte to	o store equipment	in Fru Office
1715 E	produte to OKC		
		ti ti c	1 - 1
<u> </u>	ecured vehicl	e tequipment; Fu	w-Time

NOTE. Please use ink, Record general progress of project. Detail problems and actions taken, injunes, equipment breakdown, unusual conditions or situations, out of scope work, inspections, himpyliring of personnel and any other occurrences which may affect this project. This log may be utilized as a legal document.

Date: 1-26-16 = 1-27-16

Sampler: Gerald Fields, Kyle Fishburn

Recovery Rate Test Procedures

1. Fill graduated bucket to a selected volume (64 oz or 112 oz). Record time it takes to fill bucket to that line on bucket.

2. Set bucket aside for a minimum of 5 minutes to allow product and water to separate.

3. Note if there is a sheen or if measureable product is present in bucket.

Well ID	Volume (oz)	Time (sec)	Sheen Present (Y/N)	Measureable Product (Y/N)	Estimated Product (oz)
PLF (all wells)	160	5	N	N	
BRW-6	175	5	Y	N	
BRW-7	133	6	N	N	
BRW-8	128	6	N	N	
NRW-1	120	29	Y	N	
NRW-2	124	65	Y	N	
NRW-3	128	23	Y	N	
NRW-4	128	31	Y	N	
NRW-5	125	8	Ŷ	N	
NRW-6	120	11	Y	Y	1
NRW-7	128	18	Y	N	
LRW-3	128	12	N	N	

Date: 2-29-16 Project #: 3192 GENERAL

DAILY PROJECT LOG

	AM	NOON	PM
TEMP.	505 Sundy	65°F Sunny	704 Yunny
EATHER	5 Winds 10-15 mph	5 Words 10-15 aph	4 winds 10-19 mph
ime		Activity	
700	Enroute to site		
	Break (-1.25 L	1-4	
930	In wynewood; do K equipment. Water	mod PPE. met with En storage tote is with dri	an Hilburn; obtained perm llers; will try to beate
~\$	Muble to locate tote At PLF; signed into OK. BRW-6 working	unit: DEM on Paul sy	ston; system running
35	Figured out of PEF; Em Met with Jerome / from getting plugg.	ander to LRW-3; LRW-3, McSorlay; discussed options ed up.	Jorking properly to keep strainer & totaliz
45	signed out of Refinery ;		
0	At Refinery , con those	1 DEM on Rendy System	
20		Called & Gafety to access N	
35	Abland permit from so strainer: cleaned batt From 665915 to 77 activities	lery contacts - Meter working p, 17940 once batteries were	otalizer that off while flugh operly. Totalizer changed re-ingtalled; continued OK
	DEM activities at NR	w-5,6,87	0/
>15		Dils Area. Gigned ofP	
	NRW-1,2,3, 5,4 . 4 tore	ed equipment at Env. c	office
_	At LRW:3: measures stracher	& dunling; discussed of	ians for installing larger
100	Signed out of ref	linery: Ewante to 0	KC: Refueled vehicle
845	Secred vehicle	equipment. End. Time	

NOTE: Please use first. Record general progress of project. Detail problems and actions taken, injuries, equipment creakdown, unusual conductors of inspections, hiring/firing of personnel and any other occurrences which may affect this project. This log may be utilized as a legal document.

Date:___Z-Z6-16 Project #:__<u>Z19Z66NERAL</u>

Page: _____ of _____

DAILY PROJECT LOG

	AM	NOON	PM
TEMP.	404 Guny	520F Suny	59°F Sunny
EATHER	440 Winds 10-19	South SSW Winds 10-15mph	SSW Winds 13-18 mph
ime		L Activity	
645	Enroute to Pupp	ps of oklahoma	
115	At Pumps of DKI	shame picked up BRU miner (extra screen)	26 Bung & LRW-3
145	C 1 1 1	1	
THE AS	Enroute to Wyur	- with Guan Hilburn;	1 I con / Ela I :
1/5_	At let merg. Met	make it out to PLF	Lile Rec CH APPLY
	provely withor	6 K try to start it K lo	t angina
	- pump in peu-	6 114 10 STRITT 1 10	de // randing.
45	At Light Dils Area	1 th	
54	Terring Mc Sorloy EE	Fran Hilburn called with an	electricis is contact
24		killipls 337-802-8838	
	accretation, Logar	lf area (BRW-6), I will	all TP and set in a
	scheduled.	e the PLF and let JN	JEH Chow when 17 g
	scheduleg,		
00	Spoke with Todd Dh:	lliphs and he will meet us.	at the PLF's Operator
00			at the this operator
	Blog. @ 1230 to	uay.	
	Break 0945-1236	(-2.75 hrs)	
30		h electricians & operator	i singel into DE Amo
55	NIL I ad some it	began trouble shooting B	Phole Allo (C) Med
	Started BRW-6	began trouble shooring n	1210-B
35		he is action another a	tor too lale it that
	prob appears 10	be working properly after ins sneet wonday (2-29-16)	the pour and
	- chect pump glad	as shigh monaby (2- crib)	, optames readings; closed c
50	BRW-6 Electrician off gite		
		A - PRIL 11.	1 . Dull 1 d
55	phone call with J	M reg. BRW-6 update; mou	ed scattelling To Grovers.
	shed 1	1/24 51 1.56	PL. TIL: Alzing
56	15RW-6 running at	4.62A; Flow rate: 5.8 61	M - 10Talizer : 765/09 gal
2	Signed out of 125 are	: checked LRW-3: Flower	re: 5.8 gallons per Minum
30	At VRU (-0.50 hrs)		
1-	Stored equipment in	Fine OFFICE: parted vehicle	2
TING	Eurante to OK : 1	End of fice ; for a bord	
100	I MARIE NO LILLA	equeles venue	
115			
100	Gowand website to	en 'ment : Find-Tim	1

work, inspections, hiring/firing of personnel and any other occurrences which may affect this project. This log may be utilized as a logal document.

Date: 2-26-16 Project #: 3/92 VRU

Page:_____ of _____

DAILY PROJECT LOG

	AM	NOON	PM
TEMP.			
EATHER			
145	At light oil area	Activity	it. No a to a
	Project Documentation	; signed into un	in ins operator pre
30	Operator here; obt	ained permit; 051	I on Rend. Sigter
254	essistance at the PL	an Hilbum called with a Philliphs 337-802-8 Farea (BRW-6). Ca FEH Know When it	838 can provide us
100	Siroke with Todd Philliph @ 1230 today.	is and he will meet us	at the PLF's Operators Bl
	Flushed out discha. Tank; reassembled	ine line; cleaned out	Misture Separator running @ -3.0 inc
145	signed out of Light	Oils Area	
30	signed into Light Dils	Aren; Gysten D'SM. 54	sten running of
	NRU stack: 112 ppm N. Plug: -ZZI"HZO	Vacuum haug	e: -2.6 in Hg
	W. Plug: - 8.3 "HzD 5. Plug: -12.5 "HzD		
1700	higher out of Ligh	t 0,14 Area	

NOTE: Please use link. Record general progress of project. Detail problems and actions taken, injuries, equipment breakdown, unusual conditions or situations, out of scope work, inspections, hiring/firing of personnel and any other occurrences which may affect this project. This log may be utilized as a legal document.

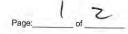
Date: 2-25-16 Project #: 3192GENERAL **StanTech**

Page:_____of___

DAILY PROJECT LOG

	AM	NOON	PM
TEMP.	306-405 Sunny	48ºF Swany	50% Gunny
WEATHER	N Winds 10-15 mph		N winds 10-15mph
Time	· · · · ·	Activity	
D645	Euroute to Run	yos of Oklahoma	
6715	At Pumpy of c in order to test for the Y-strain	Elahoma: dropped off pump. They will look er at LRW-3	pump from BRW-6
D735	Enroute to site (-0.2.5 hrg)	: purchased supplies ;	Refueled vehicle
1007	be working proper	timps of Oklahon by: Tested & ran on up apparent issues. into of pump. The tion for UEW-3	mp for over an
1030		myed PPE; altempted a	atet with 6mg
	_ Hillenn . left no	out to check BRW-6	such & discussed having
1044	Phone all with Et aut to BRW-6	t, he will check into h	aving an electrician come
1050	At PLF; obtained BRW-6	permit; DKM on Rond.	system; closed value to
1/15		BRW-3, BRW-5, BRW	-7:BRW-8.
1245		area : project document	
1330	AT LRW3. DYM	on Rend. 474ten. c	leaned afrainer,
	(95% covered wit	biological growth; Rusher h biological growth; Rusher no through Y-strainer	t impeller on Totalizer
1715	Driposed of purge officie; Enrolat	ed water; dipposed of e to OKC	trasta; locdal verid
1845	secured vehicle	K equipment . End-	Time
	1/1 2		

Date: 2-24-16 Project #: 3/924ENGRAL


Page:______ of _____

DAILY PROJECT LOG

	АМ	NOON	PM
TEMP.	40g gunny	520F Sunny	STOF Guard
WEATHER	NW Winds 10-19mpl		ah when winds 12-19
Time		Activity	
5715	Evolute to site		
0830		PE: Met with Jer	nue Misarles.
	discussed som; Exc	hanged equipment	
0900	At Env. office : For PLF. picked	Mat with Gron 1	filburn; obtained perm
2920	store purged water	- no where to be found	y. Sampling Tate used + . Mat with trailer
aci		E Arron Gilbert m	
000	Phone cull with G	cel: They located to	te
	Picked up tote;	curante 70 l'ht	
015	At PIE and	nto PLFarea - OKM	a Roude de
100	that of RP1. 12 12P	W-5, BRW-6, BRW-7,	K BRILLO
1155	Gived out of PLF	, prove BKW-1,	y man b
172	hunch Break (-D.	TC L K	
1300		continued DEM on Re	and a start
13/5	Gu Melanik & V	Continues User an Re	2F area; trouble shosti
	BRW-6. Per SM'G	IM All & class a	(BRW-6). Take pump
	to Rumos at Okking	a for Further testing /	into the
1345	SM /IM signed out of	- DIF	imperiony.
	TI AIT AIGNOL OW DI		
	Completed cleaning ou.	mp; completed disposing	P deeps inter.
1600	l'and out of PIF	area : Enroute to LRU	LZ
1000	7191139 - 41 - 1- 1-41	aren Enroupe to yeu	
	LEW-3: 1" pining are.	d totalizer, the rest .	Forthe plumbing is 3/1
	Rentorient starting	10.000	1
	Sureen ine cruit and	Leves I PUIZ . H	minter, will see what sie
	The second and a second	The city with	
1	himsel at an ME -	erm. f. loaded vehicle : 1.	off modeling in / 14 man de
1700	Euroute to oke		
1830	Secured vehille &	quipment; End-Time	

Date: 2-19-16 Project #: 31926ENERAL

StanTech

DAILY PROJECT LOG

	AM	NOON	PM
EMP.	60g Surry		
ATHER	3WW. nds 15-75mg	04 5W W. mds 15-25,	mph SW Winds 15-25mg
me		Activity	F They I'Chy
30	Euroute to Git		
645	Ongite: Met wi gafety training	the safety orientatio	n frainer; Began
D	Completed galety	training ; downed PDE	; Obtained equipment
_	From ENV. OFFICE; GOW	: left voicemail wit	h Evan Hilburn reg
D	At PLF: Gigned .: Began DEM on	nto unit · obtained p BRW-6	ermit from operator;
		9; GPM: 3.8 to 3.9	
	BRW-6 is drawing	0.09 A : DTW in BRW	-6: 6.57'
	Reget BRW-6 (3)	times. The First &	second times BRW-6
	would draw 3.48 A	& then the pump	would two off and on
	draw 0.34 A 0	Fler 210 Leconds.	Verified GPM remained a
_	3.9 GPM & DTW	remained the same	
8	Reset BRW.6 for 7	the third time. pump	way drawing 3.48 A. F
_	remained on for	5 minutes, Flaurate:	5.2 GPM DTW: 3.27
3	tump shut off !!	witnessed DTW rise bac	k to 0.57'
	Phone call with	Project Manager/Rond. 1	lanager
	BRW. 3 running a	at 0.57A . BRW.	5 running at 1.13A.
	BRW-6 at 0.34	A. Flaurate: 3.9 GF	M
	shut off BRW-3	EBRW-S: GPM=,	Ø
	Phone call with	Ruph of Oklahoma.	Most probable cause is
	obstruction in pu	up (impellers) or abstr	netion in line. Parer she
	be the issue si	nie BRW.748 a	-e working properly
	Phone call with Ren	-d Manager/Project Manag	ie-
-	New I all		
=	K come back next,	usek to pull pump & o	Turn all pumps buck o lingnose issues
35	All pumps online	- (BEW-6 still not vur	vine)
41	Totalizer: \$1212	9 Flowrate: 4.76P	Ч
	Sama I D	PIC And Carle 1	VRU
50	Igned out of	TLE MEEL ENGLE H	

NOTE: Please use mk. Record general progress of project. Detail problems and actions taken, injuries, equipment breakdown, unusual conditions or situations, out of scope work, inspections, hiring/firing of personnel and any other occurrences which may affect this project. This log may be utilized as a legal document.

Date: Z	-18-16
	3192 LENERAL

DAILY PROJECT LOG

	AM	NOON	РМ
R		A -41	
;	KX & CONTIN	Activity THED FROM PACE 1 *	**
			9.4.
Check		unning OK	
Turne	d equipment	in to Environmental	offile
<u> </u>	te to okc	· Refueled veh.2)	0
Enrou	re 70 0re	· Repúeles Ven.2	
Sear	ed vehicle/	equipment : End-Ti	e
	- /		
		t	
-			
<u> </u>			
.			
	/		
	1/		

Date:	2-10-16
Project #	3192GENERIAL

Project Name:	CVR W	Ynnewood Refinery Wynnewood	OV
Client:		ALL MORE VELLINERY INANNEWOOD	100
	AM	NOON	PM
TEMP.		705 Swinds 15-20mph	<u>em</u>
WEATHER		Sunnx	
Time		Activity	
1200	At office, loude	d vehicle ; envoute to site	
1330	Onsite, met with	Evan Hilburn; obtained PLF permi	ç ı
1415	At PLF; BRW-	6 is drawing 0.09A; BRW-17:2	.78A ; BRW-8: 2.02A
1425	Unplugged BRWs 6 now reads 3.48	-8. Reset breakers (3) times; pl A	ugged in BRW-6 and it
1440	ONIV I I I	mate: 5.6 GPM; 761655 GAL	
1445	BRW-6:	PM 3.4 GPM; Fluid level in BRW-	-6 Kewalns at Toc
	Removed Dump in	BRW-6 , Cleaned intake avea of	NUMAN RESTREETED
	fluids back in	BRW-6; Cleaned intake avea of to BRW-6 for ~ 15 mins; p	much spears to bo
	pumping at me	IX GPM	hop scing to be
1600	BRW-6 DTW: 3 offline; called	.33' after ~15 mins of operations of the art of the second	on; BRWS 7:8 remain 1-6.
1625	BRW-6 : 4.8 GP		
1630	Called Jerome M BRW-7:8 pum	c-Sorley and discussed 05m on BRI or offline.	W-6. Per JM leave
1640	BRW-6:5.3	GPM	
1645	Checked out of	the PLF area; returned supp.	lies to EH's office
1700	Offsite		
1815	End time ; Vehic	le and equipment secured.	
<u> </u>		01	
· · · · ·			
	,	1	
		ne i vent	

Date: 3-22-16 Project #: 3192 GENERAL

2

「小道的ない」とないたので

StanTech

Page / of [

DAILY PROJECT LOG

	AM	NOON	PM
TEMP.	GOLDG GUINY GWINDG 10-15mp	67°F Sunny 4 Swindy 15.20 mg	720F GUANY
Time		Activity	
0700	At office ; Review Enroute to gite ; Supplies.		nicle. nipment: purchased
915	Updated Jorome, ok	McGorley with our ; Refueled vehicl	ETA; Enoute to 4.
15	At Ropinery. Met	Environmental staff; ob:	tained equipment From Fi
45		cut superstat to Fin	
	(-1.00 hrs) Mea	1	
45	At ReFARY; cont	inued off on Lan	1-3.
	Completed install for LRW-3. Discharge the ha we will test pu geoured area.	s a very strong back	E re-directed phinking -pressure on the line, ack-pressure regides,
1900	Euronte to OKC.		
020	feared rehide	Eeznipmant; En	d-Time.
	-		

Date: 3-23-16 Project #: 3/92GENERAL Stanlech

Page / of ____

x

Project Name: Client:		Wynnewood	rennery	
inorit.	AM		NOON	PM
TEMP.	609 Partly		F Tarthy Claudy	80 of Partly cloudy
WEATHER	45W Wind	5 15-20mph 551	w winds 15-2000	h SSW winds 19-25mph
Time			Activity	,
D715	Evoute +	o equipment	rental store.	
0730	Checked in ra	entel equipn	ent.	
0745	Eurante to		19 - E	
0900	Checked sta	tug of LRW	-3: discharge line	badge: HES Kleeting. still has strong backprog heck value preventing
	back press	re from re	aching Flow-me	ter. Turned on LRW.
	pump: N.	o Flow - uno	Whe to push the	ough check value. Left
	pump run.	ning to see if	- totalizer changes	. Totalizer at: 533270
	Disposed of	accumulated	water from discl	arge line.
1015	At URW.	(-3.50 hre)	
1345	Flow meter 777940 to	TT8247 4.	et with Gefety D.D.G.P.M. Totalizer ince 2-29-16. The obtained data from	. 8" on the totalizer.
		d plumbing K with on impel		er (90% blocked) with
		place batterie	ted system: Runnin 25 in Totalizer; Re	y OK at 9.6 GPM; eseached batheries - Found
1535	Completed no Light Dils;	Met with	2,3,4, sighted off Env. staff (189	on safety permit at
600	Enroute 1 update. Pe,	to DKC . 400 r JM we wi	te with service 1 Il purchase 4 new	McGorley reg gite
	Purchassed 1	patteries.		
1745	Secured vel	ile 's equip	rent; End-Time	

NOTE Please use ink. Record general progress of project. Detail problems and actions taken, injuries, equipment breakdown, unusual conditions or situations, out of scope work, inspections, hiring/fring of personnel and any other occurrences which may affect this project. This log may be utilized as a legal focument.

Date: 3-23-16 StanTech Project #: 3/92 VI24

Page _______ of ______

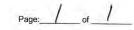
4

DAILY PROJECT LOG

	АМ	NOON	PM
EMP.			
ime 15	At URLA . inte	Activity real into Light oils	E the lead any of
			l
7	tigh Level Alarm	triggered; drained Ma	isture separater tank; ed float to trigger th
	cleaned out sand f	from MS. Tank . ModiFil	ed float to trigger th
	oump to come i	on gooner.	
	Flicked aut M	5 Tack & testal N.	it quitch for pump
	working properly:	1. 1-011- 2 10-11-3 FIDE	a quester for jourp
		· · · · · · · · · · · · · · · · · · ·	
15	Lunch (-1.00 hr	4)	
10 -	+ 181. 1/1	1 1. 1.1.	
<u>15</u>	TURU: obtain	red readings; checked s.	ystem.
	yeten Readings:	North: - 20.4 "H,0	Stack: 36 ppm
	(gr and my 2)	East : -11.5"HzD	Vacuum Meter: - Z. 5 in 1
		West: -7.4" HzO	
			,
45 5	igned out of	Light oils.	
		1	
<u> </u>			

work, inspections, himg-firing of personnel and any other occurrences which may affect this project. This log may be utilized as a legal document

Date: 3-24-16 Project #: 3192 GENERAL StanTech


Page ______ of _____

roject Name:	CVR Wynewood Refinery
lient:	
TEMP. WEATHER	404 Cloudy GOB Partly Cloudy GDS Gurry NW winds 10-20mph I'm winds 10-19mph NW winds 10-19mph
Time 0715	Euroute to gite.
840	At Refinery. Met with Environmental Staff: detained permit for PLF aren; discussed son; HES Meeting.
9915	At NRW-12,3,44: Met with safety: altained permit. Replaced batheries in Flowmater; part with Even Hilburn.
	At LRW-3; Met with EH, Aavon Gilbert & Jerome McGorley. discussed LRW-3 buck the pressure; continued OGM on Rend. Gygtems. Discussed NRW-1,2,3,4: 1/2" pvc lines from wells to vent. 4" discharge line from yoult to NRW-5,6,7 then to process sour; Elt checking on carrier Lunch (-0.75 WS)
	At PLFaven: sighed into unit: D&M on Remd. Gystem Flowmeter's face-plate is peeling off & Reset button glarting to detach From Front cover. Checked Whirehouse & hardware store For copy to bond clear cover back onto Front lich Colled manufacturer of Flowmater. They recommended purchasing new clear cover to apply to lice from tumps of Oklahona. Tart # 10970-01 For Flowmater (FMDZDS).
	sealed Front cover with duct tope to prevent moisture from getting in before new clear cover can be installed.
600	Agued out of PLF. Met with EH veg. flowmeter, /ePt megginge with JM: EH recommended getting a water proof/
620	surprise to DKC
745	Secured vehicle & equipment, End-Time.
	Ved

Date:	4-27-16
	# 3192 GENERAL
Drojact	# SIILGENERAL

roject #: <u>01</u>		DAILY	PROJECT LOG			
Project Name:	CVR Wynn	ewood Ref	inery			
Client:	/ AM		NOON	PM		
TEMP. WEATHER	63°F Cloudy SW winds @ 6Mph		F Sunny I winds @ 10 mph	70s Sunny NW winds @ 5-10mph		
Time			Activity			
0715	Eprovte to site					
0900	At refinery; met with Evan Hilbern; obtained permit for PLF; discussed planned scope of work; Health and Safety meeting					
0950 030	At PLF area: Mc Jerome McSorley Co	et with PL illed; C En	F operator; checke v office; will met	ed PLF flowmeter - OK us at the PLF area or at		
1110	lunch meeting. Met w/JM, EH, Aaro					
1140	Checked out of PLP.	aven				
	Break (-1,25hr)					
342	Purchased field supp Checked into PL Flowmeter facep inclement weather	Farea ; c	leaned PLF flowing	eter box and installed a neu o help protect from sunlight as		
1530	Checked out of PLI	= area; enr	oute to LRW-3			
1700	Disposed of decon wat	ter at the	V" ditch			
1715	Offsite					
1845	Vehicle, equipment	t, and supp	lies secured; eng	1 Sime-		
<u> </u>						

Date:	4-28-16
Project #:	3192GENERAL

DAILY PROJECT LOG

TEMP.	AM	NOON	PM			
	62°F Sunny	71°F Sunny	78°F Sunny			
EATHER	ENE winds @ 11 mph		Ewinds@ 9mph			
ime	Constant Curry	Activity	o whipe from			
7/5	Enroute to site					
830	Prite . Heatth & Safe	ty areating · discussed plann	ed scope of uprk			
842	Onsite : Health & Safety weeting; discussed planned scope of work Phone call from Jerome McSorley - discussed completed and planned scope of work; will meet us later on taday prior to noon.					
100	At Light Dils for OKN	I on the VRU.				
00	Checked out of Light (lifs area.				
25	Signed into Light hils.	to complete scope of work	on the VRU.			
320	Obtained permit to acc	ess NRWs 1-4.				
00	Checked LRW-3's Flow	weter:OK				
	Disposed of water @ "V	"N:+4				
30	Signed put of Licht A.	s; stored equipment in El	is office . corumad uptil			
	Content	5 / SIVICU CAUPUDAL IN ZA	V. OTTICE ; Seconder Venicale			
100	Marte , sout tout	hereases to TH banding t	to flourt let for all			
100	offarie repulad veh	<u>mesages to JM regarding t</u> icle.	ne i noumeter aata tor all			
	areas / renueled ven					
845	Vahiela and Rul anon	t secured; end time.				
12	verifie and exappied	Decored ; CIM IIIde.				
	·					
	in the second					
_						
<u> </u>	7					
_						
_	÷					
	£					

Date: <u>4-28-16</u> Project #: <u>3192VRL1</u>

Page: ______ of _____

DAILY PROJECT LOG

ient:	AM	NOON	PM
TEMP.	62°F Sunny	71°F Sunny	
VEATHER	ENE winds @ 1/mph	71°F Sunny ENE winds@ 7mph	
Time	/	Activity	
900	At Light Oils for O	Mon the VRU; obtained p	permit; signed into unit
0910	VRU cycle: ON; ob	tained data from VRLI	
_	System Readings:		RU. Stack: 46 PPM acuum Meter: 2.5 inthe
	deteriorated to a point to full off. This allo	the check ball in the moisture that allowed the cup at the wed the check ball to float rest inside of the K.O. ta	bottom of the screen t/move out of the
		reen and invert it and reas ck inside the K.O. tank.	semble the check ball
0.5 0	rests in the cup) to	VRU OZM I screws and washers to had the the screen. The screen has been d to the K.O. tank's lid.	e plastic cup (check ball n cleaned and inverted;
1100	Checked out of Ligh (-0.75 hr)	t oils area.	
1145 225	At hardware store to Checked into Light oils removed ~2" of sedin	Purchase field supplies ; Conf. 0: M on VRU; install uent from K.O. Tank; reasem	ed (3) screws on cup; bled and tosted VRU.
1315	Completed O'M on VA	ELL; end time.	

inspections, hiring/firing of personnel and any other occurrences which may affect this project. This log may be utilized as a legal document.

Date:	5-25-16
Project #	3192GENERAL

Page:_______ of _____

DAILY PROJECT LOG

	AM		NOON	PM
TEMP.	197- yardy	\$2°F (840F claudy
WEATHER			ils 10-15mpl	
Time	-1 1 1 1	Activity		112 00100 10.100
	Enante to 4.5		el velixle	
	Critar 10 4	, refuen	a could	
2845	Dagite . Met E PE area	Fran Hilburn,	reg. SOW ; e	blained permit for
927	Checked URU Phone call with LRW-3 & VRU	, running OK n Jerome Mcse status ; continu	red DEMaci	te update. Disasse
	Checked LRW.3			
/ 4/4	up needed bush	ing. Part ust	Found at u	are hause to pick are hause to pick are hause we we anth continues by style B 250 155.
		sole if the u		: Met with EH
615	Euronte to OK	C		Var and see
745	Seared vehicle	É equipment	; End-Tip	he
_				

NOTE: Please use ink. Record general progress of project. Detail problems and actions taken, injuries, equipment breakdown, unusual conditions or situations, out of scope work inspections, hiring/firing of personnel and any other occurrences which may affect this project. This log may be utilized as a legal document.

Date: 5-24-16 Project #: 3192 GENERAL

Page: ______ of _____

DAILY PROJECT LOG

	АМ	NOON	PM
TEMP.	704 Guny	410 F Partly Cloudy	705 Cloudy
EATHER	Swinds 5-10 mph	5 winds 15 mph	5 Winds 15-20-4
Time		Activity	
730	Euror to to 6.72		
845	At Refinery Met,	with Env. staff reg. 1	danned you picked
012	up equipment		
_		an Hilburn reg 500	
915	At VRU		
11P			
30	Signed out of VRL	1 area . continued DER	1 adjuties on othe
10	Rend. Systems	/ computer off	activities of office
	Condeted DEM acti	villes on select Remit.	systems; disposed.
	generated water i		
	gerderal de la r	n o billing fractions	Laipro
100	Enjoyte to DKC		
100			
172	Scared wehrle Ke	quiaront, Find-Time	
630	yeares behable & e	aupront; that the	1
<u></u>			
_			

Date: 5-24-16 Project #: 3/92 VRU

Page:______of____

DAILY PROJECT LOG

	AM		NOON		РМ					
TEMP.	1	\$10F	Partly Clou	by						
WEATHER		54	inds 15 mpt	N						
Time	- N. J	Act	vity		1. ,					
0915	inte Light	At VRM; system off due to High Vacuum Alarm; signed into Light Dills & obtained permit								
	the bottom	Moisture Sepa	T: Cleaned	set MST.	Re-aggembles					
	(≈~3.5 in.Hg).	No vacana re	ading at P.	et plugg.						
	atmosphere &	at Gast & h & remove vacu & vacuum a	un. Prim	ed VRU II	nes by increasi					
	into MST &	observed discl	age pump	tick on	successfully.					
	Removed large ways next from end of discharge line. Discharging ok									
	gysten inni	ing ok; contin	ning to pu	Il in wat	er					
	System read	ings : North	: ~21.8"40	VRU ST	ack: 128 PPA					
		East :	-13.7"H20 -9.7"H2D	MGT Vacuum	Meter: -2.5 in Hg					
	hyster runni	ing OK								
	gigned out of	· Unit								
370										
330										
378										
378										
<u></u>										
330. 										

NOTE: Please use ink. Record general progress of project. Detail problems and actions taken, injuries, equipment breakdown, unusual conditions or situations, out of scope work, inspections, hiring/firing of personnel and any other occurrences which may affect this project. This log may be utilized as a legal document.

Date: 6-16-16 Project #: 3192 GENERAL

Page:_____of___[

DAILY PROJECT LOG

	AM	NOON	PM
MP.	404 Partly Clandy	900F Builly Cloudy Heat Finder	102 909 Partly Chardy Heat Ing
THER	5 Winds 5-1000ph	450 windy 10mph	55W Winds 5-rough
9	· · · · · ·	Activity	
5	Eurouse to OKC		
30	At Refinery : HS	5 Meeting: Met in	the Jerome Mchorely
10	reg. remaining sou	, , , , , , , , , , , , , , , , , , , ,	
5	Met with Even 1	filburn . obtained per	mit to access PLF
	area		
>		is aren; obtained perm	it from operator to
	access NEW-6 nea	~ Tank # 254	
_	//	in Free product thickness	
_	bailer stuck (wappe	ed up in pump wire); 41	hut off pump & pulled
	pump to dislodge ba	ler Obfained Free pre	schut thickness in th
	baller. Re-deplaced M	Rut b princip into well.	Threed on pump: No
	leaks, pung rund	s properly	(
		/ []	
D	Signed out of light	oils area & signed off	on light oils permit.
_	continued OKM act		, , , , ,
-	Signed into PLF grea		
	Renformed Recovery 18	ste tasts on BRW-6,7.	\$8. BRW-6 pump us
	OFF Renniers own	up usire splices out of	F Flooded well box &
	allowed to dry off.	Zestartel pump - pump	BK & drawing down
		perfection for the former	-,
_			
D			
_	Break (-1.00hrs)	'es at PLF	
_	Break (-1.00hrs) (entined OEM activiti		- system running ok
_	Break (-1.00hrs) (entined OEM activiti	les at PLF Y-strainer: All pumps on-	- system running ok
	Break (-1.00hrg) (ontinued OKM activiti Replaced bushing on	Y-stainer; All pumps on-	- system running ok
_	Break (-1.00hrg) (entinued OEM activiti Replaced bushing on Gigned out of PLP ar	Pastrainer: All pumps on-	- system running ok e test at LRW-3
>	Break (-1.00hrg) (entinued OEM activiti Replaced bushing on Gigned out of PLP ar	Y-stainer; All pumps on-	- system running ok e fest at LRW-3
>	Break (-1.00hrg) Continued OEM activiti Replaced bushing on Signed out of PLP and Peterned OEM activity	en Lies & Br Recovery Best	e fest at LRW-3
>	Break (-1.00hrg) Continued OEM activiti Replaced bushing on Signed out of PLP and Peterned OEM activity	Pastrainer: All pumps on-	e fest at LRW-3
>	Break (-1.00hrg) Continued OEM activiti Replaced bushing on Signed out of PLP and Peterned OEM activity	Y-strainer; All pumps on- en ties & Br Recovery Rect t V-Ditch; Disposed o	- system running ok e fest at LRW-3 e fresh
>	Break (-1.00hrg) Continued OEM activiti Replaced bushing on Signed out of PLP and Peterned OEM activity	en Lies & Br Recovery Best	- system running ok ie fest at LRW-3 of trash respondense with client
>	Break (-1.00hrg) Continued OEM activiti Replaced bushing on Signed out of PLP and Peterned OEM activity	Kieg & Br Recovery Rat tieg & Br Recovery Rat t V-Ditch ; Disposed a t at Guy, office; Con	e fest at LRW-3 of trash respondence with client
>	Break (-1.00hrg) Continued OEM activiti Replaced bushing on Signed out of PLP and Peterned OEM activity	Y-strainer; All pumps on- en ties & Br Recovery Rect t V-Ditch; Disposed o	e fest at LRW-3 of trash respondence with client
>	Break (-1.00hrg) Continued OEM activiti Replaced bushing on Signed out of PLP and Peterned OEM activity	Kieg & Br Recovery Rat tieg & Br Recovery Rat t V-Ditch ; Disposed a t at Guy, office; Con	e fest at LRW-3 of trash respondence with client

Date: 6-15-16 Project #: 3192 GENERAL

Page:_____ of ____

DAILY PROJECT LOG

400 Sunny 90°F Swanzy 93°F (Methodistry 5 Winds 5-10mph 4 Winds 5-10mph 556 Winds 5-10m Activity Leaded vehicle. Eurone to site; Refineled valuele At Refinery: H&S Meeting; disussed 50W; obtained permit to access PLF area; baded equipment from Env office. At Light 0.16 area For VEU OSM (-1.25 hrs) Completed UPLN OKM; signed out of Light Dils; Eurone to up supplies from PLF storage shed Functional ice Superior to enter NRW-12.34 unult; continued DKM on Re system Correspondense with From Hillson & Jerma Mesorley reg. ME area mound & obtaining proofer text shock; continued OSM activities Break (-1.00 hrs) Completed OKM activities Completed OKM activities Completed OKM activities Break (-1.00 hrs) Control of Meetinities & Perang Rate Pasts at NRW-1.2,3 & NRW-56, &T Phone call with JM reg. completed Off advities & SOW for Misposed of generated water at V-0.4th Checked act of Light Dils area Concepted of C. Functioned Supplies; Construction on J in multiple areas (x02558) allay Secured vehicle & equipment; End-Trime	-	AM	NOON	PM
Swinds 5-10mph & winds 5-10mph \$56 winds 5.10m Activity Loaded vehicle Grade to site; Refineled valuele At Refinery. H&S Meeting; discussed 500. obtained permit to access PLF aren; loaded equipment from Env office At hight oils area For VELL OKM (-1.25 hrs) Completed VELL OKM; signed out of hight Dils; Enroute to we supplies from PLF storage shed Purchased ice Signed into Light Dils; Met with Safety Dobued permit to enter NEW-1,2,34 unilt; continued DKM on Re system Correspondence with From Hilleren & Jerone McSorley reg. PLF area moused & obtaining prooffer test sheets; continued OS activities Break (-1.00 hrs) Completed OKM activities Completed OKM activities Completed OKM activities Completed OKM activities Completed OKM activities & Reveny Rote Parts at NRW-1,2,3 & NRW-56, 57 Phone call with SM reg. completed CMM aduities & 40W for tonorraw Disposed of generated unter at V-12 the Checked and of Light Dils area Concate to OKC : Furthesed Supplies; Construction on 7 in multiple areas (2025hrs) delay	400	SIMMY	90°F 51.27	930F (Schentindars 105
Activity Leaded vehicle. Eurante to site; Refueld vehicle. Eurante to site; Refueld vehicle. At Refinery: HE's Meeting; dijussed som: obtained permit to access PSF area; baded equipment from Env office. At Light oils area for VEM OKM (-1.25 hrs) Completed UPLI OKM; signed out of Light Dils; Eurante to up supplies from PLF storage shed Finituded ite fined into Light Dils; Met with Gately Dobused permit to enter NRW-1,2,3,4 unit; continued DKM on Re system Correspondence with From Hillaren & Jerome McSorley reg. PLF area moment & obtaining proofer test shoets; continued DS activities Break (-1.00 hrs) Completed OKM ectivities & Bearing Rate Tests at NRW-1,2,3,& NRW-56,&T Phone call with DM reg. completed CAM activities & SOW For- tomorran Disposed of generated water at V-D. teh Checked at of Light Dils area Checked at of Light Dils area		de C-10mph		
Leaded vehicle Euronte to site; Refineled vehicle At Refineny: HE's Meeting; discussed staw: obtained permit to access PEF area; baded equipment from Env of Price At Light oils area for VEU OKM (-1.25 hrs) Completed UPLI OKM; signed out of Light Dils; Euronte to up supplies from PEF storage shed Pinchased ice isned into Light Dils; Met with Gately Obtained permit to enter NRW-1,2,3,4 unilt; continued DKM on Re dystem Correspondence with From Hillmen & Jerane Misorley reg. PEF area mound & obtaining proofer test sheets; continued DK NRW-56, &T Phone call with SM reg. completed DM activities & SOW Po- tomorran Disposed of generated water at V-Ditch Checked of Light Dils area Checked of Light Dils area Checked of Light Oils area Checked of Light Oils area				
Encate to site; Refineled valuele At Refinenz: HE's Meeting; discussed SOW: obtained permit to access PEF area; baded equipment from Env office At Light oils area For VEU OKM (-1.25 hrs) Completed URLI OKM; signed out of Light Dils; Euronte to up supplies from PEF storage shed Furthated ice igned into Light Dils; met with safety Obtained permit to enter NRW-1,2,3,4 van1t; continued DKM on Re Bystem Correspondence with From Hillmen & Jerone Misorley res. PEF area maned & obtaining proofer test sheets; continued DKM activities Break (-1.00 hrs) Completed DKM activities Completed DKM activities Completed DKM activities Phone call with SM reg. completed DKM activities & SOW Po- tomorran Disposed of generated water at V-Ditch Checked at of Light Dils area Envolte to DKC; Purchased Supplies; Construction on J in multiple areas (2025hrs) day	1.11	· · · · · · / ·	Notivity	
At Refinery. HE'S Meeting; disussed sow : obtained permit to access PLF area; loaded equipment from Env office. At Light oils area For VEU OKM (-1.25 hrs) Completed VEU OKM; signal out of Light Dils; Euronte to up supplies from PLF storage shed Furchased ite signal into Light Dils; Met with Safely Obtained permit to enter NRW-1,2,34 vanilt; continued DKM on Re system Correspondence with From Hiller & Jerone Missorley reg. PIF area mound & obtaining proofer text sheets; continued DKM on Strank (-1.00 hrs) Completed OKM activities MRW-5,6, KT Phone call with DM reg. completed DM activities & SOW for tomorray Disposed of generated water at V-Ditch Checked out of Light Dilg area Contacte to OKC; Funchased Supplies; Construction on I in multiple areas (2025hrs) delay			a D lal lalla	
At Light oils area for VEW OKM (-1.25 hrs) At Light oils area for VEW OKM (-1.25 hrs) Completed VEW OKM; signed out of Light Dils; Euronte to up supplies from REF strage shed Purhaud ite sined into Light Dils; met with Gately inned other DKM on Ref John Ref John Ref hystem Correspondense with Fren Hilleren & Jerane Misorley reg. PIS area mound & obtaining proofer test sheets; continued DXM on Ref activities Break (-1.00 hrs) Continued DXM activities Completed DXM activities Completed DXM activities Phone call with JM reg. completed DXM activities & Source to the Disposed of generated water at V-Ditch Checked out of Light Bills area Concate to DXC · Funchased Supplies; Construction on I in multiple areas (2025hrs) delay	Euront	e to site;	cerneles valle	
At Light oils area for VEW OKM (-1.25 hrs) At Light oils area for VEW OKM (-1.25 hrs) Completed VEW OKM; signed out of Light Dils; Euronte to up supplies from REF strage shed Purhaud ite sined into Light Dils; met with Gately inned other DKM on Ref John Ref John Ref hystem Correspondense with Fren Hilleren & Jerane Misorley reg. PIS area mound & obtaining proofer test sheets; continued DXM on Ref activities Break (-1.00 hrs) Continued DXM activities Completed DXM activities Completed DXM activities Phone call with JM reg. completed DXM activities & Source to the Disposed of generated water at V-Ditch Checked out of Light Bills area Concate to DXC · Funchased Supplies; Construction on I in multiple areas (2025hrs) delay	At Res	JARY. HEGI	Meeting: discussed son	· obtained permit to
At Light Dils area For VEW OKM (-1.25 hrs) Completed VEW DKM; signed out of Light Dils; Euronte to up supplies from PUF storage shed Purchassed ite Functional ite Storage into Light Dils; Met with Safety Dotwined permit to enter NRW-1,2,24 vallt; continued DKM on Re System Correspondense with Fren Hilleren & Jerane Misorley reg. PIF area moused & obtaining proofer test sheets; continued DX activities Break (-1.00 hrs) Continued DXM activities Completed DKM activities Completed DKM activities Phone call with JM reg. completed DXM activities & Solution Disposed of generated water at V-Ditch Checked out of Light Bills area Concarte to DKC: Funchased Supplies; Construction on I in multiple areas (2025hrs) duby	04104	PLE aren · 12	aded equipment from	Env. office
Completed UPLN DKM; signed out of Light Dils; Enroute to up supplies from PLF storage shed Furthered ice tigned into Light Dils; Met with Gatety Dotwined permit to enter NRW-1,2,24 vanilt; continued DKM on Re hystem Correspondence with From Hillmon & Jerome Missorkey reg. PRF area mound & obtaining prooter test shoets; continued DK activities Break (-1.00 hrs) Completed DKM activities Completed DKM activities Complete		1 -1, 10		
Completed UPLN DKM; signed out of Light Dils; Enroute to up supplies from PLF storage shed Furthered ice tigned into Light Dils; Met with Gatety Dotwined permit to enter NRW-1,2,24 vanilt; continued DKM on Re hystem Correspondence with From Hillmon & Jerome Missorkey reg. PRF area mound & obtaining prooter test shoets; continued DK activities Break (-1.00 hrs) Completed DKM activities Completed DKM activities Complete	At I.	idat Dile area	For VELL DEM (-1.25 hrs)
up impolies from PLF storage shed Pinchasod ice find into Light Dils; pat with GaPety Dotoined permit to enter NRW-1,2,3,4 would; continued DXM on Re Bystem Correspondence with Fren Hillaren & Jerone Misorley reg. PLF area mound & obtaining proofer test sheets; contrinued DX activities Break (-1.00 h-s) Compleded DXM activities Compleded DXM activities Compleded DXM activities Phone call with JM reg. completed DXM activities & SOW for tomorraw Disposed of generated water at V-10. teh Checked ant of Light Dils area Erronte to DXC: Purchased Supplies; Construction on I in multiple areas (x0.25hrs) dulay				
up impolies from PLF storage shed Pinchasod ice find into Light Dils; pat with GaPety Dotoined permit to enter NRW-1,2,3,4 would; continued DXM on Re Bystem Correspondence with Fren Hillaren & Jerone Misorley reg. PLF area mound & obtaining proofer test sheets; contrinued DX activities Break (-1.00 h-s) Compleded DXM activities Compleded DXM activities Compleded DXM activities Phone call with JM reg. completed DXM activities & SOW for tomorraw Disposed of generated water at V-10. teh Checked ant of Light Dils area Erronte to DXC: Purchased Supplies; Construction on I in multiple areas (x0.25hrs) dulay	(- d	Lad URIA D	EM . I head out of	light Dile ' Eucoute to
Phichaeod ice figued into Light Dils: Met with Gatety Dotained permit to enter NRW-1,2,3,4 vanilt : continued DKM on Re Bystein Correspondense with Fran Hillmen & Jerome McGorley reg. PtF area moment & obtaining proofer test shoets : continued DX activities Break (-1.00 h-s) Continued DXM activities Complefield DXM activities Complefield DXM activities Phone call with JM reg. complefed DXM activities & SOW for tomorran Disposed of generated unter at V-Ditch Checked out of Light Oils area Ervoarte to OKC · Purchased Supplies; Construction on I in multiple areas (x0.25hrs) dilay	Compi	and open	PIE there it al	in the second se
igned into Light Dils; Met with Gatety Dotained permit to enter NRW-1,2,3,4 vanilt; continued DKM on Re Bystein Correspondence, with Fren Hilleren & Jerome McSorley reg. PtF area moment & obtaining proofer test sheets; continued 05 activities Break (-1.00 hrs) Complehed DKM activities Complehed DKM activities Complehed DKM activities & Recomp Rate Pests at NRW-1,2,3,& NRW-5,6, &7 Phone call with JM reg. completed DKM activities & SOW for tomorraw Disposed of generated unter at V-Ditch Checked out of Light Dils area Envolte to OKC; Purchased Supplies; Construction on 7 in multiple areas (20.25hrs) dulay			it glorage shed	
Dotained permit to enter NRW-1,2,3,4 will ; continued DKM on Re hystem Correspondense with Fren Hilleren & Jerone Missorley reg. PtF area moued & obtaining proofer test sheets; continued 05 activities Break (-1.00 hrs) Continued DEM activities Completed DKM activities Completed DKM activities & Recomp Rate Tests at NRW-1,2,3,& NRW-56, &7 Phone call with JM reg. completed DEM activities & SOW for tomorran Disposed of generated water at V-Ditch Checked at of Light Dilg area Envante to DKC; Furchased Supplies; Construction on I in multiple areas (2025hrs) delay	- funcha	hed ice	at the the stands	
Aysten Correspondence with Fran Hillmon & Jerome Misorley reg. PIE area moment & obtaining proofer test sheets; continued 05 activities Break (-1.00 hrs) Continued 05M activities Completed 05M activities Completed 05M activities & Recomp Rate Pests at NRW-1,2,3,5 NRW-5,6,57 Phone call with JM reg. completed 05M adiuties & 50W for tomorrow Disposed of generated unter at V-12,7th Disposed of generated unter at V-12,7th Checked out of Light Cills area Envolute to OKC. Funchased Supplies; Construction on I in multiple areas (2025hrs) delay	figures in	nto Light Vils	Met with gatery	and avair B
Correspondense with From Hillmon & Jeroma McGorley reg. PGF area moued & obtaining proofer test sheets; continued 05 activities Break (-1.00 hrs) Continued 0% Mactivities Completed 0% Mactivities Completed 0% Mactivities & Recomp Rate Tests at NRW-1,2,3,& NRW-5,6, &7 Phone call with JM reg. completed OfM advities & SOW for tomorrow Disposed of generated water at V-Ditch Checked out of Light Dilg area Envorte to OKC: Purchased Supplies; Construction on I in multiple areas (2025hrs) duty			E- NKW-1,2,3,4 Vault	continued Dr.Mon Ke
activities Break (-1.00 hrs) Contrinued D&M activities Completed D&M activities Completed D&M activities & Recorry Rate Parts at NEW-1,2,3,& NEW-5,6, &T Phone call with JM reg. completed D&M adjustics & SOW for Homorrow Phone call with JM reg. completed D&M adjustics & SOW for Homorrow Disposed of generated water at V-12,744 Disposed of generated water at V-12,744 Checked ant of Light Cills area Concorde to DKC · Purchased Supplies; Construction on I in multiple areas (x0.25hrs) delay	hyste	m		
activities Break (-1.00 hrs) Contribud 0×M activities Completed 0×M activities Completed 0×M activities & Revary Rate Tests at NEW-1,2,3,5 NEW-5,6, &7 Phone call with JM reg. completed 0×M adjuties & SOW for tomorrow Phone call with JM reg. completed 0×M adjuties & SOW for tomorrow Disposed of generated unter at V-Ditch Checked out of Light 0:16 area Envoute to OKC · Purchased Supplies; Construction on I in multiple areas (x0.25hrs) delay				
activities Break (-1.00 hrs) Contribud 0×M activities Completed 0×M activities Completed 0×M activities & Revary Rate Tests at NEW-1,2,3,5 NEW-5,6, &7 Phone call with JM reg. completed 0×M adjuties & SOW for tomorrow Phone call with JM reg. completed 0×M adjuties & SOW for tomorrow Disposed of generated unter at V-Ditch Checked out of Light 0:16 area Envoute to OKC · Purchased Supplies; Construction on I in multiple areas (x0.25hrs) delay	Correst	ondense u	the Fran Hillann &	Jerome McSorley reg.
activities Break (-1.00 hrs) Contribud 0×M activities Completed 0×M activities Completed 0×M activities & Revary Rate Tests at NEW-1,2,3,5 NEW-5,6, &7 Phone call with JM reg. completed 0×M adjuties & SOW for tomorrow Phone call with JM reg. completed 0×M adjuties & SOW for tomorrow Disposed of generated unter at V-Ditch Checked out of Light 0:16 area Envoute to OKC · Purchased Supplies; Construction on I in multiple areas (x0.25hrs) delay	MF at	en money &	: obtaining proofer test	- sheets continued of
Break (-1.00 h-s) Lontinued DEM activities Completed OKM activities & Revary Rate Pests at NEW-1,2,3 & NEW-5,6, &7 Phone call with JM reg. completed DEM activities & SOW for tomorran Phone call with JM reg. completed DEM activities & SOW for tomorran Disposed of generated water at V-Ditch Checked ant of Light Dilg area Envoure to OKC. Purchased Supplies; Construction on I in multiple areas (xDIShrs) deby	activit	hier		
Continued DEM activities Complehed DEM activities & Revary Rate Rests at NEW-1,2,3,5 NEW-5,6, &7 Phone call with JM reg. completed DEM activities & SOW for tomorran Disposed of generated water at V-Ditch Checked ant of Light Dilg area Enrante to DEC. Purchased Supplies; Construction on I in multiple areas (xDIShrs) deby				
Continued DEM activities Complehed DEM activities & Revary Rate Rests at NEW-1,2,3,5 NEW-5,6, &7 Phone call with JM reg. completed DEM activities & SOW for tomorran Disposed of generated water at V-Ditch Checked ant of Light Dilg area Enrante to DEC. Purchased Supplies; Construction on I in multiple areas (xDIShrs) deby	Break	c (-100 hrs)		
Complehed OKM activities & Recary Rate Parts at NRW-1,2,3,& NRW-5,6, &7 Phone call with JM reg. completed OKM activities & SOW For tomorran Disposed of generated water at V-Ditch Checked ant of Light Cills area Enrante to OKC: Purchased Supplies; Construction on I in multiple areas (x0.25hrs) deby	11-1	(100 4 1)		
Complehed OKM activities & Recary Rate Parts at NRW-1,2,3,& NRW-5,6, &7 Phone call with JM reg. completed OKM activities & SOW For tomorran Disposed of generated water at V-Ditch Checked ant of Light Cills area Enrante to OKC: Purchased Supplies; Construction on I in multiple areas (x0.25hrs) deby	1 mathered	I SYM and is	1. C	
NRW-5,6, KT Phone call with JM reg. completed DM adiuties & SOW for tomorran Disposed of generated water at V-Ditch Checked out of Light Cills area Enrante to OKC: Purchased Supplies; Construction on I in multiple areas (x0.25hrs) deby	Callure	a ver udtur	5	
NRW-5,6, KT Phone call with JM reg. completed DM adiuties & SOW for tomorran Disposed of generated water at V-Ditch Checked out of Light Cills area Enrante to OKC: Purchased Supplies; Construction on I in multiple areas (x0.25hrs) deby	· 1.	11 AVAL L'	1. FP. PL D.	to at MPW-122K
Phone call with JM reg. completed DM activities & SOW for tomorrow Disposed of generated water at V-Ditch Checked out of Light Dilg area Enroute to OKC: Purchased Supplies; Construction on I in multiple areas (x0.25hrs) deby			has a percent have ter	17 al 10 FW -1, 2, 7, 3
tomorran Disposed of generated water at V-Ditch Checked out of Light Dilg area Enroute to OKC: Furchased Supplies; Construction on I in multiple areas (x0.25hrs) deby	NRW	-5,6, 67		
tomorran Disposed of generated water at V-Ditch Checked out of Light Dilg area Enroute to OKC: Furchased Supplies; Construction on I in multiple areas (x0.25hrs) deby	N	11 . H	1/1 No	1 - 2 / 1 / 0
Disposed of generated water at V-Ditch Checked out of Light Dills area Enroute to OKC: Purchased Supplies; Construction on I in multiple areas (x0.25hrs) deby	Flasso	call with JM	reg. completed OFM a	anines i sow tor
Enroute to OKC: Purchased Supplies; Construction on I in multiple areas (x0.25hrs) dely	P mone	an.	1 1 1 1 1	
Enroute to OKC: Purchased Supplies; Construction on I in multiple areas (x0.25hrs) dely	1	ed of generat	ed water at V-12it	ch
Enroute to OKC: Purchased Supplies; Construction on I in multiple areas (x0.25hrs) dely	1			
Enroute to OKC: Furchased Supplies; Construction on I in multiple areas (x0.25hrs) deby Secured vehicle & equipment, End-Time	1			
in multiple areas (x0.25hrs) deby Secured vehicle & equipment, End-Time	1	t aut of Li	ight Dills area	
Secured vehicle & equipment, End-Time	1	to at of Line to DKC	ight Dills area · Furchased Supplies	: Construction on T
Secured vehicle & equipment, End-Time	1	to of Line	ight Dills area · Purchased Supplies as (xD.25hra) deby	; construction on I
Jemie vervue ; yrip e ; che in-	1	to ot of Line	ight Dills area · Furchased Supplies as (x D.25hrs) delay	; construction on I
	1	to out of Line	· Purchased Supplies as (x0.25hrs) delay	; construction on I Time
	1	to at of Line	· Purchased Supplies as (x0.25hrs) delay	; construction on I Time
	1	to at of Lin te to OKC withiple area	· Purchased Supplies as (x0.25hrs) delay	; construction on I Time
	1	to at of Lin le to OKC mittiple are: wittiple are:	· Purchased Supplies as (x0.25hrs) delay	; construction on I Time

NOTE: Please use ink. Record general progress of project. Detail problems and actions taken, injuries, equipment breakdown, unusual conditions or situations, out of scope work inspections, hiring/firing of personnel and any other occurrences which may affect this project. This log may be utilized as a legal document.

Date: 6-15-16 Project #: 3192 VR4

StanTech

DAILY PROJECT LOG

	AM	NOON	PM							
TEMP.	404 Sunny									
EATHER	4 Winds 5 mph									
Ime		Activity	1							
15	At 111+ All Anon	: bystem running . c	harked ' to with Y							
17_	AT LIGHT DITS AREA	NR IA DICAA	Necrey INTE WHIT &							
	obtained permit for	VEC OFM								
	Obtained system re	adras e								
	North PET plug:	1.	stuck: 55.9 PPM							
,										
	East PET plug: West PET plug:	-14.4 M20 1911 Va	enum Meter: - 2.5 inh							
	west in plug:									
	11 1 00 /]	white Nillers No	N							
		rected filter: Dry.	Digagembled							
`	Moisture Seperator 7	and (MGI): 2 2 of	Fine grain sound in b							
	of MST - Tested pu	mp quitches & ligh leve	alarm sensors: OK .							
	cleaned out MST.	modified Float on pu	up switch is intect							
	working properly									
	Re un Hel MUT, Trand and the I had all									
	Re-assembled MST: Turned on system; cheeted dischage									
	line down to sever anp: OK									
	System running ok									
930	Signed out of Ligh	t oils & signed off a	n permit							
			1							
 (

SIGNATIONE: _____ NOTE: Please use ink. Record general progress of project. Detail problems and actions taken, injuries, equipment breakdown, unusual conditions or situations, out of scope work, inspections, hiring/fiting of personnel and any other occurrences which may affect this project. This log may be utilized as a legal document. Recovery Rate Test Data Sheet

Wynnewood Refining Company, LLC Wynnewood, Oklahoma

Date: 6-15-16 & 6-16-16

Sampler: Levald Fields / Kyle Fishburn

Recovery Rate Test Procedures

1. Fill graduated bucket to a selected volume (64 oz or 112 oz). Record time it takes to fill bucket to that line on bucket.

2. Set bucket aside for a minimum of 5 minutes to allow product and water to separate.

3. Note if there is a sheen or if measureable product is present in bucket.

	Well ID	Volume (oz)	Time (sec)	Sheen Present (Y/N)	Measureable Product (Y/N)	Estimated Recovered Product (oz)	Estimated Product (oz)	Recovery Rate
	North Proce	ess Area		A				
	/NRW-1	112	21.61	Y	N	B	0	
	NRW-2	40	25.13	Y	N	Ø	0	
11	NRW-3	64	11.00	Y.	N	Ø	0	
6-15-16	NRW-4	64	7.81	Y	N	Ø	0	#DIV/0!
- /	NRW-5	64	3.85	Y	Y	1.502	0	
1	NRW-6	64	4.17	Ŷ	Y	0.500	0	
1	NRW-7	112	12.43	Ý	Y	0.5 02.	0	0
	Product Loa	ding Facility						
	BRW-6	112	3.69	Y	N	Ø	0	
	BRW-7	112	4.29	Y	N	Ø	0	#DIV/0!
6-16-15	BRW-8	112	4.45	Y	N)	Ø	0	
U	South Proce	ess Area						
(LRW-3	112	3.92	Y	N	Ø	0	#DIV/0!

WSP K:\Coffeyville Resources\WRC\Project Data\Remediation\WRC Recovery Rate Test Data Sheet\WRC Recovery Rate (Prover) Test Data Sheet_June 2016June 2016

Meter Readings

Wynnewood Groundwater System

NRW-1,2,3 4 METER METER READINGS WEST SYSTEM WYNNEWOOD REFINING COMPANY WYNNEWOOD OKLAHDMA

1

DATE	TIME	NRW-1 Flow (GPM)	NRW-2 Flow (GPM)	NRW-3 Flow (GPM)	NRW-4 Flow (GPM)	Combined Flow (GPM)	Totalizer (Gallons)	Calculated Avg-GPM	Comments
3-26-15	1252	-	-	~	-	4.86	427490		7.8 GPM after cleaning strainer
4-29-15	1252	-	-	-	-	3.80	616590		7.8 GPM after cleaning strainer Cleaned strainer-lunax flowrate 8.9 GPM
5-27-15	1011	-	1	-	-	4.80	785242		Cleaned Strainer
-						11:00	254249		ROLLOVER
6-23-15	1015			-	-	6.0	990592		
7-27-15	1050	1	-	_	-	5.5	256489		ROLLOVER; cleaned strainer; 11.56PM after cleaning
8-25-15	1041	-	-	-	-	6.3	534027		cleaned strainer
9-22-15	1100]	-	-	-	4.8	749693		cleaned strainer
10-28-15	1107	1	-	-	-	0.0	750015		cleaned strainer; 7.8 GEM after cleanong
11-24-15	1310	4	-	-	-	6.8	19099	_	cleaned strainer; 7.8 GEM after cleaning Cleaned strainer; meter has rolled over; Cleaning
12-15-15	1440	1	-	-	-	7.7	16666Z		cleaned strainer; 10.3 GPM after cleaning
1-26-16	1320	-	-	-		7.6	401649		Cleaned strainer; 9.6 GPM after cleaning cleaned buttery contacts; New totalizer # after cleaning: 777940
2-29-16	1330		~	-	-	6.8	665915		Cleaned strainer; 8.2 GPM after cleaning: 777940 Geaned strainer; 8.2 GPM after cleaning; The #8 on the display was facted. Will check batteries.
3-23-16	1405	-	_	-	-	0.0	778247		The #8 on the display was faded - will check batteries. cleaned strainer & cleaned out Flormater - 9.6 GFM after
3-24-16	0920	-	-	-	-	5.9	7783ZZ		cleaned strainer's cleaned out Formater 9.6 GFM after Replaced batteries; Reset Totalizer to D.D gal. Remained at 5.9 GPM

DATE	тіме	NRW-1 Flow (GPM)	NRW-2 Flow (GPM)	NRW-3 Flow (GPM)	NRW-4 Flow (GPM)	Combined Flow (GPM)	Totalizer (Gallons)	Calculated Avg-GPM	Comments
4-28-16	1328	e		-	—	ø	15706		Rollover; cleaned strainer; Max flowrate: 10.7GPM
5-24-16	1352	-	I	-	-	4.9	200525		cleaned strainer; Max Flowvate 10.5 GPM
6-15-16	1047	1	1	-	-	5.2	353548		cleaned strainer; Max Flaurate: 9.4 GPM Performed recovery rate tests on NRW-123.54
						1			

NRW-5,6 7 METER METER READINGS WEST SYSTEM WYNNEWOOD REFINING COMPANY WYNNEWOOD OKLAHOMA

DATE	ТЈМЕ	NRW-5 Flow (GPM)	NRW-6 Flow (GPM)	NRW-7 Flow (GPM)	Combined Flow (GPM)	Totalizer (Gallons)	Calculated Avg GPM	Comments
6-23-15	0941	-			9.1	551836		Cleaned Strainer
7-27-15	1435	-	(-	10.5	17224		Rollover; Cleaned strainer
8-25-15	1317	-	-	_	8.5	404260		Cleaned Strainer-Max Flowrate 17.5 GPM
9.22- 5	1258	2		1	9.3	735477		Cleaned strainer - max flownate: 10.3GPM
10-28-15	_	_	-	—	-			No access due to construction in area
11-24-15	1409	1		-	7.1	386729		Meter rolled over ; cleaned strainer; 9.4-12.5GPM after cleaning
12-16-15	1028	١	-	-	7.5	605467		cleaned straher; 9.5-15.5 GPM after cleaning
1-27-16	1008	Î		_	7.6	86740	· · · · · · · · · · · · · · · · · · ·	cleaned strainer; 15.5 GPM after cleaning; Rollover
2-29-16	1503	-	-	<u> </u>	8.3	449918		cleaned strainer; 13.2 GPM after cleaning
3-24-16	1052	Ţ	-	-	7.2	702853		cleaned strainer; 15.6 GPM after cleaning
4-28-16	1445	1	-	-	7.9	63899		cleaned struiner; 16.0 GPM after cleaning
5-25-16	1031	_	~	-	8.0	36585		Cleaned Stracher; 16.0 GPU after cleaning cleaned stracher; 16.4 GPM after cleaning
6-15-16		-	-	-	7.8	602309		cleaned strainer; 16:4 GIPM a Ffer cleaning Performed Recovery Rate Texts on NRW-5,6, & 7
		_						

METER NRW-5,6,7

METER <u>PLF</u> METER READINGS WEST SYSTEM WYNNEWOOD REFINING COMPANY WYNNEWOOD OKLAHOMA

DATE	TIME	Flow (GPM)	Totalizer One (Gallons)	Totalizer Two (Gallons)	Comments
3-19-15	1041	7.2	153773	153773	
3-26-15	1530	8.2	156,502		
4-29-15	1031	7.4	525,977		strainer was half full of soft solids; cleaned strainer - max Flowrate after cleaning 7.4GPM.
9-29-15	1011	6.0	808,542		Flowmate after cleaning 7.4 GPM. strainer was 2 Full of 40 Ft 40 lids: cleaned strainer. Flowmate remained at 6.0 gpm
6-23-15	1332	2.7	997, 596		BRWS 6-8 are off (power issues) Bower restored on 6-23-15 C × 1615
6-25-15	1414	6.1	13864	Rollover	cleaned strainer
7-27-15	164z	6.6	276264		cleaned strainer; strainer was 1/2 Full of soft solids Flowrate after cleaning strainer: 6.8 G FM
8-25-15	1452	6,3	534907		cleaned strainer; strainer Was 1/4 full of soft solids Flowrate after cleaning strainer: 6.4 GPM
9.22-15	1538	6.0	776242		Cleaned Strainer
10-28-15	1510	5.9	80736		cleaned strainer; Flourate after cleaning strainer: 5.9 GPM
11-24-15	1.500.51	5.9	305277		cleaned strainer; Flownate after cleaning the Strainer: rollover
12-16-15	1440	5.3	467330		cleaned strainer; Flourate after cleaning the strainer: 5.4 GPM
1-27-16	1.000	5.4	656125		Restored power to all PLF pumps. Cleaned strainer; flowrate after cleaning strainer: 5.4 GPM
				METER P	LF

di-

METER <u>PLF</u> METER READINGS WEST SYSTEM WYNNEWOOD REFINING COMPANY WYNNEWOOD OKLAHOMA

DATE	TIME	Flow (GPM)	Totalizer One (Gallons)	Totalizer Two (Gallons)	Comments
Z-18-16	1116	3.9	811619		BRW-3, BRW-5, and BRW-6 only; BRW.7 & BRW.8 are offline
2-19-16	1341	4.7	812129		BRW-3, BRW-5, BRW-6 (not running during this reading), BRW-7, and BRW-8 are online
2-24-16	1027	4.9	854100		
2-25-16	1132	4.7	8541390		BRW-3, BRW-5, BRW-7, & BRW-8 running. started up pumps @ 1115
2-26-16	1600	5 .8	863109		All pumps online, started BRW-6 at 1435
3-24-16	1300	5.4	70773		* ROLLOVER; cleaned strainer; Flowrate after cleaning: 5.6 6 PM
4-27-16	1015	4.5	316559		Cleaned strainer; Flowrate after cleaning: 4.5 GPM; Removed and Cleaned faceplate on flowmeter; replaced faceplate i placed bag on meter. cleaned strainer; Flowrate after cleaning: 4.5 GPM.
5-25-16	1300	4.1	489717		cleaned strainer; Flowrate a Fte- cleaning: 4.56 PM. Z'z"x 1/4" bushing needs replaced on z" Keckley style B 250 16% stree
6-16-16	1033	3.5	613477		Performed recovery rate tests. Blu-6 unable to keep up with water recharging. Able to down down with Blue 758 off. Replaced bushing on stainer. Cleaned stainer. Max Flownite: 3.6 G.F.M.
2.2.1					
				METER P	2F

METER PLF

METER <u>LEW-3</u> METER READINGS WEST SYSTEM WYNNEWOOD REFINING COMPANY WYNNEWOOD OKLAHOMA

DATE	TIME	Flow (GPM)	Totalizer One (Gallons)	Totalizer Two (Gallons)	Comments
6-16-16	1524	2.1	713091		Comments Performed prest recovery rate test Cleaned strainer; Marc Filow: 4.4 GPM
		1 1			

METER LRW-3

METER <u>LRW-3</u> METER READINGS WEST SYSTEM WYNNEWOOD REFINING COMPANY WYNNEWOOD OKLAHOMA

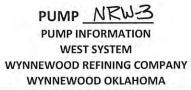
DATE	TIME	Flow (GPM)	Totalizer One (Gallons)	Totalizer Two (Gallons)	Comments
7-27-15	1545	3.2	326132		cleaned strainer
8-25-15	1637	2.0	451039		cleaned Strainer; Max Flowrate: 4.16PM
9-22-15	1445	Ð	451077		Cleaned strainer;
10-28-15	1412	0	451077		cleaned strainer. Flowate ranged from 0.0 to 4.6 GPM after class
11-24-15	1510	÷	451092		cleaned strainer; flourate ranged from 3.5 to 5.8 GPM aftering
12-15-15	1550	4	451112		cleaned strainer - Max Flowrate: 7.1 GFM after cleanly
1-26-16	1545	0	451134		
2-25-16	1350	A	45/157		cleaned strainer; May flowrate: 7.4 GPM after cleaning cleaned strainer; diversionabled physicity, cleaned impeller (25% covered) Flushed & 17 sollons through y strainer. May Flow me: 6.26PM Totalizer: 451176 @ 1645
2-29-16	1045	3.7	466572		
3-22-16	1048	ø	533270		Installed new 2" V-strainer & redurected plumbing into top value that used to house (Rund) strong back pressure on discharge line preventing pump
3-24-16	1030	ø	533287		from pushing through check value
4-27-16	1600	0	533287		Back pressure on discharge line and Bio-growth in strainer; pump is operating normally; cleaned strainer; Max Flowrate: 9.4GPM; 533,313@1638
4-28-16	1600	3.1	537632		
5-24-16	1508	1.7	644644		cleaneest strainer; Max Flourate: 4.4 GPM
5-25-16	0951	1.7	645838		

METER LRW-3

Pump Information / Electrical Settings Wynnewood Groundwater System

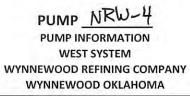
PUMP <u>NRW-</u> PUMP INFORMATION WEST SYSTEM WYNNEWOOD REFINING COMPANY WYNNEWOOD OKLAHOMA

142

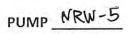

Date	Time	Valve Position	Actual Setpoint (min-1)	External Setpoint:(%)	Temperature (Deg F)	Speed (min-1)	Power Input (watts)	Power Consuption (KWH)	Operating Hours	Number of Starts	
6-23-15	1020	OPEN	5000	100	87	5000	120	1642	10852	20265	0.
7-27-15	1057	DPEN	5000	100	86	5000	120	1736	11670	20269	C
8-25-15	1050	OPEN	5000	100	89	5000	110	1812	12366	20272	C
9-22-15	1109	OPEN	5000	100	87	5000	110	1884	13038	20277	E
10-28-15	1119	DREN	5000	100	94	5000	110	1976	13904	20284	٥
11-24-15	1325	OPEN	5000	100	१५	5000	110	2044	14554	20288	0
12-15-15	1446	DREN	5000	100	95	5000	11D	2098	15060	20292	0
1-26-16	1327	OPEN	5000	100	94	5000	110	2208	16068	20296	0.
2-29-16	(34)	DIEN	5000	100	94	5000	116	2294	16884	20306	0
3-23-16	1410	OPEN	5000	100	93	5000	100	2352	17436	20311	0.0
4-28-16	1338	OPEN	5000	100	94	5000	100	2438	18300	20314	0
5-24-16	1402	OPEN	5000	100	93	5000	100	2498	18924	20319	0
6-15-16	1115	DIPEN	5000	100	92	5000	100	2554	19450	20322	0
								· c.		*	

PUMP NRW-1

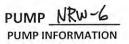
PUMP <u>NRW-2</u> PUMP INFORMATION WEST SYSTEM WYNNEWOOD REFINING COMPANY WYNNEWOOD OKLAHOMA


Date	Time	Valve Position	Actual Setpoint (min-1)	External Setpoint:(%)	Temperature (Deg F)	Speed (min-1)	Power Input (watts)	Power Consuption (KWH)	Operating Hours	Number of Starts	
6-23-15	1026	OPEN	5000	100	רר	5000	110	1812	11544	18655	0.:
7-27-15	1100	OPEN	5000	100	78	5000	110	1892	12360	18660	0.
8-25-15	1053	OPEN	5000	[00]	81	5000	110	1966	13056	18664	0.7
9-22-15	111	OPEN	5000	100	81	5000	100	2038	13728	18668	0.7
10-28-15	1123	DAEN	5000	100	41	5000	110	2130	14592	18671	0.7
11-24-15	1328	OPEN	5000	100	84	5000	100	2.200	15242	18675	0.7
12-15-15	1449	OPEN	5000	100	4 4	5000	100	2250	15748	18678	0.
1-26-16	1328	OPEN	5000	100	84	5000	100	2350	16756	18681	0,7
2-29-16	1343	OPEN	5000	100	45	5000	100	2430	17572	18691	D.(
3-23-16	1413	OPEN	5000	100	84	5000	90	2482	18122	18696	0,6
4-28-16	1340	OPEN	5000	100	77	5000	80	2542	18740	19204	0.6
5-24-16	1406	OPEN	5000	100	77	5000	80	25423	18752	20454	0.6
6-15-16	1114	DPEN	5000	100	77	5000	80	2.544	18762	2/506	0.6
											_
						1.2					

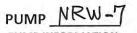
PUMP NRW-2


Date	Time	Valve Position	Actual Setpoint (min-1)	External Setpoint:(%)	Temperature (Deg F)	Speed (min-1)	Power Input (watts)	Power Consuption (KWH)	Operating Hours	Number of Starts	
6-23-15	1029	OPEN	5000	100	78	45000	100	1040	7214	31413	0
7-27-15	110z	DPEN	5000	100	40	5000	110	1118	8 032	31420	C
8-25-15	1055	OPEN	5000	100	81	5000	100	1186	8728	31423	0
9-22-15	1113	OPEN	5000	100	82	5000	100	1250	9400	31428	Ø
10-28-15	1127	DIEN	5000	100	82	5000	100	1332	10266	31431	0
11-24-15	1330	OPEN	5000	100	85	5000	110	1396	10916	31434	0
12-15-15	1451	OPEN	5000	100	86	5000	100	1444	11422	31438	i
1-26-16	1330	OPEN	5000	100	85	5000	110	1540	12430	31442	0
Z-Z9-16	1346	DPEN	5000	100	86	5000	110	1618	13246	31453	2
3-23-16	1415	OPEN	5000	100	84	5000	100	1672	13798	31458	0
4-28-16	1342	OPEN	5000	100	85	5000	110	1754	14662	31461	0
5-24-16	1410	OPEN	5000	100	82	5000	100	1814	15286	31466	C
6-15-16	1118	OPEN	5000	100	40	5000	100	1864	15812	31470	0

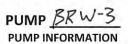
PUMP_NRW-3


Date	Time	Valve Position	Actual Setpoint (min-1)	External Setpoint:(%)	Temperature (Deg F)	Speed (min-1)	Power Input (watts)	Power Consuption (KWH)	Operating Hours	Number of Starts	
6-23-15	1032	OPEN	5000	100	77	5000	110	1456	11084	14930	0.7
7-27-15	1104	open	5000	100	78	5000	100	1536	11902	14934	D.
8-25-15	1057	OPEN	5000	100	80	5000	100	1606	12600	14937	0.7
9-22-15	1118	OPEN	5000	100	84	5000	110	1670	13272	14942	0.1
10-28-15	1130	DPEN	5000	100	80	5000	100	1752	14138	14945	D.*
11-24-15	332	OPEN	5000	100	82	5000	110	1816	14790	14949	0.7
12-15-15	1454	DPEN	5000	100	92	5000	110	1868	15296	1495z	D.,
1-26-16	1333	OPEN	5000	100	81	5000	110	1974	16304	14955	0,5
2-29-16	1348	DIFEN	5000	100	81	5000	120	2056	17122	14965	0."
3-23-16	1417	OPEN	5000	100	80	5000	110	2108	17674	14971	0.7
4-28-16	1344	OPEN	5000	100	80	5000	110	2192	18538	14975	0.7
5-24-16	1415	DPEN	5000	160	77	5000	110	2252	19164	14981	0.5
6-15-16	1125	DPEN	5000	IDD	77	5000	100	2302	19690	14985	0.5
									_		

PUMP NRW-4


PUMP INFORMATION WEST SYSTEM WYNNEWOOD REFINING COMPANY WYNNEWOOD OKLAHOMA

Date	Time	Valve Position	Actual Setpoint (min-1)	External Setpoint:(%)	Temperature (Deg F)	Speed (min-1)	Power Input (watts)	Power Consuption (KWH)	Operating Hours	Number of Starts
4-29-15	1412	OPEN	7500	100	77	7400	300	142	394	37287
5-27-15	(238	DIEN	7500	100	43	7400	300	158	446	38627
6-23-15	0943	OPEN	7500	100	80	7400	280	172	488	39916
7-27-15	1440	OPEN	7500	100	84	7500	290	192	55Z	41558
8-25-15	1323	OPEN	7500	100	84	7400	280	204	592	42949
9-22-15	1323	OPEN	7500	100	80	7400	280	210	614	44305
10-28-15	- Na	Access	due to	construc	tion in	n area				
11-24-15	1414	OPEN	7500	100	82	7400	280	222	652	47329
12-16-15	1033	DPEN	7500	IDD	8Z	7500	310	226	666	48377
1-27-16	1012	OPEN	7500	100	80	7400	290	236	698	50391
2-29-16	1508	OPEN	7500	100	81	7400	280	242	716	51987
3-24-16	1055	OPEN	7500	100	81	7400	290	246	732	53130
4-28-16	1457	OPEN	7500	100	78	7400	280	256	760	54823
5-25-16	1042	OPEN	7500	100	8Z	7500	300	264	788	56111
6-15-16	1146	OPEN	7500	601	80	7500	300	270	810	57121


WEST SYSTEM WYNNEWOOD REFINING COMPANY WYNNEWOOD OKLAHOMA

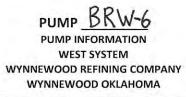
	-						1			1
Date	Time	Valve Position	Actual Setpoint (min-1)	External Setpoint:(%)	Temperature (Deg F)	Speed (min-1)	Power Input (watts)	Power Consuption (KWH)	Operating Hours	Number of Starts
4-29-15	1417	OPEN	7500	100	82	7500	360	2910	6818	28711
5-27-1S	124Z	DEN	7500	100	86	7400	340	3150	7488	287/4
6-23-15	0945	OPEN	7500	100	86	7500	340	3370	8134	28719
7-27-15	1443	OPEN	7500	100	86	7500	320	3656	8956	28722
8-25-15	1328	OPEN	7500	100	86	7400	310	3882	9650	28727
9-22-15	1330	OPEN	7500	100	88	7400	310	4104	10322	28733
10-28-15			- No	Access q	he to	construct	ion in a	rea		
11-24-15	1417	OPEN	7500	100	93	7500	340	4590	11832	28740
12-16-15	1038	OPEN	7500	100	91	7500	320	4774	12356	28749
1-27-16	1015	OPEN	7500	100	85	7500	330	5132	13362	28756
2-29-16	1512	OPEN	7500	100	84	7500	350	5404	14160	28761
3-24-16	1059	OPEN	7500	100	86	7500	330	5606	14730	28766
4-28-16	1455	OPEN	7500	100	89	7500	320	5894	15552	28912
5-25-16	1037	OPEN	7500	100	91	7500	346	6120	16196	28918
-15-16	1142	OPEN	7500	100	91	7400	360	6302	16702	28923

PUMP INFORMATION WEST SYSTEM WYNNEWOOD REFINING COMPANY WYNNEWOOD OKLAHOMA

Date	Time	Valve Position	Actual Setpoint (min-1)	External Setpoint:(%)	Temperature (Deg F)	Speed (min-1)	Power Input (watts)	Power Consuption (KWH)	Operating Hours	Number of Starts
4-29-15	1420	OPEN	7700	100	ঙা	7700	360	2738	5672	32242
5-27-15	1245	OPEN	7760	100	85	7700	360	2828	5928	335/5
6-23-15	6948	OPEN	7700	100	93	7700	330	3030	6532	3372.9
7-27-15	1446	OPEN	7700	100	93	7700	340	3316	7354	33734
8-25-15	1331	OPEN	7700	100	88	7700	340	3560	8050	33739
9.22.15	1333	OPEN	7700	100	91	7700	320	3782	8720	33773
10-28-15			- No	Access a	fue to a	onstruct	tion in	area —		-
11-24-15	1421	OPEN	7700	1.00	92	7700	310	4274	10226	33809
12-16-15	1041	DPEN	7700	100	89	7700	300	4416	10680	34265
1-27-16	1017	OPEN	7700	100	85	7700	300	4738	11686	34306
2-29-16	(515	OPEN	7700	100	85	7700	310	4980	12460	34540
3-24-16	1102	OPEN	7700	100	86	7700	300	5162	13026	34603
4-28-16	1450	OPEN	7700	100	86	7700	300	5426	(3854	34753
5-25-16	1050	DPEN	7700	100	86	7700	340	5642	14498	34758
6-15-16	1150	OPEN	7700	100	\$6	7700	340	5814	15004	34762

WEST SYSTEM WYNNEWOOD REFINING COMPANY WYNNEWOOD OKLAHOMA

Date	Time	Valve Position	Actual Setpoint (min-1)	External Setpoint:(%)	Temperature (Deg F)	Speed (min-1)	Power Input (watts)	Power Consuption (KWH)	Operating Hours	Number of Starts
9-22-15	1453	OPEN	10700	100	81	10700	120	3606	7136	48482
10-28-15	1528	DPEN	10700	100	75	10700	120	3628	7230	57895
11-24-15	1617	OVEN	10700	100	80	10700	120	3644	7302	64972
12-16-15	1539	DIZEN	10700	100	77	10700	120	3658	7360	5439?
1-27-16	1337	OPEN	10700	100	73	10700	120	3674	7428	12288
2-25-16	1135	OPEN	10700	100	72	10700	051	3694	7500	19307
3-24-16	1341	OPEN	10700	100	71	10700	120	3710	7574	26641
4-27-16	1045	OPEN	10700	100	74	10700	120	3732	7662	35498
5-25-16	1335	DIPEN	10700	100	75	10700	120	3748	7736	42.809
6-16-16	1351	OPEN	10700	100	76	10700	120	3764	7794	48548
			-				1			
	S				2-					*


PUMPBRW.3

WEST SYSTEM WYNNEWOOD REFINING COMPANY WYNNEWOOD OKLAHOMA

4-27-16 1050 OPEN 8000 100 99 8000 300 2386 10984 17388 5-25-16 1341 DPEN 8000 100 100 100 8000 300 2546 11654 17393	Date	Time	Valve Position	Actual Setpoint (min-1)	External Setpoint:(%)	Temperature (Deg F)	Speed (min-1)	Power Input (watts)	Power Consuption (KWH)	Operating Hours	Number of Starts
q-22-15 1556 $0PEN$ 8000 100 101 8000 270 1328 6160 17352 $10.28.75$ 1534 $OPEN$ 8000 160 112 9000 250 1510 7024 17356 $11.24-15$ 1619 $OPEN$ 8000 100 100 8000 260 1650 7674 17361 $12-1615$ 1543 $OPEN$ 9000 100 97 8000 270 1770 9202 17764 $1-27-16$ 1351 $OPEN$ 8000 100 89 8000 260 1908 8830 17369 $2-25-16$ 1154 $0PEN$ 8000 100 89 8000 210 2060 9498 17383 $3-24-16$ 1349 $OPEN$ 8000 100 95 8060 320 2206 10170 17385 $4-27-16$ 1050 $OPEN$ 8000 100 94 8000 300 2386 10984 17388 $5-25-16$ 1341 $DPEN$ 9000 100 99 8000 300 2746 11654 17393	7-27-15	1709	OPEN	4000	100	95	8000	250	1042	4796	17326
10.23.75 1534 $0PEN$ 8000 100 112 9000 750 1510 7024 17356 $11.24-15$ 1619 $0PEN$ 8000 100 100 8000 260 1650 7674 17361 $12-16-15$ 1543 $OPEN$ 9000 100 99 8000 270 $177D$ 8202 17364 $1-27-16$ 1351 $OPEN$ 8000 100 89 8000 260 1908 8830 17369 $2-25-16$ 1174 $0PEN$ 8000 100 89 8000 210 2060 9498 17383 $3-24-16$ 1349 $0PEN$ 8000 100 95 8060 320 2206 10170 17385 $4-27-16$ 1050 $OPEN$ 8000 100 99 8000 300 2386 10984 17388 $5-25-16$ 1741 $DPEN$ 9000 100 99 8000 300 2386 10984 17387	8-25-15	15/2	OPEN	8000	100	97	8000	270	1186	5488	17349
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9-22-15	1556	OPEN	8000	100	101	8000	270	1328	6160	17352
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.23-15	1534	OPEN	8000	100	112	8000	250	1510	7024	17356
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11-24-15	1619	OPEN	8000	100	100	8000	260	1650	7674	17361
2-25-16 1139 DITEN 8000 100 96 8000 210 2060 9498 17383 3-24-16 1349 OPEN 8000 100 95 8000 320 2206 10170 17385 4-27-16 1050 OPEN 8000 100 99 8000 300 2386 10984 17388 5-25-16 1341 DPEN 8000 100 100 8000 300 2386 10984 17388	12-16-15	1543	DPEN	4000	100	99	8000	270	1770	\$202	17364
3-24-16 1349 OPEN 8000 100 95 8000 320 2206 10170 17385 4-27-16 1050 OPEN 8000 100 99 8000 300 2386 10984 17385 5-25-16 1341 DPEN 8000 100 100 8000 300 2546 11654 17385	1-27-16	1351	OPEN	8000	100	89	8000	260	1908	8830	17369
4-27-16 1050 OPEN 8000 100 99 8000 300 2386 10984 17388 5-25-16 1341 DPEN 8000 100 100 100 8000 300 2546 11654 17393	2-25-16	1139	DITEN	800 D	100	96	8000	210	2060	9498	17383
5-25-16 1341 DPEN 9000 100 100 100 8000 300 2546 11654 17393	3-24-16	1349	OPEN	8000	100	95	8000	320	2206	10170	17385
	4-27-16	1050	OPEN	8000	100	99	8000	300	2386	10984	17388
6-16-16 1355 OPEN 4000 100 105 4000 300 2672 12180 17395	5-25-16	1341	DPEN	8000	100	loD	8000	300	2546	11654	17393
	6-16-16	1355	DPEN	6000	100	105	4000	300	2672	12/80	17395
			·								

PUMP_BRW-5

09A, restarted obtain Amps. 3A 50-57 10000 m reduced to 55A (standay)	Date	Time	Valve Position	Actual Setpoint (min-1)	External Setpoint:(%)	Temperature (Deg F)	Speed (min-1)	Power Input (watts)	Power Consuption (KWH)	Operating Hours	Number of Starts	
	1-27-16	1329	OPEN	10700	100	86	10700	800	12396	13328	15311	3.57 I
	2-10-16	1425	OPEN	10700	100	88	10700	800	12416	13352	15985	3.50A
	2-10-16	1607	OPEN	10700	100	99	10700	860	12418	13354	15992	3.76A
	2-18-16	1125	OPEN	10700	100	83	10700	790	12508	13458	16221	3.48A
	2-24-16	1055	DREN	10700	JOD	77	10700	780	12510	13462	16511	3.53A
	2-26-16	1925	OPEN	10700	100	100	10700	1000	12512	13464	16525	4.60 A
	7-29-16	1022	OPEN	10700	100	98	10700	940	12578	13532	16527	4.15A
	3-24-16	1316	OPEN	10700	100	96	10700	1200	13122	14110	16530	4.62 A
	4-27-16	1035	OPEN	10700	100	95	10700	1100	13888	14924	16534	4.54 A
	5-25-16	1320	OPEN	10700	100	148	10700	HORP	14580	19596	16541	4.70 A
	6-16-16	1340	OPEN	10700	100	115	10700	940	1510Z	16124	16544	4.08A
				- 1			1					
									· · · · · ·		TT.	

PUMPBRW-6

PUMP <u>BRW-7</u> PUMP INFORMATION WEST SYSTEM WYNNEWOOD REFINING COMPANY WYNNEWOOD OKLAHOMA

Date	Time	Valve Position	Actual Setpoint (min-1)	External Setpoint:(%)	Temperature (Deg F)	Speed (min-1)	Power Input (watts)	Power Consuption (KWH)	Operating Hours	Number of Starts	
6-25-15	0942	OPEN	10700	100	72	10700	620	7266	10354	52443	2.73A
7-27-15	1656	DPEN	10700	100	73	10700	680	768Z	11036	52774	2.84
8-25-15	1502	OPEN	10700	100	85	10700	660	8120	11756	52815	2.84
9-22-15	1547	OPEN	10700	100	77	10700	650	8530	12438	53155	2.79
10-28-15	1520	DREN	10700	100	80	10700	660	9070	13332	53279	2.86 A
11-24-15	1606	OPEN	10700	100	78	10700	660	9476	14006	53334	2.86 A
12-16-15	1457	OPEN	10700	100	76	10700	670	9818	14552	53346	Z.86A
1-27-16	1332	OPEN	10700	100	65	10700	710	10238	15204	53368	3.07 A
2-25-16	1144	DPEN	10700	100	85	10700	670	10588	15700	53377	2.93A
3-24-16	1320	OPEN	10700	100	74	10700	700	11024	16398	53383	2.97 A
4-27-16	1038	OPEN	10700	100	72	10700	690	11566	17244	53386	2.95A
5-2516	1326	DPEN	10700	100	76	10700	700	12034	17940	53389	Z.98A
6-16-16	[344	OPEN	10700	100	87	10700	650	12394	18486	53396	z.77A
			· · · · · · · · · · · · · · · · · · ·								

PUMPBRW-7

PUMP BRW-8 PUMP INFORMATION WEST SYSTEM WYNNEWOOD REFINING COMPANY WYNNEWOOD OKLAHOMA

Date	Time	Valve Position	Actual Setpoint (min-1)	External Setpoint:(%)	Temperature (Deg F)	Speed (min-1)	Power Input (watts)	Power Consuption (KWH)	Operating Hours	Number of Starts
6-25-15	0946	OPEN	10700	100	119	10700	500	11918	20192	3546
7-27-15	1658	OPEN	10700	100	116	10700	520	12256	20968	3551
8-25-15	1504	OPEN	10700	100	121	10700	520	12554	21662	355.5
9-22-15	1549	OPEN	10700	100	131	10700	530	12846	22334	3558
10-28-15	1523	OPEN	10700	/00	133	10700	520	13220	23/98	3563
11-24-15	1608	OPEN	10700	100	131	10700	510	13498	23848	3567
2-16-15	1530	OPEN	10700	100	130	10700	480	13754	Z4376	3570
1-27-16	1335	OPEN	10700	100	82	10700	540	14066	25004	3576
Z-25-16	1148	OPEN	10700	100	100	10700	520	14302	25480	3586
3-24-16	1323	OPEN	10700	100	118	10700	510	14584	26154	3590
4-27-16	1040	OPEN	107700	100	123	10700	480	14920	26966	3610
5-25-16	1331	OPEN	10700	100	\$6	10700	490	15226	27634	3661
6-16-16	1347	DPEN	10700	100	99	10700	470	15474	28160	3666

PUMP <u>LRW-3</u> PUMP INFORMATION WEST SYSTEM

WYNNEWOOD REFINING COMPANY

WYNNEWOOD OKLAHOMA

Date	Time	Valve Position	Actual Setpoint (min-1)	External Setpoint:(%)	Temperature (Deg F)	Speed (min-1)	Power Input (watts)	Power Consuption (KWH)	Operating Hours	Number of Starts
6-23-15	1348	OPEN	7500	100	84	7500	190	1134	3166	34732
7-27-19	1555	OPEN	7500	100	86	7500	210	1306	3984	34737
8-25-15	16240	OPEN	7500	100	91	7400	220	1460	4682	34744
9-22-15	1504	OPEN	7500	100	89	7500	220	1604	5354	34750
10-28-15	1422	OPEN	7500	100	91	7500	200	1794	6218	34754
11-24-15	1516	OPEN	7500	100	97	7500	190	1922	6870	34759
12-15-15	1556	OPEN	7500	100	111	7400	200	2028	7376	34766
1-26-16	1552	OPEN	7500	100	94	7500	230	2.260	8384	34770
2-25-16	1400	Dren	7500	100	98	7500	200	2416	9104	34774
2-29-16	1053	OPEN	7500	100	104	7400	250	2434	9194	34786
3-22-16	1056	6PEN	7500	100	99	7500	226	2554	9722	34789
4-27-16	1607	OPEN	7500	100	98	7500	240	2750	10570	34799
5-24-16	1529	OPEN	7500	100	89	7400	210	2902	11220	34805
6-16-16	1544	OPEN	7500	(00)	92	7400	230	3034	11772	34804

PUMP LRW-3

Appendix 4.2.B – Recovery Rate Calculation

Recovery Rate Test Data Sheet

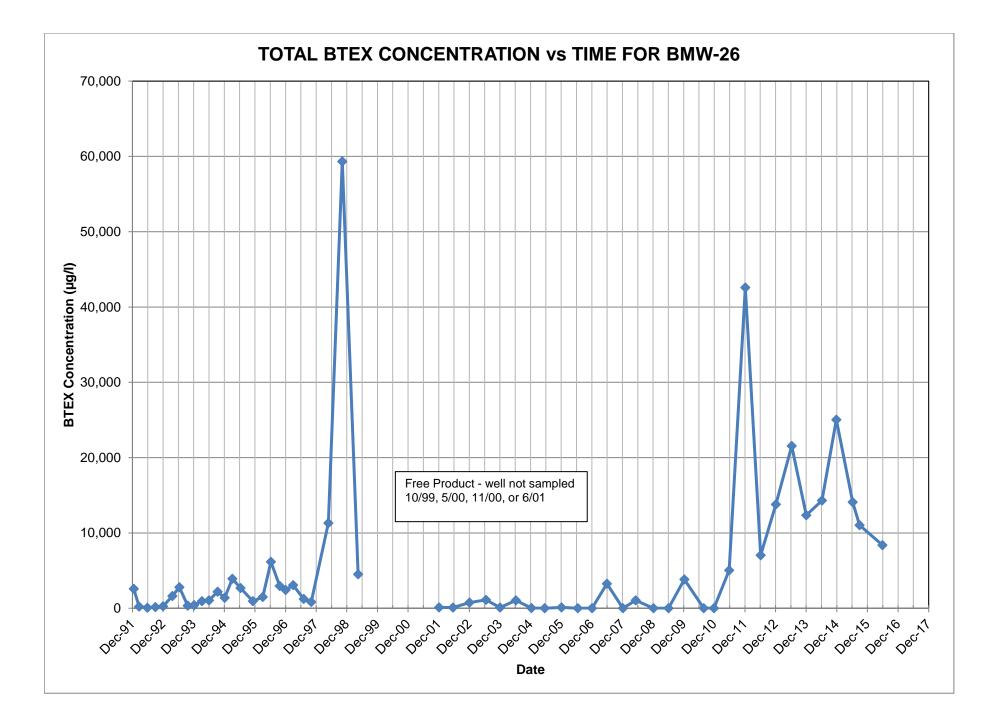
Wynnewood Refining Company, LLC Wynnewood, Oklahoma

Date: 6/15/16 and 6/16/16

Sampler: Kyle Fishburn and Gerald Fields (StanTech)

Recovery Rate Test Procedures


1. Fill graduated bucket to a selected volume (64 oz or 112 oz). Record time it takes to fill bucket to that line on bucket.


2. Set bucket aside for a minimum of 5 minutes to allow product and water to separate.

3. Note if there is a sheen or if measureable product is present in bucket.

					Estimated				
			Sheen	Measureable	Recovered	Estimated Product	Recovery		
Well ID	Volume (oz)	Time (sec)	Present (Y/N)	Product (Y/N)	Product (oz)	(oz)	Rate		
North Process	North Process Area								
NRW-1	112	21.61	Y	Ν	0	0.01			
NRW-2	40	25.13	Y	Ν	0	0.01			
NRW-3	64	11	Y	Ν	0	0.01			
NRW-4	64	7.81	Y	Ν	0	0.01	0.004885		
NRW-5	64	3.85	Y	Y	1.5	1.5			
NRW-6	64	4.17	Y	Y	0.5	0.5			
NRW-7	112	12.43	Y	Y	0.5	0.5			
Product Loading Facility									
BRW-6	112	3.69	Y	Ν	0	0.01			
BRW-7	112	4.29	Y	Ν	0	0.01	8.93E-05		
BRW-8	112	4.45	Y	Ν	0	0.01			
South Process	South Process Area								
LRW-3	112	3.92	Y	Ν	0	0.01	8.93E-05		

Appendix 4.2.C – BTEX Trends for BMW-25 and BMW-26

Appendix 6 – Interior Delineation Summary and Recommendation Report (on CD)

INTERIOR DELINEATION SUMMARY AND RECOMMENDATION REPORT

Consent Order Case No. 15-056

WYNNEWOOD REFINING COMPANY, LLC

WYNNEWOOD, OKLAHOMA

EPA ID No. OKD000396549

Prepared by

CVR Energy, Inc. and

WSP | Parsons Brinckerhoff

July 13, 2016

WSP | Parsons Brinckerhoff 123 North Third Street Suite 507 Minneapolis, MN 55401

Tel: +1 612 343 0510 Fax: +1 612 343 0506 http://www.wspgroup.com/usa

INTERIOR DELINEATION SUMMARY AND RECOMMENDATION REPORT

CONSENT ORDER CASE NO. 15-056

WYNNEWOOD REFINING COMPANY, LLC WYNNEWOOD, OKLAHOMA

Prepared for Wynnewood Refining Company, LLC P.O. Box 305, 906 South Powell, Wynnewood, Oklahoma 73098

EPA ID No.: OKD000396549

Prepared by CVR Energy, Inc. 33075 West Airline Road, Pauls Valley, Oklahoma 73075 AND WSP | Parsons Brinckerhoff 123 N. 3rd Street, Suite 507, Minneapolis, Minnesota, 55401

July 13, 2016

Report Prepared By:

07/13/2016 Jerome McSorley, P.G.

CVR Energy, Inc.

dd

Christine Warford, P.E. V WSP | Parsons Brinckerhoff

Report Reviewed By:

Sam A. McCormick CVR Energy, Inc.

07/13/2016

07/13/2016

Report Distribution: Adrian Simmons – ODEQ Stephen Baldridge – ODEQ Bob Morris – WRC Jerome McSorley – CVR Energy, Inc. Evan Hilburn – WRC LeAnn Johnson Koch, Esq. – Perkins Coie LLP Christine Warford – WSP | Parsons Brinckerhoff

Contents

Certificatio	on Page	i
Acronyms		iv
1 Introdu	uction	5
1.1 F	Purpose	5
1.2 F	Project Personnel	5
	r Delineation Field Activities	
	Existing Monitoring Well Network	
2.1.1	Monitoring Well Installation and Plugging	
2.1.2	Monitoring Well Rehabilitation and Repair	6
2.1.3	Site-Wide Comprehensive Groundwater Sampling Event	6
2.1.4	API Gravity Testing	6
2.2 D	Direct-Push Sampling Event	7
2.2.1	Site Geology and Hydrogeology Investigation	7
2.2.2	LNAPL Plume Delineation	8
2.2.3	Dissolved-Phase Plume Delineation	8
2.3 L	NAPL Transmissivity	8
3 Interio	r Delineation Results	10
3.1 E	Existing Monitoring Well Network Sampling Event	10
3.1.1	Site-Wide Delineation Groundwater Sampling Event	10
3.1.2	API Gravity Testing	11
3.2 C	Direct-Push Sampling Event	11
3.2.1	Site Geology and Hydrogeology	11
3.2.2	LNAPL Delineation	13
3.2.2.1	LNAPL in Soils	13
3.2.2.2	LNAPL In Groundwater	14
3.2.3	Dissolved-Phase Plume Delineation	14
3.2.3.1	Gasoline Range Organics	15
3.2.3.2	Diesel Range Organics	15
3.2.3.3	Benzene	
3.3 L	NAPL Transmissivity	16

	3.3.1	Field Procedures	16
	3.3.2	Calculating LNAPL Transmissivity	16
4	Summa	ry	18
	4.1 Plu	ume Delineation	18
	4.1.1	Extent of LNAPL Plume	18
	4.1.2	Extent of Dissolved-Phase Plume	19
	4.2 LN	IAPL Transmissivity	19
5	Recomr	nendations	20
	5.1 Ad	Iditional Monitoring Wells	20
	5.1.1	Perimeter Monitoring Well locations	20
	5.1.2	Interior Monitoring Well Locations	20
	5.2 Ad	Iditional Groundwater Remediation	21
	5.2.1	North Process Area Recovery System Modification	21
	5.2.2	Product Loading Facility Additional Remediation	22
	5.2.3	South Process Area	22
	5.2.4	Manual LNAPL Recovery	22
6	Referen	ces	24
с;			

Figures

- Figure 1 Site Location
- Figure 2 Site Map
- Figure 3 Hydrogeologic Cross Sections
- Figure 4 Water Table Elevation and LNAPL Thickness Map (March 2016)
- Figure 5A Gasoline Range Organics Isoconcentration Map
- Figure 5B Diesel Range Organics Isoconcentration Map
- Figure 5C Benzene Isoconcentration Map
- Figure 6 Proposed Well Locations

Tables

- Table 1 Field Screening Data
- Table 2 Summary of Groundwater Analytical Results
- Table 3 LNAPL Transmissivity Result Summary

Appendices

Appendix A – Boring Logs

Appendix B – Summary of Groundwater Analytical Results for the Comprehensive Sampling Event (September 2015)

Appendix C – LNAPL Transmissivity Data

Appendix D – Analytical Laboratory Reports

Appendix E – API Gravity Results

Acronyms

API	American Petroleum Institute
bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and total xylenes
DRO	diesel range organics
EPA	Environmental Protection Agency
GRO	gasoline range organics
LNAPL	light non-aqueous phase liquid
MOC	Management of Change
O&M	operation and maintenance
ODEQ	Oklahoma Department of Environmental Quality
PID	photoionization detector
PLF	product loading facility
PMP	performance monitoring plan
ppm	parts per million
PVC	polyvinyl chloride
RCRA	Resource Conservation and Recovery Act
RSL	Regional Screening Level
UV	ultraviolet
WRC	Wynnewood Refining Company, LLC

1 INTRODUCTION

1.1 PURPOSE

In accordance with the approved Comprehensive Remediation Plan required by Paragraph 13 of Oklahoma Department of Environmental Quality (ODEQ) Consent Order Case No. 15-056, this Interior Delineation Summary and Recommendation Report (Report) is being submitted on behalf of Wynnewood Refining Company, LLC (WRC) for its refinery at Wynnewood, Oklahoma (the Refinery, Figure 1).

The Refinery covers approximately 560 acres located south and southwest of Wynnewood, Oklahoma. The Refinery is owned and operated by WRC, a wholly owned subsidiary of CVR Energy, Inc. WRC purchased the Refinery from the Gary-Williams Energy Company on December 15, 2011. The Refinery was originally built in 1923 by the Texas Pacific Coal and Oil Company. Subsequent owners included the Kerr-McGee Corporation, which sold the Refinery to Gary-Williams in 1995.

The Refinery operates in accordance with a Resource Conservation Recovery Act (RCRA) Permit (Permit No. 000396549) for the closed Storm Water Retention Pond and an operating hazardous waste storage tank (Tank 2007). On June 30, 2015, ODEQ and WRC entered into a Consent Order to resolve certain RCRA allegations. The Consent Order, among other things, requires WRC to address certain Legacy Environmental Issues involving soil and groundwater contamination.

This report describes the activities conducted in accordance with the Consent Order, executed on June 30, 2015, and the Comprehensive Remediation Plan approved by ODEQ on February 1, 2016. Tasks associated with the Interior Delineation included additional groundwater sampling, a soil and groundwater profiling investigation, and light non-aqueous phase liquid (LNAPL) transmissivity testing. This report describes field activities, presents results, and provides recommendations for additional monitoring and recovery wells to be added to the site monitoring network.

1.2 PROJECT PERSONNEL

Sam A. McCormick, Professional Geologist, is the WRC project manager. Jerome McSorley, Professional Geologist, is the WRC site geologist and manages groundwater sampling events. Routine field work, including fluid level gauging and recovery system repairs, is managed by Evan Hilburn of WRC. Drilling services for this project were provide by DeTech, Inc. an Oklahoma licensed water well contractor. WRC has contracted with WSP USA Corp (WSP) to provide qualified field personnel, environmental consulting and drafting services on this project. The WSP project manager is Christine Warford, Professional Engineer. Christine Warford and Judy Andrews of WSP assisted Mr. McCormick and Mr. McSorley in the preparation of this Report.

2 INTERIOR DELINEATION FIELD ACTIVITIES

The purpose of the interior delineation was to address data gaps that existed in the conceptual site model pertaining to geologic characterization and the extent and magnitude of both the LNAPL and dissolved-phase hydrocarbon plumes at the Refinery. This section describes tasks performed to address data gaps through installation of additional monitoring wells, groundwater sampling, and a direct-push soil and groundwater investigation.

2.1 EXISTING MONITORING WELL NETWORK

Activities discussed in this section were conducted in 2015. The results were previously discussed in the *Semi-Annual Groundwater Remediation Progress Report*, submitted February 29, 2016; therefore, only a brief summary of field activities conducted are included in this report.

2.1.1 MONITORING WELL INSTALLATION AND PLUGGING

Monitoring wells UMW-7, SMW-24, and SMW-25 were installed along the northern and southern Refinery boundaries as part of the perimeter monitoring network (Figure 2) in August 2015. In addition, a total of 17 redundant or damaged monitoring wells, piezometers, and sumps were plugged in August 2015. The location of the wells installed and plugged in 2015 are shown on Figure 2. Boring logs for these wells are included in Appendix A.

2.1.2 MONITORING WELL REHABILITATION AND REPAIR

During site monitoring activities in 2015, it was noted that six monitoring wells had total depth measurements that were reduced by at least 1.5 feet from the depth stated on well construction tables or completion logs. In August 2015, these wells were redeveloped to remove sediment that had accumulated and the surface completions of monitoring wells LMW-6-0, BMW-5, and BMW-9 were upgraded.

2.1.3 SITE-WIDE COMPREHENSIVE GROUNDWATER SAMPLING EVENT

A site-wide groundwater delineation sampling event, which included sampling 69 monitoring wells and two private supply wells, was conducted in September 2015 to obtain better constraints on the location, extent, and magnitude of the dissolved-phase hydrocarbon plume throughout the Refinery. Groundwater samples from monitoring wells were collected using low-flow sampling methods. The samples from the offsite water wells were collected as grab samples from a hose connected to the well. Samples were analyzed for gasoline range organics (GRO), diesel range organics (DRO), volatile organic compounds, semi-volatile organic compounds, and RCRA metals. Groundwater samples were submitted to Pace Analytical Services, Inc. of Salina, Kansas (Oklahoma State Lab ID No. 8815). Appendix B includes the summary of the groundwater analytical results associated with the site-wide comprehensive groundwater sampling event.

2.1.4 API GRAVITY TESTING

Samples of LNAPL from 15 wells and from the combined discharge line of recovery wells NRW-6 and NRW-7 were collected in September 2015. All samples were analyzed at the Refinery laboratory for American Petroleum Institute (API) Gravity. The API Gravity value for LNAPL collected from BMW-6 was anomalously low compared to LNAPL collected from surrounding wells at the Product Loading Facility (PLF), so a second LNAPL sample was collected on the following day and analyzed. The second sample

was also very low in comparison to the other wells; therefore, are considered suspect and are not used in correcting groundwater elevations. LNAPL has not been observed in BMW-6 since September 2015. As there is no apparent qualitative difference between the LNAPL present in BMW-6 and the other wells at the PLF, WRC assumes the LNAPL sampled from BMW-6 was an emulsion of petroleum product and water which has the effect of lowering the API gravity. An interpretive discussion of the API Gravity testing is included in Section 3.1.2.

2.2 DIRECT-PUSH SAMPLING EVENT

From February 23 to March 4, 2016 and from March 28 to April 2, 2016, the Refinery conducted a focused direct-push sampling event to meet the objectives outlined in Item 22.b of the Consent Order, which included:

- characterize the geology of the North Process Area to fill data gaps left by incomplete boring log data
- delineate the LNAPL plume in the South Process Area, North Process Area, and Product Loading Facility (PLF)
- delineate the dissolved-phase plumes in areas where insufficient data exists

2.2.1 SITE GEOLOGY AND HYDROGEOLOGY INVESTIGATION

In order to better characterize the geology and hydrogeology of the Refinery, WRC planned to install 78 temporary borings; however an additional five temporary borings were added during the course of field work to meet the objectives set by the Order and to address field findings. Figure 2 depicts the locations of the 83 temporary borings, a summary of boring details is provided in Table 1, and boring logs are provided in Appendix A.

Direct-push drilling technology was used to install 73 of the temporary borings and the remaining ten temporary borings were installed using a decontaminated stainless steel hand auger. At the direction of Refinery management, boring locations in Refinery process units and secondary containment areas were cleared for utilities by hydro-excavating three holes surrounding the boring to a depth of approximately 10 feet below ground surface (bgs) in a triangular patter surrounding the proposed temporary boring location. Hydro-excavation was stopped if the water table was encountered. This process preserved the soil at the temporary boring location for geologic characterization. The temporary borings and utility clearance probes were backfilled using clean fill material. All temporary borings were advanced to the water table for soil characterization, and advanced below the water table if a groundwater sample was to be collected. Core samples from the direct-push borings and cuttings from the auger borings were examined in the field by a qualified geologist to determine the lithology and other geological characteristics along with the presence or absence of groundwater. Lithologic boring logs for each temporary boring are provided in Appendix A.

Waste materials generated during the investigation were incorporated with other Refinery wastes in covered roll-off containers. Contents of the containers were sampled for waste characterization and managed for offsite disposal by the Refinery's environmental department in accordance with the Refinery's waste management protocol.

The results of the site geology and hydrogeology investigation are discussed in Section 3.2.1.

2.2.2 LNAPL PLUME DELINEATION

All soil borings were characterized by a geologist for soil characteristics as well as visual or olfactory evidence of impact. In accordance with procedures outlined in the Comprehensive Remediation Plan, soils were screened for organic vapors using a photoionization detector (PID). In soils where the organic vapor reading exceeded 100 parts per million (ppm), an ultraviolet light test was conducted, which consisted of placing the soil under a long-wave ultraviolet light, also known as a black light, to test for fluorescence. If the sample fluoresced, it was considered to contain LNAPL, the boring was advanced to the water table, and a temporary monitoring well was installed. Temporary monitoring wells were constructed using 1-inch diameter polyvinyl chloride (PVC) with a 5-foot PVC screen. The temporary well was kept in place for at least 24 hours, after which the well was gauged for the presence of LNAPL. If LNAPL was encountered in temporary boring locations identified in the Comprehensive Remediation Plan as potential groundwater sampling locations, no groundwater sample was collected.

The results of the LNAPL plume delineation are discussed in Section 3.2.2.

2.2.3 DISSOLVED-PHASE PLUME DELINEATION

In order to delineate the dissolved-phase plume, groundwater samples were collected from select boring locations, as stipulated in the Comprehensive Remediation Plan. Groundwater samples were collected using a peristaltic pump with dedicated tubing either from a stainless steel Geoprobe sampler or from a temporary monitoring well, constructed of 1-inch diameter PVC with a 5-foot PVC screen. Groundwater samples were analyzed for GRO, DRO, and benzene, toluene, ethylbenzene, xylenes (BTEX). Prior to collecting a sample, the well was gauged for the presence of LNAPL and water level. If LNAPL was encountered in a temporary well, no groundwater sample was collected. Probe locations NE-DP-43, NE-DP-44, and SE-DP-59, originally designated as groundwater profiling locations, were not sampled due to the presence of measurable LNAPL in the temporary well.

The results of the dissolved-phase plume delineation are discussed in Section 3.2.3.

2.3 LNAPL TRANSMISSIVITY

In order to assess potential locations of additional recovery wells, field activities were conducted to estimate transmissivity of LNAPL and determine the mobility of free-phase hydrocarbons in subsurface materials at the Refinery. Field activities were conducted in accordance with accepted methods outlined in ASTM Method E2856-13, Standard Guide for Estimation of LNAPL Transmissivity (ASTM 2013).

Based on the LNAPL thicknesses observed at the Refinery, LNAPL skimming tests were performed on select monitoring wells to evaluate LNAPL transmissivity. The criteria for well selection for the LNAPL skimming tests included location and consistent presence of LNAPL over time. The location criterion excluded monitoring wells that are adjacent to existing operating recovery wells and included monitoring wells outside the current areas of influence of operating recovery wells. The LNAPL criterion required wells to consistently contain measurable LNAPL. Based on historic fluid level measurements, six wells were selected for LNAPL skimming tests; three monitoring wells in the vicinity of the existing North Process Area (NMW-2, NMW-6, and NMW-10) and three monitoring wells in the vicinity of the existing South Process Area (OMW-3, OMW-4, and LMW-13).

Approximately three weeks prior to the LNAPL skimming tests, LNAPL in all six monitoring wells was evacuated by bailer to remove LNAPL stored in the wellbore and filter pack and fluid levels were allowed to recharge prior to the skimming test. The removal of LNAPL from the well prior to testing ensured that

the LNAPL in the monitoring well during the LNAPL test was in communication with the formation and ensured that the initial fluid levels were representative of equilibrium formation conditions. The removal of LNAPL prior to testing was also used to determine how readily LNAPL thicknesses in the wells stabilized after removal. LNAPL thickness in all selected monitoring wells except LMW-13 appeared to stabilize within one week. Because LNAPL thickness in LMW-13 did not rebound or stabilize, this well was excluded from further testing. Field notes of the pre-test bailing of LNAPL, conducted by Refinery personnel, are included in Appendix C and the results of LNAPL transmissivity testing are discussed in Section 3.3.

3 INTERIOR DELINEATION RESULTS

The purpose of this section is to present the results of the comprehensive site-wide groundwater sampling event, direct-push investigation, and LNAPL transmissivity testing. Table 2 summarizes the direct-push analytical results. Analytical laboratory reports for groundwater collected during the direct-push investigation are included in Appendix D. A table summarizing the analytical results for groundwater samples collected from monitoring wells in September 2015 is provided in Appendix B. Hydrogeologic cross sections showing the geology at the Refinery, location of the water table, and presence of residual free product are provided on Figure 3. Cross sections illustrating site geology, hydrogeology, and extent of LNAPL in soil and groundwater are provided on Figure 4. The combined results of the comprehensive groundwater sampling event and the groundwater samples collected during the direct-push investigation are illustrated on Figures 5A, 5B, and 5C.

3.1 EXISTING MONITORING WELL NETWORK SAMPLING EVENT

3.1.1 SITE-WIDE DELINEATION GROUNDWATER SAMPLING EVENT

A total of 69 monitoring well were sampled as part of the site-wide comprehensive groundwater sampling event. The results of the comprehensive groundwater sampling event were reported in the *Semi-Annual Groundwater Remediation Progress Report*, submitted February 29, 2016.

GRO were detected in 30 of the 71 samples collected from the monitoring wells and private supply wells in September 2015. The concentration of GRO exceeded the ODEQ Cleanup Level of 1,000 μ g/l (ODEQ, 2004) in 17 samples.

DRO were detected in 64 of the 71 samples collected from the monitoring wells and private supply wells in September 2015. The concentration of DRO exceeded the ODEQ Cleanup Level of 1,000 μ g/l (ODEQ, 2004) in 31 samples.

Benzene was detected in 23 of the 71 samples collected from the monitoring well and private supply wells in September 2015. The concentration of benzene exceeded the Environmental Protection Agency (EPA) Regional Screening Level (RSL) of 0.46 μ g/l (EPA, 2014) in all 23 samples and exceeded the EPA Primary Drinking Water criterion of 5 μ g/l in 20 samples.

Site wide sampling highlighted four primary areas of high dissolved-phase concentrations. These include the Light Oils tank farm in the northeast portion of the refinery, the North Process Area in the north central portion of the Refinery, the South Process Area in the central portion of the Refinery, and the Product Loading Facility in the west central portion of the Refinery. The dissolved phase plumes from the Light Oils tank farm, North Process Area, and South Process Area have partially commingled and there is one primary dissolved phase plume extending from the northeast portion of the refinery to the southwest, terminating downgradient of the South Process Area. Results from the site-wide groundwater sampling event show that the dissolved-phase plumes are for the most part roughly coincident with, but more extensive than, the mapped LNAPL plumes and historic LNAPL data. One DRO plum in the southern portion of the Refinery property is not apparently associated with any LNAPL plume.

The results from the expanded analyte list used during the site-wide comprehensive sampling event showed that the existing list of analytes (GRO, DRO, benzene, toluene, ethylbenzene, and total xylenes) used in semi-annual sampling events is sufficient to capture the general distribution of the dissolved-phase plumes at the Refinery.

3.1.2 API GRAVITY TESTING

The results of the API Gravity testing conducted in September 2015 (Appendix E) show that historic releases at the Refinery have primarily been refined petroleum products. Additionally, the wide variety of API Gravity results (32.1 degrees [°] to 70.9°) indicates there has been little biodegradation of the LNAPL plumes, which would have had the effect of homogenizing the mixtures of diesel and gasoline.

Based on the results of the API Gravity testing, it appears that the LNAPL captured by the North Process Area system is a mixture of gasoline, kerosene, and jet fuel (API Gravity values ranging from 40.3° to 70.9°), with a diesel component predominating in the vicinity of NRW-6 and NRW-7, which had an API Gravity of 32.1°. Based on the shape of the plume and API Gravity distribution, it is likely that historically a separate diesel plume existed to the west of the highway and a plume of light oils was present east of the highway and that the two plumes have since merged. The LNAPL captured by the South Process Area is primarily diesel; API Gravity values range from 33.1° to 40.8°. At the PLF, LNAPL appears to be slightly degraded gasoline, with API Gravities ranging from 54.9° to 58.5°.

3.2 DIRECT-PUSH SAMPLING EVENT

A total of 83 temporary boring logs were installed as part of the direct-push delineation to characterize the geology of the North Process Area to fill data gaps left by incomplete boring log data; delineate the LNAPL plume in the South Process Area, North Process Area, and PLF; and delineate the dissolved-phase plumes in areas where insufficient data exists.

The original plan called for 78 temporary boring logs. The following five additional temporary wells were added to address field findings and to meet the objectives outlined in the Order:

- NE-DP-110 was installed upgradient of NE-DP-44 to delineate the extent of the LNAPL plume; however NE-DP-110 could not be advanced to groundwater at a depth below 15 feet due to a subsurface obstruction.
- NE-DP-111, was installed just west of NE-DP-110 for delineation of the LNAPL plume after NE-DP-110 failed to reach groundwater.
- SW-DP-109 was added upgradient of SW-DP-76 to delineate the extent of the LNAPL plume.
- SW-DP-112 was installed downgradient of SW-DP-70 to delineate the dissolved phase plume.
- SW-SP-113 was installed downgradient of SW-DP-81 to delineate the extent of the dissolved-phase plume.

Soil boring logs are provided in Appendix A. Hydrogeologic cross-sections are shown on Figure 3.

3.2.1 SITE GEOLOGY AND HYDROGEOLOGY

The Refinery is located in the Central Lowlands section of the Great Plains Physiographic Province. Most of this area is a low-lying plain, developed upon sedimentary formations of Paleozoic and Mesozoic age. The portion of the Central Lowlands in which the Refinery is located is referred to as the Central Redbed Plains. The Refinery was built on Washita River flood plain and relic terrace deposits. The Washita River Valley is incised into the Oscar Group, which outcrops east of the Refinery. The Pennsylvanian-age Oscar Group is an interbedded shale, sandstone, and limestone conglomerate, which is approximately 300 to 400 feet thick. Native soils near the refinery are primarily classified as members of the Teller Loam series (USDA 2016). These are deep, well drained and moderately permeable soils. These soils formed in material from weathered loamy alluvial sediments. Teller Loam series soils typically exhibit hues ranging from red (10R) to reddish yellow (7.5YR). Upper intervals from 0 to 1.5 feet bgs are typically a brown loam and lower intervals are a fine sandy loam that grades from yellowish red to reddish yellow with depth (USDA 1985).

Groundwater is encountered in the alluvial deposits beneath the Refinery at depths ranging from near surface to approximately 25 feet bgs. There is a large seasonal variability in the water table at the Refinery that fluctuates in response to the rainfall pattern. Groundwater enters this alluvial aquifer from the east, and flows in a general west-southwest direction toward the Washita River. A localized variation in groundwater flow direction is observed along the southern boundary of the Refinery near the wastewater lagoons, where the groundwater flow direction is to the south.

In general, the stratigraphic profile for borings at the Refinery consists of silt or clay underlain by a silty very fine to fine-grained sand that coarsens downward in many locations, consistent with the Teller Loam series reported for this area. The upper silt and clay layer may act as a confining or semi-confining unit within the central portion of the refinery, particularly in the vicinity of the South Process Area. A hard, dry clay, likely derived from weathering of the underlying shale bedrock, was encountered in several borings in the Light Oils Tank Farm in the northeastern portion of the Refinery. This dry clay appears to indicate a lower limit for groundwater saturation, which creates reduced saturated thickness in that area when compared to the rest of the Refinery.

Fill is present in the first few feet of soil in many areas of the Refinery and consists primarily of gravel underlain by 1 to 4 feet of silt or clay. Fill near the crude oil processing area of the Refinery contained black fine-grained material resembling fly ash or coke from 2 feet bgs to 2.4 feet bgs in boring NE-DP-33. In boring NE-DP-35, a thin layer (approximately 1-inch thick) of black tar-like oil was observed at approximately 4 feet bgs. Weathered concrete was encountered in boring SE-DP-57, located in the South Process Area, from 1 feet bgs to 1.5 feet bgs.

The uppermost native soil is primarily silt and/or clay. The silt and clay layers are generally thickest on the eastern portion of the Refinery, with thickness of nearly 22 feet encountered in NE-DP-37 and NE-DP-53 (Figure 4, C-C'). The silt and clay thins westward and was thin or absent in borings, for example at NW-DP-100 and NW-DP-101 (Figure 4, C-C'). The silt and clay may act as a semi-confining layer in some locations, particularly in the central portion of the Refinery (e.g., NE-DP-35, NE-DP-37, NE-DP-40, SE-DP-57 and SE-DP-64), which had water level measurements at least 6 feet higher than the saturated soil interval observed during drilling. At SE-DP-64, the groundwater level in the temporary well rose 15.5 feet above than the apparent saturated interval (Table 1).

The upper silt and clay layer is underlain by silty very fine to fine sand or very fine to fine sand with silt, with sand grain size typically coarsening downward to very fine to medium-grained sand. At multiple locations, fine to coarse or very coarse sand was encountered at the base of the boring, such as at NE-DP-44 NE-DP-46, and NE-DP-111 located in the northeastern portion of the Light Oils tank farm and in SW-DP-81 and SW-DP-84, west of the Refinery (Appendix A).

In the Light Oils tank farm, a hard, dry clay was encountered in borings NE-DP-48 at 27.8 feet bgs and NE-DP-30 at 20 feet bgs (Figure 4; A-A' and B-B'). At boring NE-DP-48, there was no saturated layer apparent during drilling; a temporary well installed in this boring required several hours to accumulate enough water to collect a groundwater sample. These observations are consistent with nearby well logs.

A hard, dry clay layer was noted in monitoring wells installed in this area during previous investigations. The log for monitoring well NMW-2 notes "clay stone" was encountered at 19 feet bgs and refusal was noted at 19.5 feet bgs. The log for monitoring well NMW-9 states that a gray, hard clay was encountered at 31 feet bgs. Additionally, monitoring wells NMW-6 and NMW-2 frequently go dry when groundwater elevations are low.

In boring SE-DP-58, north of Savage Creek to the east of the South Process Area, a hard, dry clay was described near the base of the boring from 20-21 feet bgs; the log indicated drilling rod refusal at 21 feet bgs. As illustrated at the south end of cross-section A-A' on Figure 4, weathered shale has been encountered in previous investigations at depths ranging from 24 feet bgs (SMW-18, south of SE-DP-58) to 36 feet bgs (SMW-13D; see also SMW-10D, SMW-12D, and SMW-21D). Weathered shale was also noted in the boring log for BMW-18 (Figure 4, D-D'). The weathered shale has been identified as the Oscar Formation in previous reports.

3.2.2 LNAPL DELINEATION

In order to assess the extent of LNAPL at the site, borings were installed to determine whether additional monitoring or recovery wells are needed. The results of field screening are summarized on Table 1 and included in the boring logs included as Appendix A. The extent of residual petroleum product in soil and LNAPL in groundwater is illustrated on the cross sections provided in Figure 3. Results of the direct-push sampling event were incorporated into the extent of LNAPL shown on Figure 4.

3.2.2.1 LNAPL IN SOILS

Soil collected from 31 borings contained a PID headspace reading greater than 100 ppm. All soil intervals with a headspace reading greater than 100 ppm were scanned using an ultraviolet (UV) light in a darkened setting to determine if the soil fluoresced under the UV light. Of the 31 borings with a PID headspace reading greater than 100 ppm, eighteen borings contained one or more sample intervals that fluoresced under the UV light. A positive fluorescence response is considered a positive test result for petroleum product.

Petroleum product was visible on soils in five borings where the UV light test indicated that product was present:

- NE-DP-33 (Cross-section A-A'): a yellow-colored product was visible from 12.9 feet bgs to 13 feet bgs; this interval had a headspace reading of 859.2 ppm. The product drained from the soil at this interval and collected in the sample liner. Dark gray silt from 8 feet bgs to 15.5 feet bgs was oily in appearance. NE-DP-33 was located in the North Process Area, adjacent to the railroad tracks.
- NE-DP-40 (Cross-section A-A'): a dark-colored product was visible from 12 feet bgs to the base of the boring at 20 feet bgs. The UV test was positive for petroleum product from 2 feet bgs to 4 feet bgs and from 8 feet bgs to 20 feet bgs. Headspace measurements exceeded 1,000 ppm from 10 feet bgs to 18 feet bgs. This boring was located in the crude oil processing unit, roughly in the center of the active process areas.
- NE-DP-43 (Cross-section A-A'): a dark reddish brown and oily product was observed on soils from 7 feet bgs to 19 feet bgs. The UV test was positive for petroleum product from 4 feet bgs to the base of the boring at 20 feet bgs. Headspace measurements exceeded 1,000 ppm from 6 feet bgs to 20 feet bgs. This boring was located in the crude oil processing unit, in the southern portion of the active process areas.

- SE-DP-57 (Cross-section A-A'): a dark reddish brown and oily product was observed on soils from 8 feet bgs to 9 feet bgs and from 12 feet bgs to the base of the boring at 20 feet bgs. The UV test was positive for petroleum product from 2 feet bgs to 20 feet bgs. Headspace measurements exceeded 1,000 ppm from 8 feet bgs to 20 feet bgs. This boring was located in the crude oil processing unit, in the southern portion of the active process areas.
- SW-DP-76 (located west of the Refinery and near perimeter monitoring well BMW-20A): a dark reddish brown product was visible on the soil from 4.5 feet bgs to 5 feet bgs. The UV test was positive for petroleum product from 2 feet bgs to the base of the boring at 8 feet bgs. The maximum headspace measurement was 1,111 ppm for the interval from 4 feet bgs to 6 feet bgs.

3.2.2.2 LNAPL IN GROUNDWATER

Borings that exhibited a positive ultraviolet light test result were converted to temporary monitoring wells to determine if LNAPL was present in groundwater at those locations. The temporary wells were allowed to remain in place for approximately 24 hours to allow LNAPL, if present, to collect in the well. Measurable LNAPL was present in four temporary monitoring wells (NE-DP-43, NE-DP-54, SE-DP-57, and SE-DP-59) at thicknesses ranging from 0.01 foot (NE-DP-43) to 1.8 feet (NE-DP-54).

Evidence of LNAPL was noted in five temporary wells in which no measurable LNAPL was found. LNAPL was present on the outside of the PVC casing when the PVC well casing was removed from the boring at NE-DP-33, NE-DP-40, and SW-DP-76. At soil profile location NE-DP-34, LNAPL was observed on the oil-water interface probe after the well was gauged, although measurable LNAPL was not detected by the probe. Because LNAPL was expected to be present at this location based on field observations during installation of the boring, a bailer was deployed to visually inspect for LNAPL. Fluid removed from the well was a mixture of water and emulsified LNAPL. Groundwater collected from NE-DP-39 for laboratory analysis exhibited a sheen. The visual observation of LNAPL at these locations indicates that LNAPL would likely be observed in these areas if an appropriately installed and developed permanent monitoring well were present.

3.2.3 DISSOLVED-PHASE PLUME DELINEATION

As part of the direct-push groundwater investigation, groundwater samples were collected from a total of 51 temporary wells for analysis of GRO, DRO, and BTEX by Pace Analytical Services of Salina, Kansas. Due to the presence of measurable LNAPL in the groundwater profile locations, NE-DP-43, NE-DP-44, and SE-DP-59 were not sampled.

Groundwater was collected using a peristaltic pump with dedicated tubing for each location. In an effort to reduce the amount of sediment in the groundwater sample, a small volume of groundwater, generally less than one gallon, was purged from the temporary wells prior to sampling. Quality control sampling consisted of three duplicate samples, three matrix spike/matrix spike duplicate samples, one equipment rinsate blank, and three trip blanks.

All sample coolers were received by the laboratory with temperatures below 6 degrees Celsius, no quality assurance or quality control issues related to field activities or sample shipping were noted by the laboratory. Additional data qualifiers were reported by the laboratory in the Quality Control Report and are included with the sample results in Table 2. Details of laboratory Quality Assurance/Quality Control are included in the laboratory reports in Appendix D. The results of the duplicate samples were consistent with the concentrations measured in the primary samples.

Isoconcentration contours were developed, using analytical data from samples collected from the Site-Wide Comprehensive Sampling event and the Interior Delineation, for select compounds to demonstrate the distribution of constituents of concern at the Refinery. Figures 5A, 5B, and 5C depict the isoconcentration contours for GRO, DRO, and benzene.

3.2.3.1 GASOLINE RANGE ORGANICS

GRO were detected in groundwater collected from 16 of the 48 temporary wells during the interior delineation sampling event. The concentration of GRO exceeded the ODEQ Cleanup Level of 1,000 μ g/l (ODEQ, 2004) in groundwater samples collected from 7 locations at concentrations ranging from 1,630 μ g/l (NE-DP-33) to 59,400 μ g/l (NE-DP-39).

As shown on Figure 5A, GRO exceeded the regulatory criterion in three areas: in the vicinity of the PLF, in the northeast portion of the Refinery extending from approximately UMW-5 in the north and southward to NMW-13 located on the southern end of the North Process Area, and in the South Process Area in an area centered roughly around LRW-3. The distribution of GRO in the vicinity of the northern boundary outside of the current monitoring well network and investigation area was determined using groundwater data from the 2012 (WRC, 2012) and 2013 (CVR and WSP, 2013) north boundary groundwater investigations.

3.2.3.2 DIESEL RANGE ORGANICS

DRO were detected in groundwater collected from all 48 temporary wells during the interior delineation sampling event. The concentration of DRO exceeded the ODEQ Cleanup Level of 1,000 μ g/l (ODEQ, 2004) in 16 of the 48 samples at concentrations ranging from 1,100 μ g/l (NE-DP-105) to 24,000 μ g/l (NE-DP-33).

As shown on Figure 5B, the distribution of DRO in groundwater generally mimics the distribution of GRO, with plumes exceeding the ODEQ Cleanup criterion in the vicinity of the PLF and from the north boundary southward including the South Process Area. DRO also exceeds the cleanup criterion in the southern portion of the Refinery, near the v-ditch, along Savage Creek, and around the wastewater lagoons. The distribution of DRO in the vicinity of the northern boundary outside of the current monitoring well network and investigation area was determined using groundwater data from the 2012 (WRC, 2012) and 2013 (CVR and WSP, 2013) north boundary groundwater investigations.

3.2.3.3 BENZENE

One or more BTEX compounds were detected above the method detection limit in groundwater collected from 26 of the 48 temporary wells during the interior delineation sampling event; of these 26 samples, only 9 contained detections above the laboratory reporting limit. Benzene was detected at concentrations exceeding the EPA RSL of 0.46 μ g/l in groundwater collected from 11 locations and exceeded the EPA Primary Drinking Water criterion of 5 μ g/l in groundwater collected from 8 locations. The maximum benzene concentration of 11,000 μ g/l was detected in groundwater collected from NE-DP-39.

As shown on Figure 5C, the distribution of benzene in groundwater generally mimics the distribution of GRO, with plumes in the vicinity of the PLF and from the north boundary southward including the South Process Area. The distribution of benzene in the vicinity of the northern boundary outside of the current monitoring well network was determined using groundwater data from the 2012 (WRC, 2012) and 2013 (CVR and WSP, 2013) north boundary groundwater investigations.

3.3 LNAPL TRANSMISSIVITY

From May 4 through May 7, 2016, LNAPL recovery tests were performed at five monitoring wells. At monitoring wells NMW-2, NMW-6, NMW-10, and OMW-4, manual skimming of LNAPL was used to recover LNAPL. A baildown test was performed at monitoring well OMW-3 because LNAPL recharge to OMW-3 was too slow to perform the manual skimming test.

3.3.1 FIELD PROCEDURES

The tests were performed according to ASTM document E2586-13. LNAPL manual skimming tests are performed by repeatedly removing LNAPL from the well without allowing more than approximately 25 percent of recharge to occur between product removal events. Skimming is repeated until the volume of LNAPL removed per unit of time stabilizes within 25 percent over three successive discharge events. The depth to LNAPL and depth to water at the monitoring well is periodically monitored to ensure LNAPL thickness remains below 25 percent of the original thickness until the test is complete.

LNAPL baildown tests involve removing all LNAPL from the well and closely monitoring changes in LNAPL thickness to determine the rate of recharge of LNAPL from the formation into the well.

For the manual skimming tests, LNAPL recharge only stabilized in monitoring well NMW-2. LNAPL recharge did not stabilize in NMW-6, NMW-10, or OMW-4., The LNAPL recovery rate in these three monitoring wells was so low that it was determined that the LNAPL transmissivity would be too low to warrant installing a recovery well for LNAPL extraction at these locations. The manual skimming test was discontinued and considered complete for these wells. Details of the manual skimming and baildown tests are provided in Appendix C.

3.3.2 CALCULATING LNAPL TRANSMISSIVITY

Analysis of data was be completed using the API LNAPL worksheet and in accordance with ASTM E2856-13 and the API user guide for the LNAPL worksheet (API, 2012).

The purpose of calculating the transmissivity of LNAPL is to evaluate the potential for, and practicability of, LNAPL recovery at a specific well. The LNAPL transmissivity value represents the volume of LNAPL through a unit width of aquifer per unit time per unit drawdown and changes as LNAPL volume and hydrogeologic conditions in the aquifer change. LNAPL transmissivity is directly proportional to LNAPL recoverability, whereas other metrics, such as apparent LNAPL thickness, do not exhibit a consistent relationship to recoverability (ASTM 2013).

LNAPL transmissivity from manual skimming tests is calculated using the following equation

$$T_n = \frac{Q_n \times \ln\left(\frac{R_{oi}}{r_w}\right)}{2\pi s_n}$$

where T_n is the LNAPL transmissivity, Q_n is the stabilized LNAPL recharge rate, R_{oi} is the radius of influence, r_w is the well radius, and s_n is the LNAPL drawdown in the well, calculated as the geometric mean of the starting and ending LNAPL drawdown values for a recharge cycle. An assumed value of 4.6 was used for $\ln(R_{oi}/R_w)$, from ASTM E2856-13.

Research indicates that hydraulic pumping recovery systems can practically reduce LNAPL transmissivity to values between 0.1 and 0.8 feet squared per day (ft²/day) (ITRC, 2009). For the purposes of this investigation, monitoring wells with LNAPL transmissivity values less than 0.8 ft²/day will not be targeted for mechanical LNAPL recovery efforts.

For the LNAPL baildown tests, transmissivity calculations were completed utilizing the API LNAPL Transmissivity Workbook: A Tool for Baildown Test Analysis (API, 2012). The workbook is a Microsoft Excel [™] spreadsheet that analyzes the data and calculates LNAPL transmissivity using three different methods: Bouwer & Rice (1976), Cooper & Jacob (1946), and Cooper, Bredehoeft, & Papadopulos (1967) methods.

Results of the LNAPL skimming and baildown tests are summarized in Table 3. Calculated LNAPL transmissivity for monitoring well for OMW-4 is ≤ 0.12 ft²/day and for monitoring wells NMW-6, NMW-10, and OMW-3 are all below 0.1 ft²/day, indicating that hydraulic LNAPL recovery in these areas is not an efficient recovery technique at this time. As mentioned above, the recharge rate at monitoring wells NMW-6, NMW-10, and OMW-4 did not stabilize and were still decreasing when the manual skimming test at these wells was terminated. Therefore, the calculated LNAPL transmissivity at these wells is a maximum estimate.

The LNAPL transmissivity at NMW-2 was the highest of all wells, with a value of 1.2 ft²/day, indicating the LNAPL in this area of the Light Oils tank farm is recoverable using hydraulic recovery methods.

4 SUMMARY

4.1 PLUME DELINEATION

4.1.1 EXTENT OF LNAPL PLUME

The distribution of LNAPL based on the findings of the direct-push investigation are generally consistent with the historic LNAPL plumes mapped at the Site. No new plumes were encountered during the direct-push investigation. However, the footprints of the LNAPL plumes were extended or modified based on the presence or absence of LNAPL at temporary boring locations installed during the direct-push investigation. The extent of the LNAPL plumes has been effectively delineated based on the results of the interior delineation direct-push investigation and the Refinery monitoring well network.

There appear to be three separate LNAPL plumes at the Light Oils tank farm. The northernmost plume centered at NMW-12 and NE-DP-44 appears to be degraded refined product, based on the dark color of the LNAPL. The second isolated LNAPL plume is observed at NMW-6, NE-DP-54, and occasionally at NMW-8. The third LNAPL plume is larger and extends from the west central portion of the tank farm, westward to the North Process Area, where the LNAPL gasoline and kerosene plume from the Light Oils Tank Farm appears to have commingled with the diesel plum plume from the North Process Area. The results of the direct-push soil investigation indicate this plume extends downgradient to the railroad tracks, further west than has been shown in previous reports due to a lack of well control.

Similarly due to a lack of well control, the LNAPL diesel plume at the South Process Area was found to extend further east and south than previously illustrated. Free product was observed in soil cores in both the unsaturated zones in the vicinity of the crude oil unit (NE-DP-40, NE-DP-43, and SE-DP-57) suggesting historic releases in this area are a significant source of LNAPL to groundwater. No LNAPL was encountered in the borings to the west of the South Process Area, confirming that the LNAPL plume in that area is adequately delineated.

No additional LNAPL was encountered in temporary borings located in the vicinity of the PLF. The LNAPL that remains at the PLF is likely residual product from historic releases, the LNAPL in this area is adequately delineated, and expansion of the remediation system in this area for purposes of LNAPL recovery is not warranted.

No evidence of free product was encountered at any of the four borings surrounding LMW-5-0, which occasionally exhibits very small thicknesses of LNAPL. The lack of evidence for a source area for LNAPL at LMW-5-0 and the lack of free product in the vicinity of this monitoring well indicates that the LNAPL here is residual and not part of a larger, previously uncharacterized LNAPL plume.

LNAPL was observed in the soil core at SW-DP-76, west of Refinery property and downgradient of the Blue Knight Pipeline. LNAPL was also observed on the temporary well casing when it was removed from this boring. An additional boring, SW-DP-109, was installed upgradient of SW-DP-76 and the Blue Knight Pipeline and down gradient of the PLF. Because no indication of LNAPL was present during field screening at boring SW-DP-109 and because groundwater collected from SW-DP-109 did not include any detection of GRO or BTEX compounds, the LNAPL at SW-DP-76 is likely the result of historic releases from the third-party pipelines that are, or have been, located in the Blue Knight pipeline corridor.

4.1.2 EXTENT OF DISSOLVED-PHASE PLUME

Isoconcentration contours for GRO (Figure 5A), DRO (Figure 5B), and benzene (Figure 5C) show that the distribution in groundwater is somewhat similar for these compounds with the distribution of GRO and benzene being somewhat less extensive than the distribution of DRO. The dissolved-phase compounds are generally coincident with LNAPL plumes within the North Process Area, South Process Area, and PLF. However, a dissolved-phase DRO plume in the southern portion of the Refinery appears to be unassociated with any LNAPL plume. Samples collected from temporary wells in the northeastern portion of the Refinery contained the most detections and the highest concentrations of all compounds. The groundwater sample collected from NE-DP-39, located on the west side of U.S. Highway 77 directly downgradient of the Light Oils Tank Farm, contained the highest detections of GRO, benzene, toluene, ethylbenzene, and xylenes.

Based on the direct-push groundwater sampling result, the dissolved-phase plume in the vicinity of the PLF appears to be an amalgamation of three separate releases: one from the known historical release from the PLF; one from the WRC tank farm north of the PLF; and one from the third-party pipeline corridor on the property west of the PLF.

The isoconcentration contours and results from the expanded analyte list from the site-wide comprehensive sampling and direct-push sampling events show that the abbreviated list of analytes used in past sampling events have been sufficient to capture the general distribution of the dissolved-phase plumes at the Refinery.

4.2 LNAPL TRANSMISSIVITY

Results of the LNAPL skimming and baildown tests, summarized in Table 3, show that the current LNAPL transmissivity for monitoring wells OMW-4, NMW-6, NMW-10, and OMW-3 are at or below 0.12 ft²/day, indicating that hydraulic LNAPL recovery in these areas is not an efficient recovery technique at this time.

The LNAPL transmissivity at NMW-2 was 1.2 ft²/day, indicating the LNAPL in this area of the Light Oils tank farm is recoverable using hydraulic recovery methods and is a favorable location for expansion of hydraulic LNAPL recovery systems.

5 RECOMMENDATIONS

The recommendations included in this section are based on the results of the interior delineation activities, including the site-wide comprehensive groundwater sampling event, direct-push sampling event, which included both LNAPL plume and dissolved-phase plume delineation, and the LNAPL transmissivity testing conducted at the Refinery as part of the Interior Delineation task outlined in the Order.

5.1 ADDITIONAL MONITORING WELLS

WRC proposes to install eighteen additional monitoring wells at property boundary and interior locations to monitor LNAPL and dissolved-phase trends. Figure 6 depicts the locations of the proposed monitoring wells.

Monitoring well locations may change slightly due to Refinery restrictions and to avoid underground and overhead utilities. The monitoring wells will be installed in accordance with the procedures described in the Quality Assurance Project Plan, submitted with the Comprehensive Remediation Plan. Monitoring well screens shall be of sufficient length to detect, monitor or otherwise describe the contaminant plume according to observed conditions and site stratigraphy. Where LNAPL is present, wells will be screened over the mobile interval of LNAPL.

5.1.1 PERIMETER MONITORING WELL LOCATIONS

The following wells are proposed to be installed to enhance perimeter monitoring:

- UMW-8 and UMW-9 will be installed to monitor conditions upgradient of the Light Oils tank farm.
- SMW-25 will be installed along the southern boundary to delineate the DRO plume downgradient of SE-DP-69.
- LMW-16 will be installed along the western property boundary to monitor downgradient of SW-DP-112.

5.1.2 INTERIOR MONITORING WELL LOCATIONS

The following wells are proposed to be installed to enhance dissolved-phase monitoring:

- NMW-20 will be installed between temporary borings NW-DP-89 and NW-DP-106 to monitor dissolved-phase plume downgradient of northern lobe of the North Process Area LNAPL.
- NMW-22 will be installed along the eastern property boundary to monitor the dissolved-phase plume downgradient of the Light Oils Tank Farm.
- NMW-23 will be installed on the downgradient edge of the North Process Area dissolved-phase plume, slightly north of NE-DP-33.
- NMW-24 will be installed slightly south of NE-DP-33 to monitor the downgradient edge of the North Process Area dissolved-phase plume.
- LMW-17 will be installed upgradient of the PLF tank farm to monitor dissolved-phase plume and LNAPL between the PLF and the South Process Area dissolved-phase plume.
- SMW-26 will be installed in the vicinity of SW-DP-85 and SW-DP-86 to monitor the dissolved-phase plume downgradient of the V-Ditch.

The following wells are proposed to be installed for LNAPL monitoring:

- NMW-21 will be installed in the vicinity of temporary boring NE-DP-54, where 1.8 feet of LNAPL was
 encountered.
- OMW-7 will be installed between existing monitoring wells ORW-2 and OMW-3, within an existing LNAPL plume and temporary wells NE-DP-37 and NE-DP-40, where petroleum product was visible on soils and LNAPL was observed on the temporary well casing when it was removed from the boring.
- OMW-8 will be installed in the vicinity of temporary boring NE-DP-40, where petroleum product was
 visible on soils and LNAPL was observed on the temporary well casing when it was removed from the
 boring.
- OMW-9 will be installed in the vicinity of temporary boring NE-DP-43 where petroleum product was visible on soils and 0.1 foot of LNAPL was measured in the temporary monitoring well.
- OMW-10 will be installed in the vicinity of temporary boring SE-DP-57 where petroleum product was visible on soils and 1.72 feet of LNAPL was measured in the temporary monitoring well.
- LMW-18 will be installed in the North Process Area to delineate and monitor the LNAPL plume downgradient of NE-DP-33, where LNAPL was visible on soil from 12.9 feet bgs to 13 feet bgs and LNAPL was visible on the temporary well casing when it was removed from the boring. Additionally this location will assist in delineating the separation between the north lobe of the North Process Area dissolved-phase plume from the South Process Area dissolved-phase plume.
- BMW-29 and BMW-30: Located in and downgradient, respectively, of the PLF tank farm, to monitor for and delineate any previously unidentified LNAPL plumes resulting from historic releases in the tank farm north of the PLF.

5.2 ADDITIONAL GROUNDWATER REMEDIATION

5.2.1 NORTH PROCESS AREA RECOVERY SYSTEM MODIFICATION

As discussed in the Comprehensive Remediation Plan, additional remediation in the vicinity of the North Process Area may be installed to address the dissolved-phase plume to provide hydraulic control based on the results of the North Boundary Injection Test, or incorporate additional recovery wells.

LNAPL transmissivity calculated for NMW-2 indicates LNAPL in this area is recoverable. Therefore, it is suggested that a recovery well, NRW-8, be installed adjacent to NMW-2 to facilitate removal of LNAPL in the North Process Area.

Based on the results of the investigation activities conducted to date, the North Process Area dissolvedphase plume extends north of existing monitoring well NMW-12, which has intermittent LNAPL. Analytical results for temporary well NE-DP-45 exceeded clean-up criteria for GRO, DRO, benzene, and toluene. It is recommended to install a recovery well, NRW-9, in the vicinity of NE-DP-45, south of NMW-12, in order to address the dissolved-phase plume and to potentially recover the intermittent LNAPL present in the area.

The recovery wells will be installed in accordance with the procedures and materials described in the Quality Assurance Project Plan, submitted with the Comprehensive Remediation Plan. Recovery wells shall be 4-inch diameter wells with screens of sufficient length to provide capture of groundwater and

LNAPL as prescribed for the well's purpose. Total depths and screen lengths will be determined by qualified field personnel based on apparent depth to saturated soil as determined in the field.

In lieu of preparing a conceptual design, the Refinery is requesting approval to incorporate recovery wells NRW-8 and NRW-9 into the North Process Area Enhancement, which is in the process of being formally approved by the Refinery Management of Change (MOC) process.

If approved, NRW-8 and NRW-9 will be equipped with pneumatic pumps that are capable of extracting groundwater and conveying it to the North Process Area recovery building at the design flow rate. Groundwater will be processed through an oil/water separator and discharged to the Refinery waste water treatment plant for additional treatment prior to being discharged under WRC's existing Oklahoma discharge permit.

5.2.2 PRODUCT LOADING FACILITY ADDITIONAL REMEDIATION

As discussed in the Comprehensive Remediation Plan, additional remediation in the vicinity of the PLF may be installed to address the need for additional containment and treatment of the dissolved-phase plume. The goal of the additional system modifications will be to improve hydraulic control and LNAPL recovery at the property boundary. The results from the interior delineation show there are no additional areas of LNAPL encountered in the PLF area, therefore no additional expansion of the PLF is recommended at this time.

5.2.3 SOUTH PROCESS AREA

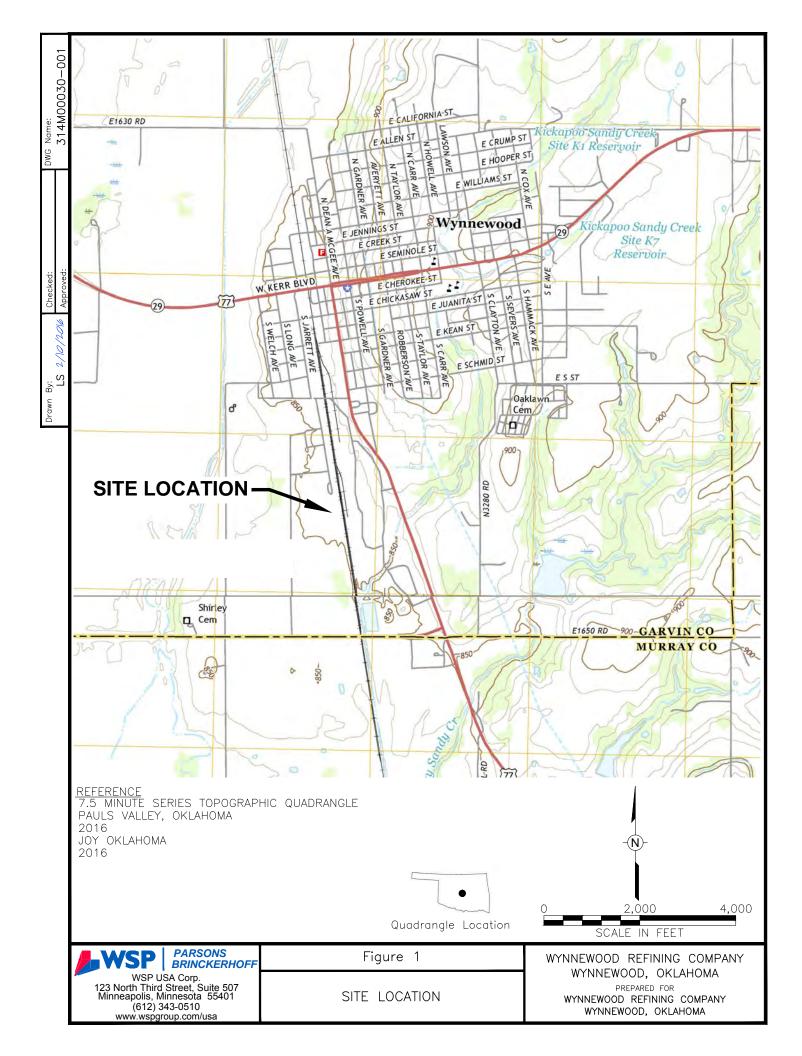
As discussed in the Comprehensive Remediation Plan, additional remediation in the vicinity of the South Process Area may be installed to address the need for additional groundwater withdrawal for containment and treatment of the LNAPL and dissolved-phase plumes in the area. Based on the low LNAPL transmissivity results and the observed stability of both the LNAPL and dissolved-phase plumes in this area, no additional expansion of the South Process Area is recommended at this time. LNAPL thicknesses will be monitored quarterly and periodic manual LNAPL recovery may be conducted, as discussed below.

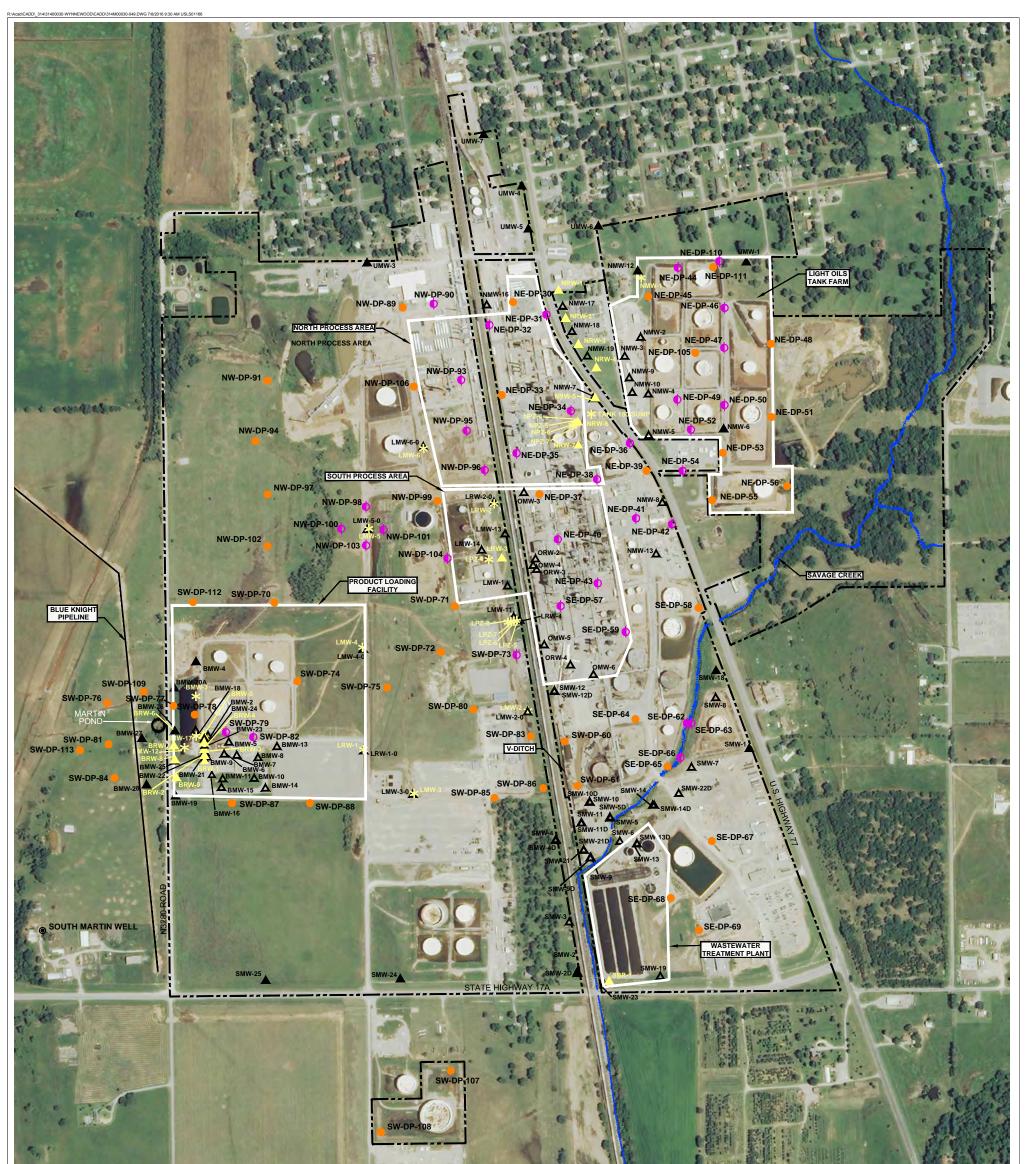
5.2.4 MANUAL LNAPL RECOVERY

Based on the LNAPL transmissivity testing conducted in May 2016, the transmissivity values calculated for NMW-6, NMW-10, OMW-3, and OMW-4 are too low to warrant expansion of recovery systems for LNAPL removal in these areas.

In an effort to recover LNAPL present in wells that either have transmissivity values that are not favorable for mechanical recovery or that have intermittent LNAPL present, the Refinery intends to include a manual LNAPL recovery plan in the long-term Performance Monitoring and Sampling Plan (PMP). Manual LNAPL recovery from a well will be conducted based on the LNAPL thickness in the well. The Manual LNAPL recovery action criteria are as follows:

- If LNAPL thickness is greater than 0.5 feet, then monitor and recover LNAPL from the well monthly until the thickness is less than 0.5 feet in the subsequent month.
- If LNAPL thickness is less than 0.5 feet for six consecutive months, then suspend monthly monitoring of the well.

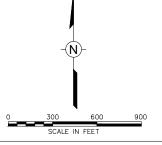

If quarterly fluid level measurements indicate a measured LNAPL thickness greater than 0.5 feet in a well, in a well not previously included in the manual LNAPL recovery program, the well will be added to

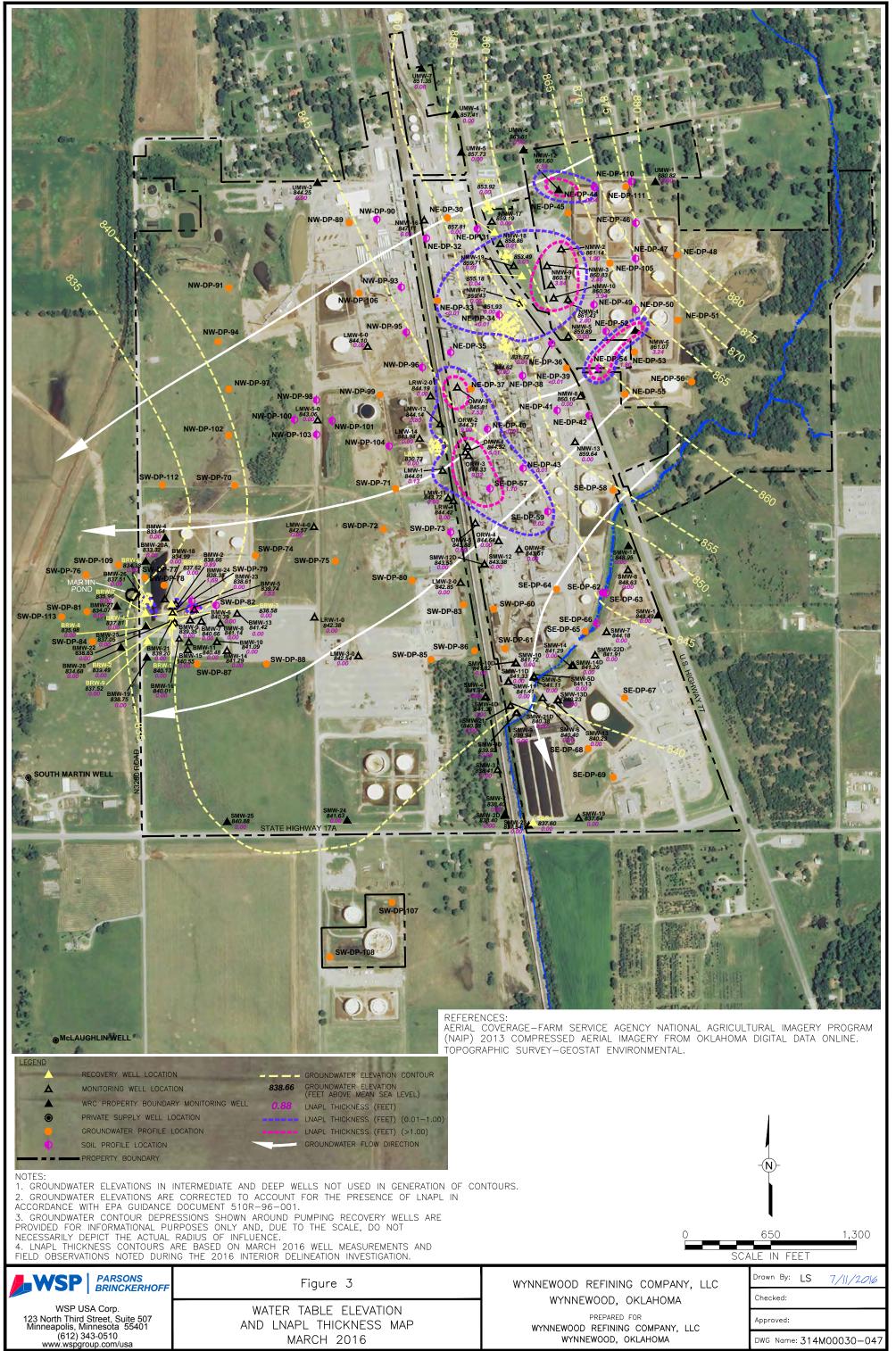

the program. The well will continue in the program until LNAPL thickness decreases to 0.5 feet or less for six consecutive months.

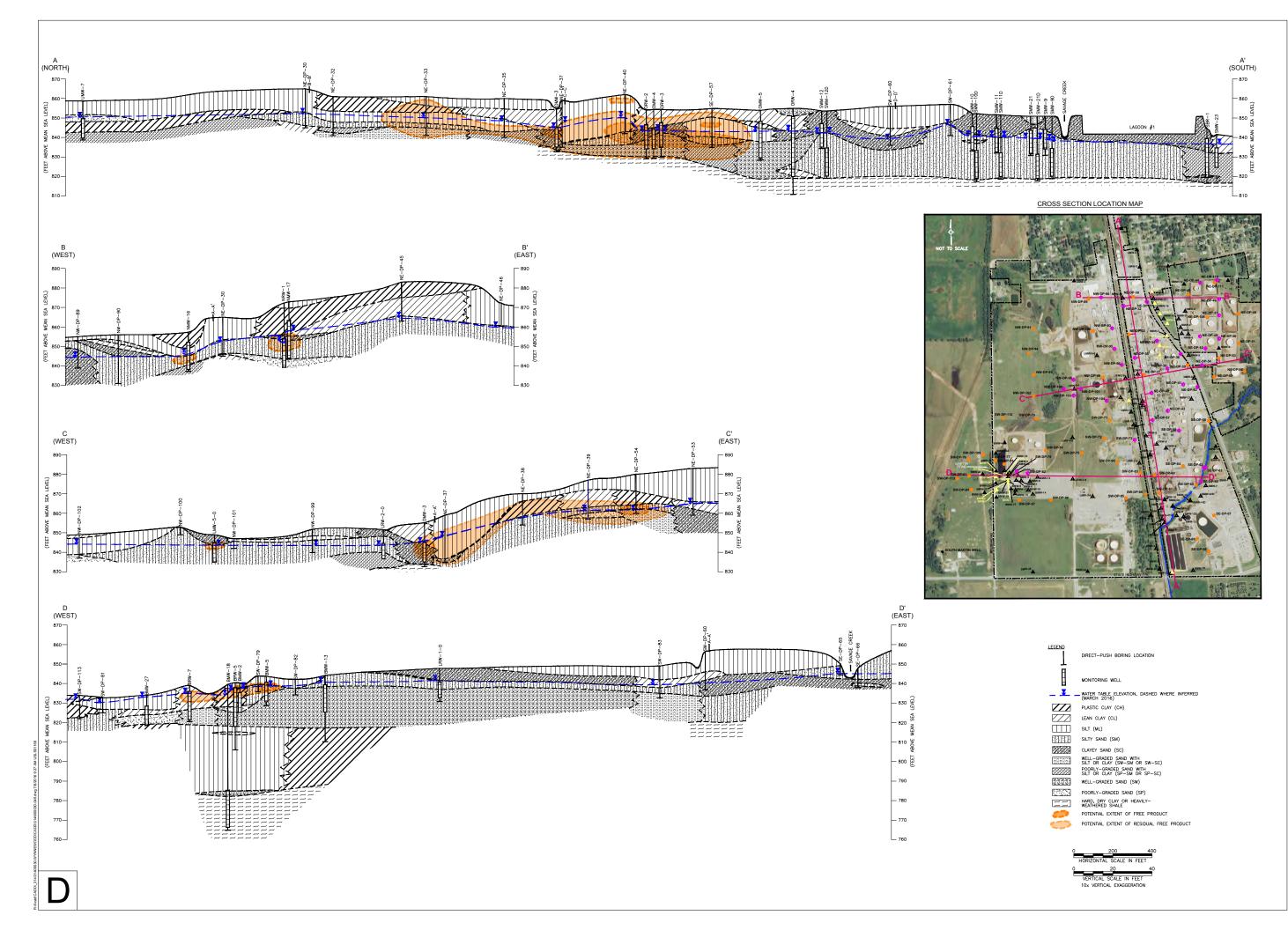
6 REFERENCES

- API 2012, American Petroleum Institute. API LNAPL Transmissivity Workbook: A Tool for Baildown Analysis, Developed by Charbeneau, R.J., Kirkman, A., and Muthu, R. for American Petroleum Institute, Regulatory and Scientific Affairs Department, 1220 L St., Washington DC 20005. January 2012. Pre-publication version. http://www.api.org/environment-health-and-safety/cleanwater/ground-water/Inapl/Inpltrans.aspx
- ASTM 2013, ASTM International E2856-13, Standard Guide for Estimation of LNAPL Transmissivity.
- Interstate Technology Regulatory Council (ITRC), 2009. Evaluating LNAPL Remedial Technologies for Achieving Project Goals. December.
- CVR Energy, Inc. and WSP USA Corp, 2013. Perimeter Groundwater Delineation Work Plan Supplemental Boundary Investigation, Wynnewood Refining Company. April 30.
- CVR Energy, Inc. and WSP, 2015a. Comprehensive Remediation Plan, Consent Order Case No. 15-056. August 12.
- CVR Energy, Inc. and WSP, 2015b. Response to Notice of Deficiency for Comprehensive Remediation Plan Consent Order Case No. 15-056. December 23.
- CVR Energy, Inc. and WSP, 2016. Semi-Annual Groundwater Remediation Report July 1 through December 31, 2015. February 29.
- Oklahoma Department of Environmental Quality, Land Protection Division, 2004. Risk-Based Cleanup Levels for Total Petroleum Hydrocarbons (TPH). September 24.
- United States Department of Agriculture (USDA), 1985. Soil Survey of Garvin County Oklahoma. Soil Conservation Service.
- USDA, 2016. Natural Resources Conservation Service Web Soil Survey. url: http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx. Visited: June 27, 2016.
- United States Environmental Protection Agency. 2014. U.S. EPA Regional Screening Levels for Tap Water. http://www.epa.gov/reg3hscd/risk/human/rb-concentration_table/usersguide.html. Last updated November 2015.
- WSP Environment & Energy, 2012. Perimeter Groundwater Delineation Work Plan, Wynnewood Refining Company. January 30.
- Wynnewood Refining Company, 2011. Semiannual Hydrocarbon Recovery Report. September 11.
- Wynnewood Refining Company, 2012. Perimeter Groundwater Delineation Work Plan, Work Plan Addendum with Initial Findings and Proposed Well Locations, Wynnewood Refining Company. June 6.

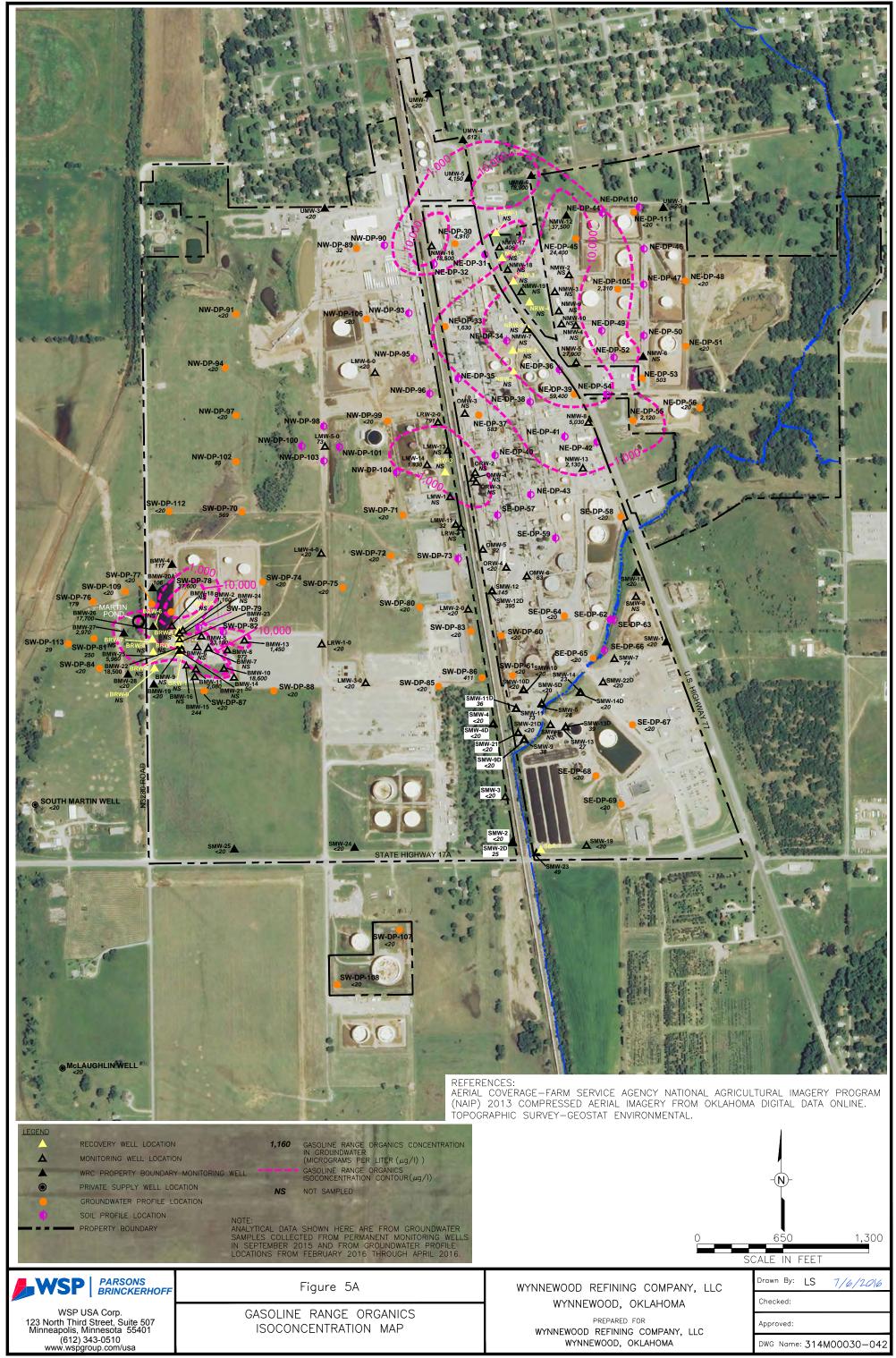
Figures

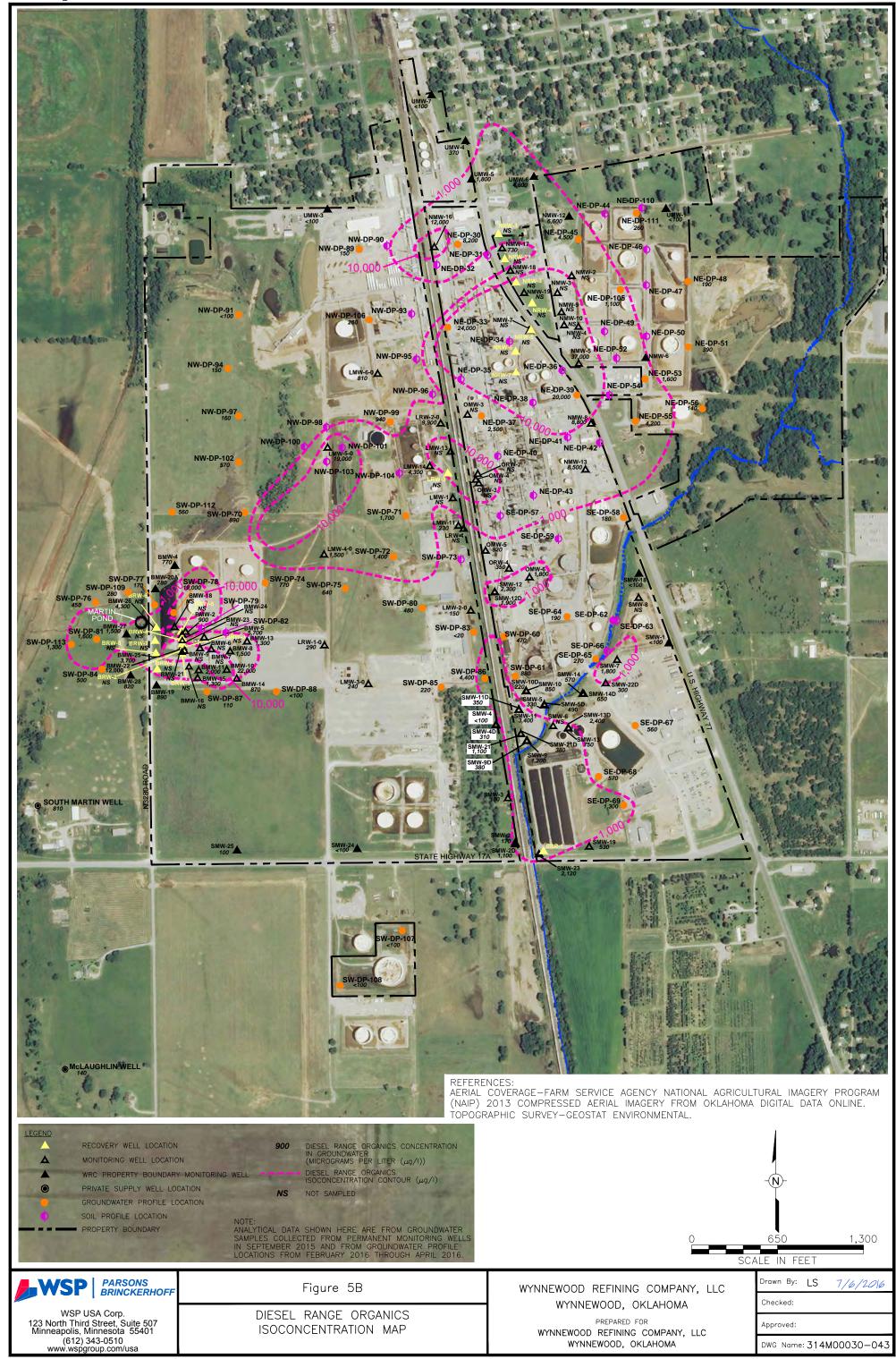


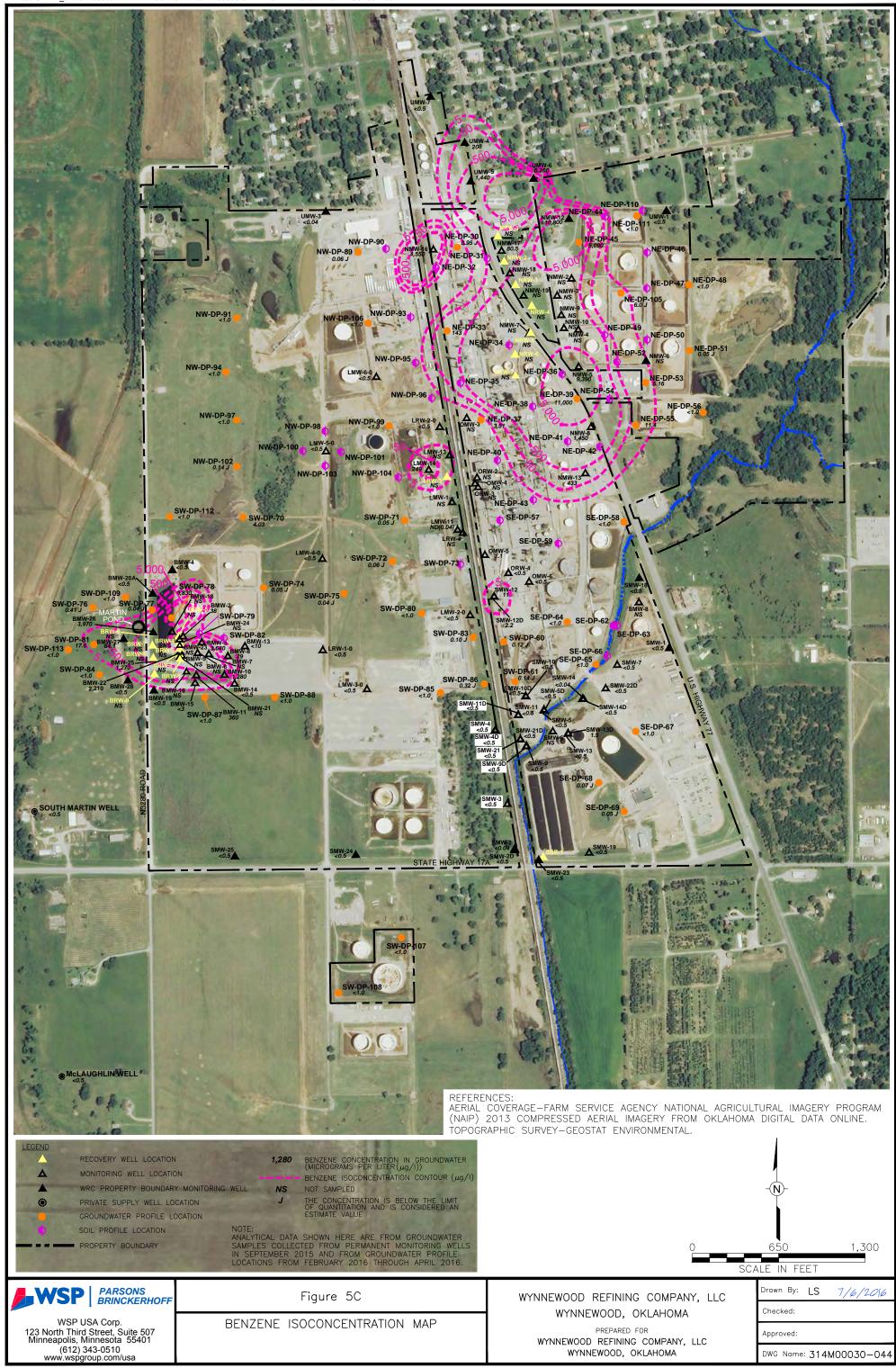

REFERENCES: AERIAL COVERAGE-FARM SERVICE AGENCY NATIONAL AGRICULTURAL IMAGERY PROGRAM (NAIP) 2013 COMPRESSED AERIAL IMAGERY FROM OKLAHOMA DIGITAL DATA ONLINE. TOPOGRAPHIC SURVEY-GEOSTAT ENVIRONMENTAL.

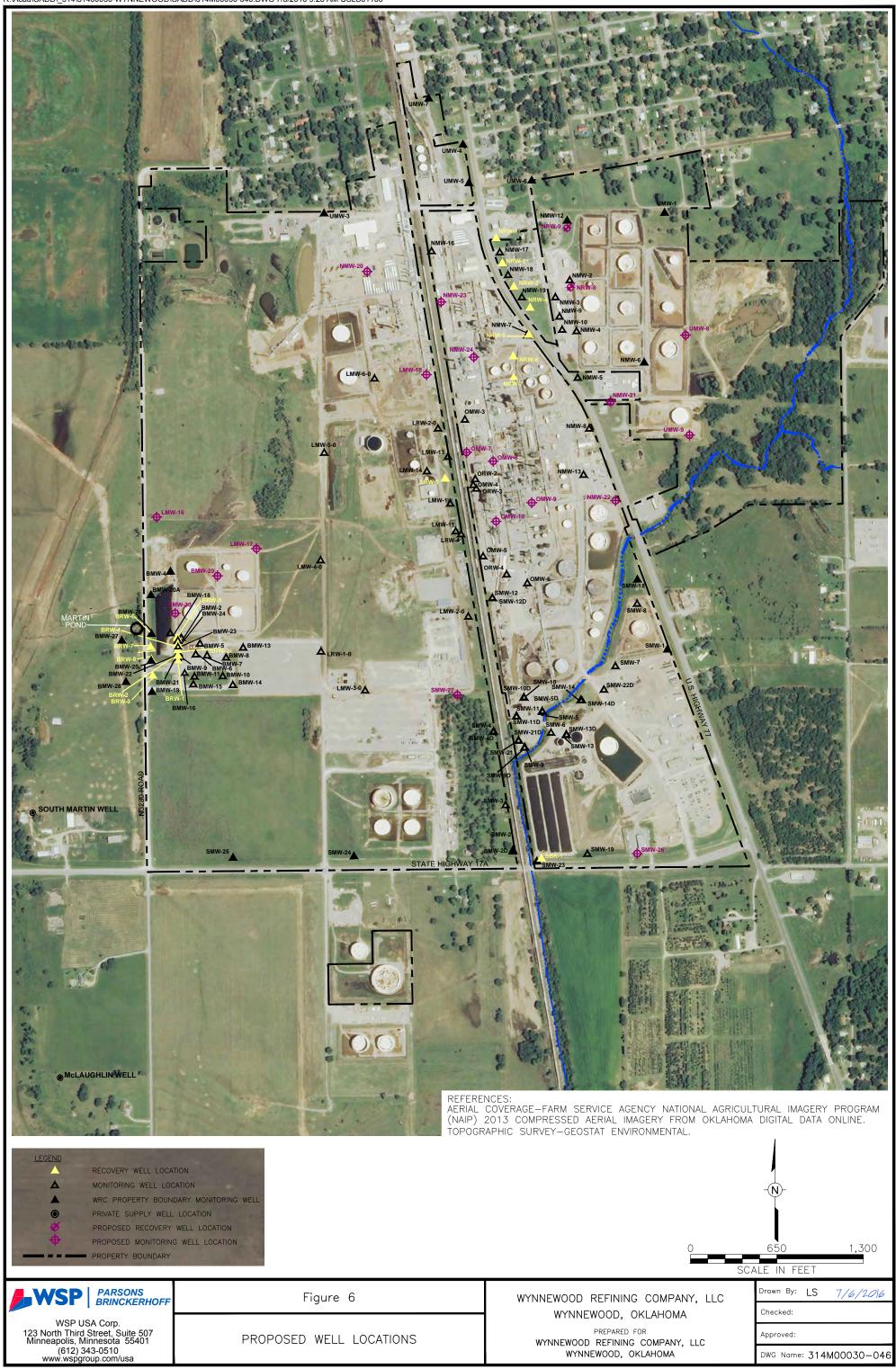

LEGEND	
· · · · · · · · · · · · · · · · · · ·	RECOVERY WELL LOCATION
Δ	MONITORING WELL LOCATION
	WRC PROPERTY BOUNDARY MONITORING WELL
۲	PRIVATE SUPPLY WELL LOCATION
•	GROUNDWATER PROFILE LOCATION
•	SOIL PROFILE LOCATION
*	ABANDONED WELL LOCATION
	PROPERTY BOUNDARY

S			SAMPLE LOCATIONS	DRAWN BY	LS 7/6/20%	SEAL			REVISIONS	
				CHECKED			REV	/	DESCRIPTION	
l ≠ ₽	끄ㅣ	BRINCKERHOFF		APPROVED						
MOO(G			PROF IMPORTANT: THIS I	PERTY OF WSP USA CORP. DRAWING PRINT IS LOANED FOR MUTUAL			Revised:	Chkd:	Appn:
	뉴		WYNNEWOOD REFINING COMPANY, LLC		IS SUCH IS SUBJECT TO RECALL AT ANY ION CONTAINED HEREON IS NOT TO BE RODUCED IN ANY FORM FOR THE BENEFIT					
JC Num	m	WSP USA Corp.	WYNNEWOOD, OKLAHOMA	OF PARTIES OTHE	ER THAN NECESSARY SUBCONTRACTORS WITHOUT THE WRITTEN CONSENT OF		A			
	$ _{N} $	123 North Third Street, Suite 507	PREPARED FOR		WSP USA CORP.		223	Revised:	Chkd:	Appr.:
Ó		Minneapolis, Minnesota 55401	WYNNEWOOD REFINING COMPANY, LLC	DIRECTION OF A LIC	WING HAS BEEN PREPARED UNDER THE CENSED PROFESSIONAL ENGINEER, IT IS A					
40		(612) 343-0510	WYNNEWOOD, OKLAHOMA	UNDER THE DIRE	LAW FOR ANY PERSONS, UNLESS ACTING ECTION OF A LICENSED PROFESSIONAL		13	Revised:	Chkd:	Appr.:
0		www.wspgroup.com/usa	WYNNEWOOD, OKLAHOMA	ENGINEER, TO	ALTER THIS DOCUMENT IN ANY WAY.	DATE				, indexes


R:\Acad\CADD_314\31400030-WYNNEWOOD\CADD\314M00030-047.DWG 7/11/2016 4:21 PM USLS01166




R:\Acad\CADD_314\31400030-WYNNEWOOD\CADD\314M00030-042.DWG 7/12/2016 12:05 PM USLS01166



R:\Acad\CADD_314\31400030-WYNNEWOOD\CADD\314M00030-043.DWG 7/12/2016 12:09 PM USLS01166

R:\Acad\CADD_314\31400030-WYNNEWOOD\CADD\314M00030-044.DWG 7/12/2016 12:15 PM USLS01166

Profile ID	Groundwater Sample	Date	Highest PID (ppm) at Depth (feet bgs)	UV Test (Depth/Result)	Top of Saturated Soil (feet bgs)	Boring Depth (feet bgs)	Well Installed?	Screened Interval (feet bgs)	Depth to Water (feet bgs)	Depth to LNAPL (feet bgs)
NE-DP-30	Х	03/02/16	1,398 at 12-14	All negative	14	20	Yes	15-20	11.78	None
NE-DP-31		03/01/16	256.1 at 14-16	14-16/Negative	15	16	No	N/A		
NE-DP-32		03/02/16	36.2 at 4-6	None	10	20	No	N/A		
NE-DP-33	x	03/02/16	859.2 at 12-14	0-2/Negative 2-4/Negative 4-6/Positive (faint) 6-8/Positive 8-10/Positive 10-12/Positive 12-14/Positive 14-16/Positive 16-18/Positive 18-20/Positive	15.7	20	Yes	14-19	9.9	LNAPL visible on well casing when removed; no LNAPL measured
NE-DP-34		03/02/16	543.5 at 2-4	0-2/Positive 2-4/Positive 0-2/Negative	3	4	Yes	4-9	2.5	LNAPL visible on interface probe; no LNAPL measured
NE-DP-35		03/02/16	1,651 at 14-16	2-4 None 4-6/Negative 6-12 None 12-14/Negative 14-16/Positive 16-18/Positive 18-20/Negative	17.5	20	Yes	17-22	10.6	None

Profile ID	ل قر م م م ع ا م ا م ا م ا م ا م ا م ا م ا م ا ا ا ا		UV Test (Depth/Result)	Top of Saturated Soil (feet bgs)	Boring Depth (feet bgs)	Well Installed?	Screened Interval (feet bgs)	Depth to Water (feet bgs)	Depth to LNAPL (feet bgs)	
				0-2/Negative						
				2-4/Positive (very faint)						
				4-6/Positive (faint)						
				6-8/Positive (faint)						
				8-10/Positive 10-12/Positive						
				12-14/Positive						
				14-16/Positive						
				16-18/Positive						
				18-20/Positive						
				20-22/Positive (very faint)						
NE-DP-36		03/01/16	1,295 at 12-14	22-24/Positive (very faint)	20	24	Yes	18-23	15.6	None
				0-2/Negative						
				2-4/Negative						
				4-6/Negative						
				6-8/Negative						
				8-10/Positive (faint)						
				10-12/Positive						
				12-14/Positive						
				14-16/Positive						
				16-18/Positive						
				18-20/Positive						
NE-DP-37	х	03/01/16	1 916 at 12 14	20-22/Positive 22-24/Positive	20	24	Yes	21.5-26.5	10.12	Nono
NE-DE-91	^	03/01/10	1,816 at 12-14	22-24/20511176	20	24	165	21.0-20.0	10.12	None

Profile ID	e ID (ppm) Date at Depth (feet bgs)		UV Test (Depth/Result)	Top of Saturated Soil (feet bgs)	Boring Depth (feet bgs)	Well Installed?	Screened Interval (feet bgs)	Depth to Water (feet bgs)	Depth to LNAPL (feet bgs)	
				0-2/Positive (very faint)						
				2-4/Negative						
				4-6/Positive (faint)						
				6-8/Positive						
				8-10/Positive						
				10-12 Negattive						
		00/04/40	4 400 -+ 4 0	12-14/Negative	10	40	Maa		4.0	News
NE-DP-38		03/01/16	1,438 at 4-6	14-16/Negative	12	16	Yes	11.5-16.5	4.3	None
				8-10/Negative 10-12/Positive (faint)						Sheen visible
				12-14/Positive						on purged
				14-16/Positive						groundwater;
				16-18/Positive						no LNAPL
NE-DP-39	х	03/01/16	2,304 at 8-10	18-20/Positive	14	20	Yes	14-19	14.5	measured
			_,	0-2/Negative						
				2-4/Positive (faint)						
				4-8/Negative						
				8-10/Positive (very faint)						LNAPL
				10-12/Positive						visible on well
				12-14/Positive						casing when
				14-16/Positive						removed; no
				16-18/Positive						LNAPL
NE-DP-40		02/25/16	1,139 at 10-12	18-20/Positive	19.5	20	Yes	15-20	10.3	measured
NE-DP-41		03/01/16	1,311 at 12-14	All Negative	11.2	16	No	N/A		

Profile ID	Groundwater Sample	Date			Top of Saturated Soil (feet bgs)	Boring Depth (feet bgs)	Well Installed?	Screened Interval (feet bgs)	Depth to Water (feet bgs)	Depth to LNAPL (feet bgs)
				10-12/Negative 12-14/Negative						
				14-16/Negative 16-18/Positive (faint)						
NE-DP-42		03/31/16	2,572 at 12-14	18-20/Negative	14.2	20	Yes	14-19	14.8	None
NE-DP-43		02/26/16	1,444 at 16-18	0-2/Negative 2-4/Negative 4-6/Positive 6-8/Positive 8-10/Positive 10-12/Positive 12-14/Positive 14-16/Positive 16-18/Positive 18-20/Positive	19	20	Yes	11-16	9.98	
NE-DP-44		03/03/16	1,367 at 10-12	Negative	5.5	12	Yes	6-11	3.27	3.23
				0-12 None 12-14/Negative 14-16/Negative 16-18/Negative						
NE-DP-45	Х	03/29/16	3,047 at 14-16	18-20/Negative	17	20	Yes	19-24	17.2	None
NE-DP-46		03/29/16	1.7 at 6-8	None	11.5	12	No			
NE-DP-47		03/29/16	2.2 at 4-10	None	19.5	20	No		10.5	
NE-DP-48	Х	03/30/16	2.4 at 18-20	None		28	Yes	21-26	18.5	None

Profile ID	Groundwater Sample	Date	Highest PID (ppm) at Depth (feet bgs)	UV Test (Depth/Result)	Top of Saturated Soil (feet bgs)	Boring Depth (feet bgs)	Well Installed?	Screened Interval (feet bgs)	Depth to Water (feet bgs)	Depth to LNAPL (feet bgs)
				0-2/Negative 2-4/Negative 4-6/Negative						
				6-8/Negative 8-10/Positive (faint) 10-12/Positive (faint)						
NE-DP-49		03/03/16	1,422 at 8-10	12-14/Positive (faint) 14-16/Positive (faint)	14.3	16	Yes	11-16	13.35	None
NE-DP-49		03/29/16	1.8 at 0-2	None	21.5	24	No	11-10	13.35	None
NE-DP-51	X	03/30/16	2.2 at 22-25	None	23	25	Yes	20-25	19.3	None
NE-DP-52		03/03/16	1,514 at 17.5-19	All Negative	20	22	Yes	13-18	13.8	None
				0-18 None 18-20/Negative 20-22/Negative						
NE-DP-53	Х	03/29/16	252.5 at 22-24	22-24/Negative	21	24	Yes	22-27	17.05	None
				0-14: All/Negative 14-16:/Positive (Faint) 16-18:/Positive (Faint)						
NE-DP-54		03/31/16	3,080 at 14-16	18-20:/Positive (Faint)	15.5	20	Yes	13.5-18.5	17.6	15.8
NE-DP-55	х	03/29/16	476.5 at 18-20	0-18 None 18-20/Negative	17	20	Yes	17-22	17.4	None
NE-DP-56	Х	03/30/16	1.9 at 16-20	None	17.5	20	Yes	18.5-23.5	16.6	None
				14-16/Negative 16-18/Positive (faint) 18-20/Positive (very faint) 20-22/Positive (very faint)						
NE-DP-105	Х	03/03/16	1,355 at 16-18	22-24/Positive (faint)	16	24	Yes	22-27	16.3	None

Profile ID	Groundwater Sample	Date	Highest PID (ppm) at Depth (feet bgs)	UV Test (Depth/Result)	Top of Saturated Soil (feet bgs)	Boring Depth (feet bgs)	Well Installed?	Screened Interval (feet bgs)	Depth to Water (feet bgs)	Depth to LNAPL (feet bgs)
NE-DP-110		03/29/16	2.7 at 8-10	None	NE	15	No	N/A	N/A	None
NE-DP-111	Х	03/30/16	1.4 at 10-12	None	9	12	Yes	9-14	8.15	None
NW-DP-89	Х	04/02/16	1.3 at 10-12	None	4	12	Yes	9-14	9.45	None
NW-DP-90		04/02/16	0.6 at 0-2	None	4	12	No			
NW-DP-91	Х	02/29/16	21.5 at 2-4	None	3	4	Yes	2.5-7.5	5.8	None
NW-DP-93		04/01/16	2.2 at 4-6	None	8	12	No			
NW-DP-94	Х	02/29/16	22.6 at 2-4	None	6	8	Yes	13-18	6.9	None
NW-DP-95		04/01/16	117.6 at 12-14	8-10:/Negative 10-12:/Positive (Faint) 12-14:/Positive 14-16:/Positive	14	16	Yes	12.5-17.5	7.2	None
NW-DP-96		04/01/16	1.7 at 2-4 and 6-8	None	15	16	No			
NW-DP-97	Х	02/29/16	28.5 at 4-6	None	10.5	12	Yes	9-14	4.9	None
NW-DP-98		02/25/16	28.9 at 4-6	None	4.5	6		N/A		
NW-DP-99	Х	04/01/16	6.2 at 2-4	None	12	16	Yes	9.5-14.5	7.45	None
NW-DP-100		02/28/16	35.9 at 2-4	None	2.5	4	No	N/A		
NW-DP-101		02/25/16	20.2 at 0-2	None	4	5		N/A		
NW-DP-102	Х	02/29/16	35.6 at 8-10	None	8	12	Yes	11-16	3.85	None
NW-DP-103		02/25/16	24.4 at 4-5	None	4	5		N/A		
NW-DP-104		04/01/16	0.6 at 10-12	None	7.5	12	Yes	9.5-14.5	7.8	None
NW-DP-106	Х	04/01/16	6.6 at 0-2	None	10.5	12	Yes	8.5-13.5	5.6	None

Profile ID	لم قري ال ال ا		,	UV Test (Depth/Result)	Top of Saturated Soil (feet bgs)	Boring Depth (feet bgs)	Well Installed?	Screened Interval (feet bgs)	Depth to Water (feet bgs)	Depth to LNAPL (feet bgs)
				0-2/Negative						
				2-4/Positive						
				4-6/Positive						
				6-8/Positive						
				8-10/Positive						
				10-12/Positive						
				12-14/Positive						
				14-16/Positive						
		00/00/40	4 005 -+ 40 40	16-18/Positive	40.5	00	Maa	11.10	40.4	40.7
SE-DP-57	V	02/26/16	1,395 at 10-12	18-20/Positive	18.5	20 21	Yes	14-19	12.4	10.7
SE-DP-58	Х	03/02/16	20.8 at 4-6	None 0-8 No recovery	2	21	Yes	16-21	4.83	None
				8-10/Negative						
				10-12/Negative						
				12-14/Negative						
SE-DP-59		02/26/16	1,717 at 8-10	14-16/Positive	14.5	16	Yes	13-18	11.22	11.2
SE-DP-62		02/24/16	25.4 at 2-4	None	2	4	103	N/A	11.22	11.2
SE-DP-63		02/24/16	22.3 at 10-12	None	10	12		N/A		
SE-DP-64	Х	02/25/16	27.8 at 16-18	None	17.5	20		20-24	2	None
SE-DP-65	Х	02/24/16	28.5 at 2-4	None	2.5	5.5	Yes			
SE-DP-66		02/24/16	37.0 at 2-4	None	9	10		N/A		
SE-DP-67	Х	02/24/16	1,396 at 10-12	All negative	14	16		16-20	12	None
SE-DP-68	Х	02/24/16	23.6 at 12-14	None	12	16	Yes	12-17	10.8	None
SE-DP-69	Х	02/26/16	22.5 at 6-8	None	9	12		12-16	10	None
SW-DP-60	Х	02/25/16	20.7 at 2-4	None	14	20		16-20		
SW-DP-61	Х	02/24/16	36.2 at 4-6	None	10	16		15-19	9.2	
SW-DP-70	Х	02/29/16	831.7 at 8-10	All negative	12.4	16	Yes	7.5-12.5	7.2	None

Profile ID	Groundwater Sample	Date	Highest PID (ppm) at Depth (feet bgs)	UV Test (Depth/Result)	Top of Saturated Soil (feet bgs)	Boring Depth (feet bgs)	Well Installed?	Screened Interval (feet bgs)	Depth to Water (feet bgs)	Depth to LNAPL (feet bgs)
SW-DP-71	Х	03/31/16	0.7 at 8-12	None	8	12	Yes	9-14	8.15	
SW-DP-72	Х	03/31/16	1.2 at 10-12	None	8	12	Yes	9.5-14.5	8.1	
SW-DP-73		03/31/16	3.4 at 0-2	None	9	12	No			
SW-DP-74	Х	02/28/16	24.0 at 4-6	None	4	8	Yes	3-8	2.7	None
SW-DP-75	Х	02/28/16	24.3 at 0-2	None	3	4	Yes	3-8	4.95	None
				0-2/Negative 2-4/Positive (very faint) 4-6/Positive						LNAPL visible on well casing when removed; no LNAPL
SW-DP-76	Х	02/27/16	1,111 at 4-6	6-8/Positive (faint)	4.5	8	Yes	3-8	0.36	measured
SW-DP-77	X	02/26/16	30.6 at 0-2	None 0-2/Negative 2-4/Negative	0	7	Yes	2-7	2.2	None
SW-DP-78	Х	02/26/16	1,282 at 4-5	4-5/Positive (very faint)	3.3	5	Yes	0-5	0.73	None
SW-DP-79		02/27/16	1,234 at 6-8	All negative	5	8		N/A		
SW-DP-80	Х	04/01/16	0.0 at 0-16	None	14	16	Yes	9-14	7.0	None
SW-DP-81	Х	02/27/16	37.7 at 6-8	None	1.9	8	Yes	7-12	1.9	None
SW-DP-82		02/27/16	1,073 at 4.5-6	All negative	4.5	8		N/A		
SW-DP-83	Х	03/31/16	1.1 at 4-8	None	11	16	Yes	9-14	8.6	None
SW-DP-84 SW-DP-85	x x	02/27/16 03/31/16	29.4 at 2-4 and 10-12 0.0 at 0-8	None None	2.8 6	12 8	Yes Yes	7-12 6-11	2.75 6.5	None None
SW-DP-86	x	03/31/16	2,879 at 8-10	6-8:/Positive (Faint) 8-10:/Positive 10-12:/Positive	8.5	12	Yes	8-13	7.3	None

Direct-Push Boring Summary Sheet Wynnewood Refining Company, LLC Wynnewood, Oklahoma

Profile ID	Groundwater Sample	Date	Highest PID (ppm) at Depth (feet bgs)	UV Test (Depth/Result)	Top of Saturated Soil (feet bgs)	Boring Depth (feet bgs)	Well Installed?	Screened Interval (feet bgs)	Depth to Water (feet bgs)	Depth to LNAPL (feet bgs)
SW-DP-87	Х	02/29/16	33.1 at 6-8	None	9	12	Yes	9-14	5.35	None
SW-DP-88	Х	02/29/16	29.2 at 4-6	None	6.5	8	Yes	8-13	6.2	None
SW-DP-107	Х	04/02/16	0.4 at 2-4	None	3	8	Yes	7-12	4.85	None
SW-DP-108	Х	04/02/16	1.0 at 2-4	None	4	8	Yes	7-12	6.0	None
SW-DP-109	Х	02/27/16	46.8 at 2-4	None	0.5	8	Yes	4-9	0.5	None
SW-DP-112	Х	04/02/16	0.6 at 0-4	None	5	8	Yes	4.5-9.5	5.7	None
SW-DP-113	Х	04/02/16	0.6 at 2-6	None	8.5	12	Yes	10-15	1.0	None

PID = Photoionization detector.

ppm = parts per million.

bgs = below ground surface.

UV = Ultraviolet.

LNAPL = light non-aqueous phase liquid.

Summary of Interior Delineation Groundwater Analytical Results (February - April 2016) Wynnewood Refining Company, LLC Wynnewood, Oklahoma

					Total Petroleum	Hydrocarbons				BTEX (a)		
					(Oklahoma Methods 802	•				Method 8260E	3)	
					Gasoline Range Organics	Diesel Range Organics	Benzene	Toluene	Ethylbenzene	m+p-Xylene	o-Xylene	Xylenes (Total) (b)
	Boring ID	Field Sample ID	Laboratory Sample ID	Sample Date	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
a	NE-DP-30	WRCDP-30(030216)	16030532	03/02/16	4,910	8,200	0.95 J	2.9 J	84.9	37.8	2 J	39.8 J
	NE-DP-33	WRCDP-33(030316)	16030533	03/03/16	1,630	24,000	143	5.9 J	3 J	3.2 J	2 J	5.2 J
	NE-DP-37	WRCDP-37(030216)	16030529	03/02/16	583	2,500 LL	3.51	1.76	0.3 J	2.67	1.4	4.07
tio	NE-DP-39	WRCDP-39(030216)	16030531	03/02/16	59,400	20,000 LL	11,000	13,800	1,500	5,650	2,690	8,340
ita	NE-DP-45	WRCDP-45(033016)	16040145	03/30/16	23,200	4,500	4,820	3,880	600	1,960	990	2,950
Invesitation	NE-DP-45	WRCDP-DUPE3	16040146	03/30/16	24,400	3,400	5,090	4,130	640	2,060	1,000	3,060
ln	NE-DP-48	WRCDP-48(033116)	16040152	03/31/16	<20	190	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0
L.	NE-DP-51	WRCDP-51(033016)	16040150	03/30/16	<20	390	0.05 J	<1.0	<1.0	<1.0	<1.0	<2.0
ste	NE-DP-53	WRCDP-53(033016)	16040147	03/30/16	503	1,600	5.16	0.30 J	2.7	15.6	6.2	21.8
ea	NE-DP-55	WRCDP-55(033016)	16040149	03/30/16	2,120	4,200	11.4	1.9 J	107	10.2	<5.0	<15.2
<u> </u>	NE-DP-56	WRCDP-56(033116)	16040151	03/31/16	<20	140	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0
z	NE-DP-105	WRCDP-105(030416)	16030535	03/04/16	2,310	1,100	6.0 J	5.6 J	125	137	3 J	140 J
	NE-DP-111	WRCDP-111(033016)	16040148	03/30/16	<20	260	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0
	NW-DP-89	WRCDP-89(040216)	16040161	04/02/16	32	150	0.06 J	<1.0	<1.0	<1.0	<1.0	<2.0
Northwestern Investigation Area	NW-DP-91	WRCDP-91(022916)	16030522	02/29/16	<20	<100 LL	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0
est jati	NW-DP-94	WRCDP-94(022916)	16030526	02/29/16	<20	150 LL	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0
atiç Are	NW-DP-97	WRCDP-97(022916)	16030523	02/29/16	<20	160 LL	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0
ves ves	NW-DP-99	WRCDP-99(040116)	16040159	04/01/16	<20	940	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0
No I	NW-DP-102	WRCDP-102(022916)	16030524	02/29/16	85 G	570 LL	0.14 J	0.11 J	<1.0	<1.0	<1.0	<2.0
	NW-DP-106	WRCDP-106(040116)	16040160	04/01/16	<20	260	<1.0	0.20 J	<1.0	0.16 J	<1.0	<1.16 J
	SE-DP-58	WRCDP-58(030216)	16030530	03/02/16	<20	180 LL	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0
ior	SE-DP-64	WRCDP-64(022516)	16022154	02/25/16	<20	190 B	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0
ast gat ea	SE-DP-65	WRCDP-65(022416)	16022163	02/24/16	<20	270 B	<1.0	<1.0	<1.0	0.08 J	<1.0	<1.08 J
	SE-DP-67	WRCDP-67(022416)	16022151	02/24/16	<20	520 B, QC	<1.0	<1.0	<1.0	0.07 J	<1.0	<1.07 J
ve:	SE-DP-67	WRCDP-DUPE-1(022416)	16022150	02/24/16	<20	560 B	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0
S r	SE-DP-68	WRCDP-68(022416)	16022149	02/24/16	<20	570 B	0.07 J	0.08 J	<1.0	0.09 J	<1.0	<1.09 J
	SE-DP-69	WRCDP-69(022516)	16022155	02/25/16	<20	1,300	0.05 J	<1.0	<1.0	<1.0	<1.0	<2.0
uo	SW-DP-60	WRCDP-60(022516)	16022153	02/25/16	<20	470 B	0.12 J	0.14 J	<1.0	0.15 J	<1.0	<1.15 J
ati	SW-DP-61	WRCDP-61(022416)	16022152	02/24/16	<20	880 B	0.14 J	0.19 J	<1.0	0.17 J	0.1 J	0.27 J
	SW-DP-70	WRCDP-70(022916)	16030525	02/29/16	569	9,200 LL	4.03	0.58 J	0.9 J	1.30	0.3 J	1.60 J
ves	SW-DP-71	WRCDP-71(040116)	16040156	04/01/16	<20	1,700	0.05 J	0.08 J	<1.0	<1.0	<1.0	<2.0
	SW-DP-72	WRCDP-72(040116)	16040155	04/01/16	<20	1,400	0.06 J	0.10 J	<1.0	0.17 J	<1.0	<1.17 J
ern In Area	SW-DP-74	WRCDP-74(022816)	16022161	02/28/16	<20	770	0.05 J	<1.0	<1.0	0.13 J	<1.0	<1.13 J
ste	SW-DP-75	WRCDP-75(022816)	16022162	02/28/16	<20	640	0.04 J	<1.0	<1.0	0.08 J	<1.0	<1.08 J
we	SW-DP-76	WRCDP-76(022816)	16022165	02/28/16	179	450 B	0.41 J	<1.0	1.3	0.23 J	0.2 J	0.43 J
lth	SW-DP-77	WRCDP-77(022616)	16022164	02/26/16	<20	170 B	0.04 J	0.08 J	<1.0	<1.0	<1.0	<2.0
	SW-DP-78	WRCDP-78(022716) WRCDP-80(040116)	16022160 16040157	02/27/16 04/01/16	37,600 <20	19,000 480	9,830 <1.0	390 J <1.0	1,800 <1.0	6,740 ML <1.0	770 <1.0	7,510 ML
	SW-DP-80	EPA Primary Drinking		04/01/10	NE	NE					<1.0	<2.0
Screening Criteria			-				5	1,000	700	NE		10,000
Srite		EPA Regional Screening			NE	NE	0.46	110	1.5	19	19	19
ŝ		ODEQ Clean	up Levels		1,000	1,000	NE	NE	NE	NE	NE	NE

Summary of Interior Delineation Groundwater Analytical Results (February - April 2016) Wynnewood Refining Company, LLC Wynnewood, Oklahoma

					Total Petroleum (Oklahoma Methods 802	-				BTEX (a) Method 8260E	3)	
					Gasoline Range Organics	Diesel Range Organics	Benzene	Toluene	Ethylbenzene	m+p-Xylene	o-Xylene	Xylenes (Total) (b)
	Boring ID	Field Sample ID	Laboratory Sample ID	Sample Date	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
a	SW-DP-81	WRCDP-81(022716)	16022157	02/27/16	250	1,500	17.6	0.08 J	7.6	5.79	0.2 J	5.99 J
Area	SW-DP-81	WRCDP-DUPE-2(022716)	16022156	02/27/16	248	1,600	17.0	0.07 J	7.5	6.08	0.2 J	6.28 J
	SW-DP-83	WRCDP-83(033116)	16040154	03/31/16	<20	890 QC	0.10 J	0.15 J	<1.0	0.12 J	<1.0	<1.12 J
estigation	SW-DP-84	WRCDP-84(022716)	16022158	02/27/16	<20	500 B	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0
ig	SW-DP-85	WRCDP-85(033116)	16040153	03/31/16	<20	220	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0
est	SW-DP-86	WRCDP-86(040116)	16040158	04/01/16	411 SR	4,400	0.32 J	0.25 J	<1.0	0.52 J	0.3 J	0.82 J
<u>^</u>	SW-DP-87	WRCDP-87(022916)	16030528	02/29/16	<20	110 LL	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0
Ē	SW-DP-88	WRCDP-88(022916)	16030527	02/29/16	<20	<100 LL	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0
stern	SW-DP-107	WRCDP-107(040216)	16040162	04/02/16	<20	<100	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0
ves	SW-DP-108	WRCDP-108(040216)	16040163	04/02/16	<20	<100	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0
outhwe	SW-DP-109	WRCDP-109(022716)	16022159	02/27/16	<20	280 B	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0
no	SW-DP-112	WRCDP-112(040216)	16040164	04/02/16	<20	560 QC	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0
Ň	SW-DP-113	WRCDP-113(040216)	16040165	04/02/16	29	1,300	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0
	Equipment Blank	WRCEB(030416)	16030536	03/04/16	<20	<100	<1.0	0.14 J	<1.0	<1.0	<1.0	<2.0
Quality Control Samples	Trip Blank	Trip Blank (022916)	16022166	02/29/16	<20	<100	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0
Sor	Trip Blank	Trip Blank(030416)	16030534	03/04/16	<20	<100	<1.0	<1.0	<1.0	0.11 J	<1.0	<1.11 J
	Trip Blank	Trip Blank	16040144	03/30/16	<20	<100	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0
ening teria		EPA Primary Drinking	Water Regulations		NE	NE	5	1,000	700	NE	NE	10,000
reening		EPA Regional Screening	g Levels (Tap Water)		NE	NE	0.46	110	1.5	19	19	19
C Sc		ODEQ Clean	up Levels		1,000	1,000	NE	NE	NE	NE	NE	NE

Bold values indicate a detection above the reporting limit.

Shading descriptors:

Detected concentration exceeds the EPA Primary Drinking Water Regulations Maximum Contaminant Level, updated May 2009.

Detected concentration exceeds the EPA Regional Screening Level for Tap Water, updated November 2015.

Detected concentration exceeds ODEQ cleanup levels (2004).

a\ BTEX = benzene, toluene, ethylbenzene, and xylenes.

EPA = United States Environmental Protection Agency.

 μ g/l = micrograms per liter.

NS = not sampled.

NE = not established.

ODEQ = Oklahoma Department of Environmental Quality.

b\ The value of total xylenes is calculated as the sum of m+p-xylene and o-xylene.

c\ Lab data qualifiers:

J = The concentration is below the limit of quantification and is considered an estimate.

LL = The Laboratory Control Sample recovery for this analyte was below the method or laboratory quality control limit. The reported sample concentration may be biased low.

B = Analyte is also present in the method blank or load blank at the concentration indicated in the Quality Control Report. The reported sample concentration has not been blank corrected. QC = Quality control data gualifiers were noted. See the laboratory guality control report.

ML = The matrix spike and/or matrix spike duplicate recovery for this analyte was below the method or laboratory control limit. See LCS data for the basis for acceptance of this sample. The reported sample concentration is estimated.

SR = One or more surrogate recoveries for this analysis did not meet quality control limits. Please see the Quality Control Report for the sample surrogate data.

LNAPL Transmissivity Summary Wynnewood Refining Company, LLC Wynnewood, Oklahoma

		Manual LN	NAPL Skimming Re	esults	
	Final LNAPL Discharge	Final LNAPL LNAPL Drawdown, [Discharge (a)		LNAPL Transmissivity	
Well ID	(gal/day)	(ft ³ /day)	(feet)	(ft²/day)	Notes
NMW-2	8.7	1.2	0.71	1.2	
NMW-6	0.032	0.0043	0.57	≤ 0.0055	LNAPL discharge rate did not stabilize. Calculated value is a maximum estimate.
NMW-10	0.032	0.0043	0.59	≤ 0.0053	LNAPL discharge rate did not stabilize. Calculated value is a maximum estimate.
OMW-4	2.4	0.32	1.9	≤ 0.12	LNAPL discharge rate did not stabilize. Calculated value is a maximum estimate.

	LNAF	L Baildown	Transmissivity Re	esults (ft²/day)	
			Cooper,		
	Bouwer &	Cooper &	Bredehoeft, &		
	Rice	Jacob	Papadopulos	LNAPL	
Well ID	Method	Method	Method	Transmissivity (b)	Notes
OMW-3	0.0035	0.0029	0.0045	0.0036	Volume of LNAPL removed was less than LNAPL volume in well casing and filter pack.

LNAPL = Light Non-Aqueous Phase Liquid.

gal/day = gallons per day.

 $ft^3/day = cubic foot per day.$

 $ft^2/day = square-foot per day, or cubic foot per day per foot.$

(a) LNAPL Drawdown shown here is the geometric mean of the LNAPL drawdowns at the

beginning and end of the discharge cycle, as stipulated in ASTM Guidance Document E2856-13.

(b) LNAPL Transmissivity shown for the LNAPL Baildown Results is the arithmetic mean of the three methods.

Appendix A – Boring Logs

Boring Log: UMW-7

Project: Wynnewood Refining Company

Project No.: 31400030

Location: Wynnewood, Oklahoma

Completion Date: August 17, 2015

Surface Elevation (feet AMSL*): 858.84

TOC Elevation (feet AMSL*): 861.65

Total Depth (feet): 20

Borehole Diameter (inches): 8.25

*AMSL = Above mean sea level

	Sample Data					Subsurface Profile						
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface	Well Details					
-		0.1		100	<u><u>x</u> 1₂: <u>x</u> 1₂:</u>	Topsoil Brown topsoil with grass; moist. Silt with Sand (ML) Dark reddish brown (5YR3/3) silt, little clay and sand; medium plasticity; stiff; moist.						
5		0.1		100		Clay content increases with depth; medium plasticity. Gray mottling present from 4 - 8.5 feet bgs.						
10-		0.2		95		Poorly-Graded Sand (SP) Brown (10YR4/3) fine-grained sand; dense; moist. Fat Clay (CH) Grayish brown (10YR5/2) clay; plastic; stiff; moist.						
		0.2		100		Some sand present from 12 - 15 feet bgs. Sandy clay from 15 - 15.8 feet bgs						
		0.2		25		Poorly-Graded Sand with Silt (SP-SM) Grayish brown (10YR5/2) fine-grained sand, little silt; dense becoming loose; wet.						
-						Bottom of Boring at 20 feet below ground surface Total well depth = 18 feet below ground surface (bgs).						
25 —												

Geologist(s): Jerome D. McSorley Subcontractor: Detech Driller/Operator: John McClure Method: Hollow Stem Auger

CVR Energy, Inc. 10 E Cambridge Circle Dr. Suite 250 Kansas City, Kansas 66103 (913) 982-0457

Boring Log: SMW-24

Project: Wynnewood Refining Company

Project No.: 31400030

Location: Wynnewood, Oklahoma

Completion Date: August 18, 2015

Surface Elevation (feet AMSL*): 847.29

TOC Elevation (feet AMSL*): 850.11

Total Depth (feet): 17

Borehole Diameter (inches): 8.25

*AMSL = Above mean sea level

	Sa	mple	Data			Subsurface Profile					
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface	Well Details				
-		0.0		100		Topsoil Brown topsoil with grass; loose; dry. Silt with Sand (ML) Dark brown (10YR3/3) silt with clay, little sand; non-plastic; stiff; dry becoming moist at 2 feet bgs.					
5		0.0		90		Silty Sand (SM) Dark grayish brown (10YR4/2) fine-grained sand with silt and clay; /dense; moist.					
		0.0		75		 Yellowish red (5YR5/6) fine-grained sand, little silt; dense; wet. Poorly-Graded Sand with Silt (SP-SM) Yellowish red (5YR4/6) very fine-grained sand, little silt and clay; dense; wet. Brownish yellow banding present from 10 - 12 feet bgs. 					
- - 15-		0.0		35							
20						Bottom of Boring at 17 feet below ground surface Total well depth = 15 feet below ground surface (bgs).					
25 —											

Geologist(s): Jerome D. McSorley Subcontractor: Detech Driller/Operator: John McClure Method: Hollow Stem Auger

CVR Energy, Inc. 10 E Cambridge Circle Dr. Suite 250 Kansas City, Kansas 66103 (913) 982-0457

Boring Log: SMW-25

Project: Wynnewood Refining Company

Project No.: 31400030

Location: Wynnewood, Oklahoma

Completion Date: August 18, 2015

Surface Elevation (feet AMSL*): 845.85

TOC Elevation (feet AMSL*): 848.63

Total Depth (feet): 17

Borehole Diameter (inches): 8.25

*AMSL = Above mean sea level

	Sa	mple	Data		Subsurface Profile						
Depth	Sample/Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description Ground Surface	Well Details				
-		0.0		100	. (1 <i>μ</i> − (1 <i>μ</i> −	Topsoil Brown (10YR5/3) topsoil with grass; dry. Silt with Sand (ML) Dark brown (10YR3/3) silt with clay, little sand; non-plastic; stiff; moist.					
5		0.0		90		Silty Sand (SM) Reddish brown (5YR4/4) fine-grained sand with silt and clay; dense; moist becoming wet at 5.8 feet bgs. Poorly-Graded Sand with Silt (SP-SM) Yellowish red (5YR4/6) fine-grained sand, little silt and clay;					
- 10		0.0		75		dense; wet. Lean Clay (CL) Yellowish red (5YR4/6) clay; non-plastic; stiff; wet. Sandy from 10.7 - 11 feet bgs.					
15	0	NM		0		Clayey Sand (SC) Yellowish red sand with silt and clay; dense; wet. Poorly-Graded Sand (SP) Strong brown (7.5YR4/6) fine-grained sand; loose; wet.					
-						No recovery from 12 - 15 feet bgs due to loose sand.					
						Bottom of Boring at 17 feet below ground surface Total well depth = 15 feet below ground surface (bgs).					
20											
25											

Geologist(s): Jerome D. McSorley Subcontractor: Detech Driller/Operator: John McClure Method: Hollow Stem Auger

CVR Energy, Inc. 10 E Cambridge Circle Dr. Suite 250 Kansas City, Kansas 66103 (913) 982-0457

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 2, 2016

Surface Elevation (feet amsl*): 865

Total Depth (feet bgs*): 20

Borehole Diameter (inches): 2

	Sample Data						Subsurface Profile				
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery		l ithology	(Roman		Description Ground Surface		
-		558.5	Negative	90					Silt (ML) Dark brown (7.5YR 3/2) silt, few clay; cohesive; non-plastic; soft; moist.		
2		58.1	None	90					Brown (7.5YR 4/3) and very stiff at 2.5 feet bgs.		
4		57.9	None	75					Yellowish red (5YR 4/6) and medium stiff at 5 feet bgs.		
6— — — 8—		59.3	None	75							
		38.4	None	100					<i>Silt (ML)</i> Brown (7.5YR 4/3) silt, little clay, few very fine sand; cohesive; non-plastic; medium stiff; moist.		
-		176.4	Negative	100					Ţ		
		1,398	Negative	80					<i>Silty Sand (SM)</i> Reddish brown (5YR 4/4) silty very fine to fine sand; dense; moist becoming wet at 14 feet (bgs); strong odor present.		
		1,294	Negative	80							
		547.3	Negative	80							
L		1									

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 2, 2016

Surface Elevation (feet amsl*): 865

Total Depth (feet bgs*): 20

Borehole Diameter (inches): 2

	Sar	nple	Data			Subsurface Profile
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description
		122.7	Negative	80		Lean Clay (CL) Reddish brown (5YR 4/3) clay with purplish red mottling, some silt; very stiff; moist. Bottom of boring hard and dry. Bottom of boring at 20 feet bgs. Temporary screen set at 15 - 20 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-30(030216)

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 1, 2016

Surface Elevation (feet amsl*): 874

Total Depth (feet bgs*): 16

Borehole Diameter (inches): 2

	Sa	mple	Data			Subsurface Profile						
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface						
		31.3	None	90		<i>Silt (ML)</i> Yellowish red (5YR 4/6) silt, few clay; cohesive; non-plastic; medium stiff; moist.						
-		23.0	None	90								
4		28.1	None	75		Low plasticity at 4 feet bgs.						
6		30.1	None	75								
8		22.5	None	88								
		25.1	None	88								
12		29.6	None	80		Silty Sand (SM) Yellowish red silty very fine sand; dense; moist becoming wet at 15 feet bgs.						
14		256.9	Negative	80		T chowish red sity very line sand, dense, moist becoming wet at 15 left bys.						
16 - - -					<u>er 10 1 1 1</u>	Bottom of boring at 16 feet bgs.						
18 —												

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 2, 2016

Surface Elevation (feet amsl*): 861

Total Depth (feet bgs*): 20

Borehole Diameter (inches): 2

	Sa	ample	Data		Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface		
2		33.5	None	40		Gravelly Fat Clay (CH) — Pale gray to brown clay with gravel (fill); wet. — Fat Clay (CH) Dark brown (7.5YR 3/2) clay, few silt; cohesive; high plasticity; soft; moist.		
4		36.2	None	95		Medium stiff at 4 feet bgs.		
8		34.3	None	95		Brown (7.5YR 4/2) and stiff at 6.5 feet bgs.		
-		35.5	None	90		Silt (ML) Pinkish gray (7.5YR 6/2) silt, little clay, trace very fine sand; cohesive; medium plasticity; stiff; moist becoming wet at 10 feet bgs.		
10 -		31.9	None	90				
-		29.8	None	90		Moist at 12 feet bgs. 		
14		28.9	None	90		Silty Sand (SM) Pinkish gray (7.5YR 6/2) silty very fine sand; dense; wet.		
16 — - - - 18 —		29.9	None	80		Poorly-Graded Sand with Silt (SP-SM) Yellowish red (5YR 5/8) very fine to fine sand, few fines; dense; wet.		
18—								

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 2, 2016

Surface Elevation (feet amsl*): 861

Total Depth (feet bgs*): 20

Borehole Diameter (inches): 2

	Sample Data					Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description			
20-		29.5	None	80		Fine to coarse sand at 19.6 - 20 feet bgs.			
20						Bottom of boring at 20 feet bgs.			
22-									
_ 24 — _									
26-									
_ _28									
30									
- 32 -									
 34 — 									

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 2, 2016

Surface Elevation (feet amsl*): 861

Total Depth (feet bgs*): 20

Borehole Diameter (inches): 2

	Sample Data						Subsurface Profile		
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery		Lithology	5	Description Ground Surface	
-		34.0	Negative	75				Silt (ML) Dark brown (7.5YR 3/3) silt, few clay; cohesive; non-plastic; stiff; moist.	
2		385.0	Negative	75	7			Silt (ML) Black silt; soft; dry (ash or coke?). Fat Clay (CH)	
4		332.3	Positive (faint)	50				Black clay; cohesive; high plasticity; soft; moist. Silt (ML) Brown (7.5YR 4/2) silt, few clay; cohesive; non-plastic; medium stiff; moist.	
6		647.8	Positive	50				<i>Fat Clay (CH)</i> Brown clay, few silt; cohesive; high plasticity; medium stiff; moist. Dark brown staining from 4 - 4.5 feet bgs.	
8		769.0	Positive	100				Silt (ML) Dark gray (5Y 4/1) silt, little clay; cohesive; non-plastic; very stiff; moist; core is oily; mild odor present.	
10		791.1	Positive	100				Stiff at 11 feet bgs.	
12		859.2	Positive	100				Gray (5Y 6/1) at 12 feet bgs. Dark brown product visible from 12.9 - 13 feet bgs with yellow product pooled in liner.	
14 —		315.8	Positive	100					
16		456.1	Positive	75				Silty Sand (SM) Gray (5Y 6/1) silty very fine sand; dense; wet. Coarsens downward from 16 - 18 feet bgs.	
18-									

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 2, 2016

Surface Elevation (feet amsl*): 861

Total Depth (feet bgs*): 20

Borehole Diameter (inches): 2

	Sample Data					Subsurface Profile
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description
		276.7	Positive	75		Well-Graded Sand with Silt (SW-SM) Gray fine to coarse sand, few fines; dense; wet.
22-						Bottom of boring at 20 feet bgs. Temporary screen set at 14 - 19 feet bgs. No LNAPL accumulated over 24-hour period. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-33(030316)
24 — - - 26 —						
28-						
30						
32						
- - 36-						

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 2, 2016

Surface Elevation (feet amsl*): 866

Total Depth (feet bgs*): 4

Borehole Diameter (inches): 2

Sar	mple Data		Subsurface Profile				
Depth (feet bgs) Sample/Interval	PID/OVM (ppm) UV Test	% Recovery	Lithology	Description Ground Surface			
	390.0 Positiv	e 50		<i>Fat Clay (CH)</i> Dark brown (7.5YR 3/2) clay, few silt; cohesive; high plasticity; soft; moist. <i>Silty Sand (SM</i>)			
	494.4 Positive	e 50		Yellowish red (5YR 4/6) silty very fine sand; loose; moist becoming wet at 3 feet bgs; strong gasoline-type odor.			
				Bottom of boring at 4 feet bgs. Temporary screen set at 4 - 9 feet bgs. No LNAPL accumulated over 24-hour period but visible on interface probe. Bailer deployed to inspect fluid contained visible free product.			

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 2, 2016

Surface Elevation (feet amsl*): 860

Total Depth (feet bgs*): 20

Borehole Diameter (inches): 2

	Sample Data					Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description			
		109.0	Negative	60		Silt (ML) Dark brown (7.5YR 3/2) silt, few clay; non-cohesive; non-plastic; soft; dry.			
		59.6	None	60		Black tar-like thick oil at 3.9 - 4 feet bgs.			
-		132.6	Negative	50					
		44.9	None	50		<i>Lean Clay (CL)</i> Dark gray (7.5YR 4/1) clay, few silt; cohesive; medium plasticity; very stiff becoming hard; dry.			
8 - - - - 10		38.4	None	100		Hard at 8 feet bgs.			
10		48.8	None	100					
12 - - - 14-		376.2	Negative	95		<i>Silt (ML)</i> Gray (10YR 5/1) silt, few clay, trace becoming few very fine sand; cohesive; non-plastic; medium stiff; moist.			
14 - - - 16-		165.1	Positive	95					
16 - - - - 18		1,297	Positive	95					
10									

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 2, 2016

Surface Elevation (feet amsl*): 860

Total Depth (feet bgs*): 20

Borehole Diameter (inches): 2

	Sa	mple	Data		Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description		
		123.5	Negative	95		Poorly-Graded Sand with Silt (SP-SM) Gray (10YR 5/1) very fine to fine sand, few fines; dense; wet. Pink (7.5YR 7/4) at 18 feet bgs.		
						Bottom of boring at 20 feet bgs. Temporary screen set at 17 - 22 feet bgs. No LNAPL accumulated over 24-hour period.		
26 — 26 — 28 — 28 —								
30 - - 32 - - - - - - - - - - - - - - - - - -								

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 1, 2016

Surface Elevation (feet amsl*): 879

Total Depth (feet bgs*): 24

Borehole Diameter (inches): 2

Sample Data					Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery		Litholoav	(6	Description Ground Surface
-		111.2	Negative	50				Silty Sand (SM) Strong brown (7.5YR 5/6) silty very fine sand; loose; dry.
2		65.7	Positive (very faint)	50				Silt (ML) Dark brown (7.5YR 3/4) silt with 30% black mottling, little clay; cohesive; non-plastic; moist.
4		122.0	Positive (faint)	60	-			
6 - - 8		101.7	Positive (faint)	60				<i>Silt (ML)</i> Brown (7.5YR 4/3) silt, few clay; non-cohesive; non-plastic; medium stiff; almost dry.
-		112.5	Positive	90				
		914.4	Positive	90	-			Silt (ML) Brown (7.5YR 5/4) silt, little clay; cohesive; non-plastic; medium stiff; moist;
-		1,295	Positive	95				petroleum-type odor. Silt (ML) Gray (5Y 6/1) silt, little clay; cohesive; medium plasticity; medium stiff; moist;
		1,158	Positive	95				petroleum-type odor.
16		909.6	Positive	100				
18-					1			

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 1, 2016

Surface Elevation (feet amsl*): 879

Total Depth (feet bgs*): 24

Borehole Diameter (inches): 2

Sample Data					Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description		
20-		988.7	Positive	100		Red (2.5YR 5/6) from 18.75 - 19.5 feet bgs. Sand seams at 19.6 - 19.7 feet bgs and 19.8 - 19.9 feet bgs.		
20 -		382.5	Positive (faint)	90		Poorly-Graded Sand (SP) Brown (7.5YR 5/4) very fine to fine sand, trace fines; dense; wet; no sheen on water.		
24		236.6	Positive (faint)	90				
26-						Bottom of boring at 24 feet bgs. Temporary screen set at 18 - 23 feet bgs. No LNAPL accumulated over 24-hour period.		
28-								
- - - 32-								
32 -								
-								
36- WSD Demons Princkerhoff								

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 1, 2016

Surface Elevation (feet amsl*): 859

Total Depth (feet bgs*): 24

Borehole Diameter (inches): 2

	Sample Data					Subsurface Profile		
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery		Lithology		Description Ground Surface
-		133.3	Negative	100				Poorly-Graded Gravel (GP) Gray gravel (fill). Silt (ML)
2		409.4	Negative	100				Red (2.5YR 5/8) silt, little clay; cohesive; non-plastic; medium stiff; moist. Color becomes brown (7.5YR 4/3) at 0.8 foot. Black from 2.6 - 2.8 feet bgs and 3.6 - 6 feet bgs.
4		885.4	Negative	100				Silty fine to coarse sand at 2.8 - 3 feet bgs. Few clay and soft from 4 - 6 feet bgs.
6		760.0	Positive (faint)	100				Silt (ML) Very dark gray (10YR 3/1) silt, few clay; cohesive; non-plastic; stiff; moist; strong petroleum-type odor.
		1,775	Positive	100				Medium stiff from 8 - 12 feet bgs.
		1,693	Positive	100				·
		1,816	Positive	100				<i>Silt (ML)</i> Dark gray (5Y 4/1) silt, few clay; cohesive; non-plastic; soft; moist; petroleum-type odor.
		1,768	Positive	100				Trace very fine sand from 15.7 - 21.8 feet bgs.
-		1,616	Positive	100				
18-					[• • •			

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 1, 2016

Surface Elevation (feet amsl*): 859

Total Depth (feet bgs*): 24

Borehole Diameter (inches): 2

	Sample Data					Subsurface Profile				
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description				
		1,333	Positive	100		Medium stiff from 18 - 20 feet bgs. Soft at 20 feet bgs becoming very soft and wet at 21.2 feet bgs.				
-		1,648	Positive	80						
22		464.4	Positive (faint)	80		Well-Graded Sand (SW) Gray (10YR 5/1) very fine to medium sand, trace fines; medium dense; wet.				
24						Bottom of boring at 24 feet bgs. Temporary screen set at 21.5 - 26.5 feet bgs. No LNAPL accumulated over 24-hour period. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-37(030216)				
28										
30 — 										
34										

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 1, 2016

Surface Elevation (feet amsl*): 870

Total Depth (feet bgs*): 16

Borehole Diameter (inches): 2

	Sample Data					Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface			
-		2,050	Positive (very faint)	95		\ Silt with Sand (ML) / \ Brown (10YR 4/3) silt, little sand, trace gravel (fill); cohesive; non-plastic; / \moist.			
2		1,253	Negative	95		Silt (ML) Very dark grayish brown (10YR 3/2) to brown (10YR 4/3) silt with 25% dark gray mottling, few clay; cohesive; non-plastic; medium stiff; moist.			
		1,438	Positive (faint)	80		Fat Clay (CH) Brown (10YR 5/3) clay with 10% reddish brown mottling, few silt; cohesive; high plasticity; medium stiff; moist.			
		1,338	Positive	80		Soft at 7 feet bgs.			
		426.2	Positive	100		Abrupt color change to reddish brown (5YR 4/4) at 10.8 feet bgs.			
		154.1	Negative	100					
12		100.6	Negative	50		Silty Sand (SM) Brown (7.5YR 4/4) very fine sand, little silt and clay; dense; moist. Becoming reddish brown (5YR 4/4), loose, and wet at 12 feet bgs.			
14 — - - - 16 —		62.3	Negative	50		Clayey sand at 13 - 13.4 feet bgs and 15.8 - 16 feet bgs.			
_ _ _ _18—						Bottom of boring at 16 feet bgs. Temporary screen set at 11.5 - 16.5 feet bgs. No LNAPL accumulated over 24-hour period.			

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 1, 2016

Surface Elevation (feet amsl*): 877

Total Depth (feet bgs*): 20

Borehole Diameter (inches): 2

	Sample Data					Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface			
		50.6	None	75		Silt (ML) Dark brown (7.5YR 3/4) silt, few clay; cohesive; non-plastic; moist. Strong brown (7.5YR 4/6) at 1 foot.			
2 — - - - 4 —		42.9	None	75		Little clay at 3.8 feet bgs.			
4 - - - 6-		44.6	None	75		Lean Clay (CL) Strong brown (7.5YR 4/6) clay, few silt; cohesive; medium plasticity; stiff; moist.			
		64.0	None	75					
		2,304	Negative	90					
		2,102	Positive (faint)	90		Lean Clay (CL) Brown (7.5YR 4/4) clay, few silt, trace very fine sand; cohesive; medium plasticity; stiff becoming medium stiff; moist; odor present.			
-		2,262	Positive	90		Increasing sand content from 12 - 14 feet bgs.			
14 — - - 16 —		1,620	Positive	90		Silty Sand (SM) Yellowish red (5YR 4/6) very fine sand, some silt and clay; dense; wet; strong gasoline-type odor.			
-		1,548	Positive	70					

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 1, 2016

Surface Elevation (feet amsl*): 877

Total Depth (feet bgs*): 20

Borehole Diameter (inches): 2

	Sa	mple	Data			Subsurface Profile
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description
-		1,025	Positive	70		Poorly-Graded Sand (SP) Reddish brown (5YR 4/4) very fine to fine sand, trace fines; medium dense; wet; odor present.
20						Silty Sand (SM) Dark brown (7.5YR 3/4) very fine to coarse sand, little silt and clay; medium dense; wet.
22						Bottom of boring at 20 feet bgs. Temporary screen set at 14 - 19 feet bgs. No LNAPL accumulated over 24-hour period. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-39(030216)
24 — 						Sample ID - WRCDP-39(030210)
26						
 28 						
32-						
34 —						
- 36						

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 862

Total Depth (feet bgs*): 20

Borehole Diameter (inches): 2

Completion Date: February 25, 2016

	Sample Data					Subsurface Profile		
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery		Lithology	(Bolonia	Description Ground Surface
-		156.5	Negative	88				Silt with Gravel (ML) Dark brown (10YR 3/3) silt with coarse gravel (fill); cohesive; non-plastic; stiff; moist.
2		725.9	Positive (faint)	88				Silt (ML) Dark gray (10YR 4/1) silt, few clay; cohesive; non-plastic; medium stiff; moist; faint odor.
-		772.1	Negative	38				Stiff from 4 - 10 feet bgs.
6 - - - 8		772.1	Negative	38				
		590.0	Positive (very faint)	90				
10		1,139	Positive	90			Π	Silt (ML) Gray (10YR 6/1) silt, little becoming some clay; cohesive; medium plasticity; medium stiff; moist.
-		1,073	Positive	100				
14 - - - -		1,081	Positive	100				Silt (ML)
16 - - - -		1,103	Positive	100				Gray silt with light red mottling, some clay, trace sand; cohesive; medium plasticity; medium stiff; moist; strong odor and visible dark product present. Few clay and few sand from 16 - 19.5 feet bgs.
18-						11	11	

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 862

Total Depth (feet bgs*): 20

Borehole Diameter (inches): 2

Completion Date: February 25, 2016

Sample Data					Subsurface Profile				
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description			
-		967.4	Positive	100					
20						Silty Sand (SM) Gray very fine to medium sand, some silt and clay; dense; wet; visible product.			
22						Bottom of boring at 20 feet bgs. Temporary screen set at 15 - 20 feet bgs. No LNAPL accumulated over 24-hour period. Free product was visible on screen when pulled from boring.			
 24 — 									
26 — 									
30									
32-									
_ 34 — _									

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 1, 2016

Surface Elevation (feet amsl*): 873

Total Depth (feet bgs*): 16

Borehole Diameter (inches): 2

	Sample Data					Subsurface Profile				
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface				
		119.2	Negative	100		Silty Gravel (GM) Silty gravel (fill). Silt (ML)				
		129.4	Negative	100		Dark brown (7.5YR 3/3) silt, little clay; cohesive; non-plastic; very stiff; moist. Brown (7.5YR 4/4) at 1 foot bgs. Trace very fine sand from 3 - 4 feet bgs.				
		706.5	Negative	75		Soft from 4 - 6.8 feet bgs.				
8		791.0	Negative	75		Lean Clay (CL) Greenish gray (Gley1 6/10GY) clay with 1% reddish brown mottling, little silt;				
-		974.3	Negative	100		cohesive; medium plasticity; very stiff becoming hard; moist.				
10 -		1,534	Negative	100		Silt (ML) Greenish gray (Gley1 6/10GY) silt with 1% reddish brown mottling, little clay; cohesive; low plasticity; medium stiff; moist; odor present.				
		1,311	Negative	60		Poorly-Graded Sand (SP) Light brownish gray (10YR 6/2) very fine to fine sand, few silt and clay; dense; moist; odor present. Brown (7.5YR 4/4), loose, and wet at 12 feet bgs.				
14 — - - - 16 —		479.7	Negative	60						
16— — — — — —						Bottom of boring at 16 feet bgs.				

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 31, 2016

Surface Elevation (feet amsl*): 876

Total Depth (feet bgs*): 20

Borehole Diameter (inches): 2

	Sample Data					Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface			
-		0.2	None	90		Topsoil Grass and topsoil. Fat Clay (CH)			
2		0.3	None	90		Reddish brown (5YR 4/4) clay, little silt; cohesive; high plasticity; medium stiff; moist.			
		0.6	None	100		3% dark gray and 3% light gray mottling starting at 4 feet bgs. Stiff from 4 - 10 feet bgs.			
- - 8-		0.4	None	100					
		7.9	None	100		Color transitions to brown (7.5YR 5/3) with 50% light gray mottling at 9 feet bgs.			
- - - 12-		725.1	Negative	100		Faint odor from 9 - 14.2 feet bgs.			
14		2,572	Negative	100		Few very fine sand from 12 - 14.2 feet bgs.			
16-		2,419	Negative	100		Silty Sand (SM) Yellowish red (5YR 5/6) silty very fine sand; dense; wet; odor present.			
		1,917	Positive (faint)	75					
		1	1	1	1				

WSP Parsons Brinckerhoff
123 N 3rd Street, Suite 507
Minneapolis, MN 55401
(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 31, 2016

Surface Elevation (feet amsl*): 876

Total Depth (feet bgs*): 20

Borehole Diameter (inches): 2

	Sample Data					Subsurface Profile
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description
		1,975	Negative	75		Well-Graded Sand (SW) Light reddish brown (5YR 6/4) very fine to medium sand, trace fines; medium dense; wet; strong odor.
						Bottom of boring at 20 feet bgs. Temporary screen set at 14 - 19 feet bgs. No LNAPL accumulated over 24-hour period.
30 — - - - - 32 —						

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 862

Total Depth (feet bgs*): 20

Borehole Diameter (inches): 2

Completion Date: February 26, 2016

Sample Data					Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery		LIMOIOGY	Description	
-		416.5	Negative	100	> <u>* </u>		Well-Graded Gravel with Sand (GW) Sandy gravel cover (fill), non uniform gravel; dry. Silt (ML)	
		66.2	Negative	100			Brown (7.5YR 4/3) silt, few clay; cohesive; non-plastic; medium stiff; moist.	
		388.0	Positive	95				
		1,357	Positive	95			Silt (ML) Grayish brown (10YR 5/2) silt, little clay; cohesive; non-plastic; stiff; moist. Dark reddish brown oily product present from 7 - 19 feet bgs.	
		1,230	Positive	100				
		1,303	Positive	100			Trace very fine sand from 11.8 - 15 feet bgs.	
- - - 14		1,417	Positive	100			Strong odor from 12 - 19 feet bgs.	
- - - 16		1,433	Positive	100			Few very fine sand starting at 15 feet bgs.	
		1,444	Positive	100				
		1	L	I	I			

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 862

Total Depth (feet bgs*): 20

Borehole Diameter (inches): 2

Completion Date: February 26, 2016

	Sample Data					Subsurface Profile
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description
		1,134	Positive	100		Color becomes light brown (7.5YR 6/4) at 18.5 feet bgs. Poorly-Graded Sand (SP) Light brown (7.5YR 6/4) fine to very fine sand, trace silt; dense; wet. Bottom of boring at 20 feet bgs. Temporary screen set at 11 - 16 feet bgs. 0.01 foot bgs of LNAPL accumulated over 24-hour period. Product visible on interface probe and casing.

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 3, 2016

Surface Elevation (feet amsl*): 888

Total Depth (feet bgs*): 12

Borehole Diameter (inches): 2

	Sample Data						Subsurface Profile				
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery		LILIOIOGY	Description Ground Surface				
		24.0	None	60			<i>Silt (ML)</i> Red (2.5YR 4/6) silt, little clay; cohesive; medium plasticity; soft; moist becoming wet at 5.5 feet bgs.				
-		18.5	None	60			Ţ				
		18.5	None	90			Few clay and non-plastic at 4 feet bgs. Color transitions to brown (7.5YR 4/4) by 6.5 feet bgs.				
		18.0	None	90							
		65.9	None	60							
-		1,367	Negative	60			Silty Sand (SM) Dark brown (7.5YR 3/4) fine to coarse sand, little silt and clay; loose; wet; odor present; no sheen on water.				
12							 Silt (ML) Reddish brown (5YR 5/4) silt, little clay; cohesive; non-plastic; hard; moist becoming dry. Bottom of boring at 12 feet bgs. Temporary screen set at 6 - 11 feet bgs. 0.04 foot of LNAPL accumulated over 24-hour period. 				
- 18-											

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 29, 2016

Surface Elevation (feet amsl*): 883

Total Depth (feet bgs*): 20

Borehole Diameter (inches): 2

*amsl = above mean sea level bgs = below ground surface

	Sample Data					Subsurface Profile				
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface				
-		0.5	None	75		<i>Fat Clay (CH)</i> Reddish brown (5YR 4/4) clay, trace silt; cohesive; high plasticity; medium stiff; moist.				
2		0.5	None	75		Organics (roots) present from 0 - 4 feet bgs.				
4		1.1	None	80						
6 - - - 8		50.5	None	80		Color transitions to brown (7.5YR 4/4) at 6 feet bgs. Faint petroleum-type odor from 6 - 8 feet bgs.				
- - - - -		43.1	None	100		<i>Lean Clay (CL)</i> Strong brown (7.5YR 4/6) clay, few silt; cohesive; medium plasticity; medium stiff; moist becoming wet at 17 feet bgs.				
-		93.7	None	100						
-		164.0	Negative	100		Petroleum-type odor present from 12 - 19.5 feet bgs.				
- - - 16-		3,047	Negative	100						
16		1,350	Negative	90		Ţ				

Geologist(s): Judy L. Andrews
Subcontractor: Detech
Driller/Operator: John McClure
Method: Direct Push

WSP | Parsons Brinckerhoff 123 N 3rd Street, Suite 507 Minneapolis, MN 55401 (612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 29, 2016

Surface Elevation (feet amsl*): 883

Total Depth (feet bgs*): 20

Borehole Diameter (inches): 2

	Sa	mple	Data			Subsurface Profile
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description
-	X	2,380	Negative	90		Transition to sandy clay at 19 feet bgs.
						Silty Sand (SM) Yellowish red (5YR 4/6) silty very fine to fine sand; dense; wet; odor present. Bottom of boring at 20 feet bgs. Temporary screen set at 19 - 24 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-45(033016) Duplicate groundwater sample collected. Duplicate ID = WRCDP-DUPE3(033016)
30 						

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 29, 2016

Surface Elevation (feet amsl*): 891

Total Depth (feet bgs*): 12

Borehole Diameter (inches): 2

Sample Data					Subsurface Profile				
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery		LITNOIOGY	Description Ground Surface		
-		1.2	None	80			Silt (ML) Dark brown (7.5YR 3/3) silt, few clay; non-cohesive; non-plastic; medium stiff; moist.		
2		1.2	None	80			Color transitions to yellowish red (5YR 4/6) at 1 foot bgs.		
		1.4	None	75			Cohesive and stiff at 4 feet bgs.		
6 - - 8		1.7	None	75					
- - - 10-		1.4	None	60			Becomes medium stiff at 8 feet bgs.		
		1.5	None	60			Silty Sand (SM) Yellowish red (5YR 5/6) silty very fine sand; dense; wet.		
12 - - 14- - - 16- - -							Silty Sand (SM) Yellowish red (5YR 5/6) fine to coarse sand, some silt and clay; dense; wet. Bottom of boring at 12 feet bgs.		
_ 18—									

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 29, 2016

Surface Elevation (feet amsl*): 887

Total Depth (feet bgs*): 20

Borehole Diameter (inches): 2

	Sample Data					Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface			
-		1.5	None	75		Silt (ML) Dark reddish brown (5YR 3/3) silt, few clay; cohesive; non-plastic; medium stiff to stiff; moist.			
2		2.1	None	75		Color transitions to yellowish red (5YR 4/6) with depth. Color becomes red (2.5YR 4/6) at 4 feet bgs.			
4		2.1	None	75					
6		2.2	None	75					
-		2.2	None	90		<i>Elastic Silt (MH)</i> Red (2.5YR 4/6) silt, few clay; cohesive; high plasticity; stiff; moist.			
		2.0	None	90		Some clay from 10 - 12 feet bgs.			
12		1.2	None	100					
14 — - - 16 —		1.8	None	100		<i>Fat Clay (CH)</i> Reddish brown (5YR 4/4) clay, some silt; cohesive; high plasticity; stiff; moist becoming very moist at 17 feet bgs.			
		1.4	None	90		Color transitions to brown (7.5YR 4/4) with 30% red (2.5YR 4/6) and 2% dark gray mottling at 16 feet bgs. Becomes few silt and soft at 16 feet bgs.			
ц I				1					

WSP Parsons Brinckerhoff
123 N 3rd Street, Suite 507
Minneapolis, MN 55401
(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 29, 2016

Surface Elevation (feet amsl*): 887

Total Depth (feet bgs*): 20

Borehole Diameter (inches): 2

	Sai	nple	Data			Subsurface Profile
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description
-	X	1.2	None	90		
20						Silty Sand (SM) Yellowish red (5YR 4/6) silty very fine sand; dense; wet.
-						Bottom of boring at 20 feet bgs.
22						
-						
24 —						
_ 26 —						
-						
-						
28						
_						
30 -						
-						
- 32						
-						
34 —						
- 36						

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 30, 2016

Surface Elevation (feet amsl*): 890

Total Depth (feet bgs*): 28

Borehole Diameter (inches): 2

*amsl = above mean sea level bgs = below ground surface

	Sample Data					Subsurface Profile
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface
2-		1.5	None	75		Silty Sand (SM) Yellowish red (5YR 4/6) silty very fine sand; loose; moist. Fat Clay (CH) Red (2.5YR 4/6) clay, little silt; cohesive; high plasticity; medium stiff; moist.
		2.1	None	90		Color transitions to red (2.5YR 4/8) at 4 feet bgs. Stiff from 4 - 12 feet bgs.
8		2.1	None	90		<1% tiny (approximately 1 millimeter) vesicles present from 8 - 20 feet bgs.
		1.5	None	95		Becomes soft at 14.8 feet bgs.
16 — - - 18 —		1.9	None	100		50% light reddish brown (5YR 6/4) mottling and wet (?) at 16 feet bgs.
	Geolog	gist(s)	: Judy L	. And	rews	WSP Parsons Brinckerhoff

Subcontractor: Detech Driller/Operator: John McClure Method: Direct Push WSP | Parsons Brinckerhoff 123 N 3rd Street, Suite 507 Minneapolis, MN 55401 (612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 30, 2016

Surface Elevation (feet amsl*): 890

Total Depth (feet bgs*): 28

Borehole Diameter (inches): 2

	Sa	mple	Data		Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description		
		2.4	None	100				
		2.2	None	100		<i>Fat Clay (CH)</i> Light brown (7.5YR 6/3) clay with 5% yellow (2.5Y 7/8) mottling, trace coarse sand, trace fine subangular gravel; cohesive; very high plasticity; soft; moist.		
22		1.4	None	100				
26		0.4	None	100		<i>Fat Clay with Sand (CH)</i> Light brown (7.5YR 6/3) clay with 50% reddish yellow (7.5YR 6/6) mottling, few to little very coarse angular sand, trace fine sub-angular gravel; cohesive; high plasticity; soft; moist.		
		0.6	None	100		Soft transitions to stiff at 24.5 feet bgs then very stiff at 25 feet bgs. Bottom of boring hard and dry.		
28 - - - 30 - - - - - - - - - - - - - - -						Bottom of boring at 28 feet bgs. Temporary screen set at 21 - 26 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-48(033116)		

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 3, 2016

Surface Elevation (feet amsl*): 879

Total Depth (feet bgs*): 16

Borehole Diameter (inches): 2

	Sample Data						Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery		LILLIOLOGY	Description Ground Surface			
-		420.8	Negative	50			Silt (ML) Brown (7.5YR 4/3) silt, few clay; cohesive; non-plastic; soft; dry.			
2		508.2	Negative	50			Becoming medium stiff and moist at 2.5 feet bgs.			
4		1,225	Negative	80			Stiff; odor present from 4 - 9.3 feet bgs.			
6		897.9	Negative	80						
-		1,422	Positive (faint)	95			Fat Clay (CH)			
10 — - - 12 —		1,116	Positive (faint)	95			Light brown (7.5YR 6/3) clay with 1% reddish brown mottling, few silt; cohesive; high plasticity; medium stiff; moist; odor.			
12 — - - 14 —		904.0	Positive (faint)	100			Red (2.5YR 4/6) at 13 feet bgs.			
16-		979.7	Positive (faint)	100			<i>Silty Sand (SM)</i> Light brownish gray (10YR 6/2) silty very fine sand; dense; wet; odor present.			
							Bottom of boring at 16 feet bgs. Temporary screen set at 11 - 16 feet bgs. No LNAPL accumulated over 24-hour period.			
·		•	•		-		·			

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 29, 2016

Surface Elevation (feet amsl*): 882

Total Depth (feet bgs*): 24

Borehole Diameter (inches): 2

	Sample Data					Subsurface Profile
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface
2		1.8	None	80		Silt (ML) Dark reddish brown (2.5YR 3/4) silt, few clay; cohesive; non-plastic; medium stiff; moist.
- - 6- - -		1.4	None	75		Fat Clay (CH) Yellowish red (5YR 4/6) clay, few silt; cohesive; high plasticity; stiff; moist.
8		1.1	None	90		2% dark brown mottling starting at 8 feet bgs.
12— - - 14— - -		1.1	None	100		Becomes stiff at 12 feet bgs.
16— - - 18—						Becomes very stiff at 16 feet bgs.
	Geolog	gist(s)	: Judy L	. Andı	rews	WSP Parsons Brinckerhoff

Geologist(s): Judy L. Andrews	WSP Parsons Brinckernoπ
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 29, 2016

Surface Elevation (feet amsl*): 882

Total Depth (feet bgs*): 24

Borehole Diameter (inches): 2

Sample Data						Subsurface Profile
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description
20-		0.7	None	100		
-						Becomes soft at 21 feet bgs.
22		0.2	None	100		Clayey Sand (SC) Red (2.5YR 4/8) clayey very fine sand; dense; wet.
24						Bottom of boring at 24 feet bgs.
26 — 						
30						
32-						
 34						

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 30, 2016

Surface Elevation (feet amsl*): 882

Total Depth (feet bgs*): 25

Borehole Diameter (inches): 2

*amsl = above mean sea level bgs = below ground surface

Sample Data					Subsurface Profile		
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface	
-		0.5	None	80		Silt (ML) Dark reddish brown (5YR 3/3) silt, few clay; non-cohesive; non-plastic; soft; dry.	
2		1.0	None	80		Fat Clay (CH) Dark reddish brown (5YR 3/2) clay; cohesive; high plasticity; soft; moist. Color transitions to dark grayish brown (10YR 4/2) at 1.5 feet bgs.	
		1.3	None	75		Becomes stiff at 2.5 feet bgs. Becomes very stiff at 4 feet bgs hardening with depth. Color transitions to grayish brown (10YR 5/2) with 1% yellowish brown (10YR 5/8) mottling at 6.5 feet bgs.	
8		1.3	None	100		Trace coarse sand starting at 8 feet bgs. Color transitions to light brownish gray (10YR 6/2) with 3% yellowish brown (10YR 5/8) and 3% very dark brown (10YR 2/2) mottling and becomes hard at 8 feet bgs. Becomes very stiff at 9.5 feet bgs.	
		2.0	None	100		Mottling increases with depth to 6% yellowish brown and 6% very dark brown by 12 feet bgs. Yellowish brown mottling replaced by yellowish red (5YR 5/6) mottling at 14.5 feet bgs.	
16 — - - 18 —		1.5	None	100		Clay is swelling producing partial sampler flights starting at 16 feet bgs. Color transitions to red (2.5YR 5/6) with 1% very dark brown (10YR 2/2) mottling at 16.5 feet bgs.	

Geologist(s): Judy L. Andrews
Subcontractor: Detech
Driller/Operator: John McClure
Method: Direct Push

WSP | Parsons Brinckerhoff 123 N 3rd Street, Suite 507 Minneapolis, MN 55401 (612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 30, 2016

Surface Elevation (feet amsl*): 882

Total Depth (feet bgs*): 25

Borehole Diameter (inches): 2

Sample Data					Subsurface Profile
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Description
20-		2.1	None	100	Becomes stiff at 19 feet bgs. 3% pale grayish brown mottling from 19 - 23 feet bgs.
22		2.2	None	100	Stiff transitions to soft then very soft from 22 - 23 feet bgs. Sandy Lean Clay (CL) Red (2.5YR 5/8) sandy clay; cohesive; non-plastic; very soft; wet. Becomes soft at 23.5 feet bgs.
					Clayey Sand (SC) Red (2.5YR 5/8) very fine sand, some clay; dense; wet. Bottom of boring at 25 feet bgs. Temporary screen set at 20 - 25 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-51(033016)
36 —					

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 3, 2016

Surface Elevation (feet amsl*): 878

Total Depth (feet bgs*): 22

Borehole Diameter (inches): 2

*amsl = above mean sea level bgs = below ground surface

Sample Data					Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface		
-		56.0		95		Silt (ML) Strong brown (7.5YR 4/6) silt, few to little clay; cohesive; non-plastic; medium stiff; moist.		
2		146.9		95		Fat Clay (CH) Dark gray (5YR 4/1) clay, trace silt; cohesive; high plasticity; medium stiff; moist. Black staining from 1.2 - 1.7 feet bgs.		
- - 6-		85.1		90		Soft at 4 feet bgs becoming stiff at 5 feet bgs.		
8		65.0		90				
10		131.1		100				
12		263.7		100				
- - - 14		864.6		100		Lean Clay (CL) Greenish gray (Gley1 5/5GY) clay with 5% reddish brown mottling, trace silt; cohesive; low to medium plasticity (too stiff to roll); stiff to very stiff; moist.		
- - - 16-		1,337		100		Little very fine sand from 15.8 - 16 feet bgs.		
		1,453		100		Clay expanding in liner.		
18—								

Geologist(s): Judy L. Andrews									
Subcontractor: Detech									
Driller/Operator: John McClure									
Method: Direct Push									

WSP | Parsons Brinckerhoff 123 N 3rd Street, Suite 507 Minneapolis, MN 55401 (612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 3, 2016

Surface Elevation (feet amsl*): 878

Total Depth (feet bgs*): 22

Borehole Diameter (inches): 2

	Sample Data					Subsurface Profile
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description
		855.4		100 100		Sandy Lean Clay (CL) Dark gray (7.5YR 4/1) sandy clay, very fine sand; medium stiff; very moist becoming wet at 20 feet bgs; odor present; clay expanding in liner. Color transitions to greenish gray (Gley1 5/5GY) at 18.7 feet bgs. Soft at 20.2 feet bgs.
22 — - 22 — - - 24 — - -		273.7		100		Silty Sand (SM) Dark gray (7.5YR 4/1) silty very fine sand; wet. Yellowish brown staining from 21.3 - 21.7 feet bgs. Reddish brown (5YR 5/4) at 21.7 feet bgs. Bottom of boring at 22 feet bgs. Temporary screen set at 13 - 18 feet bgs. No LNAPL accumulated over 24-hour period.
30						
- - - 36 -						

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 29, 2016

Surface Elevation (feet amsl*): 883

Total Depth (feet bgs*): 24

Borehole Diameter (inches): 2

Sample Data					Subsurface Profile				
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery		Litholoav	(6)	Description	
		2.2	None	50				Silt (ML) Brown (7.5YR 4/4) silt, few clay; cohesive; non-plastic; soft; moist; roots present.	
		2.5	None	50					
4 - - - 6-		2.2	None	75				Silt (ML) Red (2.5YR 4/6) silt, few clay, trace very fine sand; cohesive; non-plastic; soft; moist.	
-		2.3	None	75					
-		1.6	None	80				Transitions to yellowish red (5YR 4/6) and medium plastic at 8 feet bgs.	
		1.8	None	80					
12 - - - 14-		2.1	None	100				Silt (ML) Yellowish red (5YR 4/6) silt, few clay, few very fine to coarse sand; cohesive; low plasticity; medium stiff; moist.	
14 — - - - 16 —		1.9	None	100					
-		5.7	None	100				Lean Clay (CL) Yellowish red (5YR 4/6) clay with 50% light grayish brown mottling, few silt; cohesive; medium plasticity; stiff; moist becoming wet at 21 feet bgs.	
		I		1	I				

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 29, 2016

Surface Elevation (feet amsl*): 883

Total Depth (feet bgs*): 24

Borehole Diameter (inches): 2

	Sample Data					Subsurface Profile
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description
20-		128.6	Negative	100		
20		193.9	Negative	100		Faint odor at 20 feet bgs.
22		252.5	Negative	100		Clayey Sand (SC) Red (2.5YR 4/6) clayey very fine sand; dense; wet.
24					~ ~ ~ ~ ~ ~	Bottom of boring at 24 feet bgs. Temporary screen set at 22 - 27 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-53(033016)
_ 28— _ _						
- 32 - -						
34						
36-						

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 31, 2016

Surface Elevation (feet amsl*): 880

Total Depth (feet bgs*): 20

Borehole Diameter (inches): 2

*amsl = above mean sea level bgs = below ground surface

	Sample Data					Subsurface Profile					
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description					
		136.7	Negative	80	1X91	Silty Gravel (GM) Silty coarse gravel fill. Silt (ML)					
2		166.6	Negative	80		Brown (7.5YR 4/2) silt, few clay; cohesive; non-plastic; medium stiff; moist. Color transitions to reddish brown (5YR 4/4) at 2.5 feet bgs.					
4		109.6	Negative	50		60% dark grayish brown mottling at 4 feet bgs becoming 5% mottling at 7 feet bgs.					
6— — — —		173.0	Negative	50		Loose fine to coarse sand with gravel lens from 7 - 7.5 feet bgs; odor present in lens.					
8		1,101	Negative	75		Few coarse sand from 8 - 9 feet bgs. Fat Clay (CH) Yellowish red (5YR 5/6) clay, few silt; cohesive; high plasticity; medium stiff;					
10 — - - -		1,131	Negative	75		moist; gasoline-type odor.					
12 — - -		1,175	Negative	100		Very strong gasoline-type odor from 12 - 15.5 feet bgs.					
14 - - -		3,080	Positive (faint)	100		Almost 100% light gray mottling from 13 - 14 feet bgs decreasing to 50% mottling from 14 - 15.5 feet bgs.					
16 — - -		NM	Positive (faint)	70	· · · · · · · · · · · · · · · · · · ·	Silty Sand (SM) Reddish brown (5YR 5/3) silty very fine sand; dense; wet; very strong odor; possible free product. Coarsening with depth.					
18-					•.•.ŀIf.	1					

Geologist(s): Judy L. Andrews
Subcontractor: Detech
Driller/Operator: John McClure
Method: Direct Push

WSP | Parsons Brinckerhoff 123 N 3rd Street, Suite 507 Minneapolis, MN 55401 (612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 31, 2016

Surface Elevation (feet amsl*): 880

Total Depth (feet bgs*): 20

Borehole Diameter (inches): 2

	Sample Data					Subsurface Profile
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description
		1,176	Positive (faint)	70		<i>Well-Graded Sand with Silt (SW-SM)</i> Reddish brown (5YR 5/3) very fine to medium sand, few fines; medium dense; wet; very strong odor.
20						Bottom of boring at 20 feet bgs. Temporary screen set at 13.5 - 18.5 feet bgs. 1.8 feet bgs of LNAPL accumulated over 24-hour period.
 24 <i></i>						
26 — 						
28 — - - - 30 —						
 34						
- 36 —						

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 29, 2016

Surface Elevation (feet amsl*): 879

Total Depth (feet bgs*): 20

Borehole Diameter (inches): 2

Sample Data					Subsurface Profile	
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface
-		1.7	None	80		• Well-Graded Gravel with Sand (GW) Sandy coarse gravel fill.
2		1.5	None	80		Wery dark brown silt; very hard; dry. Silt (ML) Red (2.5YR 4/6) silt, few clay; cohesive; low plasticity; medium stiff; moist.
4 — 6 —		1.1	None	50		Becomes soft and non-plastic at 4 feet bgs.
		1.0	None	50		Transitions to stiff by 8 feet bgs.
- - - 10-		1.8	None	100		2% dark brown mottling from 8 - 13 feet bgs.
-		1.8	None	100		
		1.8	None	100		<i>Fat Clay (CH)</i> Reddish brown (5YR 5/4) clay with 50% red (2.5YR 5/6) mottling; cohesive;
-		1.9	None	100		high plasticity; stiff; moist. Becomes soft at 14 feet bgs.
16— - - - 18—		2.2	None	75		Sandy Fat Clay (CH)

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 29, 2016

Surface Elevation (feet amsl*): 879

Total Depth (feet bgs*): 20

Borehole Diameter (inches): 2

Sample Data					Subsurface Profile
Depth (feet bgs) Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description
20 	M	Negative	75		Reddish brown (5YR 5/4) sandy clay with 50% red (2.5YR 5/6) mottling; cohesive; high plasticity; soft; wet. Poorly-Graded Sand with Silt (SP-SM) Yellowish red (5YR 5/6) very fine to fine sand, few silt and clay; dense; wet; petroleum-type odor. Bottom of boring at 20 feet bgs. Temporary screen set at 17 - 22 feet bgs. No LNAPL accumulated over 24-hour period. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-55(033016)

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 30, 2016

Surface Elevation (feet amsl*): 884

Total Depth (feet bgs*): 20

Borehole Diameter (inches): 2

*amsl = above mean sea level bgs = below ground surface

Sample Data					Subsurface Profile	
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface
2		1.6	None	75		Silt (ML) Dark reddish brown (5YR 3/2) silt, few clay; non-cohesive; non-plastic; soft; dry; tree roots present. Silt (ML) Red (2.5YR 4/6) silt, some clay; cohesive; low to medium plasticity; stiff; moist. Tree roots present from 1 - 4 feet bgs.
		1.1	None	80		Becomes very stiff at 4 feet bgs. Trace coarse to very coarse sand from 4 - 12 feet bgs. Some coarse to very coarse sand (sandy clay) from 6 - 8 feet bgs.
		1.5	None	50		Moist and very stiff becoming dry and hard with depth.
		1.6	None	90		<i>Fat Clay (CH)</i> Red (2.5YR 5/6) clay with 1% very dark brown mottling, few silt; cohesive; high plasticity; very stiff; moist. Becomes stiff at 14 feet bgs then medium stiff at 15 feet bgs.
16 — - - 18 —		1.9	None	100		Becomes soft at 17 feet bgs.

Geologist(s): Judy L. Andrews Subcontractor: Detech Driller/Operator: John McClure Method: Direct Push WSP | Parsons Brinckerhoff 123 N 3rd Street, Suite 507 Minneapolis, MN 55401 (612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 30, 2016

Surface Elevation (feet amsl*): 884

Total Depth (feet bgs*): 20

Borehole Diameter (inches): 2

Sample Data					Subsurface Profile	
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description
		1.9	None	100		Clayey Sand (SC) Red (2.5YR 4/6) clayey very fine sand; dense; wet.
						Bottom of boring at 20 feet bgs. Temporary screen set at 18.5 - 23.5 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-56(033116)
24 —						
26 — - -						
28-						
30 — 						
32						
34 —						
36 —						

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 3, 2016

Surface Elevation (feet amsl*): 860

Total Depth (feet bgs*): 24

Borehole Diameter (inches): 2

Sample Data						Subsurface Profile
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface
	C			0		No Recovery
- - - 4-	C			0		
- - 6-		11.8	None	90		<i>Fat Clay (CH)</i> Red (2.5YR 4/6) clay, little silt; cohesive; high plasticity; medium stiff; moist.
		24.5	None	90		
- - - 10-		19.5	None	95		Wet from 10 - 13 feet (bgs).
-		29.6	None	95		Brown (7.5YR 4/2) from 11.5 - 12 feet (bgs).
12 - - -		56.0	None	100		Brown (7.5YR 4/3) at 12 feet (bgs).
14 - - -		394.0	Negative	100		Faint odor at 15 - 23 feet (bgs).
16 - - - 18		1,355	Positive (faint)	100		Wet at 16 feet (bgs).
						WSB Paragan Bringkorhoff

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 3, 2016

Surface Elevation (feet amsl*): 860

Total Depth (feet bgs*): 24

Borehole Diameter (inches): 2

	Sample Data					Subsurface Profile
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description
20 -		1,075	Positive (very faint)	100		Reddish brown (5YR 4/4) from 16.5 - 20 feet (bgs). Trace very fine sand at 19.5 feet (bgs).
		1,293	Positive (very faint)	100		Yellowish red (5YR 4/6) at 20 feet (bgs).
24		1,137	Positive (faint)	100		Silty Sand (SM) Reddish brown (5YR 4/4) very fine to fine sand, little silt and clay; dense; wet; odor. Bottom of boring at 24 feet bgs. Temporary screen set at 22 - 27 feet bgs.
26						No LNAPL accumulated over 24-hour period. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-105(030416)
30						
32						
34 — - - 36 —						
		1			I	

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 29, 2016

Surface Elevation (feet amsl*): 863

Total Depth (feet bgs*): 15

Borehole Diameter (inches): 2

Sample Data					Subsurface Profile				
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery		LITIOIOGY	Description Ground Surface		
2-		2.6	None	60			Silt (ML) Red (2.5YR 4/6) silt, few clay; non-cohesive; non-plastic; soft; moist. Organics (roots) present from 0 - 4 feet bgs.		
-		2.4	None	60					
4		0.4	None	60					
6		2.6	None	60			Few very fine sand from 6 - 15 feet (bgs).		
8		2.7	None	75			Dry from 9 - 12 feet (bgs).		
10		2.4	None	75					
12		2.2	None	100					
14 —		2.1	None	100			Rock chip or concrete in sampler causing refusal at 15 feet (bgs).		
							Bottom of boring at 15 feet bgs. Boring terminated at refusal.		
	[1		1					

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 30, 2016

Surface Elevation (feet amsl*): 860

Total Depth (feet bgs*): 12

Borehole Diameter (inches): 2

	Sa	mple	Data		Subsurface Profile				
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface			
2		0.3	None	60		Silt (ML) Red (2.5YR 5/8) silt, few clay, trace sand; non-cohesive; non-plastic; soft; moist.			
		0.4	None	75		Becomes cohesive with 2% very dark gray and 1% light gray mottling at 4 feet (bgs).			
8		1.0	None	80		Sand content increasing with depth to few sand at 8 feet (bgs).			
10		1.4	None	80		Reddish brown (2.5YR 5/3) very fine to coarse sand with 5% very dark gray mottling, some silt and clay, trace fine sub-rounded and sub-angular quartz gravel; dense; wet.			
						Bottom of boring at 12 feet bgs. Temporary screen set at 9 - 14 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-111(033016)			
18 —									

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff				
Subcontractor: Detech	123 N 3rd Street, Suite 507				
Driller/Operator: John McClure	Minneapolis, MN 55401				
Method: Direct Push	(612)343-0510				

Project: Interior Delineation

Location: Wynnewood, OK

Project No.: 31400030

Total Depth (feet bgs*): 12

Surface Elevation (feet amsl*): 855

Borehole Diameter (inches): 2

Completion Date: April 2, 2016

	Sample Data					Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface			
-		0.6	None	90		Silt (ML) Brown (7.5YR 4/4) silt, few clay; cohesive; non-plastic; hard; dry; organics (roots) present.			
2		0.4	None	90		Silty Sand (SM) Strong brown (7.5YR 4/6) very fine sand, little silt and clay; medium dense; moist becoming wet at 4 feet bgs.			
4		0.8	None	70					
6		1.0	None	70		<i>Clayey Sand (SC)</i> Light brown (7.5YR 6/4) clayey very fine to fine sand; dense; wet; reddish yellow banding present.			
8		0.9	None	60		Medium dense at 8 feet bgs becoming loose with depth.			
		1.3	None	60					
						Bottom of boring at 12 feet bgs. Temporary screen set at 9 - 14 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-89(040216)			
18—									

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Location: Wynnewood, OK

Project No.: 31400030

Surface Elevation (feet amsl*): 856

Total Depth (feet bgs*): 12

Borehole Diameter (inches): 2

Completion Date: April 2, 2016

Sample Data					Subsurface Profile				
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface			
2-		0.6	None	90		Silt (ML) Brown (7.5YR 4/3) silt, few clay; cohesive; non-plastic; medium stiff; moist.			
-		0.5	None	90		Silty Sand (SM) Brown (7.5YR 5/3) very fine sand, some silt and clay; dense; moist.			
4		0.5	None	50		Sandy Lean Clay (CL) Strong brown (7.5YR 4/6) sandy clay, very fine sand; soft; wet.			
8		0.3	None	50		Clayey Sand (SC) Strong brown (7.5YR 4/6) clayey very fine sand; medium dense; wet.			
-		0.3	None	60		Reddish yellow banding from 8 - 11 feet bgs.			
10		0.4	None	60		Color transitions to reddish yellow (5YR 6/6) at 10 feet bgs. Silty Sand (SM) Reddish yellow (5YR 6/6) very fine to fine sand, some silt and clay; medium			
12— 						dense; wet. Bottom of boring at 12 feet bgs.			
- 18-									

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 852

Total Depth (feet bgs*): 4

Borehole Diameter (inches): 2

Completion Date: February 29, 2016

Sa	mple D	ata		Subsurface Profile			
Depth (feet bgs) Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface		
	20.4	None	70		Silt (ML) Dark brown (7.5YR 3/4) silt, little clay, organics (roots) present; cohesive;		
	21.5	None	70		Silt (ML) Strong brown (7.5YR 4/6) silt, few clay; cohesive; non-plastic; soft; moist. Sandy Silt (ML) Strong brown (7.5YR 4/6) sandy silt; cohesive; non-plastic; soft; moist.		
					Silty Sand (SM) Strong brown (7.5YR 4/6) silty very fine sand; medium dense; wet. Bottom of boring at 4 feet bgs. Temporary screen set at 2.5 - 7.5 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-91(022916)		

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Location: Wynnewood, OK

Project No.: 31400030

Surface Elevation (feet amsl*): 853

Total Depth (feet bgs*): 12

Borehole Diameter (inches): 2

Completion Date: April 1, 2016

	Sample Data				Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface		
		1.4	None	90		Silt (ML) Dark grayish brown (10YR 4/2) silt with 5% brownish red mottling, few clay; cohesive; non-plastic; medium stiff; dry.		
-		1.4	None	90				
4		2.2	None	60		Becomes soft at 4 feet bgs. Poorly-Graded Sand with Silt (SP-SM) Light brownish gray (10YR 6/2) very fine sand with 3% yellowish red mottling,		
6 - - 8		1.3	None	60		few silt; loose; moist becoming wet at 8 feet bgs.		
- - - - 10-		1.6	None	70				
10 -		1.4	None	70				
-						Bottom of boring at 12 feet bgs.		
14 — - -								
16 — - -								
18—								

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 848

Total Depth (feet bgs*): 8

Borehole Diameter (inches): 2

Completion Date: February 29, 2016

	Sample Data				Subsurface Profile				
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface			
-		22.7	None	100		Silt (ML) Dark brown (7.5YR 3/4) silt with roots, few clay; cohesive; non-plastic; medium stiff; moist.			
2		22.6	None	100		Strong brown (7.5YR 4/6) at 1 foot bgs.			
4		18.0	None	75		Sandy Silt (ML) Dark brown (7.5YR 3/4) silt, some very fine sand, few clay; cohesive; non-plastic; medium stiff; moist. Sandy silt and wet at 6 feet bgs bgs.			
8-		18.6	None	75		Silty Sand (SM) Brown (7.5YR 5/3) silty very fine to fine sand, few clay; dense; wet.			
						Bottom of boring at 8 feet bgs. Temporary screen set at 13 - 18 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-94(022916)			

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: April 1, 2016

Surface Elevation (feet amsl*): 854

Total Depth (feet bgs*): 16

Borehole Diameter (inches): 2

	Sample Data					Subsurface Profile				
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description				
		2.1	None	75		<i>Fat Clay (CH)</i> Very dark grayish brown (10YR 3/2) clay, few silt, trace gravel; cohesive; high plasticity; medium stiff; moist; fill.				
-		1.2	None	75		Clayey Sand (SC)				
4		1.0	None	50		Yellowish red (5YR 4/6) very fine sand, some clay; medium dense; moist. Silt (ML) Brown (7.5YR 5/2) silt, some clay, few very fine sand; cohesive; low plasticity; stiff; moist.				
		0.8	None	50		▼				
		10.1	Negative	100		Color transitions to gray (2.5Y 6/1) at 9 feet bgs.				
10		111.8	Positive (faint)	100		Little sand at 10.5 feet bgs becoming some sand with depth.				
12		117.6	Positive	75		5% black mottling from 12 - 13 feet bgs. Sandy Lean Clay (CL)				
14		99.1	Positive	75		Gray (2.5Y 6/1) sandy clay; medium stiff; moist becoming wet at 14 feet bgs.				
						Well-Graded Sand with Clay (SW-SC) Light gray (2.5Y 7/1) very fine to medium sand, few fines; medium dense; wet. Black staining at 14 feet bgs.				
_ _ 18_						Bottom of boring at 16 feet bgs. Temporary screen set at 12.5 - 17.5 feet bgs. No LNAPL accumulated over 24-hour period.				

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Location: Wynnewood, OK

Project No.: 31400030

Surface Elevation (feet amsl*): 839

Total Depth (feet bgs*): 16

Borehole Diameter (inches): 2

Completion Date: April 1, 2016

	Sample Data				Subsurface Profile			
Depth (feet bgs)	Sample/Interval	(mqq) MVO/DIA	UV Test	% Recovery	Lithology	Description Ground Surface		
-	X	1.6	None	75		Well-Graded Gravel (GW) Gravel fill. Silt (ML)		
2		1.7	None	75		Very dark grayish brown (10YR 3/2) silt, few clay; non-cohesive; non-plastic; medium stiff; dry. Lean Clay (CL) Very dark gray (7.5YR 3/1) clay, few silt; medium stiff; moist.		
		1.6	None	60		Silt (ML) Brown (7.5YR 5/2) silt with 1% yellowish red mottling, little clay, trace to few very fine sand; cohesive; medium plasticity; stiff; moist.		
-		1.7	None	60				
-		1.4	None	100		Very stiff from 8 - 10 feet bgs.		
-		0.6	None	100		Medium stiff from 11 - 12 feet bgs.		
-		0.8	None	100				
-		1.0	None	100		Silty Sand (SM) Very pale brown (10YR 7/3) silty very fine sand; dense; wet.		
						Bottom of boring at 16 feet bgs.		

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 850

Total Depth (feet bgs*): 12

Borehole Diameter (inches): 2

Completion Date: February 29, 2016

	Sample Data				Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface		
-		14.4	None	90		Silt (ML) Dark brown (7.5YR 3/4) silt with organics (roots), little clay; cohesive; non-plastic; soft; moist.		
2		21.3	None	90		Fat Clay (CH) Brown (7.5YR 4/4) clay, little silt; cohesive; high plasticity; stiff; moist. Few very fine sand from 4 - 4.5 feet bgs.		
4		28.5	None	90		Few very line sand from 4 - 4.5 feet bgs. Fat Clay with Sand (CH) Brown clay, little silt, little very fine sand; cohesive; high plasticity; stiff; moist.		
		27.4	None	90		Pinkish gray (7.5YR 6/2) with 1% reddish brown mottling from 6.5 - 10.5 feet bgs.		
		23.3	None	75		Sandy clay from 9.5 - 10.5 feet bgs.		
10		20.1	None	75		Poorly-Graded Sand (SP) Light brown (7.5YR 6/4) fine to medium sand, trace silt and clay; medium dense; wet.		
						Bottom of boring at 12 feet bgs. Temporary screen set at 9 - 14 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-97(022916)		
18—								

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 853

Total Depth (feet bgs*): 6

Borehole Diameter (inches): 2

Completion Date: February 25, 2016

	Sample Data					Subsurface Profile
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface
-		11.1	None	100		Sandy Organic Soil (OL/OH) Reddish brown (5YR 4/4) organic rich silty fine sand; loose; moist. Lean Clay (CL)
2		12.8	None	100		Dark reddish brown (5YR 3/3) silty clay, few fine sand; non-cohesive; non-plastic; medium stiff; moist. Little gravel from 0.5 - 0.75 feet bgs. Few organics and faint petroleum-type odor from 0.5 - 2 feet bgs. Dark brown (7.5YR 3/2) clayey silt from 3 - 3.5 feet bgs.
4 — - - 6 —		28.9	None	100		Sandy Silt (ML) Strong brown (7.5YR 4/6) sandy silt; non-cohesive; non-plastic; medium stiff; moist.
-						Silty Sand (SM) Strong brown (7.5YR 4/6) silty very fine to fine sand; medium dense; moist becoming wet at 4.5 feet bgs.
8						Bottom of boring at 6 feet bgs.
10						
- - 16-						
- - 18-						

Geologist(s): Kevin P. Walter	WSP Parsons Brinckerhoff
Subcontractor: N/A	123 N 3rd Street, Suite 507
Driller/Operator: Kevin P. Walter	Minneapolis, MN 55401
Method: Hand Auger	(612)343-0510

Project: Interior Delineation

Location: Wynnewood, OK

Project No.: 31400030

Surface Elevation (feet amsI*): 852

Total Depth (feet bgs*): 12

Borehole Diameter (inches): 2

Completion Date: April 1, 2016

	Sample Data					Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface			
2-		0.2	None	80		Silty Sand (SM) Brown (7.5YR 4/4) very fine to fine sand, some silt and clay; medium dense; moist.			
4-		0.2	None	80					
- - - 6-		0.5	None	60		Silt (ML) Brown (7.5YR 4/3) silt, little clay; cohesive; non-plastic; medium stiff; moist.			
8-		0.6	None	60		Silty Sand (SM) Light brown (7.5YR 6/4) very fine sand, little silt and clay; medium dense; moist becoming wet at 7 feet bgs. Yellowish red and reddish brown banding throughout.			
		0.3	None	80		Sand coarsens to very fine to fine sand at 8 feet bgs.			
		0.9	None	80		Color transitions to red (2.5YR 4/8) at 11 feet bgs.			
						Bottom of boring at 12 feet bgs. Temporary screen set at 9.5 - 14.5 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-99(040116)			
18—									

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 853

Total Depth (feet bgs*): 4

Borehole Diameter (inches): 2

Completion Date: February 28, 2016

	Sample Data					Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface			
		24.4	None	100		Poorly-Graded Sand with Silt (SP-SM) Yellowish red (5YR 4/6) fine to very fine sand, few fines, trace organics; / - loose; moist. / Little organics from 0 - 0.25 foot bgs. /			
-		35.9	None	100		Silty Sand (SM) Yellowish red (5YR 4/6) fine to very fine sand, little silt; loose; moist becoming wet at 2.5 feet bgs.			
						Trace coarse sand from 3 - 4 feet bgs. Bottom of boring at 4 feet bgs.			

Geologist(s): Kevin P. Walter	WSP Parsons Brinckerhoff
Subcontractor: N/A	123 N 3rd Street, Suite 507
Driller/Operator: Kevin P. Walter	Minneapolis, MN 55401
Method: Hand Auger	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 847

Total Depth (feet bgs*): 5

Borehole Diameter (inches): 2

Completion Date: February 25, 2016

S	ample	Data		Subsurface Profile			
Depth (feet bgs) Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface		
	20.2	None	100		Silty Sand (SM) Dark reddish brown (5YR 3/3) silty sand; loose; moist. Little organics from 0 - 0.5 foot bgs.		
	19.2	None	100		Silt with Sand (ML) Yellowish red (5YR 4/6) clayey silt, little sand; non-cohesive; non-plastic; medium stiff; moist. Some sand from 2 - 2.5 feet bgs.		
4	18.1	None	100		Silty Sand (SM) Yellowish red (5YR 4/6) silty fine to very fine sand; loose; moist becoming wet at 3.75 feet bgs.		
					Bottom of boring at 5 feet bgs.		

Geologist(s): Kevin P. Walter	WSP Parsons Brinckerhoff
Subcontractor: N/A	123 N 3rd Street, Suite 507
Driller/Operator: Kevin P. Walter	Minneapolis, MN 55401
Method: Hand Auger	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 849

Total Depth (feet bgs*): 12

Borehole Diameter (inches): 2

Completion Date: February 29, 2016

	Sample Data					Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface			
-		27.2	None	90		<i>Lean Clay (CL)</i> Brown (7.5YR 4/3) clay with organics (roots), trace coarse sand; cohesive; medium plasticity; very soft; moist.			
2		28.3	None	90		Silt (ML) Brown (10YR 5/3) silt with 5% yellowish brown mottling, little clay, roots present; cohesive; low plasticity; stiff; moist.			
4		29.7	None	75		5% reddish brown and black mottling from 4 - 7 feet bgs.			
6		33.3	None	75					
8 — - - - 10 —		35.6	None	60		Silt (ML) Light gray (10YR 7/2) silt, little clay, trace medium-grained gravel; cohesive; low plasticity; soft; wet.			
		33.2	None	60		Sandy silt from 10.7 - 11 feet bgs.			
12-		00.2	None			Poorly-Graded Sand (SP) Light brown (7.5YR 6/4) very fine to fine sand, trace or no fines; dense; wet.			
14						Bottom of boring at 12 feet bgs. Temporary screen set at 11 - 16 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-102(022916)			

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 833

Total Depth (feet bgs*): 5

Borehole Diameter (inches): 2

Completion Date: February 25, 2016

	Sample Data					Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface			
2		18.9	None	100		Silty Sand (SM) Reddish brown (5YR 4/4) silty fine sand, trace organics; loose; wet becoming moist at 0.25 foot bgs. Dark reddish brown (5YR 3/4) with few gravel from 0.5 - 1.5 feet bgs.			
-		24.3	None	100		I Petroleum-type odor from 1 - 1.5 feet bgs. // I Sandy Silt (ML) // I Dark reddish brown clayey silt, little sand; non-cohesive; non-plastic; medium / // I stiff; moist. //			
		24.4	None	100		stiff; moist. I Sandy Silt (ML) Strong brown (7.5YR 4/6) sandy silt; non-cohesive; non-plastic; medium stiff; moist. Silty Sand (SM) Strong brown (7.5YR4/6) fine sand, little silt; loose; moist becoming wet at 4.25 feet bgs. Bottom of boring at 5 feet bgs.			
- - 18-									

Geologist(s): Kevin P. Walter	WSP Parsons Brinckerhoff
Subcontractor: N/A	123 N 3rd Street, Suite 507
Driller/Operator: Kevin P. Walter	Minneapolis, MN 55401
Method: Hand Auger	(612)343-0510

Project: Interior Delineation

Location: Wynnewood, OK

Project No.: 31400030

Surface Elevation (feet amsl*): 855

Total Depth (feet bgs*): 12

Borehole Diameter (inches): 2

Completion Date: April 1, 2016

	Sample Data					Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface			
-		0.1	None	90		Silt (ML) Brown (7.5YR 4/4) silt, few clay; cohesive; non-plastic; stiff; moist.			
2		0.4	None	90		1% yellowish red and 1% very dark brown mottling from 3 - 4.5 feet bgs.			
4		0.4	None	75		Silty Sand (SM) Yellowish red (5YR 5/6) very fine sand, some silt; dense; moist becoming wet at 7.5 feet bgs.			
6	X	0.4	None	75					
8		0.4	None	90		Silty Sand (SM) Red (2.5YR 4/6) silty very fine to fine sand; dense; wet.			
10		0.6	None	90					
12						Bottom of boring at 12 feet bgs. Temporary screen set at 9.5 - 14.5 feet bgs. No LNAPL accumulated over 24-hour period.			

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: April 1, 2016

Surface Elevation (feet amsl*): 898

Total Depth (feet bgs*): 12

Borehole Diameter (inches): 2

	Sample Data					Subsurface Profile		
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface		
		6.6	None	75		Silty Gravel with Sand (GM) Sandy silty gravel fill; loose; dry. Fat Clay (CH)		
2 - - 4		53.0	None	75		Brown (7.5YR 4/4) clay with 20% very dark gray mottling, little silt; trace gravel; cohesive; high plasticity; stiff; moist. Silt (ML) Very dark gray (7.5YR 3/1) silt, few clay; non-cohesive; non-plastic; medium		
6		1.3	None	60		stiff becoming stiff; moist. Poorly-Graded Sand with Silt (SP-SM) Grayish brown (10YR 5/2) very fine sand, few silt and clay; medium dense; moist becoming wet at 5 feet bgs.		
		1.5	None	60				
-		0.9	None	75		Silt (ML) Light brownish gray (10YR 6/2) silt, little clay; cohesive; non-plastic; stiff;		
- - - 12-		0.4	None	75		Poorly-Graded Sand with Silt (SP-SM) Reddish yellow (7.5YR 6/6) very fine to fine sand, few silt and clay; medium dense; wet; red and yellowish red banding present.		
						Bottom of boring at 12 feet bgs. Temporary screen set at 8.5 - 13.5 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-106(040116)		
- 18-								

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 855

Total Depth (feet bgs*): 20

Borehole Diameter (inches): 2

Completion Date: February 26, 2016

	Sample Data					Subsurface Profile		
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description		
-		256.9	Negative	90		Silt (ML) Dark brown (10YR 3/3) silt, few clay; non-cohesive; non-plastic; stiff; moist.		
2		505.6	Positive	90		Degraded concrete. Lean Clay (CL) Black (10YR 2/1) clay, few silt; cohesive; medium plasticity; medium stiff; moist.		
		884.2	Positive	88		Silt (ML) Dark grayish brown (10YR 4/2) silt, few clay; cohesive; non-plastic; stiff; moist.		
8-		980.7	Positive	88		Color transitions to grayish brown (10YR 5/2) at 8 feet bgs.		
-		1,273	Positive	100		Color transitions to gray (10YR 5/1) at 10 feet bgs.		
10		1,395	Positive	100				
-		1,173	Positive	100		Trace very fine sand; strong odor and product visible from 12 - 15 feet bgs.		
14		1,201	Positive	100		Sandy Silt (ML) Gray (10YR 5/1) sandy silt, very fine sand; cohesive; non-plastic; stiff; moist;		
16 — - - - - -		1,135	Positive	100		product visible and strong odor throughout.		
	[

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 855

Total Depth (feet bgs*): 20

Borehole Diameter (inches): 2

Completion Date: February 26, 2016

	Sample Data					Subsurface Profile
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description
_	M					
20-	Å	1,227	Positive	100		Poorly-Graded Sand with Silt (SP-SM) Grayish brown (10YR 5/2) fine to very fine sand, few silt and clay; dense; wet. Dark reddish brown product visible throughout and collecting in liner.
20						Bottom of boring at 20 feet bgs. Temporary screen set at 14 - 19 feet bgs. 1.72 feet bgs of LNAPL accumulated over 24-hour period.
_ 24 _						
- 26 - -						
30						
32						
34 — _ _ _ 						

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 2, 2016

Surface Elevation (feet amsl*): 854

Total Depth (feet bgs*): 21

Borehole Diameter (inches): 2

	Sample Data					Subsurface Profile		
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery		Lithology		Description Ground Surface
-		11.2	None	75				Silt (ML) Reddish brown (7.5YR 4/3) silt, few clay; non-cohesive; non-plastic; soft; barely moist.
2		19.8	None	75				Silt (ML) Brown (7.5YR 4/2) silt, little clay; cohesive; low plasticity; soft; wet.
4		20.5	None	90				Medium plasticity at 4 feet bgs.
6 - - 8		20.8	None	90				
-		17.6	None	100				Silt (ML) Brown (7.5YR 4/2) silt with 30% yellowish brown to reddish brown and black
10 -		14.8	None	100				mottling, little clay; cohesive; medium plasticity; stiff; moist.
-		17.9	None	100				
-		19.7	None	100				<i>Fat Clay (CH)</i> Gray (7.5YR 6/1) clay, few silt; cohesive; high plasticity; soft; wet.
16 — - - 18 —		17.4	None	75				<i>Lean Clay (CL)</i> Brown (7.5YR 5/3) clay with 5% reddish brown mottling, few silt; cohesive; medium plasticity; very stiff; moist becoming dry.

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 2, 2016

Surface Elevation (feet amsl*): 854

Total Depth (feet bgs*): 21

Borehole Diameter (inches): 2

	Sample Data					Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description			
-		17.9	None	75					
20-	X	15.5	None	100		Clay is brown (7.5YR 5/2) and dry from 20 - 21 feet bgs.			
22-						Bottom of boring at 21 feet bgs. Refusal at 21 feet bgs.			
24-						Temporary screen set at 16 - 21 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-58(030216)			
 26									
28									
30-									
32-									

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 852

Total Depth (feet bgs*): 16

Borehole Diameter (inches): 2

Completion Date: February 26, 2016

	Sample Data					Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery		Lithology		Description Ground Surface	
2 	C			0				No Recovery No recovery. Soil too soft, mud. Boring is located next to standing water in tank dike.	
6	C)		0					
8 — - - - 10 —		1,717	Negative	88				Silt (ML) Dark grayish brown (10YR 4/2) silt, few clay; cohesive; low plasticity; stiff; moist becoming wet at 14.5 feet bgs.	
		1,698	Negative	88				Medium stiff with trace very fine sand from 12 - 15 feet bgs.	
-		1,713	Negative	88					
- - - 16-		1,704	Positive	88				Silty Sand (SM) Dark grayish brown silty very fine sand; dense; wet.	
- - - 18-								Bottom of boring at 16 feet bgs. Temporary screen set at 13 - 18 feet bgs. 0.02 feet bgs of LNAPL accumulated over 24-hour period.	

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 853

Total Depth (feet bgs*): 4

Borehole Diameter (inches): 2

Completion Date: February 24, 2016

5	ample	Data		Subsurface Profile		
Depth (feet bgs) Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface	
	21.5	None	100		Silty Sand (SM) Brown (7.5YR 4/3) very fine sand, little silt, trace organics; loose; wet.	
	25.4	None	100		Silty Sand (SM) Brown fine to medium sand, little silt; loose; wet.	
					Clayey Sand (SC) Brown (7/5YR 4/2) clayey very fine sand; loose; wet. Bottom of boring at 4 feet bgs.	

Geologist(s): Kevin P. Walter	WSP Parsons Brinckerhoff
Subcontractor: N/A	123 N 3rd Street, Suite 507
Driller/Operator: Kevin P. Walter	Minneapolis, MN 55401
Method: Hand Auger	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 853

Total Depth (feet bgs*): 12

Borehole Diameter (inches): 2

Completion Date: February 24, 2016

	Sample Data				Subsurface Profile		
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface	
-		16.7	None	100		Silty Sand (SM) Brown (7.5YR 4/4) silty very fine sand, trace organics, trace gravel; loose; moist.	
2		15.7	None	100		Sandy Silt (ML) Dark brown (7.5YR 3/3) sandy silt; cohesive; low plasticity; soft; moist.	
4		20.0	None	100		30% yellowish red (5YR 4/6) mottling starting at 4 feet bgs. Little clay from 5 - 6 feet bgs.	
6		20.6	None	100		Clayey Sand (SC) Strong brown (7.5YR 4/6) clayey very fine sand; medium dense; moist.	
8		21.1	None	100		Sandy Lean Clay (CL) Brown (7.5YR 4/4) sandy clay, sand lenses throughout; cohesive; low plasticity; soft; moist becoming wet at 10 feet bgs.	
		22.3	None	100			
12						Bottom of boring at 12 feet bgs.	
14 — - -							
- 18—							

Geologist(s): Kevin P. Walter	WSP Parsons Brinckerhoff
Subcontractor: N/A	123 N 3rd Street, Suite 507
Driller/Operator: Kevin P. Walter	Minneapolis, MN 55401
Method: Hand Auger	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 852

Total Depth (feet bgs*): 20

Borehole Diameter (inches): 2

Completion Date: February 25, 2016

	Sample Data				Subsurface Profile		
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface	
-		6.0	None	75		Lean Clay with Gravel (CL) Brown (10YR 4/2) silty clay with gravel (fill); medium stiff; dry. Silt (ML)	
2		6.7	None	75		Brown (7.5YR 4/3) silt, little clay; cohesive; low plasticity; soft; moist.	
6		8.7	None	70		Stiff at 5 feet bgs.	
8-		10.8	None	70		Grayish brown (10YR 5/2) with 5% strong brown (7.5YR 5/6) mottling from 7 - 8 feet bgs.	
-		17.0	None	88			
10 — - - 12 —		18.6	None	88		Silt (ML) Yellowish brown (10YR 5/4) silt with 5% black mottling, little clay, trace very fine sand; cohesive; medium plasticity; stiff; moist.	
12 - - - 14-		19.4	None	100			
-		25.7	None	100			
		27.8	None	90		<i>Clayey Sand (SC)</i> Light yellowish brown (10YR 6/4) clayey fine to very fine sand; dense; moist becoming wet at 17.5 feet bgs.	

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 852

Total Depth (feet bgs*): 20

Borehole Diameter (inches): 2

Completion Date: February 25, 2016

Sample Data					Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description		
		25.3	None	90		Light red and yellowish brown banding from 18.5 - 20 feet bgs.		
22						Bottom of boring at 20 feet bgs. Stainless steel screen point sampler set at 20 - 24 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-64(022516)		
24 — - - 26 —								
28-								
30								
32								

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 850

Total Depth (feet bgs*): 5.5

Borehole Diameter (inches): 2

Completion Date: February 24, 2016

Sample Data				Subsurface Profile			
Depth (feet bgs) Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface		
	22.6	None	100		Sandy Silt (ML) Brown (7.5YR 4/3) sandy silt, few organics; cohesive; low plasticity; soft; wet. Silty Sand (SM)		
	28.5	None	100		Brown (7.5YR 4/3) very fine to fine sand, little silt; loose; wet. Trace organics from 0.5 - 1.5 feet bgs. Color transitions to brown (7.5YR 4/4) at 2 feet bgs.		
	21.0	None	100		– 15% yellowish red mottling from 4 - 5.5 feet bgs.		
					Bottom of boring at 5.5 feet bgs. Temporary screen set at 0 - 5 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-65(022416)		

Geologist(s): Kevin P. Walter	WSP Parsons Brinckerhoff
Subcontractor: N/A	123 N 3rd Street, Suite 507
Driller/Operator: Kevin P. Walter	Minneapolis, MN 55401
Method: Hand Auger	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 848

Total Depth (feet bgs*): 10

Borehole Diameter (inches): 2

Completion Date: February 24, 2016

5	Sample	Data		Subsurface Profile			
Depth (feet bgs) Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface		
	18.0	None	100		Silty Sand (SM) Brown (7.5YR 4/4) silty very fine sand, few organics; loose; moist. Medium stiff at 1.5 feet bgs		
	37.0	None	100		Color transitions to dark brown (7.5YR 3/3) at 2 feet bgs. Sandy Silt (ML) Very dark brown (7.5YR 2.5/2) sandy silt; cohesive; low plasticity; soft; moist.		
	21.8	None	100		Silty Sand (SM) Brown (7.5YR 4/4) silty fine sand; medium dense; wet. Yellowish red (5YR 4/6) loose fine sand from 4.2 - 4.6 feet bgs.		
	26.8	None	100		Sandy Lean Clay (CL) Grayish brown (10YR 5/2) sandy clay with 15% yellowish red (5YR 4/6) mottling, little silt; cohesive; medium plasticity; stiff; moist. Brown (10YR 4/3) with yellowish red and dark grayish brown (7.5YR 4/2) mottling and medium stiff from 4.75 - 5 feet bgs.		
	26.6	None	100		Wet sand lens at 4.8 - 4.9 feet bgs. Sandy Silt (ML) Grayish brown (10YR 5/2) sandy silt with 15% yellowish red mottling; cohesive; low plasticity; medium stiff; moist.		
- - - 12-					Silty Sand (SM) Grayish brown (10YR 5/2) silty sand with yellowish red mottling, little clay; medium dense; moist becoming wet at 8.75 feet bgs.		
					<i>Clayey Sand (SC)</i> Grayish brown (10YR 5/2) clayey sand with 30% strong brown mottling; medium dense; wet.		
14 — _ _					Bottom of boring at 10 feet bgs.		
16 — - - -							
18-							

Geologist(s): Kevin P. Walter	WSP Parsons Brinckerhoff
Subcontractor: N/A	123 N 3rd Street, Suite 507
Driller/Operator: Kevin P. Walter	Minneapolis, MN 55401
Method: Hand Auger	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 839

Total Depth (feet bgs*): 16

Borehole Diameter (inches): 2

Completion Date: February 24, 2016

Sample Data						Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery		Lithology	;	Description	
-		14.1	None	75				Silt (ML) Very dark grayish brown (10YR 3/2) silt with 1% very dark gray and 1% reddish brown mottling, few clay; cohesive; low plasticity; medium stiff; moist.	
		18.9	None	75					
		8.6	None	70			_	Silt (ML) Dark grayish brown (10YR 4/2) silt with 20% reddish brown mottling, little clay;	
		12.8	None	70				cohesive; medium plasticity; stiff; moist.	
		23.3	None	100				Silt (ML) Grayish brown (10YR 5/2) silt with 10% black mottling, few clay; cohesive; non-plastic; stiff; moist to very moist.	
		1,396	Negative	100			_	Color to dark gray (10YR 4/1) with faint petroleum-type odor at 10 feet bgs. Silt with Sand (ML) Dark gray (10YR 4/1) silt with 10% black mottling, little fine to very fine sand, few clay; cohesive; non-plastic; moist to very moist; faint petroleum-type odor.	
		1,036	Negative	70				Silty Sand (SM) Dark gray (10YR 4/1) silty very fine sand; dense; moist to very moist; faint petroleum-type odor.	
		43.0	None	70				Poorly-Graded Sand (SP) Reddish yellow (5YR 6/6) very fine to fine sand, few silt; medium dense; wet.	
								Bottom of boring at 16 feet bgs. Stainless steel screen point sampler set at 16 - 20 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-67(022416) Duplicate groundwater sample collected. Duplicate ID = WRCDP-DUPE1(022416)	
Geologist(s): Judy L. Andrews Subcontractor: Detech						vs	_	WSP Parsons Brinckerhoff 123 N 3rd Street, Suite 507	

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 852

Total Depth (feet bgs*): 16

Borehole Diameter (inches): 2

Completion Date: February 24, 2016

Sample Data					Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface		
		10.3	None	88		Well-Graded Gravel (GW) Gravel ground cover. Silt (ML)		
		10.5	None	88		Strong brown (7.5YR 4/6) silt with 1% black mottling, few clay; cohesive; non-plastic; stiff; moist.		
		15.6	None	88		Lean Clay (CL) Dark grayish brown (10YR 4/2) clay with 5% reddish brown mottling, few silt;		
- - - 8-		16.2	None	88		cohesive; medium plasticity; medium stiff; moist.		
		20.2	None	88				
-	X	23.6	None	88		Yellowish red (5YR 5/6) at 10 feet bgs.		
12— - - -	X	20.3	None	75		Silty Sand (SM) Yellowish red (5YR 4/6) silty fine to medium sand; dense; moist becoming wet at 12 feet bgs.		
	X	19.6	None	75		Poorly-Graded Sand with Silt (SP-SM) Yellowish red (5YR 4/6) fine to medium sand with silt; dense; wet.		
16 — – – – – 18 —						Bottom of boring at 16 feet bgs. Temporary screen set at 7 - 12 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-68(022416)		

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 852

Total Depth (feet bgs*): 12

Borehole Diameter (inches): 2

Completion Date: February 26, 2016

	Sample Data					Subsurface Profile				
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Litholoav	(B.)	Description Ground Surface			
-		17.4	None	90			Silt (ML) Brown (7.5YR 4/2) silt, few clay; cohesive; non-plastic; stiff; moist.			
2		20.2	None	90						
4		21.6	None	95			Very stiff with 5% grayish brown mottling from 4 - 8 feet bgs.			
6		22.5	None	95						
8		19.7	None	50			Silty Sand (SM) Light brown (7.5YR 6/4) silty fine to very fine sand; loose; moist becoming wet at 9 feet bgs.			
		22.3	None	50						
12 — - - 14 — - - - - - - - - - - - - - - - - - - -							Bottom of boring at 12 feet bgs. Stainless steel screen point sampler set at 12 - 16 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-69(022616)			

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 856

Total Depth (feet bgs*): 20

Borehole Diameter (inches): 2

Completion Date: February 25, 2016

*amsl = above mean sea level bgs = below ground surface

	Sample Data					Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description			
		16.6	None	50		Clayey Gravel (GC) Coarse gravel with clay (fill). Silt (ML)			
		20.7	None	50		Yellowish red (5YR 4/6) silt, trace clay; non-cohesive; non-plastic; soft; dry. Color transitions to dark yellowish brown (10YR 4/4) at 4 feet bgs.			
- - 6-		13.6	None	25					
		13.6	None	25					
		12.2	None	100		<i>Silt (ML)</i> Very dark grayish brown (10YR 3/2) silt, few clay; cohesive; low plasticity; medium stiff; moist.			
- - - 12		14.4	None	100		Lean Clay (CL) Dark grayish brown (10YR 4/2) clay, few silt; cohesive; medium plasticity; soft; moist.			
- - - 14		15.7	None	75					
- - 16-		15.4	None	75		Clayey Sand (SC) Very dark grayish brown (10YR 3/2) clayey very fine to fine sand; dense; wet.			
- - - 18-		19.5	None	90					
·1	1			•		·			

Geologist(s): Judy L. Andrews						
Subcontractor: Detech						
Driller/Operator: John McClure						
Method: Direct Push						

WSP | Parsons Brinckerhoff 123 N 3rd Street, Suite 507 Minneapolis, MN 55401 (612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 856

Total Depth (feet bgs*): 20

Borehole Diameter (inches): 2

Completion Date: February 25, 2016

Sample Data					Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description		
		18.9	None	90				
20						Bottom of boring at 20 feet bgs. Stainless steel screen point sampler set at 16 - 20 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-60(022516)		
26-								
28-								
30 — - -								
32— - - 34— -								
_ 36 —								

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 857

Total Depth (feet bgs*): 16

Borehole Diameter (inches): 2

Completion Date: February 24, 2016

	S	ample	Data		Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description		
-		34.3	None	100		Clayey Gravel (GC) Dark gray clayey coarse gravel (fill). Silt (ML)		
		30.3	None	100	-	Brown (10YR 4/3) silt, few clay; non-cohesive; non-plastic; medium stiff; lightly moist.		
		36.2	None	90		Silt (ML) Strong brown (7.5YR 4/6) silt, little clay; non-cohesive; non-plastic; stiff; lightly		
		18.3	None	90		moist.		
8		24.7	None	75		Trace to few very fine sand from 8 - 9.5 feet bgs.		
10		25.8	None	75		Silty Sand (SM) Strong brown very fine to fine sand, some silt and clay; medium dense; moist becoming wet at 10 feet bgs.		
12— - - - 14—		31.8	None	63		Color transitions to red (2.5YR 4/8) at 12 feet bgs.		
- - - 16-		32.0	None	63				
18-						Bottom of boring at 16 feet bgs. Stainless steel screen point sampler set at 15 - 19 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-61(022416)		

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 850

Total Depth (feet bgs*): 16

Borehole Diameter (inches): 2

Completion Date: February 29, 2016

	Sample Data					Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface			
-		32.8	None	50		<i>Fat Clay (CH)</i> Brown (10YR 5/3) clay with roots, few silt; cohesive; high plasticity; very soft; moist.			
		33.1	None	50		Wet from 1 - 1.5 feet bgs.			
		32.6	None	75		Lean Clay (CL) Gray (5Y 5/1) clay with 1% black and yellowish brown mottling, few silt; cohesive; medium plasticity; stiff; moist; petroleum-type odor.			
- - - - 8-		391.2	Negative	75		Silt content increasing with depth. Very stiff at 6 feet bgs. Greenish gray (Gley1 5/5GY) at 8 feet bgs.			
		831.7	Negative	100					
12-		110.8	Negative	100		Clay with some very fine sand from 11.8 - 12.4 feet bgs.			
-		323.7	Negative	70		Silty Sand (SM) Gray (10YR 5/1) silty very fine sand; dense; wet.			
14 — - - 16 —		34.3	Negative	70		Well-Graded Sand (SW) Pinkish gray (7.5YR 6/2) very fine to medium sand, trace fines; loose to medium dense; wet. Strong brown (7.5YR 5/6) at 13.8 feet bgs.			
- - - 18-						Bottom of boring at 16 feet bgs. Temporary screen set at 7.5 - 12.5 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-70(022916)			

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 31, 2016

Surface Elevation (feet amsl*): 832

Total Depth (feet bgs*): 12

Borehole Diameter (inches): 2

	Sample Data					Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface			
-		0.4	None	90		Silt (ML) Very dark grayish brown (10YR 3/2) silt, few clay; stiff becoming soft; almost dry.			
2		0.0	None	90	-	Color transitions to reddish brown (5YR 4/4) at 1 foot bgs. Few very fine sand from 2 - 3 feet bgs.			
4		0.0	None	70		Sandy Silt (ML) Yellowish red (5YR 4/6) sandy silt; non-cohesive; non-plastic; medium stiff; almost dry becoming moist at 4 feet bgs.			
6		0.0	None	70	-	Becomes wet at 8 feet bgs.			
-	X	0.7	None	75		Silty Sand (SM) Red (2.5YR 4/6) very fine to medium sand with 1% very dark brown mottling, little silt and clay; medium dense; wet.			
		0.7	None	75		inthe sint and day, medium dense, wet.			
12						Bottom of boring at 12 feet bgs. Temporary screen set at 9 - 14 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-71(040116)			
	I	1		ı	1				

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 31, 2016

Surface Elevation (feet amsl*): 838

Total Depth (feet bgs*): 12

Borehole Diameter (inches): 2

	Sai	mple	Data		Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface		
2		0.2	None	80		Silt (ML) Brown (7.5YR 4/3) silt, few clay; non-cohesive; non-plastic; medium stiff; dry.		
	X	0.6	None	80		Color transitions to yellowish red (5YR 4/6) at 2.5 feet bgs.		
6		0.3	None	30		Poorly-Graded Sand with Silt (SP-SM) Brown (10YR 5/3) very fine sand, few fines; loose; moist becoming wet at 8 feet bgs.		
		0.8	None	75				
		1.2	None	75		Silty Sand (SM) Red (2.5YR 4/6) very fine sand, little becoming some fines; medium dense; wet.		
						Bottom of boring at 12 feet bgs. Temporary screen set at 9.5 - 14.5 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-72(040116)		
- 16 - - - - 18								

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 31, 2016

Surface Elevation (feet amsl*): 841

Total Depth (feet bgs*): 12

Borehole Diameter (inches): 2

	Sample Data				Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface		
-		3.4	None	80		Silt (ML) Very dark grayish brown (10YR 3/2) silt, few clay; cohesive; non-plastic; stiff; dry.		
2		1.4	None	80		Lean Clay (CL) Brown (7.5YR 4/3) clay, little silt; cohesive; medium plasticity; medium stiff; moist.		
4		0.6	None	75		Becomes very stiff and dry at 4 feet bgs becoming medium stiff and moist with depth. 25% dark brown, 25% reddish brown, and 1% black mottling from 4 - 8 feet		
-		0.9	None	75		bgs. Few very fine sand from 7 - 8 feet bgs.		
		1.0	None	75		Lean Clay with Sand (CL) Brown (7.5YR 4/3) clay with 25% reddish brown mottling, little very fine sand, little silt; cohesive; medium plasticity; moist becoming wet at 9 feet bgs.		
10 — - - 12 —		1.1	None	75		Well-Graded Sand with Silt (SW-SM) Strong brown (7.5YR 5/6) very fine to medium sand, few silt and clay; medium dense; wet.		
						Bottom of boring at 12 feet bgs.		
14 — - - -								
16 — - - - -								
18 —								

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 844

Total Depth (feet bgs*): 8

Borehole Diameter (inches): 2

Completion Date: February 28, 2016

	Sample Data				Subsurface Profile				
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description			
		23.0	None	40		<i>Silt (ML)</i> Reddish brown (5YR 4/4) silt, few clay, roots present; cohesive; non-plastic; stiff; moist.			
- - 4		23.1	None	40		Silty Sand (SM) Reddish brown (5YR 4/4) silty very fine sand, few clay; low density; moist			
6		24.0	None	75		becoming wet at 4 feet bgs.			
		19.3	None	75		Sand coarsens downward becoming very fine to medium sand with little silt and clay at 7 feet bgs.			
						Bottom of boring at 8 feet bgs. Temporary screen set at 3 - 8 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-74(022816)			

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 851

Total Depth (feet bgs*): 4

Borehole Diameter (inches): 2

Completion Date: February 28, 2016

Sa	mple [Data		Subsurface Profile			
Depth (feet bgs) Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface		
	24.3	None	90		Silt (ML) Dark brown (7.5YR 3/4) silt, few clay; cohesive; non-plastic; medium stiff; moist.		
	24.1	None	90		Sandy Silt (ML)		
					Silty Sand (SM) Reddish brown (5YR 4/4) silty very fine to fine sand, little clay; dense; wet. Bottom of boring at 4 feet bgs. Temporary screen set at 3 - 8 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-75(022816)		

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 833

Total Depth (feet bgs*): 8

Borehole Diameter (inches): 2

Completion Date: February 27, 2016

	Sample Data					Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	5	Description Ground Surface		
-		20.5	Negative	75			Silt (ML) – Dark brown (7.5YR 3/2) silt, some clay, organics present; cohesive; medium vplasticity; soft; moist.		
2		28.6	Positive (very faint)	75			Silt (ML) Very dark grayish brown (10YR 3/2) silt with 15% reddish brown mottling, few clay; cohesive; non-plastic; stiff; moist becoming wet at 4 feet bgs. Petroleum odor from 4 - 4.5 feet bgs.		
- - 6-		1,111	Positive	75			Color is dark gray (10YR 4/1) at 4 feet bgs. Well-Graded Sand (SW) Gray (10YR 5/1) very fine to medium sand, few silt and clay; dense; wet; petroleum-type odor.		
		49.0	Positive (faint)	75			Dark reddish brown product visible from 4.5 - 5 feet bgs.		
							Bottom of boring at 8 feet bgs. Temporary screen set at 3 - 8 feet bgs. No LNAPL accumulated over 24-hour period. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-76(022816)		

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 843

Total Depth (feet bgs*): 7

Borehole Diameter (inches): 2

Completion Date: February 26, 2016

	Sample Data					Subsurface Profile
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface
-		30.6	None	100		Silty Sand (SM) Dark brown (7.5YR 4/3) silty very fine to fine sand, little clay; loose; wet. Trace gravel and trace organics from 0 - 0.5 foot bgs.
		23.9	None	100		Sandy Silt (ML) Dark brown sandy silt, little clay; cohesive; low plasticity; soft; wet. Color is very dark brown (10YR 2/2) at 3.5 feet bgs.
		23.6	None	100		Silty Sand (SM) Very dark grayish brown (10YR 3/2) silty very fine to fine sand; medium dense; wet.
		21.7	None	100		Color is brown (10YR 4/3) at 6 feet bgs.
						Bottom of boring at 7 feet bgs. Temporary screen set at 2 - 7 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-77(022616)

Geologist(s): Kevin P. Walter	WSP Parsons Brinckerhoff
Subcontractor: N/A	123 N 3rd Street, Suite 507
Driller/Operator: Kevin P. Walter	Minneapolis, MN 55401
Method: Hand Auger	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 852

Total Depth (feet bgs*): 5

Borehole Diameter (inches): 2

Completion Date: February 26, 2016

	Sample Data					Subsurface Profile
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description
-		184.0	Negative	100		Silty Sand (SM) Dark brown (7.5YR 4/3) silty sand; loose; moist.
2		1,212	Positive (very faint)	100		Silty Sand (SM) Dark brown fine to very fine sand, little silt; loose; moist becoming wet at 3.25 feet bgs. Petroleum-type odor from 2 - 4 feet bgs. Few silt from 3.5 - 4 feet bgs.
		1,282	Positive (faint)	100		Silty Sand (SM) Dark grayish brown (10YR 3/2) silty very fine to fine sand with 40% yellowish brown (10YR 4/6) mottling; medium dense; wet. Petroleum-type odor. Bottom of boring at 5 feet bgs.
8-						Temporary screen set at 0 - 5 feet bgs. No LNAPL accumulated over 24-hour period. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-78(022716)
10-						
- 12 -						
- 16 - -						
- 18-						

Geologist(s): Kevin P. Walter	WSP Parsons Brinckerhoff
Subcontractor: N/A	123 N 3rd Street, Suite 507
Driller/Operator: Kevin P. Walter	Minneapolis, MN 55401
Method: Hand Auger	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 844

Total Depth (feet bgs*): 8

Borehole Diameter (inches): 2

Completion Date: February 27, 2016

	Sample Data						Subsurface Profile
Depth (feet bgs)	Sample/Interval		PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface
-		3	6.6	None	90	<u>, 12. 17</u>	Topsoil Dark brown topsoil with organics. Silt (ML)
		6	2.6	None	90		Brown (10YR 5/3) silt with 10% reddish brown mottling, few clay; cohesive; non-plastic; medium stiff; moist.
4		26	63.6	Negative	75		
6-		51	8.4	Negative	75		Silty Sand (SM) Dark gray (10YR 4/1) silty very fine to fine sand; medium dense; wet;
8		1,	234	Negative	75		petroleum-type odor. Black staining from 5 - 5.5 feet bgs.
							Bottom of boring at 8 feet bgs.

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Location: Wynnewood, OK

Project No.: 31400030

Surface Elevation (feet amsl*): 850

Total Depth (feet bgs*): 16

Borehole Diameter (inches): 2

Completion Date: April 1, 2016

	Sample Data					Subsurface Profile		
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface		
-		0.0	None	75		Silt (ML) Dark brown (7.5YR 3/3) silt, few clay; cohesive; non-plastic; soft; dry.		
2		0.0	None	75		<i>Fat Clay (CH)</i> Reddish brown (5YR 4/4) clay, few silt; cohesive; high plasticity; medium stiff; moist.		
		0.0	None	30		Becomes stiff at 4 feet bgs. Sandy Lean Clay (CL) Brown (7.5YR 5/3) sandy clay, very fine sand; cohesive; medium plasticity; stiff; moist; sticky. Clay plugged up 4 - 8 foot sampler.		
8 — - - 10 — - - - - - - - - -		0.0	None	40		10% strong brown (7.5YR 5/8) mottling at 8 feet bgs.		
14 -		0.0	None	100		<i>Silty Sand (SM)</i> Red (2.5YR 4/6) silty very fine sand; dense; moist becoming wet at 14 feet bgs.		
		0.0	None	100		Silty Sand (SM) Yellowish red (5YR 5/6) very fine to medium sand, little silt and clay; medium dense; wet.		
- - - 18-						Bottom of boring at 16 feet bgs. Temporary screen set at 9 - 14 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-80(040116)		

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 833

Total Depth (feet bgs*): 8

Borehole Diameter (inches): 2

Completion Date: February 27, 2016

	Sample Data				Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface		
		26.3	None	60		<i>Fat Clay (CH)</i> Black (10YR 2/1) clay, few silt and sand, organics (roots) present; cohesive; high plasticity; medium stiff; moist becoming wet at 4 feet bgs.		
4		32.7	None	60				
- - 6-		34.0	None	50		Color becomes dark gray (10YR 4/1) at 5 feet bgs.		
8		37.7	None	50		Silty Sand (SM) Dark gray (10YR 4/1) very fine to coarse sand, little silt and clay; dense; wet; very faint petroleum-type odor.		
						Bottom of boring at 8 feet bgs. Temporary screen set at 7 - 12 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-81(022716) Duplicate groundwater sample collected. Duplicate ID = WRCDP-DUPE2(022716)		

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 842

Total Depth (feet bgs*): 8

Borehole Diameter (inches): 2

Completion Date: February 27, 2016

	Sample Data					Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface			
		53.2	None	38	7 <u>7</u> 7	Topsoil Dark brown topsoil with organics; soft. Silt (ML) Yellowish red (5YR 4/6) silt with 10% dark brown mottling, few clay, few very fine sand; non-cohesive; non-plastic; soft; moist.			
6		1,073	Negative	75		Well-Graded Sand with Silt (SW-SM) Dark grayish brown (10YR 4/2) very fine to medium sand, few silt and clay; wet.			
-		1,036	Negative	75		Very dark gray (10YR 3/1) staining at 6 - 6.5 feet bgs and 7.5 - 8 feet bgs.			
						Bottom of boring at 8 feet bgs.			

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 31, 2016

Surface Elevation (feet amsl*): 849

Total Depth (feet bgs*): 16

Borehole Diameter (inches): 2

Sample Data					Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface		
-		0.7	None	90		Silt (ML) Very dark grayish brown (10YR 3/2) silt, few becoming little clay; cohesive; non-plastic; moist.		
2		0.7	None	90		Color transitions to brown (7.5YR 4/3) at 1 foot bgs. 10% reddish brown mottling at 2 feet bgs.		
4		1.1	None	90		Silt (ML) Brown (7.5YR 4/3) silt with 10% reddish brown mottling, little becoming some clay; cohesive; medium plasticity; stiff; moist.		
		1.1	None	90		Sandy Lean Clay (CL) Light brown (7.5YR 6/3) sandy clay with 5% brown mottling, very fine sand; moist.		
-		1.0	None	75		Ţ		
10 — - - 12 —		0.8	None	75		Transitions to clayey sand starting at 10 feet bgs. Silty Sand (SM) Brown (7.5YR 5/4) very fine to medium sand, little silt and clay; medium dense; moist becoming wet at 11 feet bgs.		
-		0.6	None	70		Color transitions to red (2.5YR 4/6) at 11.8 feet bgs.		
		0.9	None	70		Well-Graded Sand with Silt (SW-SM) Red (2.5YR 4/6) fine to coarse sand, few fines; medium dense; wet.		
- - - 18-						Bottom of boring at 16 feet bgs. Temporary screen set at 9 - 14 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-83(033116)		

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 855

Total Depth (feet bgs*): 12

Borehole Diameter (inches): 2

Completion Date: February 27, 2016

Sample Data					Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface		
		28.8	None	95		<i>Silt (ML)</i> Reddish brown (5YR 4/4) silt with clay, organics (roots) present; cohesive; medium plasticity; medium stiff; moist.		
		29.4	None	95		Stiff with 1% dark brown mottling at 4 feet bgs.		
		28.4	None	100				
		29.0	None	100				
		23.1	None	100		Well-Graded Sand (SW) Reddish brown very fine to very coarse sand, trace fine gravel, trace silt and clay; dense; wet. Very fine to fine sand with some silt and clay from 7.8 - 8 feet bgs.		
		29.4	None	100				
						Bottom of boring at 12 feet bgs. Temporary screen set at 7 - 12 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-84(022716)		
	I			1		1		

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 31, 2016

Surface Elevation (feet amsl*): 856

Total Depth (feet bgs*): 8

Borehole Diameter (inches): 2

Sample Data					Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface		
		0.0	None	75		Silt (ML) Dark brown (7.5YR 3/2) silt, few clay; non-cohesive; non-plastic; soft; moist to dry.		
-		0.0	None	75		Lean Clay (CL) Brown (7.5YR 4/3) clay with 10% red (2.5YR 4/6) mottling, few silt; cohesive;		
4		0.0	None	60		Iow plasticity; soft; moist. Fat Clay with Sand (CH) Brown (7.5YR 4/3) clay with 10% red (2.5YR 4/6) mottling, few silt; cohesive; high plasticity; medium stiff; moist.		
8-		0.0	None	60		Little very fine sand starting at 3.6 feet bgs.		
						Bottom of boring at 8 feet bgs. Temporary screen set at 6 - 11 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-85(033116)		

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: March 31, 2016

Surface Elevation (feet amsl*): 844

Total Depth (feet bgs*): 12

Borehole Diameter (inches): 2

*amsl = above mean sea level bgs = below ground surface

	Sa	mple	Data		Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface		
		1.0	None	75		<i>Silt (ML)</i> Dark brown (7.5YR 3/3) silt, few clay; cohesive; non-plastic; medium stiff; moist.		
2		1.6	None	75		Color transitions to brown (7.5YR 5/4) at 1 foot bgs. Clay increasing to some clay at 3.5 feet bgs.		
4		2.0	None	100		10% reddish brown mottling at 4 feet bgs.		
6		354.7	Positive (faint)	100		Few sand from 6.5 - 7.5 feet bgs.		
8		2,879	Positive	80		Fat Clay (CH) Dark gray (10YR 4/1) clay with 25% black mottling; cohesive; high plasticity; moist; faint odor. Clayey Sand (SC)		
		2,037	Positive	80		Grayish brown (10YR 5/2) clayey very fine sand with 25% dark gray mottling; dense; wet; odor present. Silt (ML) Grayish brown (10YR 5/2) silt with 25% reddish brown mottling, little clay; cohesive; non-plastic; stiff to very stiff; moist. Silty Sand (SM) Brown (7.5YR 4/4) silty very fine sand with 10% dark gray mottling; dense; moist to wet. Bottom of boring at 12 feet bgs. Temporary screen set at 8 - 13 feet bgs. No LNAPL accumulated over 24-hour period. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-86(040116)		
- 18—								

Geologist(s): Judy L. Andrews								
Subcontractor: Detech								
Driller/Operator: John McClure								
Method: Direct Push								

WSP | Parsons Brinckerhoff 123 N 3rd Street, Suite 507 Minneapolis, MN 55401 (612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 854

Total Depth (feet bgs*): 12

Borehole Diameter (inches): 2

Completion Date: February 29, 2016

Sample Data					Subsurface Profile				
Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface				
	25.1	None	95		Silt (ML) Dark brown (7.5YR 3/2) silt, few clay, trace becoming few fine sand, organics (roots); cohesive; non-plastic; medium stiff; moist.				
	29.7	None	95		Yellowish red (5YR 4/6) from 2.5 - 4.5 feet bgs.				
	32.7	None	75		Little very fine sand from 4 - 4.5 feet bgs. Silty Sand (SM) Yellowish red (5YR 4/6) silty very fine to fine sand; medium dense becoming loose; wet.				
	33.1	None	75		Sandy Lean Clay (CL)				
	29.5	None	70		Grayish brown (10YR 5/2) sandy clay with 25% reddish brown mottling, very fine sand; cohesive; medium plasticity; stiff; moist.				
	32.2	None	70		Yellowish red (5YR 5/6) fine to medium sand, little silt and clay; medium dense becoming dense; wet.				
					Bottom of boring at 12 feet bgs. Temporary screen set at 9 - 14 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-87(022916)				
		Image: constraint of the state of	Image: Normal state sta	Image: constraint of the sector of the sec	Image: state of the state o				

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 844

Total Depth (feet bgs*): 8

Borehole Diameter (inches): 2

Completion Date: February 29, 2016

	Sample Data					Subsurface Profile				
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description				
-		25.2	None	95		Silty Sand (SM) Dark brown (7.5YR 3/4) very fine sand, some silt and clay; medium dense; dry becoming moist.				
		27.4	None	95		Sandy silt from 2 - 2.5 feet bgs. Silt (ML) Dark brown (7.5YR 3/4) silt, few fine sand; cohesive; non-plastic; medium stiff; moist.				
4 - - 6-		29.2	None	90		Sandy Silt (ML) Dark brown sandy silt, very fine to fine sand; non-plastic; moist.				
		16.7	None	90		Silty Sand (SM) Yellowish red (5YR 4/6) silty very fine sand; medium dense; wet. Sand is very fine- to medium-grained from 7 - 8 feet bgs.				
						Bottom of boring at 8 feet bgs. Temporary screen set at 8 - 13 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-88(022916)				

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Location: Wynnewood, OK

Project No.: 31400030

Surface Elevation (feet amsl*): 853

Total Depth (feet bgs*): 8

Borehole Diameter (inches): 2

Completion Date: April 2, 2016

	Sample Data					Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface			
-		0.3	None	80		Silt (ML) Dark brown (7.5YR 3/4) silt, few clay; cohesive; non-plastic; hard; dry.			
2		0.4	None	80		<i>Silty Sand (SM)</i> Red (2.5YR 4/6) very fine to fine sand, some silt and clay; medium dense; moist becoming wet at 3 feet bgs.			
		0.2	None	75					
		0.2	None	75		Medium plasticity clay with silt lens from 6 - 7.3 feet bgs.			
						Bottom of boring at 8 feet bgs. Temporary screen set at 7 - 12 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-107(040216)			

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: April 2, 2016

Surface Elevation (feet amsl*): 845

Total Depth (feet bgs*): 8

Borehole Diameter (inches): 2

Sample Data					Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description		
		0.1	None	90		<i>Silt (ML)</i> Reddish brown (5YR 4/4) silt, some clay; cohesive; medium plasticity; stiff; dry becoming moist at 2 feet bgs.		
2		1.0	None	90		Becomes medium stiff at 2 feet bgs.		
		0.4	None	30		Becomes very soft and wet at 6 feet bgs. Silty Sand (SM) Yellowish red (5YR 4/6) very fine to fine sand, some silt and clay; medium dense; wet.		
						Bottom of boring at 8 feet bgs. Temporary screen set at 7 - 12 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-108(040216)		

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Surface Elevation (feet amsl*): 855

Total Depth (feet bgs*): 8

Borehole Diameter (inches): 2

Completion Date: February 27, 2016

	Sample Data					Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface			
-		40.0	None	100		Silt (ML) Brown (7.5YR 4/4) clayey silt, little organics; cohesive; low plasticity; soft; moist.			
2		46.8	None	100		Silt (ML) Yellowish brown (10YR 5/4) silt, little clay; cohesive; low plasticity; soft; moist. Few organics to 2.5 feet bgs, then trace organics from 2.5 - 6 feet bgs. Medium stiff at 3 feet bgs.			
- - 6-		46.3	None	100		30% strong brown (7.5ŸR 5/8) mottling from 3 - 6 feet bgs. Stiff at 4 feet bgs.			
		46.3	None	100		Silt (ML) Light olive gray (5Y 6/2) silt, few clay, few sand; cohesive; low plasticity; stiff; moist. Sandy silt from 7 - 7.5 feet bgs.			
						Poorly-Graded Sand (SP) Brown (10YR 5/3) very fine to fine sand, few fines; loose; wet. Bottom of boring at 8 feet bgs. Temporary screen set at 4 - 9 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-109(022716)			

Geologist(s): Kevin P. Walter	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Project No.: 31400030

Location: Wynnewood, OK

Completion Date: April 2, 2016

Surface Elevation (feet amsl*): 840

Total Depth (feet bgs*): 8

Borehole Diameter (inches): 2

	Sample Data					Subsurface Profile			
Depth (feet bgs)	Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology	Description Ground Surface			
		0.6	None	60		<i>Silt (ML)</i> Reddish brown (5YR 4/4) silt, some clay; cohesive; medium plasticity; medium stiff; dry becoming moist; roots present.			
4		0.6	None	60					
6		0.2	None	50		Clayey Sand (SC) Yellowish red (5YR 4/6) clayey very fine sand with 1% very dark gray mottling;			
		0.3	None	50		loose; wet.			
						Bottom of boring at 8 feet bgs. Temporary screen set at 4.5 - 9.5 feet bgs. Groundwater sample collected for analysis of BTEX, GRO, and DRO. Sample ID = WRCDP-112(040216)			

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Project: Interior Delineation

Location: Wynnewood, OK

Project No.: 31400030

Surface Elevation (feet amsl*): 834

Total Depth (feet bgs*): 12

Borehole Diameter (inches): 2

Completion Date: April 2, 2016

Sa	mple	Data		Subsurface Profile			
Depth (feet bgs) Sample/Interval	PID/OVM (ppm)	UV Test	% Recovery	Lithology ^{Groun}	Description		
-	0.5	None	75		Clay (CH) (5YR 2.5/1) clay; cohesive; high plasticity; soft; moist.		
	0.6	None	75	Color	transitions to dark reddish brown (5YR 3/2) at 3 feet bgs.		
	0.6	None	100		ML) (2.5YR 5/8) silt with 5% dark gray and 5% light gray mottling, some clay; sive; medium plasticity; medium stiff; moist.		
	0.5	None	100	Redo mois	ly Fat Clay (CH) lish brown (5YR 4/4) sandy clay; cohesive; high plasticity; medium stiff; becoming wet at 8.5 feet bgs.		
	0.2	None	70		light gray mottling from 6.5 - 8 feet bgs. at 8.5 feet bgs.		
	0.1	None	70	Stiff	at 11.3 feet bgs.		
				Pink Botto Tem Grou	Sand (SM) (7.5YR 7/3) fine to very coarse sand, some silt and clay; loose; wet. m of boring at 12 feet bgs. borary screen set at 10 - 15 feet bgs. ndwater sample collected for analysis of BTEX, GRO, and DRO. ble ID = WRCDP-113(040216)		

Geologist(s): Judy L. Andrews	WSP Parsons Brinckerhoff
Subcontractor: Detech	123 N 3rd Street, Suite 507
Driller/Operator: John McClure	Minneapolis, MN 55401
Method: Direct Push	(612)343-0510

Appendix B – Summary of Site-Wide Comprehensive Groundwater Sampling Event

Summary of Groundwater Analytical Results September 2015

Wynnewood Refining Company Wynnewood, Oklahoma

		Regula	tory Screening (Criteria] [Product L	oading Facility and W	estern Boundary Moni	itoring Wells	
		EPA Primary	EPA Regional		Monitoring Well	BMW-2	BMW-4	BMW-5	BMW-8	BMW-10	BMW-11
		Drinking	Screening	ODEQ		WRCBMW-2(091515)	WRCBMW-4(091615)	WRCBMW-5(091615)	WRCBMW-8(091515)	WRCBMW-10(091515)	WRCBMW-11(091515)
		Water	Levels	Cleanup	Laboratory ID	15091248	15091249	15091253	15091247	15091280	15091279
Constituent		Regulations	(Tap Water)	Levels	Sample Date	09/15/15	09/16/15	09/16/15	09/15/15	09/15/15	09/15/15
TPH (Oklahoma Methods)	CAS Number				Units						
Gasoline Range Organics		NE	NE	1,000	µg/l	1,160	117	23,100	972	18,600	2,080
Diesel Range Organics		NE	NE	1,000	µg/l	900	770	5,700	1,500	22,000	2,000
Volatile Organics (EPA Method 8	3260) (a)										
Acetone	67-64-1	NE	1,400	NE	µg/l	<100	<10	<2,000	<100	<200	<200
Benzene	71-43-2	5	0.46	NE	µg/l	38	<0.5	3,640	29	1,280	360
2-Butanone	78-93-3	NE	560	NE	µg/l	<100	<10	<2,000	<100	<200	<200
n-Butylbenzene	104-51-8	NE	100	NE	µg/l	<8 M	<0.5	<100	<8 M	<90 M	<20 M
sec-Butylbenzene	135-98-8	NE	200	NE	µg/l	<5	<0.5	<100	<5	<10	<10
tert-Butylbenzene	98-06-6	NE	69	NE	µg/l	<5	<0.5	<100	<5	<10	<10
Carbon disulfide	75-15-0	NE	81	NE	µg/l	<10	<1.0	<200	<10	<20	<20
Chloroform	67-66-3	80	0.22	NE	µg/l	<5	<0.5	<100	<5	<10	<10
Cyclohexane	110-82-7	NE	1,300	NE	µg/l	<50	<5.0	<1,000	<50	<260 M	<100
1,4-Dichlorobenzene	106-46-7	75	0.48	NE	µg/l	<5	<0.5	<100	<5	<10	<10
Ethylbenzene	100-41-4	700	1.5	NE	µg/l	27	<0.5	1,100	20	290	110
Hexane	110-54-3	NE	32	NE	µg/l	12	<1.0	210	<10	63	<20
Isopropylbenzene (Cumene)	98-82-8	NE	45	NE	µg/l	<5	<0.5	<100	<5	20	<10
4-Isopropyltoluene	99-87-6	NE	NE	NE	µg/l	<5	<0.5	<100	<5	<10	<10
Methylcyclohexane	108-87-2	NE	NE	NE	µg/l	<50	<5.0	<1,000	<50	<100	<100
Methyl tertiary butyl ether (MTBE)	1634-04-4	NE	14	NE	µg/l	94	164	4,730	215	546	412
n-Propylbenzene	103-65-1	NE	66	NE	µg/l	8	<0.5	100	11	58	25
Tetrachloroethene	127-18-4	5	4.1	NE	µg/l	<5	<0.5	<100	<5	<10	<10
Toluene	108-88-3	1,000	110	NE	μg/l	53	<0.5	1,700	<5	1,030	10
1,2,4-Trimethylbenzene	95-63-6	NE	1.5	NE	µg/l	75	<0.5	760	<5	1,030	34
1,3,5-Trimethylbenzene	108-67-8	NE	12	NE	µg/l	20	<0.5	200	<5	224	<10
m+p-Xylene	108+106-38-3	NE	19	NE	µg/l	217	<1.0	2,910	<10	2,380	84
o-Xylene	95-47-6	NE	19	NE	µg/l	90	<0.5	740	<5	947	<10
Xylenes, calculated total (b)		10,000	19	NE	µg/l	307	<1.5	3,650	<15	3,327	<94
Semi-Volatile Organics (EPA Me	thad 8270C)										
1,4-Dichlorobenzene	106-46-7	75	0.48	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0 SR	<5.0
2,4- and 2,5-Dimethylphenol	105-67-9	NE	36 (c)	NE	µg/l	<10	<10 MP	50	<10	610	<10
2-Methylnaphthalene	91-57-6	NE	3.6	NE	µg/l	<5.0	<5.0	125	<5.0	152	15.4
2-Methylphenol	95-48-7	NE	93	NE	µg/l	<5.0	<5.0	32.9	<5.0	191	<5.0
Bis(2-ethylhexyl)phthalate	117-81-7	6	95 5.6	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0 SR	<5.0
Methylphenol (3 & 4)	108-39-4/106-44-5		93 (d)	NE	µg/l	<5	<5	38	<5	671	<5
Naphthalene	91-20-3	NE	0.17	NE	µg/l	<5.0	<5.0	238	5.7	338	35.1
Phenanthrene	85-01-8	NE	NE	NE	µg/l	<5	<5	<5	<5	<5 SR	<5
Phenol	108-95-2	NE	580	NE	µg/l	<5	<5	22	<5	191	9
					ry ·			·	<u> </u>	+	
Metals (EPA Methods 6020A and		0.04	0.000050		ma//	<0.005	0.024	0.007	<0.005	0.050	0.005
Arsenic	7440-38-2	0.01	0.000052	NE	mg/l	< 0.005	0.024	0.007	< 0.005	0.059	0.025
Barium	7440-39-3 7440-43-9	2	0.38	NE	mg/l	0.201	0.108 <0.001	0.183 <0.001	0.696	0.326	0.963
Cadmium	7440-43-9 7439-92-1	0.005	0.00092	NE	mg/l	< 0.001			< 0.001	< 0.001	< 0.001
Lead Selenium	7439-92-1 7782-49-2	0.015	0.015 0.01	NE NE	mg/l	0.002 <0.005	<0.001 <0.005	0.013 <0.005	0.015 <0.005	0.254 0.006	<0.001 <0.005
Silver	7440-22-4	0.05 NE		NE	mg/l		< 0.005	< 0.005			
	7440-22-4 7439-97-6	NE 0.002	0.0094 0.000063	NE	mg/l	<0.002 <0.0002	<0.002 <0.0002	<0.002 <0.0002	<0.002 <0.0002	<0.002 <0.0002	<0.002 <0.0002
Mercury	1409-91-0	0.002	0.000065	INE	mg/l	<u><u></u>\0.000∠</u>	<u>\0.0002</u>	<u>\0.0002</u>	<u><u></u>∼0.0002</u>	<u>\0.0002</u>	<u>\0.0002</u>

Summary of Groundwater Analytical Results September 2015

Wynnewood Refining Company Wynnewood, Oklahoma

								Due durat Lee dine	· Faaility and Mastan	Devenden Meniterine	Walla	
			tory Screening C		.	DIAL 10	DIAL CO		g Facility and Western			BURY 44
			EPA Regional		Monitoring Well	BMW-13	BMW-13	BMW-14	BMW-15	BMW-19	BMW-20A	BMW-22
		Drinking	Screening	ODEQ		WRCBMW-13(091515)	WRCDUP4	WRCBMW-14(091515)	WRCBMW-15(091515)		WRCBMW-20A(091615)	WRCBMW-22(091515)
		Water	Levels	Cleanup	Laboratory ID	15091276	15091277	15091246	15091245	15090843	15091250	15091256
Constituent		Regulations	(Tap Water)	Levels	Sample Date	09/15/15	09/15/15	09/15/15	09/15/15	09/11/15	09/16/15	09/15/15
TPH (Oklahoma Methods)	CAS Number				Units							
Gasoline Range Organics		NE	NE	1,000	µg/l	1,450	1,390	50	244	<20	106	18,500
Diesel Range Organics		NE	NE	1,000	μg/l	1,300	1,100	870	1,300	890	280	12,000
Volatile Organics (EPA Method	(260) (a)											
Acetone	67-64-1	NE	1,400	NE	μg/l	<200	<200	<10	<50	<10	<10	<1,000
Benzene	71-43-2	5	0.46	NE	µg/l	<10	<10	<0.5	<3	<0.5	<0.5	2,210
2-Butanone	78-93-3	NE	560	NE	µg/l	<200	<200	<10	<50	<10	<10	<1,000
n-Butylbenzene	104-51-8	NE	100	NE	µg/l	<10	<10	<0.5	<3	<0.5	<0.5	<60 M
sec-Butylbenzene	135-98-8	NE	200	NE	µg/l	<10	<10	<0.5	<3	<0.5	<0.5	<50
tert-Butylbenzene	98-06-6	NE	69	NE	µg/l	<10	<10	<0.5	<3	<0.5	<0.5	<50
Carbon disulfide	75-15-0	NE	81	NE		<20	<20	<1.0	<5.0	<1.0	<1.0	<100
Chloroform	67-66-3	80	0.22	NE	µg/l µg/l	<20 <10	<20 <10	<0.5	<3	<0.5	<0.5	<50
Cyclohexane	110-82-7	NE	1,300	NE	µg/l µg/l	<100	<100	<0.5 <5.0	<25	<5.0	<0.5 <5.0	<500
1,4-Dichlorobenzene	106-46-7	75	0.48	NE		<100	<100	<0.5	<3	<0.5	<0.5	<500 <50
Ethylbenzene	100-41-4	700	1.5	NE	µg/l	<10	<10 <10	<0.5	<3	<0.5	<0.5	< <u>50</u> 210
,					μg/l		<10 <20					
Hexane	110-54-3	NE	32	NE	µg/l	<20	-	<1.0	<5.0	<1.0	<1.0	<100
Isopropylbenzene (Cumene)	98-82-8	NE	45	NE	µg/l	<10	<10	<0.5	<3	< 0.5	<0.5	<50
4-Isopropyltoluene	99-87-6	NE	NE	NE	µg/l	<10	<10	<0.5	<3	<0.5	<0.5	<50
Methylcyclohexane	108-87-2	NE	NE	NE	µg/l	<100	<100	<5.0	<25	<5.0	<5.0	<500
Methyl tertiary butyl ether (MTBE)	1634-04-4	NE	14	NE	µg/l	1,730	1,800	58.2	293	3.5	139	10,500
n-Propylbenzene	103-65-1	NE	66	NE	µg/l	<10	<10	<0.5	<3	<0.5	<0.5	60
Tetrachloroethene	127-18-4	5	4.1	NE	µg/l	<10	<10	<0.5	<3	<0.5	<0.5	<50
Toluene	108-88-3	1,000	110	NE	µg/l	<10	<10	<0.5	<3	<0.5	<0.5	140
1,2,4-Trimethylbenzene	95-63-6	NE	1.5	NE	µg/l	<10	<10	<0.5	<3	<0.5	<0.5	520
1,3,5-Trimethylbenzene	108-67-8	NE	12	NE	µg/l	<10	<10	<0.5	<3	<0.5	<0.5	130
m+p-Xylene	108+106-38-3	NE	19	NE	µg/l	<20	<20	<1.0	<5.0	<1.0	<1.0	1,560
o-Xylene	95-47-6	NE	19	NE	µg/l	<10	<10	<0.5	<3	<0.5	<0.5	400
Xylenes, calculated total (b)		10,000	19	NE	µg/l	<30	<30	<1.5	<8.0	<1.5	<1.5	1,960
Semi-Volatile Organics (EPA Me	thod 8270C)											
1.4-Dichlorobenzene	106-46-7	75	0.48	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0 QC	<5.0	<5.0
2,4- and 2,5-Dimethylphenol	105-67-9	NE	36 (c)	NE	µg/l	<10	<10	<10	<10	<10 QC	<10	260
2-Methylnaphthalene	91-57-6	NE	3.6	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0 QC	<5.0	92.5
2-Methylphenol	95-48-7	NE	93	NE	μg/l	<5.0	<5.0	<5.0	<5.0	<5.0 QC	<5.0	60.6
Bis(2-ethylhexyl)phthalate	117-81-7	6	5.6	NE	µg/l	<5.0	<5.0 <5.0	<5.0	<5.0	<5.0 QC	<5.0	<5.0
Methylphenol (3 & 4)	108-39-4/106-44-5		93 (d)	NE		<5	<5	<5	<5	<5 QC	<5	57
Naphthalene	91-20-3	NE	0.17	NE	µg/l µg/l	<5.0	<5.0	<5.0	<5.0	<5.0 QC	<5.0	150
Phenanthrene	85-01-8	NE	NE	NE		<5	<5	<5	<5	<5 QC	<5	<5
Phenol	108-95-2	NE	580	NE	µg/l µg/l	<5 <5	<5 <5	<5	<5	<5 QC	<5	25
Filehol	106-95-2	INE	560		μg/i	~5	<0	<5	<5	<5 QC	<5	23
Metals (EPA Methods 6020A and	/											
Arsenic	7440-38-2	0.01	0.000052	NE	mg/l	0.011	0.014	<0.005	<0.005	<0.005	<0.005	0.042
Barium	7440-39-3	2	0.38	NE	mg/l	0.136	0.136	0.055	0.087	0.139	0.200	0.247
Cadmium	7440-43-9	0.005	0.00092	NE	mg/l	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Lead	7439-92-1	0.015	0.015	NE	mg/l	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.032
Selenium	7782-49-2	0.05	0.01	NE	mg/l	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Silver	7440-22-4	NE	0.0094	NE	mg/l	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Mercury	7439-97-6	0.002	0.000063	NE	mg/l	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002

Summary of Groundwater Analytical Results September 2015

Wynnewood Refining Company Wynnewood, Oklahoma

		Pogula	tory Screening	Critoria	ו ר		Product Los	ading Facility and West	orn Boundary Monitori	ng Wollo	
				Sillena							
Constituent		EPA Primary Drinking Water Regulations	EPA Regional Screening Levels (Tap Water)	ODEQ Cleanup Levels	Monitoring Well Sample ID Laboratory ID Sample Date	BMW-25 WRCBMW-25(091615) 15091251 09/16/15	BMW-26 WRCBMW-26(091615) 15091252 09/16/15	BMW-27 WRCBMW-27(091715) 15091254 09/17/15	BMW-28 WRCBMW-28(091715) 15091255 09/17/15	S Martin Well WRC-S Martin Well 15090833 09/09/15	McLaughlin Well WRC-McLaughlin Well 15090832 09/09/15
TPH (Oklahoma Methods)	CAS Number				Units						
Gasoline Range Organics		NE	NE	1,000	µg/l	5,960	17,700	2,970	<20	<20	<20
Diesel Range Organics		NE	NE	1,000	µg/l	3,700	4,300	1,500	820	810	140
Volatile Organics (EPA Method 8	(260) (a)										
Acetone	67-64-1	NE	1,400	NE	μg/l	<500	<2,000	<70 M	<10	<10	<10
Benzene	71-43-2	5	0.46	NE	µg/l	1,270	3,970	64.1	<0.5	<0.5	<0.5
2-Butanone	78-93-3	NE	560	NE	µg/l	<500	<2,000	<20 M,QC	<10	<10	<10
n-Butylbenzene	104-51-8	NE	100	NE	µg/l	<50 M	<100	<30 M,QC	<0.5	<0.5	<0.5
sec-Butylbenzene	135-98-8	NE	200	NE	µg/l	<30	<100	3.3	<0.5	<0.5	<0.5
tert-Butylbenzene	98-06-6	NE	69	NE	µg/l	<30	<100	<0.5	<0.5	<0.5	<0.5
Carbon disulfide	75-15-0	NE	81	NE	µg/l	<50	<200	<1.0	<1.0	<1.0	<1.0
Chloroform	67-66-3	80	0.22	NE	μg/l	<30	<100	<1.0 <2 M	<0.5	<0.5	<0.5
Cyclohexane	110-82-7	NE	1,300	NE		250	<1,000	185	<5.0	<5.0	<5.0
1,4-Dichlorobenzene	106-46-7	75	0.48	NE	μg/l	<30	<100	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	700	1.5	NE	μg/l	440	840	87.4	<0.5	<0.5	<0.5
Hexane	110-54-3	NE	32	NE		<50	210	11.4	<1.0	<1.0	<1.0
Isopropylbenzene (Cumene)	98-82-8	NE	45	NE	µg/l	<30	<100	16.4	<0.5	<0.5	<0.5
4-Isopropyltoluene	99-87-6	NE	NE	NE	µg/l	<30	<100	1.5	<0.5	<0.5	<0.5
Methylcyclohexane	108-87-2	NE	NE	NE	µg/l	<250	<1,000	65.2	<0.5 <5.0	< 5.0	<0.5 <5.0
	1634-04-4		14	NE	µg/l	<230 <65 M	1,700	<40 M,QC	5.2	< <u>5.0</u> 1.1	
Methyl tertiary butyl ether (MTBE)	103-65-1	NE NE	66	NE	μg/l		<100		5.2 <0.5	<0.5	<0.5
n-Propylbenzene					µg/l	62	<100	49			<0.5
Tetrachloroethene	127-18-4	5	4.1	NE	μg/l	<30		<0.5	<0.5	<0.5	<0.5
	108-88-3	1,000	110	NE	µg/l	<30	2,700	2.9	<0.5	< 0.5	<0.5
1,2,4-Trimethylbenzene	95-63-6	NE	1.5	NE	µg/l	180	640	166	<0.5	< 0.5	<0.5
1,3,5-Trimethylbenzene	108-67-8	NE	12	NE	µg/l	40	200	71.3	<0.5	< 0.5	< 0.5
m+p-Xylene	108+106-38-3	NE	19	NE	µg/l	200	2,570	27.7	<1.0	<1.0	<1.0
o-Xylene	95-47-6	NE	19	NE	µg/l	77	960	15.6	<0.5	<0.5	<0.5
Xylenes, calculated total (b)		10,000	19	NE	µg/l	277	3,530	43.3	<1.5	<1.5	<1.5
Semi-Volatile Organics (EPA Met	thod 8270C)										
1,4-Dichlorobenzene	106-46-7	75	0.48	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
2,4- and 2,5-Dimethylphenol	105-67-9	NE	36 (c)	NE	µg/l	<10	10	<10 MP	<10	<10	<10
2-Methylnaphthalene	91-57-6	NE	3.6	NE	µg/l	17.2	84.7	37.0	<5.0	<5.0	<5.0
2-Methylphenol	95-48-7	NE	93	NE	µg/l	<5.0	11.7	<5.0	<5.0	<5.0	<5.0
Bis(2-ethylhexyl)phthalate	117-81-7	6	5.6	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	17.2
Methylphenol (3 & 4)	108-39-4/106-44-5		93 (d)	NE	µg/l	<5	48	<5	<5	<5	<5
Naphthalene	91-20-3	NE	0.17	NE	µg/l	77.5	147	54.9	<5.0	<5.0	<5.0
Phenanthrene	85-01-8	NE	NE	NE	µg/l	<5	<5	<5	<5	<5	<5
Phenol	108-95-2	NE	580	NE	µg/l	<5	14	<5	<5	<5	<5
Metals (EPA Methods 6020A and	7470A)										
Arsenic	7440-38-2	0.01	0.000052	NE	mg/l	0.022	0.061	0.041	<0.005	<0.005	< 0.005
Barium	7440-39-3	2	0.38	NE	mg/l	0.571	0.735	0.339	0.074	0.096	0.240
Cadmium	7440-43-9	0.005	0.00092	NE	mg/l	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
Lead	7439-92-1	0.015	0.015	NE	mg/l	0.002	0.013	<0.001	<0.001	<0.001	0.002
Selenium	7782-49-2	0.05	0.01	NE	mg/l	< 0.002	< 0.005	< 0.005	<0.005	<0.005	< 0.005
Silver	7440-22-4	NE	0.0094	NE	mg/l	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Mercury	7439-97-6	0.002	0.000063	NE	mg/l	< 0.002	<0.002	<0.002	<0.002	<0.002	<0.002
moroury	1-10-31-0	0.002	0.000000		ing/i	-0.000Z	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002

Summary of Groundwater Analytical Results September 2015

Wynnewood Refining Company Wynnewood, Oklahoma

		Regula	tory Screening C	Criteria	I F			Refinery Interior	Monitoring Wells		
Constituent			EPA Regional Screening Levels (Tap Water)	ODEQ Cleanup Levels	Monitoring Well Sample ID Laboratory ID Sample Date	LMW-2-0 WRCLMW-2-0(091515) 15091243 09/15/15	LMW-3-0 WRCLMW-3-0(091515) 15091244 09/15/15	LMW-4-0 WRCLMW-4-0(091615) 15091259 09/16/15	LMW-5-0 WRCLMW-5-0(091515) 15091278 09/15/15	LMW-6-0 WRCLMW-6-0(091615) 15091260 09/16/15	LMW-11 WRCLMW-11(091615) 15091263 09/16/15
TPH (Oklahoma Methods)	CAS Number				Units						
Gasoline Range Organics		NE	NE	1,000	µg/l	<20	<20	<20	73	<20	32
Diesel Range Organics		NE	NE	1,000	µg/l	150	240	1,500	19,000	810	230
Volatile Organics (EPA Method 8	, , ,		1 400			-40			-110		-40
Acetone	67-64-1	NE 5	1,400	NE	µg/l	<10	<10	<10	<10	<10	<10
Benzene	71-43-2		0.46	NE	µg/l	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-Butanone	78-93-3	NE	560	NE	µg/l	<10	<10	<10	<10	<10	<10
n-Butylbenzene	104-51-8	NE	100	NE	µg/l	<0.5	<0.5	<0.5	<1.0 M	<0.5	< 0.5
sec-Butylbenzene	135-98-8	NE	200	NE	µg/l	< 0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5
tert-Butylbenzene	98-06-6	NE	69	NE	µg/l	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5
Carbon disulfide	75-15-0	NE	81	NE	µg/l	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	67-66-3	80	0.22	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Cyclohexane	110-82-7	NE	1,300	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,4-Dichlorobenzene	106-46-7	75	0.48	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	700	1.5	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Hexane	110-54-3	NE	32	NE	µg/l	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Isopropylbenzene (Cumene)	98-82-8	NE	45	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
4-Isopropyltoluene	99-87-6	NE	NE	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Methylcyclohexane	108-87-2	NE	NE	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Methyl tertiary butyl ether (MTBE)	1634-04-4	NE	14	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
n-Propylbenzene	103-65-1	NE	66	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethene	127-18-4	5	4.1	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	108-88-3	1,000	110	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2,4-Trimethylbenzene	95-63-6	NE	1.5	NE	µg/l	<0.5	<0.5	<0.5	0.6	<0.5	5.3
1,3,5-Trimethylbenzene	108-67-8	NE	12	NE	µg/l	<0.5	<0.5	<0.5	0.7	<0.5	2.3
m+p-Xylene	108+106-38-3	NE	19	NE	µg/l	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
o-Xylene	95-47-6	NE	19	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Xylenes, calculated total (b)		10,000	19	NE	ua/l	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5
		.0,000			P9/1	1.0	1.0	1.0	1.0	1.0	1.0
Semi-Volatile Organics (EPA Me	thod 8270C)										
1,4-Dichlorobenzene	106-46-7	75	0.48	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0 SR	<5.0
2,4- and 2,5-Dimethylphenol	105-67-9	NE	36 (c)	NE	µg/l	<10	<10	<10	<10	<10 SR	<10
2-Methylnaphthalene	91-57-6	NE	3.6	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0 SR	<5.0
2-Methylphenol	95-48-7	NE	93	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0 SR	<5.0
Bis(2-ethylhexyl)phthalate	117-81-7	6	5.6	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0 SR	<5.0
Methylphenol (3 & 4)	108-39-4/106-44-5	NE	93 (d)	NE	µg/l	<5	<5	<5	<5	<5 SR	<5
Naphthalene	91-20-3	NE	0.17	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0 SR	<5.0
Phenanthrene	85-01-8	NE	NE	NE	µg/l	<5	<5	<5	<5	<5 SR	<5
Phenol	108-95-2	NE	580	NE	µg/l	<5	<5	<5	<5	<5 SR	<5
							•	•	•	•	•
Metals (EPA Methods 6020A and							Γ	Γ			
Arsenic	7440-38-2	0.01	0.000052	NE	mg/l	<0.005	<0.005	<0.005	0.012	<0.005	0.015
Barium	7440-39-3	2	0.38	NE	mg/l	0.089	0.275	0.186	0.383	0.200	0.191
Cadmium	7440-43-9	0.005	0.00092	NE	mg/l	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Lead	7439-92-1	0.015	0.015	NE	mg/l	<0.001	<0.001	<0.001	<0.001	0.005	<0.001
Selenium	7782-49-2	0.05	0.01	NE	mg/l	<0.005	<0.005	0.008	<0.005	<0.005	<0.005
Silver	7440-22-4	NE	0.0094	NE	mg/l	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Mercury	7439-97-6	0.002	0.000063	NE	mg/l	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	< 0.0002

Summary of Groundwater Analytical Results September 2015

Wynnewood Refining Company Wynnewood, Oklahoma

					7						
			tory Screening (sriteria				Refinery Interior N	•		
			EPA Regional		Monitoring Well	LMW-14	LRW-1-0	LRW-2-0	OMW-5	OMW-6	ORW-4
		Drinking	Screening	ODEQ	Sample ID	. ,	WRCLRW-1-0(091515)	WRCLRW-2-0(091615)	WRCOMW-5(092215)	WRCOMW-6(092115)	WRCORW-4(092115)
		Water	Levels	Cleanup	Laboratory ID		15091257	15091261	15091441	15091435	15091434
Constituent		Regulations	(Tap Water)	Levels	Sample Date	09/16/15	09/15/15	09/16/15	09/22/15	09/21/15	09/21/15
TPH (Oklahoma Methods)	CAS Number				Units						
Gasoline Range Organics		NE	NE	1,000	µg/l	1,930	<20	791	92	63	<20
Diesel Range Organics		NE	NE	1,000	µg/l	4,300	290	9,900	920	1,800	350
Volatile Organics (EPA Method 8	260) (a)										
Acetone	67-64-1	NE	1,400	NE	µg/l	<200	<10	<40 M	<10	10	<10
Benzene	71-43-2	5	0.46	NE	µg/l	249	<0.5	<0.5	1.1	<0.5	<0.5
2-Butanone	78-93-3	NE	560	NE	µg/l	<200	<10	<10	<10	<10	<10
n-Butylbenzene	104-51-8	NE	100	NE	µg/l	<20 M	<0.5	<30 M	<2 M	<1.0 M	<0.5
sec-Butylbenzene	135-98-8	NE	200	NE	µg/l	<10	<0.5	15.7	0.6	<0.5	<0.5
tert-Butylbenzene	98-06-6	NE	69	NE	µg/l	<10	<0.5	2.8	<0.5	<0.5	<0.5
Carbon disulfide	75-15-0	NE	81	NE	µg/l	<20	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	67-66-3	80	0.22	NE	µg/l	<10	<0.5	<0.5	<0.5	<0.5	<0.5
Cyclohexane	110-82-7	NE	1,300	NE	µg/l	<100	<5.0	14.4 EC	<5.0	<5.0	<5.0
1,4-Dichlorobenzene	106-46-7	75	0.48	NE	µg/l	<10	<0.5	<0.5	<0.5	<0.5	0.6
Ethylbenzene	100-41-4	700	1.5	NE	µg/l	<10	<0.5	<0.5	<0.5	<0.5	<0.5
Hexane	110-54-3	NE	32	NE	µg/l	<20	<1.0	<1.0	<1.0	<1.0	<1.0
Isopropylbenzene (Cumene)	98-82-8	NE	45	NE	µg/l	10	<0.5	21.0	3.1	<0.5	<0.5
4-Isopropyltoluene	99-87-6	NE	NE	NE	µg/l	<10	<0.5	<0.5	<0.5	<0.5	<0.5
Methylcyclohexane	108-87-2	NE	NE	NE	µg/l	<100	<5.0	7.0	<5.0	<5.0	<5.0
Methyl tertiary butyl ether (MTBE)	1634-04-4	NE	14	NE	µg/l	160	<0.5	27.5	<0.5	2.2	2.1
n-Propylbenzene	103-65-1	NE	66	NE	μg/l	20	<0.5	7.1	2.8	< 0.5	<0.5
Tetrachloroethene	127-18-4	5	4.1	NE	μg/l	<10	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	108-88-3	1,000	110	NE	μg/l	<10	<0.5	0.6	<0.5	<0.5	<0.5
1,2,4-Trimethylbenzene	95-63-6	NE	1.5	NE	μg/l	<10	<0.5	0.0	<0.5	<0.5	<0.5
1,3,5-Trimethylbenzene	108-67-8	NE	1.5	NE		<10	<0.5	<0.5	<0.5	<0.5	<0.5
m+p-Xylene	108+106-38-3	NE	12	NE	µg/l	<20	<1.0	<1.0	<1.0	<1.0	<1.0
o-Xylene	95-47-6	NE	19	NE	µg/l	<10	<0.5		<0.5	<0.5	<0.5
-	90-47-0	10,000	19 19	NE	µg/l µg/l	<30	<0.5	0.5 <1.5	<0.5	<0.5	<0.5 <1.5
Xylenes, calculated total (b)		10,000	19	INE	μg/i	<30	<1.5	\$1.5	<1.5	<1.5	<1.5
Semi-Volatile Organics (EPA Met								Γ		1	
1,4-Dichlorobenzene	106-46-7	75	0.48	NE	µg/l	<5.0	<5.0	<5.0 SR	<5.0	<5.0	<5.0
2,4- and 2,5-Dimethylphenol	105-67-9	NE	36 (c)	NE	µg/l	<10	<10	<10 SR	<10 QC	<10 QC	<10 QC
2-Methylnaphthalene	91-57-6	NE	3.6	NE	µg/l	26.6	<5.0	8.8	<5.0	<5.0	<5.0
2-Methylphenol	95-48-7	NE	93	NE	µg/l	<5.0	<5.0	<5.0 SR	<5.0	<5.0	<5.0
Bis(2-ethylhexyl)phthalate	117-81-7	6	5.6	NE	µg/l	<5.0	<5.0	<5.0 SR	<5.0	<5.0	<5.0
Methylphenol (3 & 4)	108-39-4/106-44-5		93 (d)	NE	µg/l	<5	<5	<5 SR	<5	<5	<5
Naphthalene	91-20-3	NE	0.17	NE	µg/l	<5.0	<5.0	<5.0 SR	<5.0	<5.0	<5.0
Phenanthrene	85-01-8	NE	NE	NE	µg/l	<5	<5	<5 SR	<5	<5	<5
Phenol	108-95-2	NE	580	NE	µg/l	<5	<5	<5 SR	<5	<5	<5
Metals (EPA Methods 6020A and	7470A)										
Arsenic	7440-38-2	0.01	0.000052	NE	mg/l	0.024	<0.005	0.054	0.05	0.18	0.019
Barium	7440-39-3	2	0.38	NE	mg/l	0.431	0.130	0.376	0.295	0.457	0.318
Cadmium	7440-43-9	0.005	0.00092	NE	mg/l	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001
Lead	7439-92-1	0.015	0.015	NE	mg/l	0.003	<0.001	<0.001	0.001	0.004	<0.001
Selenium	7782-49-2	0.05	0.01	NE	mg/l	< 0.005	0.006	< 0.005	<0.005	< 0.005	<0.005
Silver	7440-22-4	NE	0.0094	NE	mg/l	<0.002	< 0.002	< 0.002	<0.002	< 0.002	< 0.002
Mercury	7439-97-6	0.002	0.000063	NE	mg/l	< 0.0002	<0.0002	<0.0002	< 0.0002	<0.0002	<0.0002
incroury	1-10-31-0	0.002	0.000000			-0.0002	-0.0002	-0.000Z	-0.0002	30.0002	-0.000Z

Summary of Groundwater Analytical Results September 2015

Wynnewood Refining Company Wynnewood, Oklahoma

		Pogula	tory Screening	Critoria	Т			North Boundary	Monitoring Wolls		
				Ginterna	Monitoring Well	UMW-1	UMW-3	UMW-4	UMW-5	UMW-6	UMW-7
		Drinking	EPA Regional Screening	ODEQ	Sample ID		WRCUMW-3(091015)	WRCUMW-4(091015)	WRCUMW-5(091015)	WRCUMW-6(091015)	WRCUMW-7(091015)
		Water	Levels	Cleanup	Laboratory ID		15090837	15090835	15090836	15090838	15090834
Constituent		Regulations	(Tap Water)	Levels	Sample Date		09/10/15	09/10/15	09/10/15	09/10/15	09/10/15
Constituent		Regulations	(Tap Water)	Levels	Sample Date	03/10/13	03/10/13	03/10/13	03/10/13	03/10/13	03/10/13
TPH (Oklahoma Methods)	CAS Number				Units						
Gasoline Range Organics		NE	NE	1,000	µg/l	<20	<20	612	4,150	18,900	<20
Diesel Range Organics		NE	NE	1,000	µg/l	<100	<100	370	1,800	4,600	<100
Volatile Organics (EPA Method 8	260) (a)										
Acetone	67-64-1	NE	1,400	NE	µg/l	<10	<10	<200	<1,000	<2,000	<10
Benzene	71-43-2	5	0.46	NE	µg/l	<0.5	<0.5	208	1,440	6,260	<0.5
2-Butanone	78-93-3	NE	560	NE	µg/l	<10	<10	<200	<1,000	<2,000	<10
n-Butylbenzene	104-51-8	NE	100	NE	µg/l	<0.5	<0.5	<10	<50	<100	<0.5
sec-Butylbenzene	135-98-8	NE	200	NE	µg/l	<0.5	<0.5	<10	<50	<100	<0.5
tert-Butylbenzene	98-06-6	NE	69	NE	µg/l	<0.5	<0.5	<10	<50	<100	<0.5
Carbon disulfide	75-15-0	NE	81	NE	µg/l	<1.0	<1.0	<20	<100	<200	<1.0
Chloroform	67-66-3	80	0.22	NE	µg/l	<0.5	<0.5	<10	<50	<200 M	<0.5
Cyclohexane	110-82-7	NE	1,300	NE	µg/l	<5.0	<5.0	<100	<500	<1,000	<5.0
1,4-Dichlorobenzene	106-46-7	75	0.48	NE	µg/l	<0.5	<0.5	<10	<50	<100	<0.5
Ethylbenzene	100-41-4	700	1.5	NE	µg/l	<0.5	<0.5	<10	<50	530	<0.5
Hexane	110-54-3	NE	32	NE	µg/l	<1.0	<1.0	<20	<100	310	<1.0
Isopropylbenzene (Cumene)	98-82-8	NE	45	NE	µg/l	<0.5	<0.5	<10	<50	<100	<0.5
4-Isopropyltoluene	99-87-6	NE	NE	NE	µg/l	<0.5	<0.5	<10	<50	<100	<0.5
Methylcyclohexane	108-87-2	NE	NE	NE	µg/l	<5.0	<5.0	<100	<500	<1,000	<5.0
Methyl tertiary butyl ether (MTBE)	1634-04-4	NE	14	NE	µg/l	<0.5	<0.5	<10	<50	<100	<0.5
n-Propylbenzene	103-65-1	NE	66	NE	µg/l	<0.5	<0.5	<10	<50	<100	<0.5
Tetrachloroethene	127-18-4	5	4.1	NE	µg/l	<0.5	0.8	<10	<50	<100	<0.5
Toluene	108-88-3	1,000	110	NE	µg/l	<0.5	<0.5	<10	<50	1,200	<0.5
1,2,4-Trimethylbenzene	95-63-6	NE	1.5	NE	µg/l	<0.5	<0.5	<10	<50	380	<0.5
1,3,5-Trimethylbenzene	108-67-8	NE	12	NE	µg/l	<0.5	<0.5	<10	<50	<100	<0.5
m+p-Xylene	108+106-38-3	NE	19	NE	µg/l	<1.0	<1.0	<20	<100	1,400	<1.0
o-Xylene	95-47-6	NE	19	NE	µg/l	<0.5	<0.5	<10	<50	430	<0.5
Xylenes, calculated total (b)		10,000	19	NE	µg/l	<1.5	<1.5	<30	<150	1,830	<1.5
Semi-Volatile Organics (EPA Met		75	0.40			-5.0.00	-50	-5.0	-5.0	-5.0	-5.0
1,4-Dichlorobenzene	106-46-7	75	0.48	NE	µg/l	<5.0 QC	<5.0	<5.0	<5.0	<5.0	<5.0
2,4- and 2,5-Dimethylphenol	105-67-9 91-57-6	NE	36 (c) 3.6	NE NE	µg/l	<10 QC <5.0 QC	<10 <5.0	<10 <5.0	<10 7.8	<10 86.5	<10 <5.0
2-Methylnaphthalene		NE			µg/l						
2-Methylphenol Bis(2-ethylhexyl)phthalate	95-48-7 117-81-7	NE	93 5 6	NE	µg/l	<5.0 QC	<5.0 <5.0	<5.0	<5.0	<5.0	<5.0
		6	5.6	NE	µg/l	<5.0 QC		<5.0	<5.0	<5.0	<5.0
Methylphenol (3 & 4)	108-39-4/106-44-5 91-20-3		93 (d)	NE NE	µg/l	<5 QC <5.0 QC	<5	<5	<5	<5 242	<5
Naphthalene		NE	0.17 NE		µg/l	<5.0 QC <5 QC	<5.0	<5.0	40		<5.0
Phenanthrene	85-01-8	NE NE		NE NE	µg/l	<5 QC <5 QC	<5 <5	<5 <5	<5 <5	<5 15	<5 <5
Phenol	108-95-2	INE	580	NE	µg/l	5 QU	C/	<>>	^ 0	15	^ 0
Metals (EPA Methods 6020A and	7470A)										
Arsenic	7440-38-2	0.01	0.000052	NE	mg/l	<0.005	<0.005	<0.005	0.017 Y	0.025	<0.005
Barium	7440-39-3	2	0.38	NE	mg/l	0.194	0.133	1.03	0.480 Y	1.16	0.244
Cadmium	7440-43-9	0.005	0.00092	NE	mg/l	<0.001	<0.001	<0.001	<0.001 Y	<0.001	<0.001
Lead	7439-92-1	0.015	0.015	NE	mg/l	<0.001	<0.001	<0.001	<0.001 Y	<0.001	<0.001
Selenium	7782-49-2	0.05	0.01	NE	mg/l	<0.005	0.014	<0.005	<0.005 Y	<0.005	0.007
Silver	7440-22-4	NE	0.0094	NE	mg/l	<0.002	<0.002	<0.002	<0.002 Y	<0.002	<0.002
Mercury	7439-97-6	0.002	0.000063	NE	mg/l	<0.0002	<0.0002	<0.0002	<0.0002 Y	<0.0002	<0.0002
-							•	•		•	

Summary of Groundwater Analytical Results September 2015

Wynnewood Refining Company Wynnewood, Oklahoma

		Regula	tory Screening	Criteria	ן ר			North Process Ar	ea Monitoring Wells		
			EPA Regional		Monitoring Well	NMW-5	NMW-8	NMW-12	NMW-13	NMW-16	NMW-17
		Drinking	Screening	ODEQ	Sample ID	WRCNMW-5(092115)	WRCNMW-8(092115)	WRCNMW-12(091015)	WRCNMW-13(092115)	WRCNMW-16(092115)	WRCNMW-17(092115)
		Water	Levels	Cleanup	Laboratory ID	15091433	15091431	15090840	15091432	15091430	15091429
Constituent		Regulations	(Tap Water)	Levels	Sample Date	09/21/15	09/21/15	09/10/15	09/21/15	09/21/15	09/21/15
oonstituent		Regulations	(Tap Water)	Levels	Campie Date	00/21/10	00/21/10	00/10/10	00/21/10	00/21/10	00/21/10
TPH (Oklahoma Methods)	CAS Number				Units						
Gasoline Range Organics		NE	NE	1,000	µg/l	27,900	5,030	37,500	2,130	18,500	406
Diesel Range Organics		NE	NE	1,000	µg/l	37,000	8,800	6,600	8,500	12,000	730
Volatile Organics (EPA Method 82	260) (a)										
Acetone	67-64-1	NE	1,400	NE	ug/l	<3,000	<200	<5,000	<200	<500	<30 M
Benzene	71-43-2	5	0.46	NE	µg/l	9,390	1,450	10,800	433	4,550	80.5
2-Butanone	78-93-3	NE	560		µg/l		<200		<200	<500 QC	<10 QC
				NE	µg/l	<3,000		<5,000			
n-Butylbenzene	104-51-8	NE	100	NE	µg/l	<100	<30 M	<300	<30 M	<160 M	<6 M
sec-Butylbenzene	135-98-8	NE	200	NE	µg/l	<100	<10	<300	20	<30	1.6
tert-Butylbenzene	98-06-6	NE	69	NE	µg/l	<100	<10	<300	<10	<30	< 0.5
Carbon disulfide	75-15-0	NE	81	NE	µg/l	<250	<20	<500	<20	<50	<1.0
Chloroform	67-66-3	80	0.22	NE	µg/l	<100	<10	<300	<10	<30	<2 M
Cyclohexane	110-82-7	NE	1,300	NE	µg/l	<1,300	<100	<2,500	<100	<250	11.4
1,4-Dichlorobenzene	106-46-7	75	0.48	NE	µg/l	<100	<10	<300	<10	<30	<0.5
Ethylbenzene	100-41-4	700	1.5	NE	µg/l	1,100	22	920	<10	1,810	<0.5
Hexane	110-54-3	NE	32	NE	µg/l	700	<20	<500	<20	<50	1.7
Isopropylbenzene (Cumene)	98-82-8	NE	45	NE	µg/l	<100	10	<300	50	83	<0.5
4-Isopropyltoluene	99-87-6	NE	NE	NE	µg/l	<100	<10	<300	<10	<30	<0.5
Methylcyclohexane	108-87-2	NE	NE	NE	µg/l	<1,300	<100	<2,500	<100	<250	<5.0
Methyl tertiary butyl ether (MTBE)	1634-04-4	NE	14	NE	µg/l	<300 M	24	<300	227	240	72.8
n-Propylbenzene	103-65-1	NE	66	NE	µg/l	100	25	<300	89	260	<0.5
Tetrachloroethene	127-18-4	5	4.1	NE	µg/l	<100	<10	<300	<10	<30	<0.5
Toluene	108-88-3	1,000	110	NE	µg/l	<100	89	2,300	<10	160	1.8
1,2,4-Trimethylbenzene	95-63-6	NE	1.5	NE	µg/l	1,500	<10	960	<10	739	<0.5
1,3,5-Trimethylbenzene	108-67-8	NE	12	NE	µg/l	300	<10	<300	<10	150	<0.5
m+p-Xylene	108+106-38-3	NE	12	NE		3,000	63	3,300	<20	1,780	2.2
					µg/l						
o-Xylene	95-47-6	NE 10.000	19	NE	µg/l	<100	20	930	<10	63	1.2
Xylenes, calculated total (b)		10,000	19	NE	µg/l	<3,100	83	4,230	<30	1,843	3.4
Semi-Volatile Organics (EPA Meth	hod 8270C)										
1,4-Dichlorobenzene	106-46-7	75	0.48	NE	µg/l	<5.0 SR	<5.0	<5.0 SR	<5.0	<5.0	<5.0
2,4- and 2,5-Dimethylphenol	105-67-9	NE	36 (c)	NE	µg/l	150	<10 QC	42	<10 QC	<10 QC	<10
2-Methylnaphthalene	91-57-6	NE	3.6	NE	µg/l	307	63.9	117	12.5	202	<5.0
2-Methylphenol	95-48-7	NE	93	NE	µg/l	13	<5.0	22.1	<5.0	<5.0	<5.0
Bis(2-ethylhexyl)phthalate	117-81-7	6	5.6	NE	µg/l	<5.0 SR	<5.0	<5.0 SR	<5.0	<5.0	<5.0
Methylphenol (3 & 4)	108-39-4/106-44-5		93 (d)	NE	µg/l	148	<5	29	57	6	<5
Naphthalene	91-20-3	NE	0.17	NE		464	29.9	346	9.1	583	<5.0
Phenanthrene	85-01-8		NE		µg/l			<5 SR			
		NE		NE	µg/l	7	<5		<5	<5	<5
Phenol	108-95-2	NE	580	NE	µg/l	14	12	77 IM	<5	17	<5
Metals (EPA Methods 6020A and	7470A)										
Arsenic	7440-38-2	0.01	0.000052	NE	mg/l	0.081	0.022	0.02	0.033	0.048 Y	0.054
Barium	7440-39-3	2	0.38	NE	mg/l	0.875	0.634	0.676	0.892	0.662 Y	0.797
Cadmium	7440-43-9	0.005	0.00092	NE	mg/l	<0.001	<0.001	<0.001	<0.001	<0.001 Y	<0.001
Lead	7439-92-1	0.015	0.015	NE	mg/l	0.094	0.003	0.001	0.009	<0.001 Y	< 0.001
Selenium	7782-49-2	0.05	0.01	NE	mg/l	< 0.005	< 0.005	< 0.005	< 0.005	<0.005 Y	< 0.005
Silver	7440-22-4	NE	0.0094	NE	mg/l	<0.003	<0.003	<0.003	<0.000	<0.003 Y	<0.003
Mercury	7439-97-6	0.002	0.000063	NE	mg/l	<0.002	<0.002	<0.002	<0.002	<0.002 T <0.0002 Y	<0.002
Mercury	1403-31-0	0.002	0.000003	INC	ilig/i	<u>>0.000</u> ∠	<u>\0.0002</u>	<u>∼0.0002</u>	<u>∼0.0002</u>	NUUU2 1	<0.000Z

Summary of Groundwater Analytical Results September 2015

Wynnewood Refining Company Wynnewood, Oklahoma

		Regula	tory Screening C	riteria] [Closed Stor	mwater Retention Pond	and South Boundary M	Ionitoring Wells	
Constituent		EPA Primary Drinking Water Regulations		ODEQ Cleanup Levels	Monitoring Well Sample ID Laboratory ID Sample Date	SMW-1 WRCSMW1(090915) 15090831 09/09/15	SMW-2 WRCSMW-2(091415) 15091272 09/14/15	SMW-2D WRCSMW-2D(091415) 15091238 09/14/15	SMW-3 WRCSMW-3(091415) 15091239 09/14/15	SMW-4 WRCSMW-4(091415) 15091241 09/14/15	SMW-4D WRCSMW-4D(091415) 15091240 09/14/15
TPH (Oklahoma Methods)	CAS Number				Units						
Gasoline Range Organics		NE	NE	1,000	µg/l	<20	<20	25	<20	<20	<20
Diesel Range Organics		NE	NE	1,000	µg/l	<100	170	1,100	100	<100	310
·											
Volatile Organics (EPA Method 8	260) (a)										
Acetone	67-64-1	NE	1,400	NE	µg/l	<10	<10	<10	<10	<10	<10
Benzene	71-43-2	5	0.46	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-Butanone	78-93-3	NE	560	NE	µg/l	<10	<10	<10	<10	<10	<10
n-Butylbenzene	104-51-8	NE	100	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
sec-Butylbenzene	135-98-8	NE	200	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
tert-Butylbenzene	98-06-6	NE	69	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Carbon disulfide	75-15-0	NE	81	NE	µg/l	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	67-66-3	80	0.22	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Cyclohexane	110-82-7	NE	1,300	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,4-Dichlorobenzene	106-46-7	75	0.48	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	700	1.5	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Hexane	110-54-3	NE	32	NE	µg/l	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Isopropylbenzene (Cumene)	98-82-8	NE	45	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
4-Isopropyltoluene	99-87-6	NE	NE	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Methylcyclohexane	108-87-2	NE	NE	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Methyl tertiary butyl ether (MTBE)	1634-04-4	NE	14	NE	µg/l	<0.5	<0.5	1.2	<0.5	<0.5	0.6
n-Propylbenzene	103-65-1	NE	66	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethene	127-18-4	5	4.1	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	108-88-3	1,000	110	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2,4-Trimethylbenzene	95-63-6	NE	1.5	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,3,5-Trimethylbenzene	108-67-8	NE	12	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
m+p-Xylene	108+106-38-3	NE	19	NE	µg/l	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
o-Xylene	95-47-6	NE	19	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Xylenes, calculated total (b)		10,000	19	NE	µg/l	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5
Semi-Volatile Organics (EPA Met	bod 8270C)										
1.4-Dichlorobenzene	106-46-7	75	0.48	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
2,4- and 2,5-Dimethylphenol	105-67-9	NE	36 (c)	NE	µg/l	<10	<10	<10	<10	<10	<10
2-Methylnaphthalene	91-57-6	NE	3.6	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
2-Methylphenol	95-48-7	NE	93	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Bis(2-ethylhexyl)phthalate	117-81-7	6	5.6	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Methylphenol (3 & 4)	108-39-4/106-44-5	NE	93 (d)	NE	µg/l	<5	<5	<5	<5	<5	<5
Naphthalene	91-20-3	NE	0.17	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Phenanthrene	85-01-8	NE	NE	NE	µg/l	<5	<5	<5	<5	<5	<5
Phenol	108-95-2	NE	580	NE	µg/l	<5	<5	<5	<5	<5	<5
					F.J		<u> </u>	<u> </u>	,	,	,
Metals (EPA Methods 6020A and		0.04	0.000050			10.005	10.005	0.000	-0.005	-0.005	0.040
Arsenic	7440-38-2	0.01	0.000052	NE	mg/l	< 0.005	< 0.005	0.038	< 0.005	< 0.005	0.012
Barium	7440-39-3	2	0.38	NE	mg/l	0.135	0.105	0.162	0.186	0.094	0.212
Cadmium	7440-43-9	0.005	0.00092	NE	mg/l	< 0.001	< 0.001	0.002	< 0.001	< 0.001	< 0.001
Lead	7439-92-1	0.015	0.015	NE	mg/l	< 0.001	< 0.001	0.002	< 0.001	< 0.001	< 0.001
Selenium	7782-49-2	0.05	0.01	NE	mg/l	< 0.005	<0.005	< 0.005	< 0.005	0.011	< 0.005
Silver	7440-22-4	NE	0.0094	NE	mg/l	< 0.002	<0.002	< 0.002	< 0.002	< 0.002	< 0.002
Mercury	7439-97-6	0.002	0.000063	NE	mg/l	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002

Summary of Groundwater Analytical Results September 2015

Wynnewood Refining Company Wynnewood, Oklahoma

		Desula	tom. Concering (Duitouio	ו ר			an Detention Dand and	Couth Dourdom Mon		
			tory Screening	sriteria				ter Retention Pond and			
Constituent		EPA Primary Drinking Water Regulations	EPA Regional Screening Levels (Tap Water)	ODEQ Cleanup Levels	Monitoring Well Sample ID Laboratory ID Sample Date	SMW-5 WRCSMW-5(090815) 15090819 09/08/15	SMW-5D WRCSMW-5D(090815) 15090820 09/08/15	SMW-7 WRCSMW-7(091715) 15091265 09/17/15	SMW-9 WRCSMW-9(090815) 15090822 09/08/15	SMW-9D WRCSMW-9D(090815) 15090823 09/08/15	SMW-9D WRCDUP1 15090824 09/08/15
TPH (Oklahoma Methods)	CAS Number				Units						
Gasoline Range Organics		NE	NE	1,000	µg/l	28	<20	74	38	<20	<20
Diesel Range Organics		NE	NE	1,000	µg/l	330	490	1,800	1,200	380	320
Volatile Organics (EPA Method											
Acetone	67-64-1	NE	1,400	NE	µg/l	<50 M	<10	<10	<10	<10	<10
Benzene	71-43-2	5	0.46	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-Butanone	78-93-3	NE	560	NE	µg/l	<50 M	<10	<10	<10	<10	<10
n-Butylbenzene	104-51-8	NE	100	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
sec-Butylbenzene	135-98-8	NE	200	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
tert-Butylbenzene	98-06-6	NE	69	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Carbon disulfide	75-15-0	NE	81	NE	µg/l	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	67-66-3	80	0.22	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Cyclohexane	110-82-7	NE	1,300	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,4-Dichlorobenzene	106-46-7	75	0.48	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	700	1.5	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Hexane	110-54-3	NE	32	NE	µg/l	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Isopropylbenzene (Cumene)	98-82-8	NE	45	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
4-Isopropyltoluene	99-87-6	NE	NE	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Methylcyclohexane	108-87-2	NE	NE	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Methyl tertiary butyl ether (MTBE)	1634-04-4	NE	14	NE	µg/l	<0.5	<0.5	<0.5	19	1.2	1.1
n-Propylbenzene	103-65-1	NE	66	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethene	127-18-4	5	4.1	NE	μg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	108-88-3	1,000	110	NE	µg/l	<0.5	<0.5	0.6	<0.5	<0.5	<0.5
1,2,4-Trimethylbenzene	95-63-6	NE	1.5	NE	μg/l	<0.5	<0.5	0.7	<0.5	<0.5	<0.5
1,3,5-Trimethylbenzene	108-67-8	NE	12	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
m+p-Xylene	108+106-38-3	NE	19	NE	µg/l	<1.0	<1.0	1.7	<1.0	<1.0	<1.0
o-Xylene	95-47-6	NE	19	NE	µg/l	<0.5	<0.5	2.8	1.4	<0.5	<0.5
Xylenes, calculated total (b)		10,000	19	NE	µg/l	<1.5	<1.5	4.5	<2.4	<1.5	<1.5
· · · · · · · · · · · · · · · · · · ·					FJ						
Semi-Volatile Organics (EPA Me	ethod 8270C)										
1,4-Dichlorobenzene	106-46-7	75	0.48	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
2,4- and 2,5-Dimethylphenol	105-67-9	NE	36 (c)	NE	µg/l	<10	<10	<10	<10	<10	<10
2-Methylnaphthalene	91-57-6	NE	3.6	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
2-Methylphenol	95-48-7	NE	93	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Bis(2-ethylhexyl)phthalate	117-81-7	6	5.6	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Methylphenol (3 & 4)	108-39-4/106-44-5	NE	93 (d)	NE	µg/l	<5	<5	<5	<5	<5	<5
Naphthalene	91-20-3	NE	0.17	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Phenanthrene	85-01-8	NE	NE	NE	µg/l	<5	<5	<5	<5	<5	<5
Phenol	108-95-2	NE	580	NE	μg/l	<5	<5	<5	<5	<5	<5
Metals (EPA Methods 6020A and	/	0.04	0.000050				-0.044	-0.005	0.000	0.044	0.04.1
Arsenic	7440-38-2	0.01	0.000052	NE	mg/l	<0.005 Y	0.011	< 0.005	0.006	0.014	0.014
Barium	7440-39-3	2	0.38	NE	mg/l	0.142 Y	0.203	0.123	0.056	0.161	0.160
Cadmium	7440-43-9	0.005	0.00092	NE	mg/l	<0.001 Y	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Lead	7439-92-1	0.015	0.015	NE	mg/l	<0.001 Y	< 0.001	0.001	< 0.001	< 0.001	< 0.001
Selenium	7782-49-2	0.05	0.01	NE	mg/l	<0.005 Y	< 0.005	< 0.005	<0.005	< 0.005	< 0.005
Silver	7440-22-4	NE	0.0094	NE	mg/l	<0.002 Y	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Mercury	7439-97-6	0.002	0.000063	NE	mg/l	<0.0002 Y	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002

Summary of Groundwater Analytical Results September 2015

Wynnewood Refining Company Wynnewood, Oklahoma

		Regulat	tory Screening (Criteria	7		Closed Storm	water Retention Pond	and South Boundary Mo	onitoring Wells	
Constituent			EPA Regional Screening Levels (Tap Water)	ODEQ Cleanup Levels	Monitoring Well Sample ID Laboratory ID Sample Date	WRCSMW-10(091815) 15091423	SMW-10D WRCSMW-10D(091815) 15091424 09/18/15	SMW-11	SMW-11D WRCSMW-11D(090915) 15090828 09/09/15	SMW-12 WRCSMW-12(091815) 15091425 09/18/15	SMW-12D WRCSMW-12D(091815) 15091426 09/18/15
TPH (Oklahoma Methods)	CAS Number				Units						
Gasoline Range Organics		NE	NE	1,000	µg/l	<20	<20	73	36	145	395
Diesel Range Organics		NE	NE	1,000	µg/l	850	220	3,400	350	2,300	1,900
Volatile Organics (EPA Method 8						1			1		1
Acetone	67-64-1	NE	1,400	NE	µg/l	<10	<10	<10	<10	<10	<10
Benzene	71-43-2	5	0.46	NE	µg/l	< 0.5	<0.5	<0.5	<0.5	11.0	2.2
2-Butanone	78-93-3	NE	560	NE	µg/l	<10 QC	<10 QC	<10	<10	<10	<10 QC
n-Butylbenzene	104-51-8	NE	100	NE	µg/l	<0.5	<0.5	<0.5	<1.0 M	<2 M	<6 M
sec-Butylbenzene	135-98-8	NE	200	NE	µg/l	< 0.5	<0.5	1.4	<0.5	< 0.5	0.8
tert-Butylbenzene	98-06-6	NE	69	NE	µg/l	< 0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5
Carbon disulfide	75-15-0	NE	81	NE	µg/l	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	67-66-3	80	0.22	NE	µg/l	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5
Cyclohexane	110-82-7	NE	1,300	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,4-Dichlorobenzene	106-46-7	75	0.48	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	700	1.5	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Hexane	110-54-3	NE	32	NE	µg/l	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Isopropylbenzene (Cumene)	98-82-8	NE	45	NE	µg/l	<0.5	<0.5	4.9	<0.5	1.0	0.8
4-Isopropyltoluene	99-87-6	NE	NE	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Methylcyclohexane	108-87-2	NE	NE	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Methyl tertiary butyl ether (MTBE)	1634-04-4	NE	14	NE	µg/l	<0.5	<0.5	0.6	1.1	1.7	88.8
n-Propylbenzene	103-65-1	NE	66	NE	µg/l	<0.5	<0.5	2.1	<0.5	2.2	0.7
Tetrachloroethene	127-18-4	5	4.1	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	108-88-3	1,000	110	NE	µg/l	<0.5	<0.5	<0.5	<0.5	0.6	<0.5
1,2,4-Trimethylbenzene	95-63-6	NE	1.5	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,3,5-Trimethylbenzene	108-67-8	NE	12	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
m+p-Xylene	108+106-38-3	NE	19	NE	µg/l	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
o-Xylene	95-47-6	NE	19	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Xylenes, calculated total (b)		10,000	19	NE	μg/l	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5
Somi Volatila Organica (EDA Ma	thad 8370C)										
Semi-Volatile Organics (EPA Me 1,4-Dichlorobenzene	106-46-7	75	0.48	NE	ug/l	<5.0	<5.0 SR	<5.0	<5.0	<5.0	<5.0
2,4- and 2,5-Dimethylphenol	105-67-9	NE	36 (c)	NE	µg/l	<10	<10 SR	<10	<10	<10	<10
2-Methylnaphthalene	91-57-6	NE	3.6	NE	µg/l	<5.0	<5.0 SR	<5.0	<5.0	<5.0	<5.0
				NE	µg/l						
2-Methylphenol	95-48-7	NE	93 5 6		µg/l	<5.0	<5.0 SR	<5.0	<5.0	<5.0	<5.0
Bis(2-ethylhexyl)phthalate	117-81-7	6	5.6 02 (d)	NE	µg/l	<5.0	<5.0 SR	<5.0	<5.0	<5.0	<5.0
Methylphenol (3 & 4)	108-39-4/106-44-5		93 (d)	NE	µg/l	<5	<5 SR	<5	<5	<5	<5
Naphthalene	91-20-3	NE	0.17	NE	µg/l	<5.0	<5.0 SR	<5.0	<5.0	<5.0	<5.0
Phenanthrene	85-01-8	NE	NE	NE	µg/l	<5	<5 SR	<5	<5	<5	<5
Phenol	108-95-2	NE	580	NE	µg/l	<5	<5 SR	<5	<5	<5	<5
Metals (EPA Methods 6020A and						1 -					
Arsenic	7440-38-2	0.01	0.000052	NE	mg/l	< 0.005	0.022	0.038	0.013	0.013	0.093
Barium	7440-39-3	2	0.38	NE	mg/l	0.193	0.303	0.400	0.114	0.600	0.658
Cadmium	7440-43-9	0.005	0.00092	NE	mg/l	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Lead	7439-92-1	0.015	0.015	NE	mg/l	<0.001	<0.001	<0.001	<0.001	<0.001	0.029
Selenium	7782-49-2	0.05	0.01	NE	mg/l	<0.005	<0.005	<0.005	<0.005	0.006	<0.005
Silver	7440-22-4	NE	0.0094	NE	mg/l	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Mercury	7439-97-6	0.002	0.000063	NE	mg/l	< 0.0002	<0.0002	< 0.0002	<0.0002	< 0.0002	<0.0002

Summary of Groundwater Analytical Results September 2015

Wynnewood Refining Company Wynnewood, Oklahoma

		Regulat	tory Screening (Criteria	1		Closed Storm	water Retention Pond a	and South Boundary Mo	nitoring Wells	
Constituent		EPA Primary Drinking Water Regulations	EPA Regional Screening Levels (Tap Water)	ODEQ Cleanup Levels	Monitoring Well Sample ID Laboratory ID Sample Date	15091421	SMW-13D WRCSMW-13D(091815) 15091422 09/18/15	SMW-14 WRCSMW-14(091715) 15091267 09/17/15	SMW-14D WRCSMW-14D(091715) 15091268 09/17/15	SMW18 WRCSMW18(090915) 15090830 09/09/15	SMW-19 WRCSMW-19(091715) 15091269 09/17/15
TPH (Oklahoma Methods)	CAS Number				Units						
Gasoline Range Organics		NE	NE	1,000	µg/l	27	39	23	<20	<20	<20
Diesel Range Organics		NE	NE	1,000	µg/l	750	2,400	570	650	<100	530
				,	r 5		,				
Volatile Organics (EPA Method 8	3260) (a)										
Acetone	67-64-1	NE	1,400	NE	µg/l	<10	<10	<10	<10	<10	<10
Benzene	71-43-2	5	0.46	NE	µg/l	<0.5	1.5	<0.5	<0.5	<0.5	<0.5
2-Butanone	78-93-3	NE	560	NE	µg/l	<10	<10	<10	<10	<10	<10
n-Butylbenzene	104-51-8	NE	100	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
sec-Butylbenzene	135-98-8	NE	200	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
tert-Butylbenzene	98-06-6	NE	69	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Carbon disulfide	75-15-0	NE	81	NE	µg/l	<1.0	1.1	<1.0	<1.0	<1.0	<1.0
Chloroform	67-66-3	80	0.22	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Cyclohexane	110-82-7	NE	1,300	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,4-Dichlorobenzene	106-46-7	75	0.48	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	700	1.5	NE	µg/l	<0.5	1.7	<0.5	<0.5	<0.5	<0.5
Hexane	110-54-3	NE	32	NE	µg/l	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Isopropylbenzene (Cumene)	98-82-8	NE	45	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
4-Isopropyltoluene	99-87-6	NE	NE	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Methylcyclohexane	108-87-2	NE	NE	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Methyl tertiary butyl ether (MTBE)	1634-04-4	NE	14	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	103-65-1		66		µg/l		<0.5	<0.5		<0.5	<0.5
n-Propylbenzene		NE		NE	µg/l	<0.5			<0.5		
Tetrachloroethene	127-18-4	5	4.1	NE	µg/l	< 0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5
Toluene	108-88-3	1,000	110	NE	µg/l	<0.5	0.6	<0.5	<0.5	< 0.5	<0.5
1,2,4-Trimethylbenzene	95-63-6	NE	1.5	NE	µg/l	<0.5	2.2	<0.5	<0.5	<0.5	<0.5
1,3,5-Trimethylbenzene	108-67-8	NE	12	NE	µg/l	<0.5	0.5	<0.5	<0.5	<0.5	<0.5
m+p-Xylene	108+106-38-3	NE	19	NE	µg/l	<1.0	2.8	<1.0	<1.0	<1.0	<1.0
o-Xylene	95-47-6	NE	19	NE	µg/l	0.9	2.9	1.9	0.7	<0.5	<0.5
Xylenes, calculated total (b)		10,000	19	NE	μg/l	<1.9	5.7	<2.9	<1.7	<1.5	<1.5
Semi-Volatile Organics (EPA Me	thod 8270C)										
1,4-Dichlorobenzene	106-46-7	75	0.48	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
2,4- and 2,5-Dimethylphenol	105-67-9	NE	36 (c)	NE	µg/l	<10 QC	<10	<10	<10	<10	<10
2-Methylnaphthalene	91-57-6	NE	3.6	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
2-Methylphenol	95-48-7	NE	93	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Bis(2-ethylhexyl)phthalate	117-81-7	6	5.6	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Methylphenol (3 & 4)	108-39-4/106-44-5					<5	<5		<5	<5	<5
			93 (d)	NE	µg/l			<5			
Naphthalene	91-20-3	NE	0.17	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Phenanthrene	85-01-8	NE	NE	NE	µg/l	<5	<5	<5	<5	<5	<5
Phenol	108-95-2	NE	580	NE	µg/l	<5	<5	<5	<5	<5	<5
Metals (EPA Methods 6020A and	/										
Arsenic	7440-38-2	0.01	0.000052	NE	mg/l	0.03	0.011	0.013	<0.005	<0.005	0.022
Barium	7440-39-3	2	0.38	NE	mg/l	0.244	0.141	0.185	0.239	0.170	0.205
Cadmium	7440-43-9	0.005	0.00092	NE	mg/l	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Lead	7439-92-1	0.015	0.015	NE	mg/l	<0.001	0.04	<0.001	0.003	<0.001	0.001
Selenium	7782-49-2	0.05	0.01	NE	mg/l	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005
Silver	7440-22-4	NE	0.0094	NE	mg/l	< 0.002	<0.002	< 0.002	< 0.002	< 0.002	< 0.002
Mercury	7439-97-6	0.002	0.000063	NE	mg/l	< 0.0002	< 0.0002	< 0.0002	< 0.0002	<0.0002	< 0.0002

Appendix B

Summary of Groundwater Analytical Results September 2015

Wynnewood Refining Company Wynnewood, Oklahoma

		Regulat	tory Screening C	Critoria	7		Closed	Stormwater Retention	Pond and South Bo	undary Mor	nitoring Wells			
				ontena	Monitoring Well									
			EPA Regional	0050	Sample ID			WRCSMW-22D(091715)		WRCDUP2	SIVI VV-24 WRCSMW-24(091415)	WRCDUP3		
		Drinking	Screening	ODEQ		· · · ·							WRCSMW-25(091415)	
Constituent		Water	Levels	Cleanup	Laboratory ID	15090825	15090826	15091266	15090841	15090842	15091273	15091274	15091275	
Constituent		Regulations	(Tap Water)	Levels	Sample Date	09/09/15	09/09/15	09/17/15	09/11/15	09/11/15	09/14/15	09/14/15	09/14/15	
TPH (Oklahoma Methods)	CAS Number				Units									
Gasoline Range Organics		NE	NE	1,000	µg/l	<20	<20	<20	48	49	<20	<20	<20	
Diesel Range Organics		NE	NE	1,000	µg/l	1,100	380	300	2,120	1,900	<100	<100	100	
Volatile Organics (EPA Method 8	260) (a)													
Acetone	67-64-1	NE	1,400	NE	µg/l	<10	<10	<10	<10	<10	<10	<10	<10	
Benzene	71-43-2	5	0.46	NE	µg/l	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	
2-Butanone	78-93-3	NE	560	NE	µg/l	<10	<10	<10	<10	<10	20	20	<10	
n-Butylbenzene	104-51-8	NE	100	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
sec-Butylbenzene	135-98-8	NE	200	NE		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <0.5	<0.5	
tert-Butylbenzene	98-06-6	NE	200 69	NE	µg/l	<0.5	<0.5 <0.5	<0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5	
Carbon disulfide	98-06-6 75-15-0	NE	89 81		µg/l	<0.5 <1.0	<0.5	<0.5	<0.5	<0.5 <1.0	<0.5 <1.0	<0.5 <1.0	<1.0	
	67-66-3		0.22	NE	µg/l	<0.5				<1.0 <0.5	<1.0 <0.5	< 0.5	<0.5	
Chloroform		80 NE		NE	µg/l		<0.5	<0.5	<0.5					
Cyclohexane	110-82-7	NE	1,300	NE	μg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
1,4-Dichlorobenzene	106-46-7	75	0.48	NE	µg/l	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	
Ethylbenzene	100-41-4	700	1.5	NE	µg/l	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Hexane	110-54-3	NE	32	NE	µg/l	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Isopropylbenzene (Cumene)	98-82-8	NE	45	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
4-Isopropyltoluene	99-87-6	NE	NE	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Methylcyclohexane	108-87-2	NE	NE	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
Methyl tertiary butyl ether (MTBE)	1634-04-4	NE	14	NE	µg/l	2.0	0.8	<0.5	0.9	0.9	<0.5	<0.5	0.5	
n-Propylbenzene	103-65-1	NE	66	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Tetrachloroethene	127-18-4	5	4.1	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Toluene	108-88-3	1,000	110	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
1,2,4-Trimethylbenzene	95-63-6	NE	1.5	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
1,3,5-Trimethylbenzene	108-67-8	NE	12	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
m+p-Xylene	108+106-38-3	NE	19	NE	µg/l	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
o-Xylene	95-47-6	NE	19	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Xylenes, calculated total (b)		10,000	19	NE	µg/l	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	
Semi-Volatile Organics (EPA Met	had 8270C)													
1.4-Dichlorobenzene	106-46-7	75	0.48	NE	ua/l	<5.0	<5.0	<5.0	<5.0 QC	<5.0 QC	<5.0	<5.0	<5.0	
2,4- and 2,5-Dimethylphenol	105-67-9	NE	0.48 36 (c)	NE	µg/l	<10	<10	<10	<5.0 QC <10 QC	<10 QC	< <u>5.0</u> <10	< <u>5.0</u> <10	<10	
2,4- and 2,5-Dimethylphenol	91-57-6	NE	3.6	NE	µg/l	<5.0	<5.0	<5.0	<5.0 QC	<10 QC <5.0 QC	<5.0	<10 <5.0	<5.0	
			3.6 93		µg/l		<5.0 <5.0							
2-Methylphenol	95-48-7	NE		NE	µg/l	<5.0		<5.0	<5.0 QC	<5.0 QC	<5.0	<5.0	<5.0	
Bis(2-ethylhexyl)phthalate	117-81-7	6	5.6	NE	µg/l	<5.0	<5.0	<5.0	<5.0 QC	<5.0 QC	<5.0	<5.0	<5.0	
Methylphenol (3 & 4)	108-39-4/106-44-5	NE	93 (d)	NE	μg/l	<5	<5	<5	<5 QC	<5 QC	<5	<5	<5	
Naphthalene	91-20-3	NE	0.17	NE	μg/l	<5.0	<5.0	<5.0	<5.0 QC	<5.0 QC	<5.0	<5.0	<5.0	
Phenanthrene	85-01-8	NE	NE	NE	µg/l	<5	<5	<5	<5 QC	<5 QC	<5	<5	<5	
Phenol	108-95-2	NE	580	NE	μg/l	<5	<5	<5	<5 QC	<5 QC	<5	<5	<5	
Metals (EPA Methods 6020A and	7470A)													
Arsenic	7440-38-2	0.01	0.000052	NE	mg/l	0.021	0.015	<0.005	0.053	0.052	<0.005	<0.005	<0.005	
Barium	7440-39-3	2	0.38	NE	mg/l	0.278	0.202	0.273	0.141	0.141	0.104	0.100	0.198	
Cadmium	7440-43-9	0.005	0.00092	NE	mg/l	<0.001	<0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Lead	7439-92-1	0.015	0.015	NE	mg/l	<0.001	<0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	0.003	
Selenium	7782-49-2	0.05	0.01	NE	mg/l	<0.005	<0.005	< 0.005	0.005	0.005	< 0.005	< 0.005	< 0.005	
Silver	7440-22-4	NE	0.0094	NE	mg/l	<0.003	<0.002	<0.003	< 0.002	< 0.002	<0.003	<0.002	<0.002	
Mercury	7439-97-6	0.002	0.000063	NE	mg/l	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
INCI CULY	1403-31-0	0.002	0.000003	INC	ing/i	<u>>0.000∠</u>	~0.000Z	<u>∼0.0002</u>	<u>∼0.0002</u>	<u><u></u>\0.000∠</u>	<u><u></u>~0.000∠</u>	<u><u></u>~0.000∠</u>	<u><u></u> ~0.000∠</u>	

WSP | Parsons Brinckerhoff K:\Coffeyville Resources\WRC\Project Data\Tables\Semi-Annual Report Tables\T3_201509_WRC_GW_Analytical_v2: T3 GW Analytical

Appendix B

Summary of Groundwater Analytical Results September 2015

Wynnewood Refining Company Wynnewood, Oklahoma

		Pequia	tory Screening (Critoria	T				0	ality Assur	ance/Quality	Control S	amples				
	Regulatory Screening Criteria EPA Primary EPA Regional				Quality Assurance/Quality Control Samples Monitoring Well Equipment Blanks Trip Blanks									lanko			
		EPA Primary Drinking	Screening	ODEQ	Sample ID	WRCEB(090815)	EB091415				EB091815	EB092115	EB092215	Trip Blank	Trip Blank	Trip Blank	Trip Blank
		Water	Levels	Cleanup	Laboratory ID	15090821	15091237	15091242				15091428	15091436	15090829		15091270	
Constituent		Regulations	(Tap Water)	Levels	Sample Date	09/08/15	09/14/15	09/15/15	09/16/15	09/17/15	09/18/15	09/21/15	09/22/15	09/09/15	09/14/15	09/17/15	
TPH (Oklahoma Methods)	CAS Number				Units												
Gasoline Range Organics		NE	NE	1,000	µg/l	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Diesel Range Organics		NE	NE	1,000	µg/l	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Volatile Organics (EPA Method 82																	
Acetone	67-64-1	NE	1,400	NE	µg/l	<10	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Benzene	71-43-2	5	0.46	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-Butanone	78-93-3	NE	560	NE	µg/l	<10	<10	<10	<10	<10	<10	<10 QC	<10	<10	<10	<10	<10
n-Butylbenzene	104-51-8	NE	100	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
sec-Butylbenzene	135-98-8	NE	200	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5
tert-Butylbenzene	98-06-6	NE	69	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5
Carbon disulfide	75-15-0	NE	81	NE	µg/l	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	67-66-3	80	0.22	NE	µg/l	<0.5	<0.5	3.5	2.9	0.8	1.0	1.1	<0.5	< 0.5	<0.5	<0.5	<0.5
Cyclohexane	110-82-7	NE	1,300	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,4-Dichlorobenzene	106-46-7	75	0.48	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5
Ethylbenzene	100-41-4	700	1.5	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Hexane	110-54-3	NE	32	NE	µg/l	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Isopropylbenzene (Cumene)	98-82-8	NE	45	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
4-Isopropyltoluene	99-87-6	NE	NE	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5	<0.5
Methylcyclohexane	108-87-2	NE	NE	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Methyl tertiary butyl ether (MTBE)	1634-04-4	NE	14	NE	µg/l	<0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5
n-Propylbenzene	103-65-1	NE	66	NE	µg/l	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethene	127-18-4	5	4.1	NE	µg/l	<0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5
Toluene	108-88-3	1,000	110	NE	µg/l	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5
1,2,4-Trimethylbenzene	95-63-6	NE	1.5	NE	µg/l	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3,5-Trimethylbenzene	108-67-8	NE	12	NE	µg/l	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
m+p-Xylene	108+106-38-3	NE	19	NE	µg/l	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
o-Xylene	95-47-6	NE	19	NE	µg/l	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5
Xylenes, calculated total (b)		10,000	19	NE	µg/l	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5
Semi-Volatile Organics (EPA Meti	hod 8270C)																
1,4-Dichlorobenzene	106-46-7	75	0.48	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA	NA	NA	NA
2,4- and 2,5-Dimethylphenol	105-67-9	NE	36 (c)	NE	µg/l	<10	<10	<10	<10	<10	<10	<10	<10 QC	NA	NA	NA	NA
2-Methylnaphthalene	91-57-6	NE	3.6	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA	NA	NA	NA
2-Methylphenol	95-48-7	NE	93	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA	NA	NA	NA
Bis(2-ethylhexyl)phthalate	117-81-7	6	5.6	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA	NA	NA	NA
Methylphenol (3 & 4)	108-39-4/106-44-5	NE	93 (d)	NE	µg/l	<5	<5	<5	<5	<5	<5	<5	<5	NA	NA	NA	NA
Naphthalene	91-20-3	NE	0.17	NE	µg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA	NA	NA	NA
Phenanthrene	85-01-8	NE	NE	NE	µg/l	<5	<5	<5	<5	<5	<5	<5	<5	NA	NA	NA	NA
Phenol	108-95-2	NE	580	NE	µg/l	<5	<5	<5	<5	<5	<5	<5	<5	NA	NA	NA	NA
Motala (EPA Mothoda 6020A and	7470 4)																
Metals (EPA Methods 6020A and Arsenic	1	0.04	0.000052	NE	ma/l	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	NA	NA	NA	NA
	7440-38-2	0.01	0.000052 0.38	NE	mg/l		<0.005	<0.005	<0.005	<0.005	< 0.005		<0.005	NA NA	NA NA		
Barium	7440-39-3	2		NE	mg/l	< 0.005	<0.005 <0.001	<0.005 <0.001				< 0.005				NA	NA
Cadmium	7440-43-9	0.005	0.00092	NE	mg/l	<0.001			<0.001	<0.001	<0.001	< 0.001	< 0.001	NA	NA	NA	NA
Lead	7439-92-1	0.015	0.015	NE	mg/l	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	< 0.001	NA	NA	NA	NA
Selenium	7782-49-2 7440-22-4	0.05	0.01 0.0094	NE	mg/l	<0.005	<0.005 <0.002	NA	NA	NA	NA						
Silver		NE		NE	mg/l mg/l	<0.002								NA	NA	NA	NA
Mercury	7439-97-6	0.002	0.000063	NE	mg/l	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	NA	NA	NA	NA

WSP | Parsons Brinckerhoff K:\Coffeyville Resources\WRC\Project Data\Tables\Semi-Annual Report Tables\T3_201509_WRC_GW_Analytical_v2: T3 GW Analytical

Appendix B

Summary of Groundwater Analytical Results September 2015

> Wynnewood Refining Company Wynnewood, Oklahoma

Table 3 Footnotes:

Bold values indicate a detection above the reporting limit.

Shading descriptors:

- Detected concentration exceeds the EPA Primary Drinking Water Regulations Maximum Contaminant Level, updated May 2009.
- Detected concentration exceeds the EPA Regional Screening Level for Tap Water, updated November 2015.

Detected concentration exceeds ODEQ cleanup levels (2004).

EPA = United States Environmental Protection Agency.

ODEQ = Oklahoma Department of Environmental Quality.

TPH = Total Petroleum Hydrocarbons.

NE = not established.

µg/I = micrograms per liter.

mg/l = milligrams per liter.

NA= not analyzed.

a\ Only those organic compounds detected in one or more groundwater samples are shown in this summary table. Refer to laboratory analytical reports for full analyte list.

b\ The value of total xylenes is calculated as the sum of m+p-xylene and o-xylene.

c\ Regional Screening Level is for 2,4-dimethylphenol only.

d\ Regional Screening Level is for 3-methylphenol only.

Laboratory data qualifiers:

EC - This result is estimated due to insufficient chromatographic resolution from other compounds.

IM - Due to matrix interference this analyte did not meet qualitative criteria or was subject to chromatographic peak distortion.

M - The Limit of Quantitation (LOQ) is higher than normal due to matrix interferences.

MP - The MS/MSD recoveries for this analyte exceeded the method or laboratory precision control limit. The reported sample concentration is estimated.

QC - Quality control data qualifiers were noted. See the laboratory quality control report.

SR - One or more surrogate recoveries for this analysis did not meet quality control limits. Please see the Quality Control Report for the sample surrogate data.

Y - The recommended pH adjustment or chemical preservation procedure was not followed or was inadequate for this sample matrix.

Page 14 of 14 Revised: July 12, 2016 Appendix C – LNAPL Transmissivity Data

Pre-Test Bailing Data LNAPL Transmissivity Testing

Wynnewood Refining Company, LLC Wynnewood, Oklahoma

Well ID	Date/Time	Depth to LNAPL (ft-btoc)	Depth to Water (ft-btoc)	LNAPL Thickness (feet)	Volume of LNAPL (gallons)	Volume LNAPL removed (gallons)	Total Depth (ft-btoc)
NMW-2	4/12/16 10:00	18.84	20.50	1.66	0.49	2	21.30
	4/12/16 10:20	20.90	NW	0.40	0.12		
	4/14/16 13:10	18.79	21.15	2.36	0.69		
	4/18/16 11:05	18.83	21.14	2.31	0.68		
NMW-6	4/12/16 11:00	20.59	23.75	3.16	0.93	2	23.88
	4/12/16 11:20	23.56	NW	0.32	0.09		
	4/14/16 13:20	20.83	22.97	2.14	0.63		
	4/18/16 11:21	20.21	22.76	2.55	0.75		
NMW-10	4/12/16 10:30	16.83	20.63	3.80	1.12	2.5	NM
	4/12/16 10:50	17.90	18.20	0.30	0.09		
	4/14/16 13:17	17.53	18.19	0.66	0.19		
	4/18/16 11:13	17.64	18.27	0.63	0.19		
OMW-3	4/12/16 12:58	12.01	19.57	7.56	2.22	2	20.10
	4/12/16 13:15	19.60	NW	0.50	0.15		
	4/14/16 13:45	13.82	15.48	1.66	0.49		
	4/18/16 13:44	13.17	14.57	1.40	0.41		
OMW-4	4/13/16 9:10	12.82	20.41	7.59	2.23	3	NM
	4/13/16 10:00	20.60	21.05	0.45	0.13		
	4/14/16 13:35	13.33	16.75	3.42	1.00		
	4/18/16 13:30	12.69	20.53	7.84	2.30		
LMW-13	4/12/16 13:34	10.81	NW	1.75	0.51	1.5	12.56
	4/12/16 13:50	12.20	NW	0.36	0.11		
	4/14/16 13:55	10.69	NW	1.87	0.55		
	4/18/16 13:52	9.69	9.92	0.23	0.07		

ft-btoc = feet below top of casing.

LNAPL = Light Non-Aqueous Phase Liquid.

NW = No water present.

NM = Not measured.

Casing Diameter (inches)	2]
Borehole Diameter (inches)	6	(inferred, unknown)
Top of Screen (ft-btoc)	12	
Bottom of Screen (ft-btoc)	22	
LNAPL API Gravity	48.2	
LNAPL Specific Gravity	0.79	

Site ID WRC (Wynnewood, OK)	
Pump Used	Peristaltic
Initial Depth to LNAPL (ft-btoc)	17.18
Initial Depth to Water (ft-btoc)	19.29
Initial LNAPL Thickness (feet)	2.11
Initial LNAPL Well Volume (gal)	0.6
Volume LNAPL Removed (gal)	3.6

				LNAPL	Water					Corrected		
			Elapsed	Volume	Volume	Depth to	Depth to	LNAPL	LNAPL	Depth to	Total	
			Time*	Removed	Removed	LNAPL	Water	Thickness	Drawdown	Water	Drawdown	
Pump	Date	Time	(min)	(gal)	(gal)	(ft-btoc)	(ft-btoc)	(feet)	(feet)	(ft-btoc)	(feet)	Comments
On	05/04/16	10:25								17.63		
Off		11:16	0	2.5	1.2	18.76	18.78	0.02	1.58	18.76	1.14	
		11:19	3			18.59	18.66	0.07	1.41	18.60	0.98	
		11:22	6			18.50	18.64	0.14	1.32	18.53	0.90	
		11:25	9			18.39	18.59	0.20	1.21	18.43	0.80	
		11:29	13			18.27	18.56	0.29	1.09	18.33	0.70	
		11:33	17			18.19	18.53	0.34	1.01	18.26	0.63	
		11:40	24			18.07	18.50	0.43	0.89	18.16	0.53	
On		11:41	25									
Off		11:47	31	0.3	trace	18.25	18.28	0.03	1.07	18.26	0.63	
		11:51	4			18.12	18.34	0.22	0.94	18.17	0.54	
		11:53	6			18.08	18.34	0.26	0.90	18.14	0.51	
		11:58	11			18.01	18.33	0.32	0.83	18.08	0.45	
		12:05	18			17.96	18.31	0.35	0.78	18.03	0.41	
On		12:15	28			17.83	18.29	0.46	0.65	17.93	0.30	
Off		12:32	45	0.3	0.2	18.11	18.24	0.13	0.93	18.14	0.51	
		12:38	6			17.99	18.17	0.18	0.81	18.03	0.40	
		12:45	13			17.87	18.15	0.28	0.69	17.93	0.30	
On		13:04	32			17.75	18.15	0.40	0.57	17.84	0.21	
Off		13:09	37	0.25	0.15	18.22	18.23	0.01	1.04	18.22	0.59	
		13:29	20			17.83	18.04	0.21	0.65	17.87	0.25	
		13:36	27			17.78	18.02	0.24	0.60	17.83	0.20	
On		13:39	30									
Off		13:42	33	0.2	0.05	18.03	18.04	0.01	0.85	18.03	0.40	
		16:48	186			17.48	17.97	0.49	0.30	17.58	-0.04	
	05/06/16	18:00	1,698			17.21	18.99	1.78	0.03	17.59	-0.04	
	05/10/16	10:00	6,978			17.05	19.61	2.56	-0.13	17.59	-0.03	

* Elapsed time since the end of the previous discharge event.

Start Date:

05/04/16

Well ID NMW-6		
Casing Diameter (inches)	2	
Borehole Diameter (inches)	6	(inferred, unknown)
Top of Screen (ft-btoc)	14	(inferred, unknown)
Bottom of Screen (ft-btoc)	24	(inferred, unknown)
LNAPL API Gravity	40.3]
LNAPL Specific Gravity	0.82	

Site ID WRC (Wynnewood, OK))
Pump Used	Peristaltic
Initial Depth to LNAPL (ft-btoc)	17.96
Initial Depth to Water (ft-btoc)	20.37
Initial LNAPL Thickness (feet)	2.41
Initial LNAPL Well Volume (gal)	0.7
Volume LNAPL Removed (gal)	1.5

LNAPL Water Corrected Elapsed Volume Volume Depth to LNAPL LNAPL Depth to Depth to Total Time* Removed Removed LNAPL Water Thickness Drawdown Drawdown Water Pump Date Time (ft-btoc) (ft-btoc) (feet) Comments (min) (gal) (gal) (ft-btoc) (feet) (feet) 05/04/16 14:19 18.39 On 0.25 Off 14:50 0 1.15 20.17 20.43 0.26 2.21 20.22 1.83 5 14:55 19.72 19.86 0.14 1.76 19.74 1.36 15:58 68 19.02 19.31 0.29 1.06 19.07 0.69 75 16:05 18.97 19.29 0.32 1.01 19.03 0.64 82 16:12 18.93 19.24 0.31 0.97 18.98 0.60 On 16:14 84 Off 90 19.25 19.27 0.02 1.29 19.25 0.87 16:20 0.15 0.05 16:26 6 19.10 19.22 0.12 1.14 19.12 0.74 16:55 35 18.91 19.07 0.16 0.95 18.94 0.55 17:20 60 18.82 18.96 0.14 0.86 18.84 0.46 1,084 05/05/16 10:24 18.38 18.69 0.31 0.42 18.43 0.05 10:50 1,110 On Off 10:58 1,118 0.13 0.2 18.33 18.35 0.02 0.37 18.33 -0.05 11:02 4 18.75 18.82 0.07 0.79 18.76 0.38 05/06/16 9:15 1,333 18.42 18.61 0.19 0.46 18.45 0.07 9:25 On 1,343 Off 9:28 1,346 0.03 18.66 18.67 0.01 0.70 18.66 0.28 trace 18.58 9:30 2 18.57 18.64 0.07 0.61 0.20 505 18.51 17:53 18.39 0.12 0.43 18.41 0.03 05/10/16 10:30 5,317 18.45 18.61 0.16 0.49 18.48 0.09

* Elapsed time since the end of the previous discharge event.

Start Date:

05/04/16

Well ID NMW-10

Casing Diameter (inches)	2	
Borehole Diameter (inches)	6	(inferred, unknown)
Top of Screen (ft-btoc)	7	
Bottom of Screen (ft-btoc)	37	
LNAPL API Gravity	70.9	
LNAPL Specific Gravity	0.70]

Site ID WRC (Wynnewood, OK)	
Pump Used	Peristaltic
Initial Depth to LNAPL (ft-btoc)	15.38
Initial Depth to Water (ft-btoc)	17.21
Initial LNAPL Thickness (feet)	1.83
Initial LNAPL Well Volume (gal)	0.5
Volume LNAPL Removed (gal)	0.9

Start Date: 05/05/16

				LNAPL	Water					Corrected		
			Elapsed	Volume	Volume	Depth to	Depth to	LNAPL	LNAPL	Depth to	Total	
			Time*	Removed	Removed	LNAPL	Water	Thickness	Drawdown	Water	Drawdown	
Pump	Date	Time	(min)	(gal)	(gal)	(ft-btoc)	(ft-btoc)	(feet)	(feet)	(ft-btoc)	(feet)	Comments
On	05/04/16	15:18	· · · · ·	, je v		r í	, í			15.93		
Off		15:42	0	0.7	0.4	15.98	16.03	0.05	0.60	16.00	0.06	
		15:47	5			15.88	16.05	0.17	0.50	15.93	0.00	
		16:31	49			15.81	16.07	0.26	0.43	15.89	-0.04	
		16:45	63			15.81	16.09	0.28	0.43	15.89	-0.04	
		17:53	131			15.81	16.10	0.29	0.43	15.90	-0.03	
On		17:38	116									
Off		17:50	128	0.03	0.2	15.92	15.93	0.01	0.54	15.92	-0.01	
		17:51	1			15.89	15.93	0.04	0.51	15.90	-0.03	
		17:56	6			15.87	15.96	0.09	0.49	15.90	-0.03	
	05/05/16	11:10	1,040			15.94	16.34	0.40	0.56	16.06	0.13	
On		11:12	1,042									
Off		11:33	1,063	0.1	0.4	16.17	16.19	0.02	0.79	16.18	0.25	During LNAPL skimming
		11:38	5			16.07	16.11	0.04	0.69	16.08	0.15	during last 5/5 and 5/6
	05/06/16	9:40	1,327			15.93	16.41	0.48	0.55	16.07	0.14	removal events, very
On		9:45	1,332									little LNAPL could be
Off		9:57	1,344	0.03	0.2	16.02	16.55	0.53	0.64	16.18	0.25	removed from well.
		9:59	2			15.98	16.57	0.59	0.60	16.16	0.23	The measured LNAPL
		17:49	472			15.82	16.29	0.47	0.44	15.96	0.03	thickness may not
	05/10/16	10:15	5,778			15.52	17.13	1.61	0.14	16.00	0.07	accurately represent
												LNAPL drawdown in
												monitoring well.
												_
		-										
		-										
		-										

* Elapsed time since the end of the previous discharge event.

W	ell	ID	01	OMW-3			
-			<i>/</i> 1				

Casing Diameter (inches)	2
Borehole Diameter (inches)	6
Top of Screen (ft-btoc)	13
Bottom of Screen (ft-btoc)	23
LNAPL API Gravity	40.8
LNAPL Specific Gravity	0.82

Site ID WRC (Wynnewood, OK)Pump UsedPeristalticInitial Depth to LNAPL (ft-btoc)11.09Initial Depth to Water (ft-btoc)14.19Initial LNAPL Thickness (feet)3.1Initial LNAPL Well Volume (gal)0.9Volume LNAPL Removed (gal)0.5

LNAPL Water Corrected Volume Volume LNAPL LNAPL Depth to Elapsed Depth to Depth to Total Time* Removed LNAPL Removed Water Thickness Drawdown Water Drawdown Date (ft-btoc) (feet) Comments Pump Time (min) (gal) (gal) (ft-btoc) (ft-btoc) (feet) (feet) 05/06/16 13:36 11.64 On Off 13:40 0 0.5 trace 13.67 13.68 0.01 2.58 13.67 2.03 13:41 1 13.65 13.66 0.01 2.56 13.65 2.01 13:42 13.63 13.64 2.54 13.63 1.99 2 0.01 13:43 3 13.62 13.64 0.02 2.53 13.62 1.98 13.59 13:44 4 13.62 0.03 2.50 13.60 1.95 13.56 13.57 1.92 13:45 5 13.59 0.03 2.47 2.39 13:50 10 13.48 13.54 0.06 13.49 1.85 15 13.45 13.55 0.10 2.36 13.47 1.82 13:55 14:00 20 13.43 13.53 0.10 2.34 13.45 1.80 14:05 25 13.42 13.50 0.08 2.33 13.43 1.79 35 0.09 2.29 13.40 1.75 14:15 13.38 13.47 2.26 13.37 1.72 14:25 45 13.35 13.45 0.10 14:45 65 13.29 13.43 2.20 13.32 1.67 0.14 15:00 80 13.32 13.45 0.13 2.23 13.34 1.70 13.31 95 13.28 13.42 0.14 1.66 15:15 2.19 110 13.31 2.22 13.34 15:30 13.46 0.15 1.69 16:20 160 13.25 13.42 0.17 2.16 13.28 1.64 17:30 230 13.15 13.33 0.18 2.06 13.18 05/07/16 9:00 1,160 12.34 13.06 0.72 1.25 12.47 0.82 05/10/16 9:30 4,070 11.44 0.00 11.44 -0.20 No measurable LNAPL None

* Elapsed time since the end of the previous discharge event.

Start Date:

05/06/16

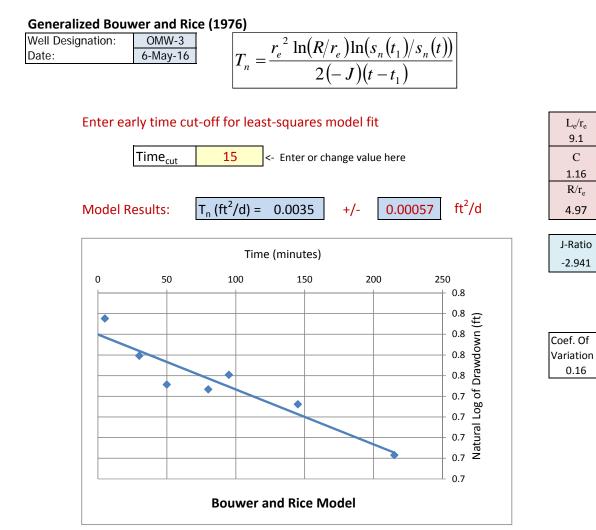
Well ID	OMW-4	
Casing Diameter	r (inches)	2
Borehole Diame	ter (inches)	6
Top of Screen (f	t-btoc)	13
Bottom of Scree	n (ft-btoc)	23
LNAPL API Grav	vity	33.1
LNAPL Specific	Gravity	0.86

Site ID WRC (Wynnewood, OK)
Pump Used	Peristaltic
Initial Depth to LNAPL (ft-btoc)	11.27
Initial Depth to Water (ft-btoc)	18.15
Initial LNAPL Thickness (feet)	6.88
Initial LNAPL Well Volume (gal)	2.0
Volume LNAPL Removed (gal)	4.5

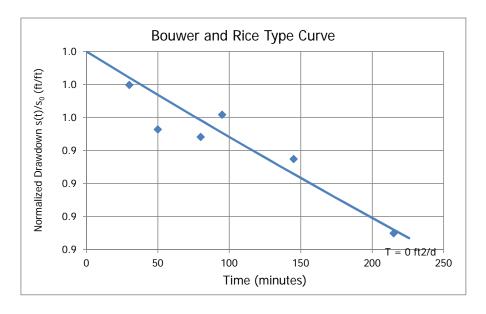
Start Date: 05/05/16

				LNAPL	Water					Corrected		
			Elapsed	Volume	Volume	Depth to	Depth to	LNAPL	LNAPL	Depth to	Total	
			Time*	Removed	Removed	LNAPL	Water	Thickness	Drawdown	Water	Drawdown	
Pump	Date	Time	(min)	(gal)	(gal)	(ft-btoc)	(ft-btoc)	(feet)	(feet)	(ft-btoc)	(feet)	Comments
On	05/05/16	13:45				, í	· · · ·			12.24		
Off		14:17	0	2.7	trace	17.85	17.86	0.01	6.58	17.85	5.62	
		14:19	2			17.80	17.95	0.15	6.53	17.82	5.59	
		14:20	3			17.67	17.87	0.20	6.40	17.70	5.46	
		14:21	4			17.52	17.95	0.43	6.25	17.58	5.34	
		14:22	5			17.35	17.87	0.52	6.08	17.42	5.19	
		14:23	6			17.20	17.66	0.46	5.93	17.26	5.03	
		14:24	7			17.03	17.72	0.69	5.76	17.13	4.89	
		14:25	8			16.89	17.55	0.66	5.62	16.98	4.75	
		14:26	9			16.79	17.51	0.72	5.52	16.89	4.66	
		14:27	10			16.69	17.35	0.66	5.42	16.78	4.55	
		14:30	13			16.55	17.23	0.68	5.28	16.65	4.41	
		14:40	23			16.02	16.73	0.71	4.75	16.12	3.88	
		14:50	33			15.59	16.36	0.77	4.32	15.70	3.46	
		15:00	43			15.21	16.08	0.87	3.94	15.33	3.10	
		15:15	58			14.81	15.89	1.08	3.54	14.96	2.73	
		15:30	73			14.41	15.70	1.29	3.14	14.59	2.36	
		15:48	91			14.18	15.58	1.40	2.91	14.38	2.14	
On		15:49	92									
Off		15:58	101	0.38	trace	15.70	15.72	0.02	4.43	15.70	3.47	
		16:05	7			15.33	15.45	0.12	4.06	15.35	3.11	
		16:16	18			15.05	15.21	0.16	3.78	15.07	2.84	
		16:46	48			14.39	14.84	0.45	3.12	14.45	2.22	
		17:05	67			14.15	14.69	0.54	2.88	14.23	1.99	
On		17:06	68									
Off		17:14	76	0.38	0.10	15.28	15.30	0.02	4.01	15.28	3.05	
	05/06/16	10:23	1,029			12.31	13.82	1.51	1.04	12.52	0.29	

* Elapsed time since the end of the previous discharge event.

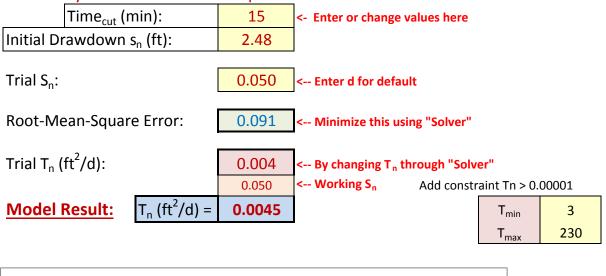

Well ID OMW-4

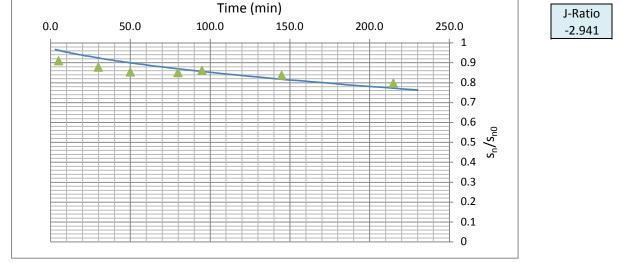
Site ID WRC (Wynnewood, OK)

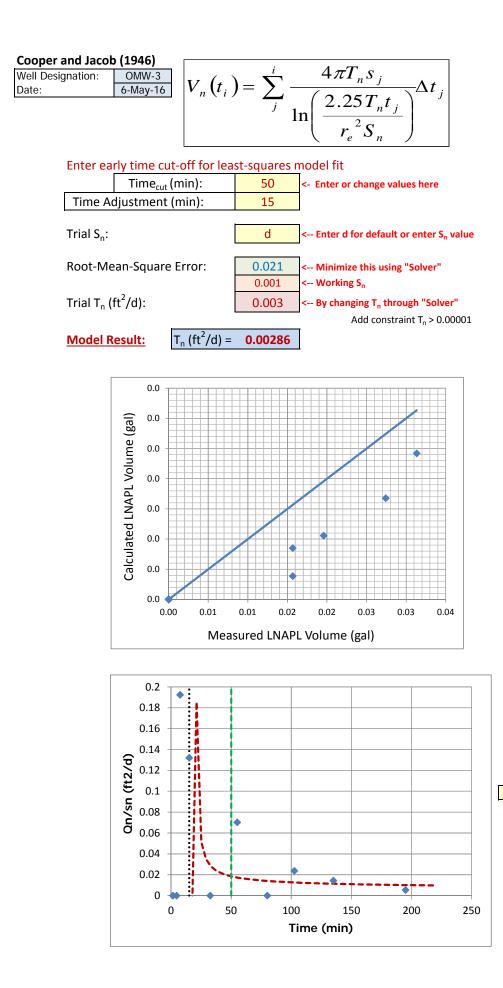

Start Date: 05/05/16

			Elapsed	LNAPL Volume	Water Volume	Depth to	Depth to	LNAPL	LNAPL	Corrected Depth to	Total	
Pump	Date	Time	Time (min)	Removed (gal)	Removed (gal)	LNAPL (ft-btoc)	Water (ft-btoc)	Thickness (feet)	Drawdown (feet)	Water (ft-btoc)	Drawdown (feet)	Comments
On	05/06/16	10:30	()	(gui)	(gui)			(1001)	(1001)			Commonto
Off	00,00,10	10:36	0	0.45	0.025	13.65	13.67	0.02	2.38	13.65	1.42	
		10:39	3	0110	0.020	13.30	13.54	0.24	2.03	13.33	1.10	
		16:38	362			12.51	13.65	1.14	1.24	12.67	0.43	
On		16:42	366								0.10	
Off		17:09	393	0.66	0.063	14.24	14.26	0.02	2.97	14.24	2.01	
		17:15	6			13.95	14.16	0.21	2.68	13.98	1.74	
	05/07/16	9:09	1,404			12.26	13.65	1.39	0.99	12.46	0.22	
	05/10/16	9:45	4,320			11.74	14.75	3.01	0.47	12.16	-0.07	
			,				-		-	-		
			1									
			1									
			-									
			1									
			†									
			1									
			1									
			ł								}	
			<u>I</u>								<u> </u>	

() Start


C coefficient calculated from Eq. 6.5(c) of Butler, The Design, Performance, and Analysis of Slug Tests, CRC Press, 2000.




Cooper, Bredehoeft and Papadopulos (1967)

Well Designation:OMW-3Date:6-May-16

Enter early time cut-off for least-squares model fit

Height

15

Appendix D – Direct-Push Investigation Analytical Laboratory Reports

03/14/2016

Page: 1

Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103

Date and Time Received: 02/29/2016 1615 Pace File No.: 8462 Pace Order No.: 131715 Project ID: WRC Wynnewood

Dear Mr. McCormick:

This laboratory report, containing the samples indicated below, includes 22 pages for the analytical report, 2 page(s) for the chain of custody and/or analysis request, and 5 page(s) for the sample receipt form.

PACE LAB ID #	SAMPLE DESCRIPTION	SAMPLE TYPE	DATE SAMPLED
16022149	WRCDP-68(022416)	Liquid	2/24/2016
16022150	WRCDP-DUPE-1(022416)	Liquid	2/24/2016
16022151	WRCDP-67(022416)	Liquid	2/24/2016
16022152	WRCDP-61(022416)	Liquid	2/24/2016
16022153	WRCDP-60(022516)	Liquid	2/25/2016
16022154	WRCDP-64(022516)	Liquid	2/25/2016
16022155	WRCDP-69(022516)	Liquid	2/25/2016
16022156	WRCDP-DUPE-2(022716)	Liquid	2/27/2016
16022157	WRCDP-81(022716)	Liquid	2/27/2016
16022158	WRCDP-84(022716)	Liquid	2/27/2016
16022159	WRCDP-109(022716)	Liquid	2/27/2016
16022160	WRCDP-78(022716)	Liquid	2/27/2016
16022161	WRCDP-74(022816)	Liquid	2/28/2016
16022162	WRCDP-75(022816)	Liquid	2/28/2016
16022163	WRCDP-65(022416)	Liquid	2/24/2016
16022164	WRCDP-77(022616)	Liquid	2/26/2016
16022165	WRCDP-76(022816)	Liquid	2/28/2016
16022166	Trip Blank (022916)	Liquid	2/29/2016

The Appendix and Quality Control sections are integral parts of this laboratory report and may contain important data qualifiers.

All results are reported on a wet weight basis unless otherwise stated.

Samples will be retained for thirty days unless Pace is otherwise notified. Pace is accredited by the State of Kansas through the National Environmental Laboratory Accreditation Program (NELAP). The results contained in this report were obtained using Pace's Standard Operating Procedures. These procedures are in substantial compliance with the approved methods referenced and the standards published by NELAP unless otherwise noted in the Appendix and Quality Control sections of this report.

This report may not be reproduced, except in full, without written approval from Pace Analytical Services, Inc.

Thank you for choosing Pace for this project.

525 N. Eighth St. - Salina, KS 67401 785-827-1273 800-535-3076 Fax 785-823-7830 KDHE Environmental Laboratory Accreditation No. E-10146

03/14/2016

Page: 2

hegery J. Havene

Gregory J. Groene Project Manager Gregory.Groene@pacelabs.com

525 N. Eighth St. - Salina, KS 67401 785-827-1273 800-535-3076 Fax 785-823-7830 KDHE Environmental Laboratory Accreditation No. E-10146

Page: 3

Date Reported: 03/14/2016 Date Received: 02/29/2016 Pace File No: 8462 Pace Order No: 131715

Date Sampled: 02/24/2016 Time Sampled: 0950

Client: Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103

Lab Number: 16022149	
Sample Description: WRCDP-68(022416)	

				Dilution	<u>Reportir</u>	<u>ig Limit</u>
<u>Analysis</u>	<u>Concentrati</u>	on <u>Ur</u>	<u>nits</u>	Factor	LOD	LOQ
Oklahoma GRO	ND	μg	;/L	1.0	20	20
Oklahoma DRO	570 B	μg	;/L	1.0	100	100
BTEX						
Benzene	0.07 J	μg	:/L	1.0	0.04	1.0
Toluene	0.08 J	μg		1.0	0.06	1.0
Ethylbenzene	ND	μg	;/L	1.0	0.1	1.0
m+p-Xylene	0.09 J	μg	;/L	1.0	0.06	1.0
o-Xylene	ND	μg	:/L	1.0	0.1	1.0
	Date/Time	Date/Time	QC	Inst.		
<u>Analysis</u>	Prepared	Analyzed	Batch	Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Met OK DRO Preparation Method		03/08/16 1742 03/07/16 1203 03/01/16 2001	1GC2068 160302-1 1MS8061	1GC2068 1EX4067 1MS8061	LPL SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16022149

Lab Number: 16022150 Sample Description: WRCDP-DUPE-1(022416)

Date Sampled: 02/24/2016 Time Sampled: 1330

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	Concentrati ND 560 B	on	<u>Units</u> μg/L μg/L	Dilution <u>Factor</u> 1.0 1.0	<u>Reportir</u> <u>LOD</u> 20 100	ng <u>Limit</u> LOQ 20 100
BTEX						
Benzene	ND		μg/L	1.0	0.04	1.0
Toluene	ND		μg/L	1.0	0.06	1.0
Ethylbenzene	ND		μg/L	1.0	0.1	1.0
m+p-Xylene	ND		μg/L	1.0	0.06	1.0
o-Xylene	ND		µg/L	1.0	0.1	1.0
	Date/Time	Date/Time	QC	Inst.		
<u>Analysis</u>	Prepared	<u>Analyzed</u>	Batch	Batch	<u>Analyst</u>	Method(s)

-Continued-

Page: 4

Date Reported: 03/14/2016 Date Received: 02/29/2016 Pace File No: 8462 Pace Order No: 131715

Analysis	Date/Time Prepared	Date/Time <u>Analyzed</u>	QC Batch	Inst. Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Met GC/FID Volatile Preparation Met OK DRO Preparation Method		03/08/16 1814 03/07/16 1232 03/01/16 2036	1GC2068 160302-1 1MS8061	1GC2068 1EX4067 1MS8061	LPL SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16022150

Lab Number: 16022151 Sample Description: WRCDP-67(022416)

Coffeyville Resources

Attn: Sam McCormick

Kansas City, KS 66103

10 E. Cambridge Circle Dr.

Client:

Date Sampled: 02/24/2016 Time Sampled: 1500

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	Concentration ND 520 B QC		<u>Units</u> μg/L μg/L		<u>Reportir</u> <u>LOD</u> 20 200	n <u>g Limit</u> LOQ 20 200
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	ND ND ND 0.07 J ND	μg/ μg/ μg/ μg/	L L L	$ \begin{array}{c} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0 \end{array} $	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0
Analysis	Date/Time <u>Prepared</u>	Date/Time Analyzed	QC Batch	Inst. Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Me OK DRO Preparation Method		03/08/16 1845 03/08/16 0817 03/01/16 2335	1GC2068 160302-1 1MS8061	1GC2068 3EX4067 1MS8061	LPL SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16022151

Date Reported: 03/14/2016 Date Received: 02/29/2016 Pace File No: 8462 Pace Order No: 131715

Lab Number: 16022152
Sample Description: WRCDP-61(022416)

Date Sampled: 02/24/2016
Time Sampled: 1745

				Dilution	<u>Reportir</u>	ng Limit
<u>Analysis</u>	<u>Concentrati</u>		nits	Factor	LOD	LOQ
Oklahoma GRO	ND	μ	g/L	1.0	20	20
Oklahoma DRO	880 B	μ	g/L	1.0	100	100
BTEX						
Benzene	0.14 J	μ	g/L	1.0	0.04	1.0
Toluene	0.19 J		g/L	1.0	0.06	1.0
Ethylbenzene	ND	μ	g/L	1.0	0.1	1.0
m+p-Xylene	0.17 J		g/L	1.0	0.06	1.0
o-Xylene	0.1 J	μ	g/L	1.0	0.1	1.0
			00	Turat		
Analysis	Date/Time	Date/Time	QC Datab	Inst. Dotob	Amoleust	Mathad(a)
<u>Analysis</u>	Prepared	<u>Analyzed</u>	Batch	Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO	N/A	03/08/16 2019	1GC2068	1GC2068	LPL	OK GRO
Oklahoma DRO	03/02/16 0930	03/07/16 1428	160302-1	1EX4067	SPA	OK DRO
BTEX	N/A	03/01/16 2112	1MS8061	1MS8061	GMA	8260B
Volatile Analysis Preparation Me						5030B
GC/FID Volatile Preparation Me	thod					5030B
OK DRO Preparation Method						OK DRO

Conclusion of Lab Number: 16022152

Lab Number: 16022153 Sample Description: WRCDP-60(022516)				Date Samp Time Samp		2016
<u>Analysis</u> Oklahoma GRO Oklahoma DRO	Concentrati ND 470 B	<u>on</u>	<u>Units</u> μg/L μg/L	Dilution <u>Factor</u> 1.0 1.0	<u>Reportir</u> <u>LOD</u> 20 100	n <u>g Limit</u> LOQ 20 100
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	0.12 J 0.14 J ND 0.15 J ND		μg/L μg/L μg/L μg/L μg/L	1.0 1.0 1.0 1.0 1.0	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0
Analysis	Date/Time <u>Prepared</u>	Date/Time <u>Analyzed</u>	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)

-Continued-

Page: 6

Date Reported: 03/14/2016 Date Received: 02/29/2016 Pace File No: 8462 Pace Order No: 131715

Analysis	Date/Time Prepared	Date/Time Analyzed	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Met OK DRO Preparation Method		03/08/16 2050 03/07/16 1457 03/01/16 2148	1GC2068 160302-1 1MS8061	1GC2068 1EX4067 1MS8061	LPL SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16022153

Lab Number: 16022154 Sample Description: WRCDP-64(022516)

Coffeyville Resources

Attn: Sam McCormick

Kansas City, KS 66103

10 E. Cambridge Circle Dr.

Client:

Date Sampled: 02/25/2016 Time Sampled: 1440

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrati</u> ND 190 B	<u>on Uni</u> μg/ μg/	L	Dilution <u>Factor</u> 1.0 1.0	<u>Reportir</u> <u>LOD</u> 20 100	n <u>g Limit</u> LOQ 20 100
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	ND ND ND ND	μg/ μg/ μg/ μg/	L L L	1.0 1.0 1.0 1.0 1.0	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0
<u>Analysis</u>	Date/Time Prepared	Date/Time Analyzed	QC <u>Batch</u>	Inst. Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Me OK DRO Preparation Method		03/08/16 2122 03/07/16 1134 03/01/16 2224	1GC2068 160302-1 1MS8061	1GC2068 1EX4067 1MS8061	LPL SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16022154

Date Reported: 03/14/2016 Date Received: 02/29/2016 Pace File No: 8462 Pace Order No: 131715

Date Sampled: 02/25/2016 Time Sampled: 1630

Lab Number: 16022155						
Sample Description: WRCDP-69(022516)						

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrati</u> ND 1300	<u>on Un</u> μg μg		Dilution <u>Factor</u> 1.0 2.0	<u>Reportir</u> <u>LOD</u> 20 200	n <u>g Limit</u> LOQ 20 200
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	0.05 J ND ND ND ND	អន អន អន	/L /L /L	1.0 1.0 1.0 1.0 1.0	0.04 0.06 0.1 0.06 0.1	1.0 1.0 1.0 1.0 1.0
Analysis	Date/Time <u>Prepared</u>	Date/Time <u>Analyzed</u>	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Met OK DRO Preparation Method		03/08/16 2153 03/08/16 0524 03/01/16 2259	1GC2068 160302-1 1MS8061	1GC2068 3EX4067 1MS8061	LPL SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16022155

Lab Number: 16022156 Sample Description: WRCDP-DUPE-2(022716)

Date Sampled: 02/27/2016 Time Sampled: 1030

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	Concentrati 248 1600	<u>on</u>	<u>Units</u> μg/L μg/L	Dilution <u>Factor</u> 1.0 2.0	<u>Reportir</u> LOD 20 200	n <u>g Limit</u> LOQ 20 200
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	17.0 0.07 J 7.5 6.08 0.2 J		μg/L μg/L μg/L μg/L μg/L	1.0 1.0 1.0 1.0 1.0	0.04 0.06 0.1 0.06 0.1	1.0 1.0 1.0 1.0 1.0
Analysis	Date/Time <u>Prepared</u>	Date/Time <u>Analyzed</u>	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)

-Continued-

Page: 8

Date Reported: 03/14/2016 Date Received: 02/29/2016 Pace File No: 8462 Pace Order No: 131715

Analysis	Date/Time Prepared	Date/Time <u>Analyzed</u>	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Met OK DRO Preparation Method		03/08/16 2224 03/07/16 1947 03/02/16 0310	1GC2068 160302-2 1MS8061	1GC2068 2EX4067 2MS8061	LPL SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16022156

Lab Number: 16022157 Sample Description: WRCDP-81(022716)

Coffeyville Resources

Attn: Sam McCormick

Kansas City, KS 66103

10 E. Cambridge Circle Dr.

Client:

Date Sampled: 02/27/2016 Time Sampled: 1115

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrati</u> 250. 1500	<u>on Un</u> μg/ μg/	L	Dilution <u>Factor</u> 1.0 2.0	<u>Reportir</u> <u>LOD</u> 20 200	ng <u>Limit</u> LOQ 20 200
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	17.6 0.08 J 7.6 5.79 0.2 J	μg/ μg/ μg/ μg/	L L L	1.0 1.0 1.0 1.0 1.0	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0
Analysis	Date/Time Prepared	Date/Time Analyzed	QC Batch	Inst. Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Me OK DRO Preparation Method		03/09/16 1008 03/08/16 0748 03/02/16 0345	1GC2069 160302-2 1MS8061	1GC2069 3EX4067 2MS8061	LPL SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16022157

Date Reported: 03/14/2016 Date Received: 02/29/2016 Pace File No: 8462 Pace Order No: 131715

Lab Number: 16022158 Sample Description: WRCDP-84(022716)

Date Sampled: 02/27/2016	
Time Sampled: 1215	

				Dilution		<u>ng Limit</u>
<u>Analysis</u>	Concentrati		<u>iits</u>	Factor	LOD	LOQ
Oklahoma GRO	ND	μg		1.0	20	20
Oklahoma DRO	500 B	μg	/L	1.0	100	100
BTEX						
Benzene	ND	μg	/L	1.0	0.04	1.0
Toluene	ND	μg		1.0	0.06	1.0
Ethylbenzene	ND	μg	/L	1.0	0.1	1.0
m+p-Xylene	ND	μg	/L	1.0	0.06	1.0
o-Xylene	ND	μg	/L	1.0	0.1	1.0
				_		
	Date/Time	Date/Time	QC	Inst.		
<u>Analysis</u>	Prepared	<u>Analyzed</u>	<u>Batch</u>	Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO	N/A	03/09/16 1040	1GC2069	1GC2069	LPL	OK GRO
Oklahoma DRO	03/02/16 1130	03/07/16 2113	160302-2	2EX4067	SPA	OK DRO
BTEX	N/A	03/02/16 0421	1MS8061	2MS8061	GMA	8260B
Volatile Analysis Preparation Me	ethod					5030B
GC/FID Volatile Preparation Me	thod					5030B
OK DRO Preparation Method						OK DRO

Conclusion of Lab Number: 16022158

Lab Number: 16022159 Sample Description: WRCDP-109(022716)					Date Sampled: 02/27/2016 Time Sampled: 1320			
<u>Analysis</u> Oklahoma GRO Oklahoma DRO	Concentra ND 280 B	<u>ition</u>	<u>Units</u> μg/L μg/L	Dilution <u>Factor</u> 1.0 1.14	<u>Reportin</u> <u>LOD</u> 20 100	n <u>g Limit</u> LOQ 20 110		
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	ND ND ND ND		μg/L μg/L μg/L μg/L μg/L	1.0 1.0 1.0 1.0 1.0	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0		
Analysis	Date/Time <u>Prepared</u>	Date/Time <u>Analyzed</u>	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)		

-Continued-

Page: 10

Date Reported: 03/14/2016 Date Received: 02/29/2016 Pace File No: 8462 Pace Order No: 131715

Analysis	Date/Time Prepared	Date/Time <u>Analyzed</u>	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Met OK DRO Preparation Method		03/09/16 1111 03/07/16 2142 03/02/16 0457	1GC2069 160302-2 1MS8061	1GC2069 2EX4067 2MS8061	LPL SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16022159

Lab Number: 16022160 Sample Description: WRCDP-78(022716)

Coffeyville Resources

Attn: Sam McCormick

Kansas City, KS 66103

10 E. Cambridge Circle Dr.

Client:

Date Sampled: 02/27/2016 Time Sampled: 1710

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentration</u> 37600 19000	<u>on Uni</u> μg/ μg/	L	Dilution <u>Factor</u> 200 22.47	<u>Reportir</u> <u>LOD</u> 4000 2000	ng Limit LOQ 4000 2200
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	9830 390 J 1800 6740 QC 770	μg/ μg/ μg/ μg/	L L L	500 500 500 500 500	20 30 50 30 50	500 500 500 500 500
<u>Analysis</u>	Date/Time <u>Prepared</u>	Date/Time <u>Analyzed</u>	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Me OK DRO Preparation Method		03/09/16 1143 03/07/16 2211 03/02/16 1637	1GC2069 160302-2 1MS8062	1GC2069 2EX4067 1MS8062	LPL SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16022160

Date Reported: 03/14/2016 Date Received: 02/29/2016 Pace File No: 8462 Pace Order No: 131715

Lab Number: 16022161	
Sample Description: WRCDP-74(022816)	

Date Sampled: 02/28/2016
Time Sampled: 1045

				Dilution		<u>ng Limit</u>
<u>Analysis</u>	<u>Concentrati</u>		its	Factor	LOD	LOQ
Oklahoma GRO	ND µg			1.0	20	20
Oklahoma DRO	770	μg	/L	1.0	100	100
BTEX						
Benzene	0.05 J	μg	/L	1.0	0.04	1.0
Toluene	ND	μg		1.0	0.06	1.0
Ethylbenzene	ND	μg	/L	1.0	0.1	1.0
m+p-Xylene	0.13 J	μg	/L	1.0	0.06	1.0
o-Xylene	ND	μg	/L	1.0	0.1	1.0
			00	Tarat		
A 1 :	Date/Time	Date/Time	QC	Inst.	A 1 /	
<u>Analysis</u>	Prepared	<u>Analyzed</u>	Batch	Batch_	<u>Analyst</u>	Method(s)
Oklahoma GRO	N/A	03/09/16 1214	1GC2069	1GC2069	LPL	OK GRO
Oklahoma DRO	03/02/16 1130	03/07/16 2240	160302-2	2EX4067	SPA	OK DRO
BTEX	N/A	03/02/16 0609	1MS8061	2MS8061	GMA	8260B
Volatile Analysis Preparation Me	ethod					5030B
GC/FID Volatile Preparation Me	thod					5030B
OK DRO Preparation Method						OK DRO
-						

Conclusion of Lab Number: 16022161

Lab Number: 16022162 Sample Description: WRCDP-75(022816)

Date Sampled: 02/28/2016 Time Sampled: 1148

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrati</u> ND 640	on	<u>Units</u> μg/L μg/L	Dilution <u>Factor</u> 1.0 1.0	<u>Reportir</u> LOD 20 100	n <u>g Limit</u> LOQ 20 100
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	0.04 J ND ND 0.08 J ND		μg/L μg/L μg/L μg/L μg/L	1.0 1.0 1.0 1.0 1.0	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0
Analysis	Date/Time Prepared	Date/Time <u>Analyzed</u>	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)

-Continued-

Page: 12

Date Reported: 03/14/2016 Date Received: 02/29/2016 Pace File No: 8462 Pace Order No: 131715

Analysis	Date/Time Prepared	Date/Time Analyzed	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Met OK DRO Preparation Method		03/09/16 1348 03/07/16 2309 03/02/16 0644	1GC2069 160302-2 1MS8061	1GC2069 2EX4067 2MS8061	LPL SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16022162

Lab Number: 16022163 Sample Description: WRCDP-65(022416)

Coffeyville Resources

Attn: Sam McCormick

Kansas City, KS 66103

10 E. Cambridge Circle Dr.

Client:

Date Sampled: 02/24/2016 Time Sampled: 1720

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrati</u> ND 270 B	<u>on Un</u> μg/ μg/	L	Dilution <u>Factor</u> 1.0 1.0	<u>Reportir</u> <u>LOD</u> 20 100	n <u>g Limit</u> LOQ 20 100
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	ND ND ND 0.08 J ND	μg/ μg/ μg/	L L L	1.0 1.0 1.0 1.0 1.0	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0
Analysis	Date/Time Prepared	Date/Time <u>Analyzed</u>	QC Batch	Inst. Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Me OK DRO Preparation Method		03/08/16 2256 03/07/16 1555 03/02/16 0720	1GC2068 160302-1 1MS8061	1GC2068 1EX4067 2MS8061	LPL SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16022163

Date Reported: 03/14/2016 Date Received: 02/29/2016 Pace File No: 8462 Pace Order No: 131715

Lab Number: 16022164	
Sample Description: WRCDP-77(022616)	

Date Sampled: 02/26/2016
Time Sampled: 1540

				Dilution	<u>Reportir</u>	
<u>Analysis</u>	<u>Concentrati</u>			Factor	LOD	LOQ
Oklahoma GRO	ND	μg	/L	1.0	20	20
Oklahoma DRO	170 B	μg	/L	1.0	100	100
BTEX						
Benzene	0.04 J	μg	/L	1.0	0.04	1.0
Toluene	0.08 J	μg		1.0	0.06	1.0
Ethylbenzene	ND	μg		1.0	0.1	1.0
m+p-Xylene	ND		μg/L		0.06	1.0
o-Xylene	ND	μg	µg/L		0.1	1.0
			00	Tarat		
Amalanaia	Date/Time	Date/Time	QC Datah	Inst.	A a 1a4	
<u>Analysis</u>	Prepared	<u>Analyzed</u>	Batch_	Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO	N/A	03/08/16 2327	1GC2068	1GC2068	LPL	OK GRO
Oklahoma DRO	03/02/16 0930	03/07/16 1105	160302-1	1EX4067	SPA	OK DRO
BTEX	N/A	03/02/16 0756	1MS8061	2MS8061	GMA	8260B
Volatile Analysis Preparation Me						5030B
GC/FID Volatile Preparation Met	thod					5030B
OK DRO Preparation Method						OK DRO

Conclusion of Lab Number: 16022164

Lab Number: 16022165 Sample Description: WRCDP-	Date Sampled: 02/28/2016 Time Sampled: 1000					
<u>Analysis</u> Oklahoma GRO Oklahoma DRO	Concentrat 179 450 B	ion	<u>Units</u> μg/L μg/L	Dilution <u>Factor</u> 1.0 1.0	<u>Reportin</u> <u>LOD</u> 20 100	n <u>g Limit</u> LOQ 20 100
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	0.41 J ND 1.3 0.23 J 0.2 J	ND 1.3 0.23 J		1.0 1.0 1.0 1.0 1.0	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0
Analysis	Date/Time <u>Prepared</u>	Date/Time <u>Analyzed</u>	QC Batch	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)

-Continued-

Page: 14

Date Reported: 03/14/2016 Date Received: 02/29/2016 Pace File No: 8462 Pace Order No: 131715

Analysis	Date/Time Prepared	Date/Time Analyzed	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Met GC/FID Volatile Preparation Met OK DRO Preparation Method		03/09/16 1419 03/07/16 2337 03/02/16 0832	1GC2069 160302-2 1MS8061	1GC2069 2EX4067 2MS8061	LPL SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16022165

Lab Number: 16022166 Sample Description: Trip Blank (022916)

Coffeyville Resources

Attn: Sam McCormick

Kansas City, KS 66103

10 E. Cambridge Circle Dr.

Client:

Date Sampled: 02/29/2016 Time Sampled: 1000

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrati</u> ND ND	<u>on Uni</u> μg/ μg/	L	Dilution <u>Factor</u> 1.0 1.0	<u>Reportir</u> <u>LOD</u> 20 100	ng <u>Limit</u> LOQ 20 100		
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	ND ND ND ND ND	μg/ μg/ μg/	μg/L μg/L μg/L μg/L μg/L		μg/L 1.0 μg/L 1.0 μg/L 1.0		$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0
Analysis	Date/Time Prepared	Date/Time Analyzed	QC Batch	Inst. Batch	<u>Analyst</u>	Method(s)		
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Me OK DRO Preparation Method		03/09/16 1451 03/08/16 0006 03/02/16 0907	1GC2069 160302-2 1MS8061	1GC2069 2EX4067 2MS8061	LPL SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO		

Conclusion of Lab Number: 16022166

Appendix

Client: Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103 Page: 15

Date Reported: 03/14/2016 Date Received: 02/29/2016 Pace File No: 8462 Pace Order No: 131715

ND indicates not detected with the Limit of Detection (LOD) in parentheses. The Method Detection Limit (MDL) is a calculated value representing the lowest concentration, that based on a statistical calculation represents the lowest concentration that theoretically, can be detected. The MDL is equivalent to the LOD. The Limit of Quantitation (LOQ) is the lowest concentration of the analytical standard that was used for calibrating the instrument. If an analytical standard is analyzed at the LOQ, an error of as much as +/- 50% can be expected. The MDL and LOQ values have been adjusted for the dilution factor and percent solids, as applicable. Due to rounding differences these values may vary slightly from the reported concentration. N/A, if present, indicates Not Applicable.

All samples which require cooling were received at a temperature of less than 6 degrees Celsius.

No analysis with a holding time of seventy-two hours or less was performed in this Pace order.

B - Analyte is also present in the method blank or load blank at the concentration indicated either to the right of the letter B and/or in the Quality Control Report. The reported sample concentration has not been blank corrected.

J - The concentration or not detected (ND) value is below the Limit of Quantitation (LOQ) and is considered an estimated value.

QC - QC data qualifiers were noted. See the Quality Control Report.

Accreditation Summary

Client: Coffeyville Resources Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103 Page: 16

Date Reported: 03/14/2016 Date Received: 02/29/2016 Pace File No: 8462 Pace Order No: 131715

NELAP accreditation is issued under each EPA regulatory program for a given matrix/analyte/method combination. Pace is NELAP accredited for each matrix/analyte/method and EPA program cited in this Laboratory Report, except for those listed in the table below and for analyses performed in the field. For most of the analyses listed in the table, NELAP accreditation is not offered under the listed EPA program and Pace is NELAP accredited for the analysis, using the same analytical technology, but under a different EPA program. Pace's full NELAP accreditation status may be viewed at www.kdheks.gov/envlab. Note that unless qualified otherwise in the Laboratory Report, Pace performs all analyses, including each analysis listed in the table below, utilizing NELAP protocol.

<u>Test</u> <u>Analysis</u> Pace is accredited for all analytes. Matrix-Regulatory <u>Program</u>

Method

Pace NELAP Accredited in Other <u>Reg. Program</u>

Quality Control Report Batch Summary

Page: 17

Client:	Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103				Date Reported: 03/14/2016 Date Received: 02/29/2016 Pace File No: 8462 Pace Order No: 131715
Test Code	Testname	QC Batch	Method Blank Date/Time Analyzed	LCS Date/Time Analyzed	MS Lab No. Date/Time Analyzed
	Oklahoma GRO	1GC2068	BLK1GC2068 03/08/16 1639	LCS1GC2068 03/08/16 1608	16022151 MS 03/08/16 1916
	nbers associated with this batch: 49 16022150 16022151 16022152	16022153	16022154 16022155	16022156 160221	63 16022164
CL108	Oklahoma GRO	1GC2069	BLK1GC2069 03/09/16 0937	LCS1GC2069 03/09/16 0905	16022161MS 03/09/16 1245
	nbers associated with this batch: 57 16022158 16022159 16022160	16022161			
	Oklahoma DRO	160302-1	160302BLK1 03/07/16 0938	160302LCS1 03/07/16 1007	16022151MS 03/08/16 0846
	nbers associated with this batch: 49 16022150 16022151 16022152	16022153	16022154 16022155	16022163 160221	64
	Oklahoma DRO	160302-2	160302BLK2 03/07/16 1820	160302LCS2 03/07/16 1849	16022156MS 03/07/16 2015
	nbers associated with this batch: 56 16022157 16022158 16022159	16022160	16022161 16022162	16022165 160221	66
MS295		1MS8061	BLK1MS8061 03/01/16 1702	LCS1MS8061 03/01/16 1551	16022151MS 03/02/16 0011
1602214	nbers associated with this batch: 49 16022150 16022151 16022152 61 16022162 16022163 16022164	16022153 16022165	16022154 16022155		
MS295	BTEX	1MS8062	BLK1MS8062 03/02/16 1304	LCS1MS8062 03/02/16 1151	16022160MS 03/02/16 1713
Lab num 1602216	nbers associated with this batch: 60		00,02,202.2	00,00,00	00,02,10,110

Quality Control Report Method Blank, LCS, MS/MSD Data

Client: Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103

Page: 18

Date Reported: 03/14/2016 Date Received: 02/29/2016 Pace File No: 8462 Pace Order No: 131715

Analysis	Method Blank	LCS % Rec	LCS Limits	LCS Spike Level	Units	Spiked Sa (% Recov MS		MS/MSD Limits	MS/MSD Spike Level	Units	Spiked S Precisio RPD	
QC Batch: 160302-1	For samples	prepared on:	03/02/2016 0930			Spiked sam	ple: 16022151					
Oklahoma DRO	110 BK	108	80.0-120	500	$\mu g/L$	88.4	120 MP	80.0-120	500	$\mu g/L$	30.3	20.0
QC Batch: 160302-2	For samples	prepared on:	03/02/2016 1130			Spiked sam	ple: 16022156					
Oklahoma DRO	59 J	109	80.0-120	500	μg/L	95.5	F	80.0-120	500	$\mu g/L$	**	20.0
QC Batch: 1GC2068	For sample a	nalyzed on: 0	3/08/2016			Spiked san	ple: 16022151					
Oklahoma GRO	ND(20)	101	80.0-120	200	µg/L	107	107	80.0-120	200	μg/L	0.0	20.0
Surrogate Data:					-					-		
4-BFB (8015D)	99.7	102	84.0-121	20.0	μg/L	104	105	84.0-121	20.0	μg/L		
FLUOROBENZENE (8015D)	96.8	97.8	71.7-132	20.0	µg/L	100.	101	71.7-132	20.0	μg/L		
OC Batch: 1GC2069 For sample analyzed on: 03/09/2016 Spiked sample: 16022161												
Oklahoma GRO	ND(20)	99.7	80.0-120	200	µg/L	90.5	91.2	80.0-120	200	μg/L	0.80	20.0
Surrogate Data:												
4-BFB (8015D)	94.4	101	84.0-121	20.0	µg/L	100.	101	84.0-121	20.0	μg/L		
FLUOROBENZENE (8015D)	92.6	99.0	71.7-132	20.0	μg/L	95.0	96.4	71.7-132	20.0	μg/L		
QC Batch: 1MS8061	For sample a	For sample analyzed on: 03/01/2016				Spiked sample: 16022151						
BTEX												
Benzene	ND(0.04)	103	80.0-120	10.0	μg/L	106	105	79.6-118	10.0	μg/L	0.90	9.8
Toluene	ND(0.06)	102	80.0-120	10.0	μg/L	101	100.	89.7-116	10.0	μg/L	1.00	8.0
Ethylbenzene	ND(0.1)	98.6	80.0-120	10.0	µg/L	98.4	96.3	89.1-114	10.0	μg/L	2.20	6.5
m+p-Xylene	ND(0.06)	96.1	80.0-120	20.0	µg/L	95.0	93.8	88.6-116	20.0	µg/L	1.30	6.7
o-Xylene	ND(0.1)	101	80.0-120	10.0	µg/L	98.7	97.2	88.3-115	10.0	µg/L	1.50	8.1
Surrogate Data:					-					-		
1,2-DICHLOROETHANE-d4	93.2	94.8	74.3-123	10.0	μg/L	95.6	96.6	74.3-123	10.0	μg/L		
TOLUENE-d8	95.4	97.4	80.0-120	10.0	μg/L	96.1	96.0	80.0-120	10.0	μg/L		
QC Batch: 1MS8062	For sample a	nalyzed on: 0	3/02/2016			Spiked sam	ple: 16022160					
BTEX												
Benzene	ND(1.0)	104	80.0-120	10.0	µg/L	101	100.	79.6-118	5000	μg/L	1.00	9.8
Toluene	ND(1.0)	101	80.0-120	10.0	µg/L	97.2	96.8	89.7-116	5000	μg/L	0.40	8.0
Ethylbenzene	ND(1.0)	97.4	80.0-120	10.0	µg/L	96.1	96.4	89.1-114	5000	μg/L	0.30	6.5
m+p-Xylene	ND(1.0)	96.3	80.0-120	20.0	µg/L	86.6 ML	85.6 ML	88.6-116	10000	μg/L	1.20	6.7
o-Xylene	ND(1.0)	98.4	80.0-120	10.0	μg/L	98.4	98.0	88.3-115	5000	μg/L	0.40	8.1
Surrogate Data:												
1,2-DICHLOROETHANE-d4	98.3	94.7	74.3-123	10.0	μg/L	90.7	96.4	74.3-123	5000	μg/L		
TOLUENE-d8	93.2	96.2	80.0-120	10.0	µg/L	95.5	96.3	80.0-120	5000	μg/L		

Data Qualifiers:

BK - The concentration of this analyte, if present in an associated sample, is considered an estimated value if the sample concentration is less than ten times the amount present in this method blank.

MP - The MS/MSD recoveries for this analyte exceeded the method or laboratory precision control limit. The reported sample concentration is estimated.

J - The concentration or not detected (ND) value is below the Limit of Quantitation (LOQ) and is considered an estimated value.

F - MS and/or MSD sample data are not available due to insufficient sample volume.

ML - The matrix spike and/or matrix spike duplicate recovery for this analyte was below the method or laboratory control limit. See LCS data for the basis for acceptance of this sample. The reported sample concentration is estimated.

** - RPD calculation not applicable/not available for this analysis.

Date Reported: 03/14/2016 Date Received: 02/29/2016 Pace File No: 8462 Pace Order No: 131715

Surrogate	Date Date Prepared Analy		Spike Level	Units	% Recovery	Acceptable % Limits					
Lab Number: 16022149	Sample Description:WRCDP-68(022416)										
GC/FID Volatile											
4-BFB (8015D)	03/08	8/2016	20	μg/L	99.0	84.0-121					
FLUOROBENZENE (8015D)	03/08	8/2016	20	μg/L	95.7	71.7-132					
BTEX											
1,2-DICHLOROETHANE-d4		/2016	10	μg/L	92.7	74.3-123					
TOLUENE-d8	03/01	/2016	10	µg/L	94.4	80.0-120					
Lab Number: 16022150	Sample Des	scription:W	RCDP-DUPE-	1(022416)							
GC/FID Volatile	Sumple 2 to	ourpuon (Robi Dorid	(022.120)							
4-BFB (8015D)	03/08	8/2016	20	μg/L	98.3	84.0-121					
FLUOROBENZENE (8015D)	03/08	8/2016	20	μg/L	94.5	71.7-132					
BTEX											
1,2-DICHLOROETHANE-d4	03/01	/2016	10	μg/L	92.4	74.3-123					
TOLUENE-d8	03/01	/2016	10	µg/L	96.0	80.0-120					
Lab Number: 16022151	Sample Des	scription: W	RCDP-67(0224	16)							
GC/FID Volatile 4-BFB (8015D)	03/08	3/2016	20	μg/L	103	84.0-121					
FLUOROBENZENE (8015D)		3/2010 3/2016	20	μg/L μg/L	99.5	71.7-132					
BTEX	03/00	/2010	20	µ6/1	<i>yy</i> .5	/1./ 152					
1,2-DICHLOROETHANE-d4	03/01	/2016	10	μg/L	95.1	74.3-123					
TOLUENE-d8	03/01	/2016	10	µg/L	95.6	80.0-120					
Lab Number: 16022152 GC/FID Volatile	Sample Des	scription:W	RCDP-61(0224	16)							
4-BFB (8015D)	03/08	3/2016	20	μg/L	100.	84.0-121					
FLUOROBENZENE (8015D)		3/2010 3/2016	20	μg/L μg/L	97.8	71.7-132					
BTEX	03/04	<i>2010</i>	20	μg/L	77.0	11.1-132					
1,2-DICHLOROETHANE-d4	03/01	/2016	10	µg/L	96.1	74.3-123					
TOLUENE-d8		/2016	10	μg/L	96.6	80.0-120					
Lab Number: 16022153	Sample Des	scription:W	RCDP-60(0225	516)							
GC/FID Volatile	02/08	2016	20		100	84.0.121					
4-BFB (8015D)		3/2016 3/2016	20 20	µg/L	100. 97.5	84.0-121 71.7-132					
FLUOROBENZENE (8015D) BTEX	03/08	5/2010	20	μg/L	91.5	/1./-132					
1,2-DICHLOROETHANE-d4	03/01	/2016	10	µg/L	98.0	74.3-123					
TOLUENE-d8		/2016	10	μg/L	96.3	80.0-120					
Lab Number: 16022154	Sample Des	scription:W	RCDP-64(0225	516)							
GC/FID Volatile	02/02	0016	20		100	04.0.101					
4-BFB (8015D)		8/2016	20	µg/L	103	84.0-121					
FLUOROBENZENE (8015D)	03/08	8/2016	20	µg/L	98.6	71.7-132					
BTEX 1,2-DICHLOROETHANE-d4	03/01	/2016	10	uc/I	95.7	74.3-123					
TOLUENE-d8		1/2016	10	μg/L μg/L	94.5	80.0-120					
TOEOENE-do	05/01	1/2010	10	µg/L	94.5	00.0-120					
Lab Number: 16022155	Sample Des	scription:W	RCDP-69(0225	516)							
GC/FID Volatile											
4-BFB (8015D)	03/08	8/2016	20	µg/L	97.3	84.0-121					
FLUOROBENZENE (8015D)	03/08	8/2016	20	µg/L	95.3	71.7-132					
BTEX		2016	10	~	05.0	74.0.100					
1,2-DICHLOROETHANE-d4	03/01	/2016	10	μg/L	95.8	74.3-123					

Date Reported: 03/14/2016 Date Received: 02/29/2016 Pace File No: 8462 Pace Order No: 131715

Surrogate	Date Date Prepared Ana	te alyzed	Spike Level	Units	% Recovery	Acceptable % Limits					
Lab Number: 16022155 BTEX	Sample D	Sample Description:WRCDP-69(022516)									
TOLUENE-d8	03/0	01/2016	10	µg/L	93.7	80.0-120					
Lab Number: 16022156 GC/FID Volatile	Sample D	escription:W	RCDP-DUPE-2(02	2716)							
4-BFB (8015D)	03/0	08/2016	20	μg/L	102	84.0-121					
FLUOROBENZENE (8015D) BTEX		08/2016	20	µg/L	100.	71.7-132					
1,2-DICHLOROETHANE-d4	03/0	02/2016	10	µg/L	98.7	74.3-123					
TOLUENE-d8	03/0	02/2016	10	µg/L	94.4	80.0-120					
Lab Number: 16022157 GC/FID Volatile	Sample D	escription:Wl	RCDP-81(022716)								
4-BFB (8015D)	03/0	09/2016	20	µg/L	103	84.0-121					
FLUOROBENZENE (8015D) BTEX	03/0	09/2016	20	µg/L	101	71.7-132					
1,2-DICHLOROETHANE-d4	03/0	02/2016	10	μg/L	100.	74.3-123					
TOLUENE-d8	03/0	02/2016	10	µg/L	95.0	80.0-120					
Lab Number: 16022158 GC/FID Volatile	Sample D	escription:Wl	RCDP-84(022716)								
4-BFB (8015D)	03/0	09/2016	20	μg/L	101	84.0-121					
FLUOROBENZENE (8015D) BTEX	03/0	09/2016	20	µg/L	98.0	71.7-132					
1,2-DICHLOROETHANE-d4	03/0	02/2016	10	μg/L	98.8	74.3-123					
TOLUENE-d8	03/0	02/2016	10	$\mu g/L$	95.7	80.0-120					
Lab Number: 16022159 GC/FID Volatile	Sample D	escription:W	RCDP-109(022716)							
4-BFB (8015D)	03/0	09/2016	20	μg/L	98.6	84.0-121					
FLUOROBENZENE (8015D) BTEX	03/0	09/2016	20	µg/L	94.8	71.7-132					
1,2-DICHLOROETHANE-d4	03/0	02/2016	10	μg/L	93.9	74.3-123					
TOLUENE-d8	03/0	02/2016	10	µg/L	95.2	80.0-120					
Lab Number: 16022160 GC/FID Volatile	Sample D	escription:W	RCDP-78(022716)								
4-BFB (8015D)	03/0	09/2016	4000	μg/L	102	84.0-121					
FLUOROBENZENE (8015D) BTEX	03/0	09/2016	4000	µg/L	99.2	71.7-132					
1,2-DICHLOROETHANE-d4	03/0	02/2016	5000	μg/L	89.9	74.3-123					
TOLUENE-d8	03/0	02/2016	5000	μg/L	95.5	80.0-120					
Lab Number: 16022161 GC/FID Volatile	-	Sample Description:WRCDP-74(022816)									
4-BFB (8015D)		09/2016	20	μg/L	101	84.0-121					
FLUOROBENZENE (8015D) BTEX		09/2016	20	μg/L	97.9	71.7-132					
1,2-DICHLOROETHANE-d4		02/2016	10	μg/L	98.7	74.3-123					
TOLUENE-d8		02/2016	10	µg/L	94.0	80.0-120					
Lab Number: 16022162 GC/FID Volatile	Sample D	escription:W	RCDP-75(022816)								
4-BFB (8015D)	03/0	09/2016	20	µg/L	99.7	84.0-121					

Page: 21

Date Reported: 03/14/2016 Date Received: 02/29/2016 Pace File No: 8462 Pace Order No: 131715

Surrogate	Date Prepared	Date Analyzed	Spike Level	Units	% Recovery	Acceptable % Limits					
Lab Number: 16022162	Sample Description:WRCDP-75(022816)										
GC/FID Volatile	Jum	pro 2 escription,		,							
FLUOROBENZENE (8015D)		03/09/2016	20	μg/L	99.4	71.7-132					
BTEX		00/07/2010	20	FB/2	····	,,					
1.2-DICHLOROETHANE-d4		03/02/2016	10	μg/L	98.5	74.3-123					
TOLUENE-d8		03/02/2016	10	μg/L	94.4	80.0-120					
				10							
Lab Number: 16022163	Sam	ple Description:W	VRCDP-65(022416	6)							
GC/FID Volatile	-										
4-BFB (8015D)		03/08/2016	20	μg/L	99.9	84.0-121					
FLUOROBENZENE (8015D)		03/08/2016	20	µg/L	99.3	71.7-132					
BTEX											
1,2-DICHLOROETHANE-d4		03/02/2016	10	μg/L	102	74.3-123					
TOLUENE-d8		03/02/2016	10	µg/L	90.6	80.0-120					
Lab Number: 16022164	Samp	ple Description:V	VRCDP-77(022616	i)							
GC/FID Volatile				_							
4-BFB (8015D)		03/08/2016	20	µg/L	96.8	84.0-121					
FLUOROBENZENE (8015D)		03/08/2016	20	µg/L	96.9	71.7-132					
BTEX			10	~							
1,2-DICHLOROETHANE-d4		03/02/2016	10	µg/L	97.6	74.3-123					
TOLUENE-d8		03/02/2016	10	μg/L	96.9	80.0-120					
Lab Number: 16022165	Samr	nle Description•V	VRCDP-76(022816	6							
GC/FID Volatile	Sum	pie Description.	(022010)	,							
4-BFB (8015D)		03/09/2016	20	μg/L	98.0	84.0-121					
FLUOROBENZENE (8015D)		03/09/2016	20	μg/L	91.4	71.7-132					
BTEX				1.9 -							
1.2-DICHLOROETHANE-d4		03/02/2016	10	μg/L	101	74.3-123					
TOLUENE-d8		03/02/2016	10	μg/L	94.8	80.0-120					
Lab Number: 16022166	Samp	ple Description:T	rip Blank (022916)							
GC/FID Volatile											
4-BFB (8015D)		03/09/2016	20	µg/L	101	84.0-121					
FLUOROBENZENE (8015D)		03/09/2016	20	µg/L	98.4	71.7-132					
BTEX											
1,2-DICHLOROETHANE-d4		03/02/2016	10	µg/L	99.6	74.3-123					
TOLUENE-d8		03/02/2016	10	µg/L	95.3	80.0-120					

Quality Control Report Continuing Calibration Report

Client: Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103 Page: 22

Date Reported: 03/14/2016 Date Received: 02/29/2016 Pace File No: 8462 Pace Order No: 131715

	Date of	Instrument	Amount in Amount Percent
<u>Analysis</u>	<u>Analysis</u>	Batch ID	Standard Detected Units Recovery
Oklahoma GRO	03/08/2016	1GC2068	CCV recovery acceptable for this Instrument Batch.
Oklahoma GRO	03/08/2016	2GC2068	CCV recovery acceptable for this Instrument Batch.
Oklahoma GRO	03/09/2016	1GC2069	CCV recovery acceptable for this Instrument Batch.
Oklahoma GRO	03/09/2016	2GC2069	CCV recovery acceptable for this Instrument Batch.
Oklahoma DRO	03/07/2016	1EX4067	CCV recovery acceptable for this Instrument Batch.
Oklahoma DRO	03/07/2016	2EX4067	CCV recovery acceptable for this Instrument Batch.
Oklahoma DRO	03/08/2016	3EX4067	CCV recovery acceptable for this Instrument Batch.
Oklahoma DRO	03/08/2016	4EX4067	CCV recovery acceptable for this Instrument Batch.
BTEX	03/01/2016	1MS8061	CCV recovery acceptable for this Instrument Batch.
BTEX	03/02/2016	2MS8061	CCV recovery acceptable for this Instrument Batch.
BTEX	03/02/2016	3MS8061	CCV recovery acceptable for this Instrument Batch.
BTEX	03/02/2016	1MS8062	CCV recovery acceptable for this Instrument Batch.
BTEX	03/02/2016	2MS8062	CCV recovery acceptable for this Instrument Batch.
			· ·

Analytical Services			. (785)82	~ *	th Street, Salina, I (800)535-3076 F www.cas-lab.com	,, Salin ,-3076 1s−la.b.	ia, KS Fax	, KS 67401 Fax (785)823-7830 m	t 823-7	830			Com	CHAIN OF CUSTODY RECORD	OF C	UST			Y°∎		·	Pa	Page 1 of 2	f2
Client/Reporting Information					Invoice Information	nforma	tion						PAR	PARAMETERS/CONTAINER TYPE (preservative)	RS/CO7	TAINE	RTYP	ti (prg	ervativo			8	COMMENTS	8
Conpany Name: Coffeyville Resources, LLC			Company Name: Coffeyville Resources, LLC	»: tesources,	Б													• •						
Address: 10 East Cambridge Circle Dr. / Suite 250			Address: 10 East Cambridge Circle Dr.	bridge Cir	cle Dr		/ Suite 250							:L)										
City: State: Kansas City Kansas	Zip: 66103		City: Kansas City				State: Kansas		2ip: 66103	03				IL (HC										
Contact: Sam McCormick / Jerome McSorley			Contact: Sam McCormick	F										amber			· · · ·				D S		Discrepancie	ı Ö
E-mail: sanceomick@cvrenergy.com / idmesor/ev@cvrenergy.com	Wrenergy	SOM I	E-mail:											00) - 2x							<u>(</u>		ນີ້ ກ	Š
Phone Number: Fax Number			Phone Number:			н	Fax Number	ber						000/81									~	\$
913-982-0457			913-982-0457								I) (80										Q
Sampler's Name / Company:(Printed) Judy Andrews, Kevin Walter WSP USA	Sampler's Na	ier's Name:(Signature)	(ar	\mathbb{P}	Purcha	Purchase Order Number:	¥ Num	ä						a DRO										
Project Name: Facility Name / Address: WRC Interior Delineation WRC Wymnewood, OK	, ox , ox				mposite Grab	otal tainers		Number of Preserved Boales	04 Bo	ve g		BTEX (Oklahoma G	Oklahom						_		···· · · · · · · · · · · · · · · · · ·		· · · ·
SAMPLE (DENTIFICATION (30 Characters or less)	Maarix (Saanple Type)	Regulatory Program	Davie Sampiert	Time Sampled	G-	Con	HC NaC	HN	H25	NO2	OTHER:													
WRCDP-68(022416)		0	02/24/16	9:50	G	*						X	\times	×										
WRCDP-DUPE-1(022416)	GW	0	02/24/16	13:30	G	÷*						×	×	\times									Deplicate	
WRCDP-67(022416)	GW	0	02/24/16	15:00	G	20	90			-		X	\times	×				-						
WRCDP-67(022416) MS/MSD	GW	0	02/24/16	15:00	G	ø	¢.					×	\times	×								_	MS/MSD	
WRCDP-61(022416)	GW	0	02/24/16	17:45	ç	00	oo 					X	X	×			-							
WRCDP-60(022516)	GW	0	02/25/16	10:58	G	*	8	_				X	X	×										
WRCDP-64(022516)	GW	0	02/25/16	14:40	9	8	~					X	\times	×										
WRCDP-69(022616)	GW	0	02/26/16	16;30	G	90	*					×	\times	×									ļ]
WRCDP-DUPE-2(022716)	GW	0	02/27/16	10:30	9	80	*					X	×	×								_	Duplicate	
WRCDP-81(022716)	GW	0	02/27/16	11:15	9	80	8						X	X										
WSCDP-84(022716)	GW	0	02/27/16	12:15	9	8						X	×	×										
Matrix (Sample Type): DW=Drinking Water,	GW=Ground Water,	ınd Water,	WW=Waste Water,		W=Wipe,	īpe,	S=So	S-Solid/Soil,		SL=Sludge) F	A=Air,	P	OL=Oil/Organic Liquid,	anic Lic	ļuid,	0=Other,	le,						
Regulatory Program: M=NPDES, R=RCRA,	<u>D</u> =Drin	D=Drinking Water,	r, <u>SL</u> =503 Studge,	Sludge,	<u>0</u> -Other,		nR=Non RCRA INW	lon R(CRAI	N.			(Ple Standard	(Please note if non-standard turn Standard JAT: (15 working days) Ru	ori-standar orking day		nd. Rusi FAT: (S v	orking d	gency sub gys) Erne	ject in add tgency TA	utrativund Rush & Emergency subject to additional charge) Rush TAT: (5 working days) Emergency TAT: (3 working days)	long days)		
REPUBLICATION OF A CONTROL OF	X			0)-67-2	-6			$\overline{\mathcal{S}}$	RECE	RECEIVED BY	3	2	Z		'				A 14 -	DATE 2-29-14	テ	TIME:	5	١
RELATION BY	```			ン で	4.14	_		\sim	ķe ce	RECEIVED BY:	R.									DATE:		TEME:		
RECEIVED AJUÁB BY:	/					Е			SHIPPED	SHIPPED VIA	r.									SEAL #:				
HECOCCOC 2016 Distinuion MWRC, Detronion 1/3/29/2016	ſ	PL	PLEASE NOTE THE ATTACHED CONTINENTAL SAMPLE ACCEPTANCE POLICY	THE ATT.					LSA	MPL	EAC	CEPTAN	CE P											L

Analytical Services,	ices, inc	(785)82	~ *	8th Street, Salina, F (800)535-3076 F: www.cas-lab.com	, Sali -307.	com Fi K	, KS 67401 Fax (785)823-7830 m	85)8 101	8	7830	-		្ន ព្	CHAIN OF CUSTODY	OF CI	UST	f OD		1 Z			Page 2 of 2
Client/Reporting Information				Invoice Information	aform	Bion							PA	PARAMETERS/CONTAINER TYPE (preservative)	ERS/CON	TAIN		R G	Teser	vadive)		COMMENTS
Company Name: Coffeyville Resources, LLC		Company Name: Coffeyville Resources, LLC	: lesources, l	LFC			-															
Address: 10 East Cambridge Circle Dr. / Suite 250		Address: 10 East Cambridge Circle Dr. / Suite 250	bridge Circ	ie D	. / Su	ite 2	50	·					(HCL)	L)								
City: State: Zip: Kansas City Kansas 66103		City: Kansas City				State: Kansas	ĸ		Zip: 66103	8		ls (HCl	ıl vials	IL (HO								
Contact: Sam McCormick / Jerome McSorley		Contact: Sam McCormick	~	ł						Í) nn I via	uss 40 n	amber								
E-mail:		E-mail:]		lass 4(3x gla	0) - 2x								
ck@cvrenergy.com / jdmc	r <u>ev.com</u>											3x gl	15)-	/8100								
Phone Number: 913-982-0457		Phone Number: 913-982-0457				Fax Number		н.				015) - 1	120/801	(8000/								
Sampler's Name / Company: (Printed) Sample Judy Andrews, Kevin Walter WSP USA QCI	Sumpler's Name:(Signature)		X	Purchase Order Number:	Se On	a Z	mber	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				8020/8	RO (80	a DRO								
Project Name: WRC Interior Delineation WRC Wynnewood, OK				nposite Jesto	otal siners	ž	H B A Bonilos	8 8	4 문	E g		BTEX	kla homa G	Oklahom							<u></u>	
SAMPLE IDENTIFICATION (Sample (20 Characters or leas) Type)	s le Regulatory Program	Date Sampled	Time Sampled	G-1		HC		HNC	H2S0	NON	OTHER:		C									
		02/27/16	13:20	G	•	*						X	Х	X								
WRCDP-78(022716) GW	0	02/27/16	17:10	G	80	*						Х	Χ	X								
WRCDP-74(022816) GW	0	02/28/16	10:45	6	8	8						X	Х	Χ								
WRCDP-75(022816) GW	0	02/28/16	11:48	G	89	8						Х	Х	X								
WRCDP-65(022416) GW	0	02/28/16	17:20	G	39	8						X	Х	X								
WRCDP-77(022616) GW	0	02/26/16	15:40	G	~	8						Х	X	X								
WRCDP-76(022816) GW	0	02/28/16	30:00	G	*	¢0						Χ	Х	Χ								
Trip Blank (022916) GW	0	02/29/16	10:00	<u>م</u>		~						×	X	×	_							Provided by Lab
Matrix (Sample Type): DW=Drinking Water, GW=	GW=Ground Water,	WW=Waste Water,		W=Wipe,	'ž	s	S=Solid/Soil,	Soil		ST [SL=Sludge,	ge, A≕Air,		OL= Oil/Organic Liquid,	ganic Lic	ļuid,	2	0=Other,		$\left \right $		
Program: <u>N</u> =NPDES, <u>R</u> =RCRA,	D=Drinking Water,	r, <u>SL</u> =503 Sludge,	Sludge,	<u>0</u> =Other,	ther,	P.R.	nR=Non RCRA IMW	Ro	RA	۲.	Ľ	\square	(1 Stander	^a leașe note if d TAT: (15	non-standar working day	d tumaro s) Rush	und, Ru TAT: ()	ish & E Norici	nenko menko	ncy subject i s) Emergen	(Please note if non-standard turnaround, Rush & Emergency subject to additional charge) Standard TAT: (15 working days) Rush TAT: (15 working days), Emergency TAT: (15 working days)	sharge) orking days)
RELACIONSTED BY	\		DATE 2-20	-29-16			~	0	RECEIVED BY	Y	AB O		5							DATE DATE	DATE: 2-29-14	
FRELINGUISHED BY			DATE 229/4	F			\mathcal{Q}		RECEIVED BY:	IVE	рвү	, i								DATE	rt.	TIME:
TAL DATES				3		5	2	1_	AIRBILL:	EL ED	VIA:									SEAL #:	SEAL #: SEAL DATE:	
HECOC COC 2016 Detmantion vie WRC Defineation Get 25,2016	PL	PLEASE NOTE THE ATTACHED CONTINENTAL SAMPLE ACCEPTANCE POLICY	THE ATTA	CHE	D C	III	ZES	TA	LS2	M	ĽĒ	ACCEPT	FANCE	POLICY								

Pace Analytical Cooler/Sample Receip	at Form (C/S RF)		Pace Order No.:	13/7/5
Client Name: Coffey V			Pace File No.:	8162
Sample ID's in cooler:			Face The 100.	0902
	ink-219			
WR cof-	15, 74, 76, 10	٩	ALA	
	· · · · · · · · · · · · · · · · · · ·			
· · · · · · · · · · · · · · · · · · ·				<u></u>
Cooler of				
Cooler Identification:	Pace Cooler #: L 0 0		/ Client's Cooler / Box / Letter / Hand-de	livered
Date/Time Cooler Received:	<u>2,29,16</u>	16	_: <u>17</u>	
Delivered By:	UPS / FedX / AB Express	ld S) /cs / Mail / Walk-In / Other:	· ·
Custody Seal:	Present: Intact / Broken Ab	sent	X Seal No:	
	Seal Name:		Seal Date:	
	Seal matches Chain of Custody	: Y	es / No / NZA	
Type of Packing Material:		_	Foam / Paper / Peanuts / Vermiculite /	
Cooler Temperature (°C):	÷ • • • • • • • • • • • • • • • • • • •		Corrected Reading (°C)	<u>کے کے </u>
	Temperature. By: Temperature. Thermo. ID No.:	B B	tank Surface Temperature	-0~
	Evidence of Cooling and da	ate re	eceived = date sampled	
Sample Receipt Discrepa	ancies: 🕅 No 🗆 Yes	(Se	e below for discrepancies.)	
Note: If discrepancies are	/ present, Pace will proceed wi	ith a	nalyses until/unless directed otherwis	e by the client.
Chain of Custody not pre-	sent - information taken from:		Sample excluded from Chain of Custody	
Cover Letter	Container		Sample listed on Chain of Custody, not re	
	Pace Proj. Mgr. 🛛		Sample identification on container and Ch	, ,
 Container label absent Chain of Custody incomp 	lete [see datail bolow]		Air bubbles in Aqueous VOA vials larger Cooler temperature exceeded 0.1 - 6.0 °C r	
	ate/time sampled (excl. TB or Dup.)		[Do not mark if samples do not require coo	
Date or Time sampled obtain			Broken or leaking containers (detail action	ns below)
Chain of Custody missing	3 sampler's name		Sample container type or labeled chemica	al preservation inappropriate
Chain of Custody missing			Other discrepancies:	
	rmation: signature date time			
Detail to discrepancies/comm	ents:		,	
			· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·				
			· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·			<u> </u>	
Completed by:のいア	Date Completed:	م () - [U	

Ē

Cooler/Sample Receipt Form (C/S RF) <u>Client Name: Coffey ville Rev.</u> Sample ID's in cooler: WRCPF-81, 65, 77, DUPE & RLA
Sample ID's in cooler:
WREPP-PI, 65, 77, OURE 2 2LA
Cooler of for this Pace Order No.
Cooler Ideatification: Pace Cooler #: <u>9193</u> / Client's Cooler / Box / Letter / Hand-delivered Other:
Date/Time Cooler Received:
Delivered By: UPS / FedX / AB Express Field Sycs / Mail / Walk-In / Other:
Custody Seal: Present: Intact / Broken Absent: X Seal No:
Seal Name: Seal Date:
Seal matches Chain of Custody: Yes / No / N/A
Type of Packing Material: Blue Ice (Ice / Melted Ice (Bubble / Foam / Paper / Peanuts / Vermiculite / None / Other:
Cooler Temperature (°C): Original Reading (°C) 2, 0 Corrected Reading (°C) 1/5
Temperature. By: Cemperature Blank Surface Temperature
Thermo. ID No.: 585 Thermo. Correction Factor (°C): $-0 \rightarrow 5$
\Box Evidence of Cooling and date received = date sampled
Sample Receipt Discrepancies: No 🗚 Yes (See below for discrepancies.)
K
Note: If discrepancies are present, Pace will proceed with analyses until/unless directed otherwise by the client.
Chain of Custody not present - information taken from: Sample excluded from Chain of Custody
Cover Letter Container Container Sample listed on Chain of Custody, not received
PO 🗆 Pace Proj. Mgr. 🗆 🔲 Sample identification on container and Chain of Custody do not agree
Container label absent Air bubbles in Aqueous VOA vials larger than pea-size [approx. 6 mm]
 Chain of Custody incomplete [see detail below] Chain of Custody missing date/time sampled (excl. TB or Dup.) Chain of Custody missing date/time sampled (excl. TB or Dup.) Cooler temperature exceeded 0.1 - 6.0 °C requirement Do not mark if samples do not require cooling to 0.1 - 6.0 °C.]
Date or Time sampled obtained from container label Broken or leaking containers (detail actions below)
 Date of this sampled obtained non-container laber Chain of Custody missing sampler's name Sample container type or labeled chemical preservation inappropriate
□ Chain of Custody missing matrix (sample type) □ Other discrepancies:
Missing relinquished information: signature date time
Detail to discrepancies/comments: (as Nate sampled on lattles 10ads 224-16
Completed by: MUT Date Completed: 2/29/10

Pace Analytical			Pace Order No.:	
Cooler/Sample Receip	ot Form (C/S RF)			15)7/5
Client Name: Coffeyv			Pace File No.:	8462
Sample ID's in cooler:	· · · · · · · · · · · · · · · · · · ·			
voc.	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
				<u> </u>
·····				· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·				
		_		
Cooler <u>3</u> of 5	for this Pace Order No. \	/		
Cooler Identification:	Pace Cooler #:		/ Client's Cooler / Box / Letter / Hand	-delivered
Date/Time Cooler Received:	2,29,16	16	· h_	
Delivered By:	UPS / FedX / AB Express Fie	ld S	cs / Mail / Walk-In / Other:	· · · · · · · · · · · · · · · · · · ·
Custody Seal:	Present: Intact / Broken Ab	sent	X	
	Seal Name:		Seal Date:	
	Seal matches Chain of Custody	: Y	es / No / <u>N7</u> A	
Type of Packing Material:	•		/ Foam / Paper / Peanuts / Vermiculit	e / None / Other:
Cooler Temperature (°C):		-	Corrected Reading (°C)	
	Temperature, By: Cemperati	ire B	Ank Surface Temperature	
	Thermo. ID No.: 5	8.	Thermo. Correction Factor (°C):	- 0 + J
· · ·	Evidence of Cooling and d	ate r	eceived = date sampled	
Sample Receipt Discrepa	ancies: 🙀 No 🗆 Yes	(Se	ee below for discrepancies.)	
Note: If discrepancies are	present, Pace will proceed wi	ith a	nalyses until/unless directed otherv	vise by the client.
Chain of Custody not pre-	sent - information taken from:		Sample excluded from Chain of Custor	ły
Cover Letter	Container 🛛		Sample listed on Chain of Custody, no	t received
PO 🗖	Pace Proj. Mgr. 🗖		Sample identification on container and	l Chain of Custody do not agree
Container label absent			Air bubbles in Aqueous VOA vials larg	
Chain of Custody incomp	lete [see detail below] ate/time sampled (excl. TB or Dup.)		Cooler temperature exceeded 0.1 - 6.0 ° [Do not mark if samples do not require	
 Date or Time sampled obtain 	• • •		Broken or leaking containers (detail ac	-
Chain of Custody missing			Sample container type or labeled chen	
Chain of Custody missing			Other discrepancies:	
Missing relinquished info	ormation: signature date time	9		
Detail to discrepancies/comm	ients:			
·			a i.	· · · · · · · · · · · · · · · · · · ·
Completed by:	Date Completed:	/d	<u>1 ~ {\}</u>	

į.

Pace Analytical	· · · · ·		Pace Order No.:
Cooler/Sample Receip			<u>ろい</u>
Client Name: Coffeyu	He Rer.		Pace File No.: 8462
Sample ID's in cooler:			
WRCPP	- 78,69,60	81	<u>у</u> Су
			· · · · · · · · · · · · · · · · · · ·
· · ·			· · · · · · · · · · · · · · · · · · ·
CoolerY of _5	for this Pace Order No.		
Cooler Identification:	Pace Cooler #: 4136		/ Client's Cooler / Box / Letter / Hand-delivered
Date/Time Cooler Received:	21,29,16	16	<u>17</u>
Delivered By:	UPS / FedX / AB Express Fie	ld Sv	rcs / Mail / Walk-In / Other:
Custody Seal:	Present: Intact / Broken Ab	sent:	X Seal No:
-			Seal Date:
	Seal matches Chain of Custody		
Type of Packing Material:			/ Foam / Paper / Peanuts / Vermiculite / None / Other:
Cooler Temperature (°C):			Corrected Reading (°C))
	Temperature By: Temperatu	ILE B	Ank Surface Temperature
	Thermo. ID No.:5	8,	Thermo. Correction Factor (°C):O >
	Evidence of Cooling and da		
Sample Receipt Discrepa	ancies: 🗷 No 🗆 Yes	(Se	ee below for discrepancies.)
Note: If discrepancies are	present, Pace will proceed wi	ith a	nalyses until/unless directed otherwise by the client.
Chain of Custody not pres	sent - information taken from:		Sample excluded from Chain of Custody
Cover Letter			Sample listed on Chain of Custody, not received
- PO 🗆	Pace Proj. Mgr. 🛛		Sample identification on container and Chain of Custody do not agree
Container label absent	• • • •		Air bubbles in Aqueous VOA vials larger than pea-size [approx. 6 mm]
 Chain of Custody incomp Chain of Custody missing data 	lete [see detail below] ate/time sampled (excl. TB or Dup.)		Cooler temperature exceeded 0.1 - 6.0 °C requirement [Do not mark if samples do not require cooling to 0.1 - 6.0 °C.]
Date or Time sampled obtain			Broken or leaking containers (detail actions below)
Chain of Custody missing			Sample container type or labeled chemical preservation inappropriate
Chain of Custody missing			Other discrepancies:
~ -	ormation: signature date time	9	
Detail to discrepancies/comm	ents:		
	· · · · · · · · · · · · · · · · · · ·		
	Date Completed:	ک ر	9-10
Completed by:	Vare Completed:	 	

÷

Pace Analytical	t Form (C/S DE)	Pace Order No.: 12/215
Cooler/Sample Receip		
Client Name: Coffey V	Ile Ker.	Pace File No.: 8964
Sample ID's in cooler:		
WRCD8.	Dype), 68. 61,	67 2LA
	· · · · · · · · · · · · · · · · · · ·	ST NOB 3LA
Cooler of		· · ·
Cooler Identification:	Other:	/ Client's Cooler / Box / Letter / Hand-delivered
Date/Time Cooler Received:	2,29,16	
Delivered By:	UPS / FedX / AB Express	Id Sycs / Mail / Walk-In / Other:
Custody Seal:	Present: Intact / Broken Ab	sent: X Seal No:
	Seal Name:	Seal Date:
	Seal matches Chain of Custody	Yes / No / NZA
Type of Packing Material:	Blue Ice (Ice / Melted Ice (Bu	bble / Foam / Paper / Peanuts / Vermiculite / None / Other:
Cooler Temperature (°C):	Original Reading (°C)	Corrected Reading (°C)
	Temperature By: Cemperatu	Blank Surface Temperature \Im \square \square \square \square \square \square \square \square \square
	Evidence of Cooling and d	ate received = date sampled
Sample Receipt Discrep	ancies: 🗖 No 🗆 Yes	(See below for discrepancies.)
Note: If discrepancies are	e present, Pace will proceed w	th analyses until/unless directed otherwise by the client.
Chain of Custody not pro	esent - information taken from:	Sample excluded from Chain of Custody
Cover Letter 🛛	· · ·	Sample listed on Chain of Custody, not received
РО 🗆	Pace Proj. Mgr. 🛛	Sample identification on container and Chain of Custody do not agree
Container label absent		Air bubbles in Aqueous VOA vials larger than pea-size [approx. 6 mm]
Chain of Custody incom	plete [see detail below] late/time sampled (excl. TB or Dup.)	Cooler temperature exceeded 0.1 - 6.0 °C requirement [Do not mark if samples do not require cooling to 0.1 - 6.0 °C.]
 Date or Time sampled obta 		Broken or leaking containers (detail actions below)
Chain of Custody missin		 Sample container type or labeled chemical preservation inappropriate
Chain of Custody missin		Other discrepancies:
Missing relinquished inf	ormation: signature date time	
Detail to discrepancies/comr	nents:	
· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	-	
×	~	-2 9 11
Completed by:	✓ Date Completed:	<u>~~</u>

03/18/2016

Page: 1

Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103

Date and Time Received: 03/04/2016 1710 Pace File No.: 8462 Pace Order No.: 131848 Project ID: WRC Wynnewood

Dear Mr. McCormick:

This laboratory report, containing the samples indicated below, includes 21 pages for the analytical report, 2 page(s) for the chain of custody and/or analysis request, and 5 page(s) for the sample receipt form.

PACE LAB ID #	SAMPLE DESCRIPTION	SAMPLE TYPE	DATE SAMPLED
16030522	WRCDP-91(022916)	Liquid	2/29/2016
16030523	WRCDP-97(022916)	Liquid	2/29/2016
16030524	WRCDP-102(022916)	Liquid	2/29/2016
16030525	WRCDP-70(022916)	Liquid	2/29/2016
16030526	WRCDP-94(022916)	Liquid	2/29/2016
16030527	WRCDP-88(022916)	Liquid	2/29/2016
16030528	WRCDP-87(022916)	Liquid	2/29/2016
16030529	WRCDP-37(030216)	Liquid	3/2/2016
16030530	WRCDP-58(030216)	Liquid	3/2/2016
16030531	WRCDP-39(030216)	Liquid	3/2/2016
16030532	WRCDP-30(030216)	Liquid	3/2/2016
16030533	WRCDP-33(030316)	Liquid	3/3/2016
16030534	Trip Blank(030416)	Liquid	3/4/2016
16030535	WRCDP-105(030416)	Liquid	3/4/2016
16030536	WRCEB(030416)	Liquid	3/4/2016

The Appendix and Quality Control sections are integral parts of this laboratory report and may contain important data qualifiers.

All results are reported on a wet weight basis unless otherwise stated.

Samples will be retained for thirty days unless Pace is otherwise notified. Pace is accredited by the State of Kansas through the National Environmental Laboratory Accreditation Program (NELAP). The results contained in this report were obtained using Pace's Standard Operating Procedures. These procedures are in substantial compliance with the approved methods referenced and the standards published by NELAP unless otherwise noted in the Appendix and Quality Control sections of this report.

This report may not be reproduced, except in full, without written approval from Pace Analytical Services, Inc.

Thank you for choosing Pace for this project.

525 N. Eighth St. - Salina, KS 67401 785-827-1273 800-535-3076 Fax 785-823-7830 KDHE Environmental Laboratory Accreditation No. E-10146

03/18/2016

Page: 2

hegery J. Havene

Gregory J. Groene Project Manager Gregory.Groene@pacelabs.com

525 N. Eighth St. - Salina, KS 67401 785-827-1273 800-535-3076 Fax 785-823-7830 KDHE Environmental Laboratory Accreditation No. E-10146

Date Reported: 03/18/2016 Date Received: 03/04/2016 Pace File No: 8462 Pace Order No: 131848

Date Sampled: 02/29/2016 Time Sampled: 1000

Client: **Coffeyville Resources** Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103

Lab Number: 16030522	
Sample Description: WRCDP-91(022916)	

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	Concentration ND ND QC	<u>on Un</u> μg/ μg/	L	Dilution <u>Factor</u> 1.0 1.0	<u>Reportir</u> <u>LOD</u> 20 100	n <u>g Limit</u> LOQ 20 100
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	ND ND ND ND	μg/ μg/ μg/ μg/	L L L	1.0 1.0 1.0 1.0 1.0	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0
Analysis	Date/Time <u>Prepared</u>	Date/Time Analyzed	QC Batch	Inst. Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Met GC/FID Volatile Preparation Met OK DRO Preparation Method		03/09/16 1522 03/14/16 2104 03/08/16 1252	1GC2069 160307-5 1MS8068	1GC2069 1EX4074 1MS8068	LPL SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16030522

Lab Number: 16030523 Sample Description: WRCDP	9-97(022916)				pled: 02/29/ pled: 1115	2016
<u>Analysis</u> Oklahoma GRO Oklahoma DRO	Concentra ND 160 QC		<u>Units</u> μg/L μg/L	Dilution <u>Factor</u> 1.0 1.0	<u>Reportir</u> <u>LOD</u> 20 100	n <u>g Limit</u> LOQ 20 100
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	ND ND ND ND		μg/L μg/L μg/L μg/L μg/L	1.0 1.0 1.0 1.0 1.0	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0
Analysis	Date/Time Prepared	Date/Time <u>Analyzed</u>	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)

-Continued-

Date Reported: 03/18/2016 Date Received: 03/04/2016 Pace File No: 8462 Pace Order No: 131848

Analysis	Date/Time Prepared	Date/Time Analyzed	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Met GC/FID Volatile Preparation Met OK DRO Preparation Method		03/09/16 1553 03/14/16 2133 03/08/16 1328	1GC2069 160307-5 1MS8068	1GC2069 1EX4074 1MS8068	LPL SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16030523

Lab Number: 16030524 Sample Description: WRCDP-102(022916)

Coffeyville Resources

Attn: Sam McCormick

Kansas City, KS 66103

10 E. Cambridge Circle Dr.

Client:

Date Sampled: 02/29/2016 Time Sampled: 1400

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrati</u> 85 G 570 QC	<u>on Uni</u> μg/ μg/	L	Dilution <u>Factor</u> 1.0 1.0	<u>Reportir</u> <u>LOD</u> 20 100	n <u>g Limit</u> LOQ 20 100
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	0.14 J 0.11 J ND ND ND	μg/ μg/ μg/ μg/	L L L	1.0 1.0 1.0 1.0 1.0	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0
Analysis	Date/Time <u>Prepared</u>	Date/Time Analyzed	QC Batch	Inst. Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Me OK DRO Preparation Method		03/09/16 1727 03/14/16 2202 03/08/16 1404	2GC2069 160307-5 1MS8068	2GC2069 1EX4074 1MS8068	LPL SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16030524

Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103

Sample Description: WRCDP-70(022916)

Date Reported: 03/18/2016 Date Received: 03/04/2016 Pace File No: 8462 Pace Order No: 131848

Date Sampled: 02/29/2016

Time Sampled: 1500

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentration</u> 569 9200 QC	μ	<u>Jnits</u> g/L g/L	Dilution <u>Factor</u> 1.0 20	<u>Reportin</u> <u>LOD</u> 20 2000	n <u>g Limit</u> LOQ 20 2000
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	0.58 J 0.9 J 1.30		μg/L μg/L μg/L μg/L μg/L		$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0
Analysis	Date/Time <u>Prepared</u>	Date/Time <u>Analyzed</u>	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Met OK DRO Preparation Method		03/09/16 1758 03/14/16 2231 03/08/16 1440	2GC2069 160307-5 1MS8068	2GC2069 1EX4074 1MS8068	LPL SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16030525

Lab Number: 16030526 Sample Description: WRCDP-94(022916)					Date Sampled: 02/29/2016 Time Sampled: 1555			
<u>Analysis</u> Oklahoma GRO Oklahoma DRO	Concentrati ND 150 QC	ion	<u>Units</u> μg/L μg/L	Dilution <u>Factor</u> 1.0 1.0	<u>Reportii</u> <u>LOD</u> 20 100	ng Limit LOQ 20 100		
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	ND ND ND ND		μg/L μg/L μg/L μg/L μg/L	1.0 1.0 1.0 1.0 1.0	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0		
Analysis	Date/Time <u>Prepared</u>	Date/Time <u>Analyzed</u>	QC <u>Batch</u>	Inst. Batch	<u>Analyst</u>	Method(s)		

-Continued-

Pace Analytical Services, Inc. 525 N. Eighth St. - Salina, KS 67401 785-827-1273 800-535-3076 Fax 785-823-7830

Client:

Lab Number: 16030525

Date Reported: 03/18/2016 Date Received: 03/04/2016 Pace File No: 8462 Pace Order No: 131848

Analysis	Date/Time Prepared	Date/Time <u>Analyzed</u>	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Met GC/FID Volatile Preparation Met OK DRO Preparation Method		03/09/16 1830 03/14/16 2259 03/08/16 1516	2GC2069 160307-5 1MS8068	2GC2069 1EX4074 1MS8068	LPL SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16030526

Lab Number: 16030527 Sample Description: WRCDP-88(022916)

Coffeyville Resources

Attn: Sam McCormick

Kansas City, KS 66103

10 E. Cambridge Circle Dr.

Client:

Date Sampled: 02/29/2016 Time Sampled: 1650

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrati</u> ND ND QC	<u>on Uni</u> μg/ μg/	L	Dilution <u>Factor</u> 1.0 1.0	<u>Reportir</u> <u>LOD</u> 20 100	n <u>g Limit</u> LOQ 20 100
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	ND ND ND ND	μg/ μg/ μg/ μg/	L L L	$ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 $	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0
Analysis	Date/Time <u>Prepared</u>	Date/Time <u>Analyzed</u>	QC Batch	Inst. Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Me OK DRO Preparation Method		03/09/16 1901 03/14/16 2328 03/08/16 1552	2GC2069 160307-5 1MS8068	2GC2069 1EX4074 1MS8068	LPL SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16030527

Client: Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103

Sample Description: WRCDP-87(022916)

Lab Number: 16030528

Date Reported: 03/18/2016 Date Received: 03/04/2016 Pace File No: 8462 Pace Order No: 131848

Date Sampled: 02/29/2016

Time Sampled: 1730

				This Samplear 1700			
Analysis	Concentration		uit <u>s</u>	Dilution Factor	<u>Reportir</u> LOD	n <u>g Limit</u> LOQ	
Oklahoma GRO	ND	<u>μ</u> g		1.0	20	$\frac{1}{20}$	
Oklahoma DRO	110 QC	μg		1.0	100	100	
Oktailollila Ditto	110 QC	<u>м</u> 8		1.0	100	100	
BTEX							
Benzene	ND	μg	/L	1.0	0.04	1.0	
Toluene	ND	μg		1.0	0.06	1.0	
Ethylbenzene	ND	μg		1.0	0.1	1.0	
m+p-Xylene	ND	μg		1.0	0.06	1.0	
o-Xylene	ND	μg		1.0	0.1	1.0	
5		10					
	Date/Time	Date/Time	QC	Inst.			
Analysis	Prepared	Analyzed	Batch	Batch	Analyst	Method(s)	
<u>1 mary 515</u>	<u>110purou</u>	<u>r maryzou</u>	Butten	Butten	<u>1 intal y 50</u>	<u>inteniou(b)</u>	
Oklahoma GRO	N/A	03/09/16 1933	2GC2069	2GC2069	LPL	OK GRO	
Oklahoma DRO	03/07/16 1230	03/14/16 2357	160307-5	1EX4074	SPA	OK DRO	
BTEX	N/A	03/08/16 1628	1MS8068	1MS8068	GMA	8260B	
Volatile Analysis Preparation Me	ethod					5030B	
GC/FID Volatile Preparation Method						5030B	
OK DRO Preparation Method						OK DRO	
1							

Conclusion of Lab Number: 16030528

Lab Number: 16030529 Sample Description: WRCDP-37(030216)					Date Sampled: 03/02/2016 Time Sampled: 1305			
<u>Analysis</u> Oklahoma GRO Oklahoma DRO	Concentrati 583 2500 QC	<u>on</u>	<u>Units</u> μg/L μg/L	Dilution <u>Factor</u> 2.0 4.0	<u>Reportir</u> <u>LOD</u> 40 400	ng Limit LOQ 40 400		
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	3.51 1.76 0.3 J 2.67 1.4		μg/L μg/L μg/L μg/L μg/L	1.0 1.0 1.0 1.0 1.0	0.04 0.06 0.1 0.06 0.1	1.0 1.0 1.0 1.0 1.0		
Analysis	Date/Time <u>Prepared</u>	Date/Time <u>Analyzed</u>	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)		

-Continued-

Date Reported: 03/18/2016 Date Received: 03/04/2016 Pace File No: 8462 Pace Order No: 131848

Analysis	Date/Time Prepared	Date/Time Analyzed	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Met OK DRO Preparation Method		03/09/16 2005 03/14/16 1937 03/08/16 1851	2GC2069 160307-5 1MS8068	2GC2069 1EX4074 1MS8068	LPL SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16030529

Lab Number: 16030530 Sample Description: WRCDP-58(030216)

Coffeyville Resources

Attn: Sam McCormick

Kansas City, KS 66103

10 E. Cambridge Circle Dr.

Client:

Date Sampled: 03/02/2016 Time Sampled: 1420

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrati</u> ND 180 QC	<u>on Uni</u> μg/ μg/	L	Dilution <u>Factor</u> 1.0 1.0	<u>Reportir</u> <u>LOD</u> 20 100	ng <u>Limit</u> <u>LOQ</u> 20 100
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	ND ND ND ND	μg/ μg/ μg/	L L L	1.0 1.0 1.0 1.0 1.0	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0
Analysis	Date/Time Prepared	Date/Time Analyzed	QC Batch	Inst. Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Me OK DRO Preparation Method		03/09/16 2139 03/15/16 0026 03/08/16 1704	2GC2069 160307-5 1MS8068	2GC2069 1EX4074 1MS8068	LPL SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16030530

Client: Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103 Date Reported: 03/18/2016 Date Received: 03/04/2016 Pace File No: 8462 Pace Order No: 131848

Lab Number: 16030531 Sample Description: WRCDP-39(030216)					Date Sampled: 03/02/2016 Time Sampled: 1515		
<u>Analysis</u> Oklahoma GRO Oklahoma DRO	59400		<u>Jnits</u> g/L g/L	Dilution <u>Factor</u> 500 40	<u>Reportir</u> <u>LOD</u> 10000 4000	n <u>g Limit</u> LOQ 10000 4000	
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	11000 13800 1500 5650 2690		g/L g/L g/L g/L g/L g/L	200 200 200 200 200	8 10 20 10 20	200 200 200 200 200	
<u>Analysis</u> Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Me OK DRO Preparation Method		Date/Time <u>Analyzed</u> 03/09/16 2210 03/15/16 0055 03/08/16 2259	160307-5	Inst. Batch 2GC2069 1EX4074 2MS8068	<u>Analyst</u> LPL SPA GMA	Method(s) OK GRO OK DRO 8260B 5030B 5030B OK DRO	

Conclusion of Lab Number: 16030531

Lab Number: 16030532 Sample Description: WRCDP-30(030216)					Date Sampled: 03/02/2016 Time Sampled: 1615			
<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrat</u> 4910 8200	ion	<u>Units</u> μg/L μg/L	Dilution <u>Factor</u> 10 10	<u>Reportin</u> <u>LOD</u> 200 1000	n <u>g Limit</u> LOQ 200 1000		
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	0.95 J 2.9 J 84.9 37.8 2 J		μg/L μg/L μg/L μg/L μg/L	5.0 5.0 5.0 5.0 5.0	0.2 0.3 0.5 0.3 0.5	5 5 5 5 5		
<u>Analysis</u>	Date/Time <u>Prepared</u>	Date/Time <u>Analyzed</u>	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)		

-Continued-

Date Reported: 03/18/2016 Date Received: 03/04/2016 Pace File No: 8462 Pace Order No: 131848

Analysis	Date/Time Prepared	Date/Time Analyzed	QC <u>Batch</u>	Inst. Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Met GC/FID Volatile Preparation Met OK DRO Preparation Method		03/09/16 2242 03/15/16 1501 03/09/16 1538	2GC2069 160309-3 1MS9069	2GC2069 1EX4075 1MS9069	LPL SPA RKR	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16030532

Lab Number: 16030533 Sample Description: WRCDP-33(030316)

Coffeyville Resources

Attn: Sam McCormick

Kansas City, KS 66103

10 E. Cambridge Circle Dr.

Client:

Date Sampled: 03/03/2016 Time Sampled: 1355

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrati</u> 1630 24000	<u>on Uni</u> μg/ μg/	L	Dilution Factor 5.0 25	<u>Reportir</u> <u>LOD</u> 100 3000	n <u>g Limit</u> LOQ 100 2500
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	143 5.9 J 3 J 3.2 J 2 J	μg/ μg/ μg/	L L L	10 10 10 10 10	0.4 0.6 1 0.6 1	10 10 10 10 10
<u>Analysis</u>	Date/Time Prepared	Date/Time Analyzed	QC Batch	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Me OK DRO Preparation Method		03/16/16 1810 03/15/16 1305 03/09/16 1603	1GC2076 160309-3 1MS9069	1GC2076 1EX4075 1MS9069	LPL SPA RKR	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16030533

Client: **Coffeyville Resources** Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103

Lab Number: 16030534

Date Reported: 03/18/2016 Date Received: 03/04/2016 Pace File No: 8462 Pace Order No: 131848

Sample Description: Trip Blank(030416)								
<u>Analysis</u>	Concentration							
Oklahoma GRO	ND							
Oklahoma DRO	ND							

Date Sampled: 03/04/2016 Time Sampled: 1200

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrati</u> ND ND	<u>on Un</u> μg/ μg/	L	Dilution <u>Factor</u> 1.0 1.0	<u>Reportir</u> <u>LOD</u> 20 100	n <u>g Limit</u> LOQ 20 100
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	ND ND ND 0.11 J ND		L L L L	1.0 1.0 1.0 1.0 1.0	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0
Analysis	Date/Time <u>Prepared</u>	Date/Time <u>Analyzed</u>	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Me OK DRO Preparation Method		03/17/16 1328 03/15/16 1334 03/08/16 1815	1GC2077 160309-3 1MS8068	1GC2077 1EX4075 1MS8068	LPL SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16030534

Lab Number: 16030535 Date Sampled: 03/04/2016 Sample Description: WRCDP-105(030416) Time Sampled: 0950 Dilution Reporting Limit Analysis Concentration Units LOD Factor LOQ Oklahoma GRO 2310 μg/L 10 200 200 Oklahoma DRO 1100 μg/L 2.0 200 200 BTEX Benzene 6.0 J 10 0.4 10 μg/L Toluene 5.6 J 10 μg/L 10 0.6 Ethylbenzene 125 10 1 10 μg/L m+p-Xylene 137 10 10 0.6 μg/L 3 J μg/L 10 o-Xylene 10 1 Date/Time QC Date/Time Inst. **Analysis** Prepared Analyzed Method(s) Batch Batch <u>Analyst</u>

-Continued-

Date Reported: 03/18/2016 Date Received: 03/04/2016 Pace File No: 8462 Pace Order No: 131848

Analysis	Date/Time Prepared	Date/Time Analyzed	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Met GC/FID Volatile Preparation Met OK DRO Preparation Method		03/17/16 1400 03/15/16 1530 03/09/16 1629	1GC2077 160309-3 1MS9069	1GC2077 1EX4075 1MS9069	LPL SPA RKR	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16030535

Lab Number: 16030536 Date Sampled: 03/04/2016 Time Sampled: 1040 Sample Description: WRCEB(030416) Dilution Reporting Limit **Analysis** Concentration LOD Units Factor LOQ Oklahoma GRO ND 1.0 20 20 μg/L Oklahoma DRO ND μg/L 1.0 100 100 BTEX Benzene ND μg/L 1.0 0.04 1.0 Toluene 0.14 J μg/L 1.0 0.06 1.0 $\mu g/L$ Ethylbenzene ND 1.0 0.1 1.0 m+p-Xylene ND 1.0 0.06 1.0 μg/L o-Xylene ND μg/L 1.0 0.1 1.0 Date/Time Date/Time QC Inst. Prepared Analysis Analyzed Batch Batch Analyst Method(s) 1GC2076 1GC2076 LPL OK GRO Oklahoma GRO N/A03/16/16 2047 Oklahoma DRO 03/09/16 1015 03/15/16 1432 160309-3 1EX4075 OK DRO SPA BTEX N/A 03/08/16 2224 1MS8068 2MS8068 GMA 8260B Volatile Analysis Preparation Method 5030B GC/FID Volatile Preparation Method 5030B **OK DRO Preparation Method** OK DRO

Conclusion of Lab Number: 16030536

Client:

Coffeyville Resources

Attn: Sam McCormick

Kansas City, KS 66103

10 E. Cambridge Circle Dr.

Appendix

Client: Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103 Page: 13

Date Reported: 03/18/2016 Date Received: 03/04/2016 Pace File No: 8462 Pace Order No: 131848

ND indicates not detected with the Limit of Detection (LOD) in parentheses. The Method Detection Limit (MDL) is a calculated value representing the lowest concentration, that based on a statistical calculation represents the lowest concentration that theoretically, can be detected. The MDL is equivalent to the LOD. The Limit of Quantitation (LOQ) is the lowest concentration of the analytical standard that was used for calibrating the instrument. If an analytical standard is analyzed at the LOQ, an error of as much as +/- 50% can be expected. The MDL and LOQ values have been adjusted for the dilution factor and percent solids, as applicable. Due to rounding differences these values may vary slightly from the reported concentration. N/A, if present, indicates Not Applicable.

All samples which require cooling were received at a temperature of less than 6 degrees Celsius.

No analysis with a holding time of seventy-two hours or less was performed in this Pace order.

QC - QC data qualifiers were noted. See the Quality Control Report.

G - The reported concentration includes a significant amount of individual compound(s) at concentrations not typically found in petroleum hydrocarbon patterns.

J - The concentration or not detected (ND) value is below the Limit of Quantitation (LOQ) and is considered an estimated value.

Accreditation Summary

Client: Coffeyville Resources Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103 Page: 14

Date Reported: 03/18/2016 Date Received: 03/04/2016 Pace File No: 8462 Pace Order No: 131848

NELAP accreditation is issued under each EPA regulatory program for a given matrix/analyte/method combination. Pace is NELAP accredited for each matrix/analyte/method and EPA program cited in this Laboratory Report, except for those listed in the table below and for analyses performed in the field. For most of the analyses listed in the table, NELAP accreditation is not offered under the listed EPA program and Pace is NELAP accredited for the analysis, using the same analytical technology, but under a different EPA program. Pace's full NELAP accreditation status may be viewed at www.kdheks.gov/envlab. Note that unless qualified otherwise in the Laboratory Report, Pace performs all analyses, including each analysis listed in the table below, utilizing NELAP protocol.

<u>Test</u> <u>Analysis</u> Pace is accredited for all analytes. Matrix-Regulatory <u>Program</u>

Method

Pace NELAP Accredited in Other <u>Reg. Program</u>

Quality Control Report Batch Summary

Page: 15

Client:	Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103				Date Reported: 03/18/2016 Date Received: 03/04/2016 Pace File No: 8462 Pace Order No: 131848
Test Code	Testname	QC Batch	Method Blank Date/Time Analyzed	LCS Date/Time Analyzed	MS Lab No. Date/Time Analyzed
	Oklahoma GRO nbers associated with this batch: 22 16030523	1GC2069	BLK1GC2069 03/09/16 0937	LCS1GC2069 03/09/16 0905	16022161MS 03/09/16 1245
	Oklahoma GRO	2GC2069	BLK2GC2069 03/09/16 1656	LCS2GC2069 03/09/16 1624	16030529MS 03/09/16 2036
	nbers associated with this batch: 24 16030525 16030526 16030527	16030528	16030529 16030530	16030531 160305	32
Lab nur	Oklahoma GRO nbers associated with this batch: 33 16030536	1GC2076	BLK1GC2076 03/16/16 1739	LCS1GC2076 03/16/16 1707	
Lab nur	Oklahoma GRO nbers associated with this batch: 34 16030535	1GC2077	BLK1GC2077 03/17/16 1257	LCS1GC2077 03/17/16 1225	16030535MS 03/17/16 1431
CL122	Oklahoma DRO	160307-5	160307BLK5 03/14/16 1810	160307LCS5 03/14/16 1839	16030529MS 03/14/16 2006
	nbers associated with this batch: 22 16030523 16030524 16030525	16030526	16030527 16030528	16030529 160305	30 16030531
CL122	Oklahoma DRO	160309-3	160309BLK3 03/15/16 1041	160309LCS3 03/15/16 1110	16030536 MS 03/09/16
	nbers associated with this batch: 32 16030533 16030534 16030535	16030536			
MS295	BTEX	1MS8068	BLK1MS8068 03/08/16 1216	LCS1MS8068 03/08/16 1104	16030529MS 03/08/16 1927
Lab nur 1603052 1603053	nbers associated with this batch: 22 16030523 16030524 16030525 36	16030526			
MS295	BTEX	1MS9069	BLK1MS9069 03/09/16 1512	LCS1MS9069 03/09/16 1421	
	nbers associated with this batch: 32 16030533 16030535		55/07/10 1012	00,00,10 1121	

Quality Control Report Method Blank, LCS, MS/MSD Data

Client: Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103

Page: 16

Date Reported: 03/18/2016 Date Received: 03/04/2016 Pace File No: 8462 Pace Order No: 131848

Analysis	Method Blank	LCS % Rec	LCS Limits	LCS Spike Level	Units	Spiked (% Rec MS	-	MS/MSD Limits	MS/MSD Spike Level	Units	Spiked Sa Precision RPD	-
	Dialik	70 Ket	Linits	Level	Units	1415	MSD	Linits	Levei	Onits	KI D	Linn
QC Batch: 160307-5	-		03/07/2016 1230			-	mple: 16030529					
Oklahoma DRO	ND(100)	74.0 LL	80.0-120	500	µg/L	Ι	Ι	80.0-120	500	μg/L	**	20.0
QC Batch: 160309-3	For samples	prepared on:	03/09/2016 1015			Spiked sa	mple: 16030530	; ;				
Oklahoma DRO	ND(100)	85.1	80.0-120	500	µg/L	F	F	80.0-120		$\mu g/L$	**	20.0
OC Batch: 1GC2069	For sample a	nalyzed on: 0	3/09/2016			Spiked s	mple: 1602216					
Oklahoma GRO	ND(20)	99.7	80.0-120	200	µg/L	MN	MN	80.0-120	200	μg/L	**	20.0
Surrogate Data:					10							
4-BFB (8015D)	94.4	101	84.0-121	20.0	µg/L	MN	MN	84.0-121	20.0	μg/L	**	
FLUOROBENZENE (8015D)	92.6	99.0	71.7-132	20.0	μg/L	MN	MN	71.7-132	20.0	μg/L	**	
OC Batch: 1GC2076	For complex	nalyzed on: 0	2/16/2016			Spiked s						
QC Batch: IGC2076 Oklahoma GRO	22 BK	107	80.0-120	200	µg/L	MN	MN	80.0-120		μg/L	**	20.0
Surrogate Data:	22 DX	10/	50.0 120	200	μ ₆ /L	1711 4	17113	00.0-120		μ <u>6</u> , L		20.0
4-BFB (8015D)	99.5	103	84.0-121	20.0	µg/L	MN	MN	84.0-121		μg/L	**	
FLUOROBENZENE (8015D)	93.0	95.5	71.7-132	20.0	μg/L μg/L	MN	MN	71.7-132		μg/L μg/L	**	
LEOKOBENZENE (8013D)	75.0	<i>J</i> 5.5	/1./-152	20.0	µg/L	MIX	NII Y	/1./-152		µg/L		
QC Batch: 1GC2077	For sample analyzed on: 03/17/2016					Spiked sa	mple: 1603053	5				
Oklahoma GRO	ND(20)	99.3	80.0-120	200	μg/L	103	99.1	80.0-120	2000	μg/L	3.90	20.0
Surrogate Data:												
4-BFB (8015D)	98.0	101	84.0-121	20.0	µg/L	104	101	84.0-121	200	μg/L		
FLUOROBENZENE (8015D)	94.8	95.3	71.7-132	20.0	μg/L	96.6	96.5	71.7-132	200	$\mu g/L$		
QC Batch: 1MS8068	For sample a	nalyzed on: 0	3/08/2016			Spiked s	mple: 16030529)				
BTEX							_					
Benzene	ND(0.04)	102	80.0-120	10.0	μg/L	104	105	79.6-118	10.0	μg/L	1.00	9.8
Toluene	ND(0.06)	98.5	80.0-120	10.0	µg/L	96.8	100.	89.7-116	10.0	μg/L	3.30	8.0
Ethylbenzene	ND(0.1)	95.1	80.0-120	10.0	µg/L	98.9	96.5	89.1-114	10.0	μg/L	2.50	6.5
m+p-Xylene	ND(0.06)	93.9	80.0-120	20.0	μg/L	94.6	92.8	88.6-116	20.0	μg/L	1.90	6.7
o-Xylene	ND(0.1)	97.4	80.0-120	10.0	μg/L	101	97.7	88.3-115	10.0	μg/L	3.30	8.1
Surrogate Data:												
1,2-DICHLOROETHANE-d4	100.	98.9	74.3-123	10.0	μg/L	110.	114	74.3-123	10.0	μg/L		
TOLUENE-d8	96.7	98.4	80.0-120	10.0	µg/L	100.	99.4	80.0-120	10.0	$\mu g/L$		
OC Batch: 1MS9069	For sample a	nalyzed on: 0	3/09/2016			Spiked sa	mple:					
BTEX	pie e					MN	MN					
Benzene	ND(0.04)	94.6	80.0-120	10.0	µg/L			79.6-118		μg/L	**	9.8
Toluene	ND(0.06)	103	80.0-120	10.0	μg/L			89.7-116		μg/L	**	8.0
Ethylbenzene	ND(0.1)	103	80.0-120	10.0	μg/L			89.1-114		μg/L	**	6.5
m+p-Xylene	ND(0.06)	102	80.0-120	20.0	μg/L			88.6-116		μg/L	**	6.7
o-Xylene	ND(0.1)	104	80.0-120	10.0	μg/L			88.3-115		μg/L	**	8.1
Surrogate Data:												
1,2-DICHLOROETHANE-d4	88.3	93.4	74.3-123	10.0	μg/L	MN	MN	74.3-123		μg/L	**	
TOLUENE-d8	109	109	80.0-120	10.0	μg/L	MN	MN	80.0-120		μg/L	**	
OC Pataby 2002040	For some 1-	nalyzad on 0	2/00/2014			Sullead -	mpla: 16020524					
QC Batch: 2GC2069 Oklahoma GRO	For sample a ND(20)	malyzed on: 0 97.8	80.0-120	200	μg/L	Spiked sa 94.4	mple: 16030529 84.7	80.0-120	400	μg/L	10.8	20.0
	14D(20)	71.0	30.0-120	200	µg/∟	74.4	04.7	00.0-120	+00	µg/L	10.0	20.0
Surrogate Data: 4-BFB (8015D)	93.4	98.0	84.0-121	20.0	цα/Ι	107	105	84.0-121	40.0	ug/I		
FLUOROBENZENE (8015D)	93.4 89.5	98.0 94.4	71.7-132	20.0	μg/L μg/L	107	103	71.7-132	40.0	μg/L μg/L		
L L U U N U D LINZEINE (0010D)	07.3	74.4	/1./-134	20.0	μg/L	102	101	11.1-134	+0.0	µg/L		

Data Qualifiers:

Quality Control Report Method Blank, LCS, MS/MSD Data

Client: Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103

Page: 17

Date Reported: 03/18/2016 Date Received: 03/04/2016 Pace File No: 8462 Pace Order No: 131848

				LCS		Spiked Sample			MS/MSD		Spiked Sa	mple
	Method	LCS	LCS	Spike		(% Recov	ery)	MS/MSD	Spike		Precision	Data
Analysis	Blank	% Rec	Limits	Level	Units	MS	MSD	Limits	Level	Units	RPD	Limit

LL - The Laboratory Control Sample (LCS) recovery for this analyte was below the method or laboratory quality control limit. The reported sample concentration may be biased low.

I - Due to the concentration of analyte in the sample, the spike level is too low to allow accurate quantification of the spike recovery.

F - MS and/or MSD sample data are not available due to insufficient sample volume.

MN - The MS/MSD sample analyses were not performed on a sample from this Pace order number.

BK - The concentration of this analyte, if present in an associated sample, is considered an estimated value if the sample concentration is less than ten times the amount present in this method blank.

** - RPD calculation not applicable/not available for this analysis.

Client: Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103 Date Reported: 03/18/2016 Date Received: 03/04/2016 Pace File No: 8462 Pace Order No: 131848

Surrogate	Date Date Prepared Analy	zed	Spike Level	Units	% Recovery	Acceptable % Limits				
Lab Number: 16030522	Sample Des	cription:Wl	RCDP-91(022916)							
GC/FID Volatile	02/00/	2016	20	··· - /T	101	84.0.121				
4-BFB (8015D) FLUOROBENZENE (8015D)	03/09/ 03/09/		20 20	μg/L μg/L	101 95.9	84.0-121 71.7-132				
BTEX	03/09/	2010	20	µg/L	93.9	/1./-132				
1,2-DICHLOROETHANE-d4	03/08/	/2016	10	µg/L	106	74.3-123				
TOLUENE-d8	03/08/	/2016	10	μg/L	96.6	80.0-120				
Lab Number: 16030523	Sample Des	Sample Description:WRCDP-97(022916)								
GC/FID Volatile 4-BFB (8015D)	03/09/	/2016	20	uаЛ	100.	84.0-121				
FLUOROBENZENE (8015D)	03/09/		20 20	μg/L μg/L	97.5	71.7-132				
BTEX	05/05/	2010	20	µ6/12	<i>y</i> 1.5	11.1 152				
1,2-DICHLOROETHANE-d4	03/08/	/2016	10	μg/L	104	74.3-123				
TOLUENE-d8	03/08/	/2016	10	µg/L	95.8	80.0-120				
				_						
Lab Number: 16030524	Sample Des	cription:Wl	RCDP-102(022916)						
GC/FID Volatile 4-BFB (8015D)	03/09/	/2016	20	μg/L	97.9	84.0-121				
FLUOROBENZENE (8015D)	03/09/		20	μg/L μg/L	94.1	71.7-132				
BTEX	00/03/	2010	20	FB/2	<i>y</i>	111 102				
1,2-DICHLOROETHANE-d4	03/08/	/2016	10	µg/L	102	74.3-123				
TOLUENE-d8	03/08/	/2016	10	µg/L	97.8	80.0-120				
Lab Number: 16030525	Samula Dag	anintian.W/	DCDD 70(022016)							
GC/FID Volatile	Sample Des	cripuon: wi	RCDP-70(022916)							
4-BFB (8015D)	03/09/	/2016	20	µg/L	106	84.0-121				
FLUOROBENZENE (8015D)	03/09/		20	μg/L	103	71.7-132				
BTEX										
1,2-DICHLOROETHANE-d4	03/08/		10	µg/L	107	74.3-123				
TOLUENE-d8	03/08/	/2016	10	μg/L	98.0	80.0-120				
Lab Number: 16030526	Sample Des	cription:Wl	RCDP-94(022916)							
GC/FID Volatile	-	-								
4-BFB (8015D)	03/09/		20	µg/L	101	84.0-121				
FLUOROBENZENE (8015D)	03/09/	/2016	20	µg/L	97.6	71.7-132				
BTEX 1,2-DICHLOROETHANE-d4	03/08/	/2016	10		101	74.3-123				
TOLUENE-d8	03/08/		10 10	μg/L μg/L	98.0	80.0-120				
	03/00/	2010	10	µ6/12	90.0	000 120				
Lab Number: 16030527	Sample Dese	cription:Wl	RCDP-88(022916)							
GC/FID Volatile										
4-BFB (8015D)	03/09/		20	μg/L ~	100.	84.0-121				
FLUOROBENZENE (8015D) BTEX	03/09/	/2016	20	μg/L	99.0	71.7-132				
1,2-DICHLOROETHANE-d4	03/08/	/2016	10	µg/L	100.	74.3-123				
TOLUENE-d8	03/08/		10	μg/L	97.6	80.0-120				
				10						
Lab Number: 16030528	Sample Des	cription:Wl	RCDP-87(022916)							
GC/FID Volatile 4-BFB (8015D)	03/09/	/2016	20	ug/I	102	84.0-121				
FLUOROBENZENE (8015D)	03/09/		20 20	μg/L μg/L	98.6	71.7-132				
BTEX	00/07/			r.o						
1,2-DICHLOROETHANE-d4	03/08/	/2016	10	μg/L	103	74.3-123				

Client: Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103 Date Reported: 03/18/2016 Date Received: 03/04/2016 Pace File No: 8462 Pace Order No: 131848

Surrogate	Date Date Prepared Analyzed	Spike Level	Units	% Recovery	Acceptable % Limits				
Lab Number: 16030528	Sample Descript	ion:WRCDP-87(02	2916)						
BTEX TOLUENE-d8	03/08/2016	10	µg/L	96.1	80.0-120				
Lab Number: 16030529 GC/FID Volatile	Sample Descript	ion:WRCDP-37(03	0216)						
4-BFB (8015D)	03/09/2016	40	μg/L	104	84.0-121				
FLUOROBENZENE (8015D) BTEX	03/09/2016		μg/L	100.	71.7-132				
1,2-DICHLOROETHANE-d4	03/08/2016	10	μg/L	111	74.3-123				
TOLUENE-d8	03/08/2016	10	µg/L	99.5	80.0-120				
Lab Number: 16030530 GC/FID Volatile	Sample Descript	Sample Description:WRCDP-58(030216)							
4-BFB (8015D)	03/09/2016	20	μg/L	97.4	84.0-121				
FLUOROBENZENE (8015D) BTEX	03/09/2016	20	µg/L	96.0	71.7-132				
1,2-DICHLOROETHANE-d4	03/08/2016		µg/L	108	74.3-123				
TOLUENE-d8	03/08/2016	10	µg/L	97.4	80.0-120				
Lab Number: 16030531 GC/FID Volatile	Sample Descript	ion:WRCDP-39(03	0216)						
4-BFB (8015D)	03/09/2016	10000	µg/L	99.2	84.0-121				
FLUOROBENZENE (8015D) BTEX	03/09/2016	10000	μg/L	101	71.7-132				
1,2-DICHLOROETHANE-d4	03/08/2016	2000	μg/L	102	74.3-123				
TOLUENE-d8	03/08/2016	2000	μg/L	98.6	80.0-120				
Lab Number: 16030532 GC/FID Volatile	Sample Descript	ion:WRCDP-30(03	60216)						
4-BFB (8015D)	03/09/2016	200	μg/L	101	84.0-121				
FLUOROBENZENE (8015D) BTEX	03/09/2016	200	µg/L	101	71.7-132				
1,2-DICHLOROETHANE-d4	03/09/2016		µg/L	82.2	74.3-123				
TOLUENE-d8	03/09/2016	50	µg/L	110.	80.0-120				
Lab Number: 16030533 GC/FID Volatile	Sample Descript	ion:WRCDP-33(03	0316)						
4-BFB (8015D)	03/16/2016	100	μg/L	101	84.0-121				
FLUOROBENZENE (8015D) BTEX	03/16/2016	100	µg/L	93.3	71.7-132				
1,2-DICHLOROETHANE-d4	03/09/2016	100	µg/L	90.6	74.3-123				
TOLUENE-d8	03/09/2016	100	μg/L	114	80.0-120				
Lab Number: 16030534 GC/FID Volatile		ion:Trip Blank(030							
4-BFB (8015D)	03/17/2016		μg/L	97.9	84.0-121				
FLUOROBENZENE (8015D) BTEX	03/17/2016		μg/L	93.4	71.7-132				
1,2-DICHLOROETHANE-d4	03/08/2016		µg/L	102	74.3-123				
TOLUENE-d8	03/08/2016	10	μg/L	98.0	80.0-120				
Lab Number: 16030535 GC/FID Volatile	Sample Descript	ion:WRCDP-105(0	30416)						
4-BFB (8015D)	03/17/2016	200	μg/L	101	84.0-121				

Quality Control Report Sample Surrogate Data

Client: Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103 Page: 20

Date Reported: 03/18/2016 Date Received: 03/04/2016 Pace File No: 8462 Pace Order No: 131848

Surrogate	Date Prepared	Date Analyzed	Spike Level	Units	% Recovery	Acceptable % Limits	
Lab Number: 16030535	Sa	mple Description	WRCDP-105(0	30416)			
GC/FID Volatile	54	inple Description					
FLUOROBENZENE (8015D)		03/17/2016	200	μg/L	94.8	71.7-132	
BTEX				r8-			
1,2-DICHLOROETHANE-d4		03/09/2016	100	μg/L	84.6	74.3-123	
TOLUENE-d8		03/09/2016	100	µg/L	109	80.0-120	
Lab Number: 16030536	Sa	mple Description	:WRCEB(03041	16)			
GC/FID Volatile							
4-BFB (8015D)		03/16/2016	20	μg/L	96.4	84.0-121	
FLUOROBENZENE (8015D)		03/16/2016	20	μg/L	90.2	71.7-132	
BTEX							
1,2-DICHLOROETHANE-d4		03/08/2016	10	μg/L	103	74.3-123	
TOLUENE-d8		03/08/2016	10	μg/L	96.9	80.0-120	

Quality Control Report Continuing Calibration Report

Client: Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103 Page: 21

Date Reported: 03/18/2016 Date Received: 03/04/2016 Pace File No: 8462 Pace Order No: 131848

	Date of	Instrument	Amount in Amount Percent
Analysis	<u>Analysis</u>	Batch ID	Standard Detected Units Recovery
Oklahoma GRO	03/09/2016	1GC2069	CCV recovery acceptable for this Instrument Batch.
Oklahoma GRO	03/09/2016	2GC2069	CCV recovery acceptable for this Instrument Batch.
Oklahoma GRO	03/10/2016	3GC2069	CCV recovery acceptable for this Instrument Batch.
Oklahoma GRO	03/16/2016	1GC2076	CCV recovery acceptable for this Instrument Batch.
Oklahoma GRO	03/17/2016	2GC2076	CCV recovery acceptable for this Instrument Batch.
Oklahoma GRO	03/17/2016	1GC2077	CCV recovery acceptable for this Instrument Batch.
Oklahoma GRO	03/17/2016	2GC2077	CCV recovery acceptable for this Instrument Batch.
Oklahoma DRO	03/14/2016	1EX4074	CCV recovery acceptable for this Instrument Batch.
Oklahoma DRO	03/15/2016	2EX4074	CCV recovery acceptable for this Instrument Batch.
Oklahoma DRO	03/15/2016	1EX4075	CCV recovery acceptable for this Instrument Batch.
Oklahoma DRO	03/15/2016	2EX4075	CCV recovery acceptable for this Instrument Batch.
BTEX	03/08/2016	1MS8068	CCV recovery acceptable for this Instrument Batch.
BTEX	03/08/2016	2MS8068	CCV recovery acceptable for this Instrument Batch.
BTEX	03/09/2016	3MS8068	CCV recovery acceptable for this Instrument Batch.
BTEX	03/09/2016	1MS9069	CCV recovery acceptable for this Instrument Batch.
BTEX	03/09/2016	2MS9069	CCV recovery acceptable for this Instrument Batch.
DILA	05/07/2010	211157007	ce i recovery acceptable for this instrument baten.

525 N. 8th Street, Salina, KS 67401 (785)827-1273 (800)535-3076 Fax (785)823-7830

www.cas-lab.com

Continental Order Number: 131848

Client/Reporting Information				I	nvoice	Inform	nation							PA	RAMET	ERS/CON	ITAINE	R TYPE (preservat	ive)		COMMENTS
Company Name: Coffeyville Resources, LLC			Company Name Coffeyville R		LLC	•																
Address:			Address:					- 4						ਹਿੰ	_							ı
10 East Cambridge Circle Dr. / Suite 250			10 East Cam	bridge Cir	vle D	r. / St				<u>a'</u>			í.	s (H	1 L					1		
City: State: Kansas City Kansas	Zip: 66103		City: Kansas City				State Kan			Zip: 6610	13		s (HG	l vial	amber 1L (HCL)							
Contact:			Contact:									_	vial	2 Q	ber				1			
Sam McCormick / Jerome McSorley			Sam McCorrnici	k									10 ml	glass 40 ml vials (HCL)	x am							
E-mail:			E-mail:										ass 4	3x 8	0)-2							
samccormick@cvrenergy.com / jdmcsorley@	cvrenergy	<u>.com</u>											3x gl	5.	/810(
Phone Number: Fax Number	261		Phone Number: 913-982-0457				Fax 1	√umb	er:				- (5	108/0	10003							
913-982-0457 Sampler's Name / Company:(Printed)	Sampler's ?	Vame:(Signati			Purch	ase Or	yler N	umbe					0/801	(802	0							
Judy Andrews, Kevin Walter WSP USA	me		Zb			-	.ue. 1 .						(802	IKO	E D							
Project Name: Facility Name / Add WRC Interior Delineation WRC Wynnewoo					osite ab	l hcrs	Nu	·		ved Bo			BTEX (8020/8015) - 3x glass 40 ml vials (HCL)	Oklahoma GRO (8020/8015) - 3x	Oklahoma DRO (8000/8100) • 2x							
SAMPLE IDENTIFICATION	Matrix (Sample	Regulatory	Date	Time	C-Composite G-Grab	Total Containe	нсі	NaOH	(ONH	H2SO4	NONE	OTHER:		ð								
(30 Characters or less)	Турс)	Program	Sampled	Sampled								5										
WRCDP-91(022916)	GW	0	02/29/16	10:00	G	8	8				_		X	X	X							
WRCDP-97(022916)	GW	0	02/29/16	11:15	G	8	8						X	X	X	ļ			<u> </u>	<u> </u>		
WRCDP-102(022916)	GW	0	02/29/16	14:00	G	8	8						Χ	X	X	ļ						
WRCDP-70(022916)	GW	0	02/29/16	15:00	G	8	8						Χ	X	X			ļ	ļ	ļ		
WRCDP-94(022916)	GW	0	02/29/16	15:55	G	8	8						Χ	X	X					ļ		
WRCDP-88(022916)	GW	0	02/29/16	16:50	G	8	8						Χ	X	X		_					
WRCDP-87(022916)	GW	0	02/29/16	17;30	G	8	8						Χ	X	X				<u> </u>			
WRCDP-37(030216)	GW	0	03/02/16	13:05	G	8	8						X	X	X							
WRCDP-37(030216) MS/MSD	GW	0	03/02/16	13:05	G	9	9						Х	X	Χ							MS/MSD
WRCDP-58(030216)	GW	0	03/02/16	14:20	G	8	8						X	X	X							ļ
WRCDP-39(030216)	GW	0	03/02/16	15:15	G	8	8						Х	X	X							
Matrix (Sample Type): DW=Drinking Water,	GW=Gr	ound Water,	, WW =Was	te Water,	₩='	Wipe,	S	-Soli	d/Soi	il, 	SL=S	Sludg	e, A =/			rganic L	-					
Regulatory Program: <u>N</u> =NPDES, <u>R</u> =RCRA	., <u>D</u> =Dı	rinking Wate	er, <u>SL</u> =503		<u>0</u> =	Other,								Stand	(Please note and TAT: (1	if non-stand 5 working da	ard turnaroo ays) Rush (ind. Rush å TAT: (5 wo	& Emergency rking days)	y subject to a Emergency 1	iditional cha 'AT: (3 work	king days)
RELINQUESHED BY:	\square			DATE:			TIMI			RECI	eiver /	BY:			a					DATE:		TIME:
RELINQUISHED BY:	2			3-4	-/(22	ð	PEC			z.,	\checkmark						3-4	/ 🦕	
KELINQUISHEB BY:							/-	 7//	~			/D1.	£							Diff.		
RECEIVED AT LAB BY:				34- DATE:	0		TIM		<u></u>	SHIP	PED V	/IA:								SEAL #:		<u> </u>
miller stand				3-4-	N		17);	10	AIRE	1LL:									SEAL D	ATE:	

HYCOCYCOC 2016 Defineation 2x2s/WRC_Defineation 1/3/4/2016

PLEASE NOTE THE ATTACHED CONTINENTAL SAMPLE ACCEPTANCE POLICY

Client/Reporting Information

525 N. 8th Street, Salina, KS 67401 (785)827-1273 (800)535-3076 Fax (785)823-7830

www.cas-lab.com

Invoice Information

Continental Order Number: 131848

PARAMETERS/CONTAINER TYPE (preservative)

Company Name: Company Name: Coffeyville Resources, LLC Coffeyville Resources, LLC 40 ml vials (HCL) Address: Address: 10 East Cambridge Circle Dr. / Suite 250 amber 1L (HCL) 10 East Cambridge Circle Dr. / Suite 250 BTEX (8020/8015) - 3x glass 40 ml vials (HCL) Zip: State: State: Zip: City: City: 66103 Kansas City Kansas 66103 Kansas Kansas City Contact: Contact: glass . Sam McCormick Sam McCornuck / Jerome McSorley DRO (8000/8100) - 2x E-mail: GRO (8020/8015) - 3x E-mail: samccormick@cvrenergy.com / jdmcsorley@cvrenergy.com Fax Number: Fax Number Phone Number: Phone Number: 913-982-0457 913-982-0457 Purchase Order Number: Sampler's Name:(Signature) Sampler's Name / Company:(Printed) polica Okiahoma I Judy Andrews, Kevin Walter WSP USA Number of Preserved Bottles Oklahoma Facility Name / Address: Project Name: WRC Wynnewood, OK WRC Interior Delineation Compos O-Grab Total Containe H2SO4 NeOH EONH HNON Ю OTHER: Matrix Time SAMPLE IDENTIFICATION (Sample Regulatory Date Sampled Program Sampled Type) (30 Characters or less) Х Х Х 8 8 GW 0 16:15 G 03/02/16 WRCDP-30(030216) Х Х Х 8 8 G GW 0 13:55 03/03/16 WRCDP-33(030316) Х Х Provided by Lab Х 12:00 G 8 8 GW 0 03/04/16 Trip Blank (030416) WRCEB (030416) 9:50 G₩ σ 3-4-11 6 8 8 Equipment Plank 8 8 GW 0 3-4-16 10%40G S=Solid/Soil, SL=Sludge, A=Air, OL=Oil/Organic Liquid, O=Other, WW=Waste Water, W=Wipe, Matrix (Sample Type): DW=Drinking Water, GW=Ground Water, (Please note if non-standard turnaround. Rush & Emergency subject to additional charge) nR=Non RCRA IMW O=Other, Standard TAT: (15 working days) Rush TAT: (5 working days) Emergency TAT: (3 working days) D=Drinking Water, SL=503 Sludge, Regulatory Program: <u>N</u>=NPDES, <u>R</u>=RCRA, TIME: DATE: RECEIVED BY: DATE: LIWE: RELINOUISHED BY <u>3-4-14</u> DATE: 12201220 .4-16 ECEIVED BY ÚME-TIME: DATE: RELINOUISHED BY: 2 SEAL #: SHIPPED VIA: TIME: DATI SEAL DATE: 17:10 AIRBILL: D-Y-16

COMMENTS

HACOCYCOC 2016 Delineation 2 x8t/WRC_Delineation 2/3/4/2016

PLEASE NOTE THE ATTACHED CONTINENTAL SAMPLE ACCEPTANCE POLICY

Pace Analytical Cooler/Sample Receipt For	m(C/SRF)	Pace Order No.: 131FY &
Client Name: Losteyvill	R FIDSCORCAS	ZZC Pace File No.: • 7 6 L
Sample ID's in cooler:	02	
		· · · · · · · · · · · · · · · · · · ·
	<u> </u>	
Cooler	r this Pace Order No.	
Cooler Identification: Pace Other		/ Client's Cooler / Box / Letter / Hand-delivered
Date/Time Cooler Received:	031 041 1/2 2	<u>7:10</u>
Delivered By: UPS .	/ FedX / AB Express / Field Sv	Aail / Walk-In / Other:
Custody Seal: Prese	ent: Intact / Broken Absent:	Seal No:
Seal 1	Name:	Seal Date:
Seal 1	matches Chain of Custody: Y	es / No / NA
		Foam / Paper / Peanuts / Vermiculite / None / Other:
Cooler Temperature (°C): Origi	inal Reading (°C)/	
Temp Ther	perature. By: (Temperature B) mo. ID No.: 585	Iank Surface Temperature
	Evidence of Cooling and date re	
Sample Receipt Discrepancies	, °	
Note: If discrepancies are presen	nt, Pace will proceed with a	nalyses until/unless directed otherwise by the client.
Chain of Custody not present - in	nformation taken from:	1 *
-	ainer 🗆 🗌	Sample listed on Chain of Custody, not received
	Proj. Mgr. 🗆 🔲	Sample identification on container and Chain of Custody do not agree
 Container label absent Chain of Custody incomplete [set 	ee detail below]	Air bubbles in Aqueous VOA vials larger than pea-size [approx. 6 mm] Cooler temperature exceeded 0.1 - 6.0 °C requirement
Chain of Custody micomplete [se		[Do not mark if samples do not require cooling to 0.1 - 6.0 °C.]
 Date or Time sampled obtained fro 		Broken or leaking containers (detail actions below)
Chain of Custody missing samp	ler's name	Sample container type or labeled chemical preservation inappropriate
Chain of Custody missing matri	x (sample type)	Other discrepancies:
Missing relinquished information	m: signature date time	
Detail to discrepancies/comments:	- 2	
5-LTA W	KC DP-37	
2-LTA V	URCOP-87	
2LTA U	NRCPP-88	
Completed by:	Date Completed:3	<u>t⁻1\6</u>

Pace Analytical Cooler/Sample Receip	et Form (C/S RF)		Pace Order No.: 131848
	the the sources		Pace File No.: をとんて
	e COC		
			· · · · · · · · · · · · · · · · · · ·
			······································
	······································		
Cooler	for this Pace Order No.		
Cooler Identification:			/ Client's Cooler / Box / Letter / Hand-delivered
Date/Time Cooler Received:	031_041_1/e_		
Delivered By:			Mail / Walk-In / Other:
Custody Seal:	Present: Intact / Broken Ab	sent:	Seal No:
custory or	Seal Name:		Seal No:
	Seal matches Chain of Custody:	· · · · · · · · · · · · · · · · · · ·	· · · ·
Type of Packing Material:			ØFoam / Paper / Peanuts / Vermiculite / None / Other:
Cooler Temperature (°C):	Original Reading (°C)	Ī	.5 Corrected Reading (°C)
Cooler remperature (Ch	Tama antena Ren Tama ante	RI BI	Surface Temperature
	Thermo. ID No.: 58	5	Thermo. Correction Factor (°C): -0.5
	Evidence of Cooling and da		
Sample Receipt Discrep	ancies: 🖬 No 🗆 Yes	(Se	e below for discrepancies.)
Note: If discrepancies are	present, Pace will proceed wi	ith ar	nalyses until/unless directed otherwise by the client.
Chain of Custody not pre	esent - information taken from:		Sample excluded from Chain of Custody
Cover Letter	Container		Sample listed on Chain of Custody, not received
РО 🗆	Pace Proj. Mgr. 🗖	Ц	Sample identification on container and Chain of Custody do not agree
Container label absent	· · · · · · · · · · · · · · · · · · ·		Air bubbles in Aqueous VOA vials larger than pea-size [approx. 6 mm]
Chain of Custody incomp	plete [see detail below] late/time sampled (excl. TB or Dup.)		Cooler temperature exceeded 0.1 - 6.0 °C requirement [Do not mark if samples do not require cooling to 0.1 - 6.0 °C.]
Date or Time sampled obta			Broken or leaking containers (detail actions below)
Chain of Custody missin			Sample container type or labeled chemical preservation inappropriate
Chain of Custody missin			Other discrepancies:
Missing relinquished inf	ormation: signature date time	e	
Detail to discrepancies/comm	he.		
2-1TA	WRCDP-30		
2-1.774	WRCDP-39		
2-1TA	WRCDR-58		
2 LtA	- TRip Blank.		
		11	-11 -
Completed by:	Date Completed:	<u>-4</u>	

Pace Analytical	· · · · · · · · · · · · · · · · · · ·	Pace Order No.: 131848
Cooler/Sample Receip	ot Form (C/S_RF)	-
Client Name: Loffey	ville thesauce	S Pace File No.: 8462
Sample ID's in cooler:	Sue COC	
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
Cooler 3 of 5	for this Pace Order No.	······································
Cooler Identification:		/ Client's Cooler / Box / Letter / Hand-delivered
Date/Time Cooler Received:	031 041 16	<u>17:10</u>
Delivered By:	UPS / FedX / AB Express /	Id Svcs Mail / Walk-In / Other:
Custody Seal:	Present: Intact / Broken Ab	sent: Seal No:
	Seal Name:	Seal Date:
	Seal matches Chain of Custody	Yes / No / STA
Type of Packing Material:	Blue Ice / 🖅 / Melted Ice / 🕅	bble Foam / Paper / Peanuts / Vermiculite / None / Other
Cooler Temperature (°C):	Original Reading (°C)	2./ Corrected Reading (°C) 1.6
	Temperature. By: Temperature. Thermo, ID No.:	Thermo. Correction Factor (°C): -0.5
	Evidence of Cooling and da	
Sample Receipt Discrep	ancies: 🕅 No 🗖 Yes	(See below for discrepancies.)
Note: If discrepancies are	present, Pace will proceed wi	th analyses until/unless directed otherwise by the client.
Chain of Custody not pre	sent - information taken from:	□ Sample excluded from Chain of Custody
Cover Letter	Container 🗖	Sample listed on Chain of Custody, not received
PO 🗆	Pace Proj. Mgr. 🛛	Sample identification on container and Chain of Custody do not agree
Container label absent		Air bubbles in Aqueous VOA vials larger than pea-size [approx. 6 mm]
 Chain of Custody incomp Chain of Custody missing distance 	ete [see detail below] ate/time sampled (excl. TB or Dup.)	 Cooler temperature exceeded 0.1 - 6.0 °C requirement [Do not mark if samples do not require cooling to 0.1 - 6.0 °C.]
 Date or Time sampled obtain 		 Broken or leaking containers (detail actions below)
Chain of Custody missing		Sample container type or labeled chemical preservation inappropriate
Chain of Custody missing	g matrix (sample type)	Other discrepancies:
Missing relinquished info	ormation: signature date time	
Detail to discrepancies/comm	ients:	
VOL		
Correlated by:	Date Completed:	
Compreten by:		

Pace Analytical			Pace Order No.: 131848
Cooler/Sample Receip			
Client Name: Cofly	ille La source	s.	5 LCC Pace File No.: 8462
Sample ID's in cooler:			
	· · ·		
	··· · · · · · · · · ·	.	· · · · · · · · · · · · · · · · · · ·
Cooler of		Q	
Cooler Identification:	Pace Cooler #:	ر	/ Client's Cooler / Box / Letter / Hand-delivered
Date/Time Cooler Received:	031_041_16	,	7.10
Delivered By:		-	vcs Mail / Walk-In / Other:
Custody Seal:			Seal No:
Custody Scal.	•		
	Seal matches Chain of Custody	•	
Type of Packing Material:			Foam / Paper / Peanuts / Vermiculite / None / Other:
Cooler Temperature (°C):			Corrected Reading (°C) / 5
			Tank Surface Temperature
			Thermo. Correction Factor (°C): $-C$). 5
	Evidence of Cooling and d		
Sample Receipt Discrep	ancies: 🖬 No 🗆 Yes	(Se	ee below for discrepancies.)
Note: If discrepancies are	present, Pace will proceed wi	ith a	malyses until/unless directed otherwise by the client.
□ Chain of Custody not pre	sent - information taken from:		Sample excluded from Chain of Custody
Cover Letter	Container		Sample listed on Chain of Custody, not received
PO 🗖	Pace Proj. Mgr. 🛛		Sample identification on container and Chain of Custody do not agree
Container label absent			Air bubbles in Aqueous VOA vials larger than pea-size [approx. 6 mm]
 Chain of Custody incomp Chain of Custody missing d 	-		Cooler temperature exceeded 0.1 - 6.0 °C requirement [Do not mark if samples do not require cooling to 0.1 - 6.0 °C.]
Date or Time sampled obta	ate/time sampled (excl. TB or Dup.)	П	Broken or leaking containers (detail actions below)
 Chain of Custody missing 			Sample container type or labeled chemical preservation inappropriate
Chain of Custody missing			Other discrepancies:
Missing relinquished info	ormation: signature date time	!	
Detail to discrepancies/comm			
2-LT1	A WRCDP-105	~	
2.17	A WRCEB		
2-11	A WR CPP-3	3	
	· .		
Completed by:	Date Completed:		

Client Name: <u>Confequetto</u> Sample ID's in cooler: <u>Soc</u> <u>COC</u> Cooler <u>5</u> of <u>5</u> for this Pace Order No.
Sample ID's in cooler:
Cooler 5 of 5 for this Pace Order No.
Cooler 5 of 5 for this Pace Order No.
Cooler 5 of 5 for this Pace Order No.
Cooler 5 of 5 for this Pace Order No.
Cooler 5 of 5 for this Pace Order No.
1.00ler 5.5 of 2 for this race Urger No.
4117
Cooler Identification: Pace Cooler #:/ / Client's Cooler / Box / Letter / Hand-delivered Other: Other:
Date/Time Cooler Received: <u>0310411/a 17:10</u>
Delivered By: UPS / FedX / AB Express / Field Svcs Mail / Walk-In / Other:
Custody Seal: Present: Intact / Broken Absent: V Seal No:
Custody Seal: Present: Intact / Broken Absent: V Seal No:
Seal matches Chain of Custody: Yes / No / N/A
Type of Packing Material: Blue Ice / Co / Melted Ice / Bubble Foam / Paper / Peanuts / Vermiculite / None / Other:
Cooler Temperature (°C): Original Reading (°C) / 2 Corrected Reading (°C) 0.7
Temperature. By: Temperature Blank Surface Temperature
Thermo. ID No.: 585 Thermo. Correction Factor (°C): -0.5 ,
Evidence of Cooling and date received = date sampled
Sample Receipt Discrepancies: 🗖 No 🗆 Yes (See below for discrepancies.)
Note: If discrepancies are present, Pace will proceed with analyses until/unless directed otherwise by the client.
Chain of Custody not present - information taken from: Sample excluded from Chain of Custody Cover Letter Container Sample listed on Chain of Custody, not received
PO Pace Proj. Mgr. D Sample identification on container and Chain of Custody do not a
Container label absent Image: A strainer label absent
Chain of Custody incomplete [see detail below] Cooler temperature exceeded 0.1 - 6.0 °C requirement
Chain of Custody missing date/time sampled (excl. TB or Dup.) [Do not mark if samples do not require cooling to 0.1 - 6.0 °C.]
Date or Time sampled obtained from container label Broken or leaking containers (detail actions below)
Chain of Custody missing sampler's name Sample container type or labeled chemical preservation inappro
Chain of Custody missing matrix (sample type) Other discrepancies:
Missing relinquished information: signature date time
Detail to discrepancies/comments: L t A 2 - W R C P P - 70 (2 L T A)
1th 2- Walt Grand- 97
2 JTA WRAND-94
2-27A INKODP-91
2-LTA WROD-102
Completed by: Date Completed:

ı,

7

04/18/2016

Page: 1

Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103

Date and Time Received: 04/04/2016 1550 Pace File No.: 8462 Pace Order No.: 132348 Project ID: WRC Wynnewood

Dear Mr. McCormick:

This laboratory report, containing the samples indicated below, includes 27 pages for the analytical report, 3 page(s) for the chain of custody and/or analysis request, and 6 page(s) for the sample receipt form.

PACE LAB ID #	SAMPLE DESCRIPTION	SAMPLE TYPE	DATE SAMPLED
16040144	Trip Blank	Liquid	3/30/2016
16040145	WRCDP-45(033016)	Liquid	3/30/2016
16040146	WRCDP-DUPE3	Liquid	3/30/2016
16040147	WRCDP-53(033016)	Liquid	3/30/2016
16040148	WRCDP-111(033016)	Liquid	3/30/2016
16040149	WRCDP-55(033016)	Liquid	3/30/2016
16040150	WRCDP-51(033016)	Liquid	3/30/2016
16040151	WRCDP-56(033116)	Liquid	3/31/2016
16040152	WRCDP-48(033116)	Liquid	3/31/2016
16040153	WRCDP-85(033116)	Liquid	3/31/2016
16040154	WRCDP-83(033116)	Liquid	3/31/2016
16040155	WRCDP-72(040116)	Liquid	4/1/2016
16040156	WRCDP-71(040116)	Liquid	4/1/2016
16040157	WRCDP-80(040116)	Liquid	4/1/2016
16040158	WRCDP-86(040116)	Liquid	4/1/2016
16040159	WRCDP-99(040116)	Liquid	4/1/2016
16040160	WRCDP-106(040116)	Liquid	4/1/2016
16040161	WRCDP-89(040216)	Liquid	4/2/2016
16040162	WRCDP-107(040216)	Liquid	4/2/2016
16040163	WRCDP-108(040216)	Liquid	4/2/2016
16040164	WRCDP-112(040216)	Liquid	4/2/2016
16040165	WRCDP-113(040216)	Liquid	4/2/2016

The Appendix and Quality Control sections are integral parts of this laboratory report and may contain important data qualifiers.

All results are reported on a wet weight basis unless otherwise stated.

Samples will be retained for thirty days unless Pace is otherwise notified. Pace is accredited by the State of Kansas through the National Environmental Laboratory Accreditation Program (NELAP). The results contained in this report were obtained using Pace's Standard Operating Procedures. These procedures are in substantial compliance with the approved methods referenced and the standards published by NELAP unless otherwise noted in the Appendix and Quality Control sections of this report.

525 N. Eighth St. - Salina, KS 67401 785-827-1273 800-535-3076 Fax 785-823-7830 KDHE Environmental Laboratory Accreditation No. E-10146

04/18/2016 Page: 2 This report may not be reproduced, except in full, without written approval from Pace Analytical Services, Inc.

Thank you for choosing Pace for this project.

Jueger J. Humene

Gregory J. Groene Project Manager Gregory.Groene@pacelabs.com

525 N. Eighth St. - Salina, KS 67401 785-827-1273 800-535-3076 Fax 785-823-7830 KDHE Environmental Laboratory Accreditation No. E-10146

Date Reported: 04/18/2016 Date Received: 04/04/2016 Pace File No: 8462 Pace Order No: 132348

Date Sampled: 03/30/2016 Time Sampled: 0800

Client: Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103

Lab Number: 16040144
Sample Description: Trip Blank

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrati</u> ND ND	<u>on Un</u> μg μg	′L	Dilution <u>Factor</u> 1.0 1.0	<u>Reportir</u> <u>LOD</u> 20 100	n <u>g Limit</u> LOQ 20 100
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	ND ND ND ND	µខ្ល µខ្ល µខ្ល µខ្ល	′L ′L ′L	1.0 1.0 1.0 1.0 1.0	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	$1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0$
Analysis	Date/Time <u>Prepared</u>	Date/Time <u>Analyzed</u>	QC <u>Batch</u>	Inst. Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Me OK DRO Preparation Method		04/06/16 0954 04/05/16 1428 04/05/16 1713	1GC2097 160405-1 1MS8096	1GC2097 1EX4096 1MS8096	SPA SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16040144

Lab Number: 16040145 Sample Description: WRCDP-45(033016)				Date Sampled: 03/30/2016 Time Sampled: 0845			
<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrat</u> 23200 4500	ion	<u>Units</u> μg/L μg/L	Dilution <u>Factor</u> 50 10	<u>Reportir</u> <u>LOD</u> 1000 1000	n <u>g Limit</u> LOQ 1000 1000	
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	4820 3880 600 1960 990		μg/L μg/L μg/L μg/L μg/L	200 200 200 200 200	8 10 20 10 20	200 200 200 200 200	
Analysis	Date/Time <u>Prepared</u>	Date/Time Analyzed	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)	

-Continued-

Date Reported: 04/18/2016 Date Received: 04/04/2016 Pace File No: 8462 Pace Order No: 132348

Analysis	Date/Time Prepared	Date/Time Analyzed	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Met OK DRO Preparation Method		04/06/16 1026 04/05/16 2240 04/07/16 1648	1GC2097 160405-1 1MS8098	1GC2097 2EX4096 1MS8098	SPA SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16040145

Lab Number: 16040146 Sample Description: WRCDP-DUPE3				Date Sampled: 03/30/2016 Time Sampled: 0845			
<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrati</u> 24400 3400	<u>on Ur</u> µջ µg		Dilution <u>Factor</u> 50 10	<u>Reportir</u> <u>LOD</u> 1000 1000	n <u>g Limit</u> <u>LOQ</u> 1000 1000	
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	5090 4130 640 2060 1000	កទ កទ កទ កទ	/L /L /L	200 200 200 200 200	8 10 20 10 20	200 200 200 200 200	
Analysis	Date/Time Prepared	Date/Time Analyzed	QC Batch	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)	
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Met OK DRO Preparation Method		04/06/16 1539 04/05/16 2308 04/07/16 1723	1GC2097 160405-1 1MS8098	1GC2097 2EX4096 1MS8098	SPA SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO	

Conclusion of Lab Number: 16040146

Client:

Coffeyville Resources

Attn: Sam McCormick

Kansas City, KS 66103

10 E. Cambridge Circle Dr.

Date Reported: 04/18/2016 Date Received: 04/04/2016 Pace File No: 8462 Pace Order No: 132348

Date Sampled: 03/30/2016 Time Sampled: 1000

Lab Number: 16040147 Sample Description: WRCDP-53(033016)	

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrat</u> 503 1600	ion	<u>Unit</u> μg/L μg/L	1	Dilution Factor 2.0 2.0	<u>Reportir</u> <u>LOD</u> 40 200	ng <u>Limit</u> LOQ 40 200
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	5.16 0.30 J 2.7 15.6 6.2		μg/L μg/L μg/L μg/L μg/L		1.0 1.0 1.0 1.0 1.0	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0
Analysis	Date/Time Prepared	Date/Time <u>Analyzed</u>		QC Batch	Inst. Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation M GC/FID Volatile Preparation M OK DRO Preparation Method		04/06/16 18 04/06/16 11 04/07/16 17	20	2GC2097 160405-1 1MS8098	2GC2097 1EX4097 1MS8098	SPA SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16040147

Lab Number: 16040148 Sample Description: WRCDP-111(033016)				Date Sampled: 03/30/2016 Time Sampled: 1040			
<u>Analysis</u> Oklahoma GRO Oklahoma DRO	Concentra ND 260	<u>tion</u>	<u>Units</u> μg/L μg/L	Dilution <u>Factor</u> 1.0 1.0	<u>Reportin</u> <u>LOD</u> 20 100	n <u>g Limit</u> LOQ 20 100	
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	ND ND ND ND		μg/L μg/L μg/L μg/L μg/L	1.0 1.0 1.0 1.0 1.0	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0	
Analysis	Date/Time <u>Prepared</u>	Date/Time Analyzed	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)	

-Continued-

Date Reported: 04/18/2016 Date Received: 04/04/2016 Pace File No: 8462 Pace Order No: 132348

Analysis	Date/Time Prepared	Date/Time Analyzed	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Met GC/FID Volatile Preparation Met OK DRO Preparation Method		04/06/16 1129 04/05/16 1624 04/05/16 1749	1GC2097 160405-1 1MS8096	1GC2097 1EX4096 1MS8096	SPA SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16040148

Lab Number: 16040149 Sample Description: WRCDP-55(033016)

Coffeyville Resources

Attn: Sam McCormick

Kansas City, KS 66103

10 E. Cambridge Circle Dr.

Client:

Date Sampled: 03/30/2016 Time Sampled: 1400

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrati</u> 2120 4200	<u>on Un</u> μg/ μg/	L	Dilution <u>Factor</u> 4.0 10	<u>Reportir</u> <u>LOD</u> 80 1000	n <u>g Limit</u> LOQ 80 1000
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	11.4 1.9 J 107 10.2 ND	μg/ μg/ μg/	L L L	5.0 5.0 5.0 5.0 5.0	0.2 0.3 0.5 0.3 0.5	5 5 5 5 5
<u>Analysis</u>	Date/Time Prepared	Date/Time Analyzed	QC Batch	Inst. Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Me OK DRO Preparation Method		04/07/16 1445 04/05/16 2337 04/06/16 1637	1GC2098 160405-1 1MS8097	1GC2098 2EX4096 1MS8097	SPA SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16040149

Date Reported: 04/18/2016 Date Received: 04/04/2016 Pace File No: 8462 Pace Order No: 132348

Date Sampled: 03/30/2016 Time Sampled: 1450

Lab Number: 16040150	
Sample Description: WRCDP-51(033016)	

				Dilution	<u>Reportir</u>	<u>ng Limit</u>
Analysis	<u>Concentrati</u>	on <u>U</u>	<u>nits</u>	Factor	LÔD	LOQ
Oklahoma GRO	ND	μ	g/L	1.0	20	20
Oklahoma DRO	390	μ	g/L	1.0	100	100
BTEX						
Benzene	0.05 J	μ	g/L	1.0	0.04	1.0
Toluene	ND		g/L	1.0	0.06	1.0
Ethylbenzene	ND	μ	g/L	1.0	0.1	1.0
m+p-Xylene	ND	μ	g/L	1.0	0.06	1.0
o-Xylene	ND	μ	g/L	1.0	0.1	1.0
	Date/Time	Date/Time	QC	Inst.		
<u>Analysis</u>	Prepared	<u>Analyzed</u>	Batch	Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Met OK DRO Preparation Method		04/06/16 1748 04/06/16 0006 04/05/16 1825	2GC2097 160405-1 1MS8096	2GC2097 2EX4096 1MS8096	SPA SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16040150

Lab Number: 16040151 Sample Description: WRCDP-56(033116)				Date Sampled: 03/31/2016 Time Sampled: 0920			
<u>Analysis</u> Oklahoma GRO Oklahoma DRO	Concentra ND 140	tion	<u>Units</u> μg/L μg/L	Dilution <u>Factor</u> 1.0 1.0	<u>Reportir</u> <u>LOD</u> 20 100	ng Limit LOQ 20 100	
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	ND ND ND ND		μg/L μg/L μg/L μg/L μg/L	1.0 1.0 1.0 1.0 1.0	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0	
Analysis	Date/Time <u>Prepared</u>	Date/Time <u>Analyzed</u>	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)	

-Continued-

Date Reported: 04/18/2016 Date Received: 04/04/2016 Pace File No: 8462 Pace Order No: 132348

Analysis	Date/Time Prepared	Date/Time Analyzed	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Met GC/FID Volatile Preparation Met OK DRO Preparation Method		04/06/16 1302 04/05/16 1751 04/06/16 1449	1GC2097 160405-1 1MS8097	1GC2097 1EX4096 1MS8097	SPA SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16040151

Lab Number: 16040152 Sample Description: WRCDP-48(033116)

Coffeyville Resources

Attn: Sam McCormick

Kansas City, KS 66103

10 E. Cambridge Circle Dr.

Client:

Date Sampled: 03/31/2016 Time Sampled: 1040

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrati</u> ND 190	<u>on Uni</u> μg/ μg/	L	Dilution <u>Factor</u> 1.0 1.0	<u>Reportir</u> <u>LOD</u> 20 100	ng <u>Limit</u> <u>LOQ</u> 20 100
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	ND ND ND ND	μg/ μg/ μg/	L L L	1.0 1.0 1.0 1.0 1.0	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0
Analysis	Date/Time Prepared	Date/Time Analyzed	QC Batch	Inst. Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Me OK DRO Preparation Method		04/06/16 1436 04/06/16 1051 04/05/16 1900	1GC2097 160405-1 1MS8096	1GC2097 1EX4097 1MS8096	SPA SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16040152

Date Reported: 04/18/2016 Date Received: 04/04/2016 Pace File No: 8462 Pace Order No: 132348

Lab Number: 16040153 Sample Description: WRCDP-85(033116)

Date Sampled: 03/31/2016
Time Sampled: 1410

Date Sampled: 03/31/2016

LOD

20

100

Reporting Limit

LOQ

20

100

Time Sampled: 1545

Dilution

Factor

1.0

1.0

				Dilution	<u>Reportir</u>	ng Limit
<u>Analysis</u>	<u>Concentrati</u>			Factor	LOD	LOQ
Oklahoma GRO	ND	μg	/L	1.0	20	20
Oklahoma DRO	220	μg	/L	1.0	100	100
BTEX						
Benzene	ND	μg	/L	1.0	0.04	1.0
Toluene	ND	μg		1.0	0.06	1.0
Ethylbenzene	ND	μg		1.0	0.1	1.0
m+p-Xylene	ND	μg	/L	1.0	0.06	1.0
o-Xylene	ND	μg	/L	1.0	0.1	1.0
			00	T .		
A	Date/Time	Date/Time	QC	Inst.	A	
<u>Analysis</u>	Prepared	<u>Analyzed</u>	Batch_	Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO	N/A	04/06/16 1508	1GC2097	1GC2097	SPA	OK GRO
Oklahoma DRO	04/05/16 0715	04/05/16 1947	160405-1	1EX4096	SPA	OK DRO
BTEX	N/A	04/05/16 1936	1MS8096	1MS8096	GMA	8260B
Volatile Analysis Preparation Me	ethod					5030B
GC/FID Volatile Preparation Me	thod					5030B
OK DRO Preparation Method						OK DRO

Conclusion of Lab Number: 16040153

Lab Number: 16040154 Sample Description: WRCDP-83(033116) Analysis Concentration Units Oklahoma GRO ND µg/L Oklahoma DRO 890 QC µg/L

BTEX						
Benzene	0.10 J		μg/L	1.0	0.04	1.0
Toluene	0.15 J		μg/L	1.0	0.06	1.0
Ethylbenzene	ND		μg/L	1.0	0.1	1.0
m+p-Xylene	0.12 J		μg/L	1.0	0.06	1.0
o-Xylene	ND		μg/L	1.0	0.1	1.0
	Date/Time	Date/Time	QC	Inst.		
<u>Analysis</u>	Prepared	Analyzed	Batch	Batch_	<u>Analyst</u>	Method(s)

-Continued-

Date Reported: 04/18/2016 Date Received: 04/04/2016 Pace File No: 8462 Pace Order No: 132348

Analysis	Date/Time Prepared	Date/Time Analyzed	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Met GC/FID Volatile Preparation Met OK DRO Preparation Method		04/07/16 1033 04/07/16 2047 04/05/16 2012	1GC2098 160406-2 1MS8096	1GC2098 1EX4098 1MS8096	SPA SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16040154

Lab Number: 16040155 Sample Description: WRCDP-72(040116)

Coffeyville Resources

Attn: Sam McCormick

Kansas City, KS 66103

10 E. Cambridge Circle Dr.

Client:

Date Sampled: 04/01/2016 Time Sampled: 0910

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrati</u> ND 1400	<u>on Uni</u> μg/ μg/	L	Dilution <u>Factor</u> 1.0 2.0	<u>Reportir</u> <u>LOD</u> 20 200	n <u>g Limit</u> LOQ 20 200
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	0.06 J 0.10 J ND 0.17 J ND	μg/ μg/ μg/ μg/	L L L	$ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 $	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0
<u>Analysis</u>	Date/Time Prepared	Date/Time Analyzed	QC Batch	Inst. Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Me OK DRO Preparation Method		04/06/16 1954 04/08/16 1129 04/05/16 2048	2GC2097 160406-2 1MS8096	2GC2097 1EX4099 1MS8096	SPA SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16040155

Date Reported: 04/18/2016 Date Received: 04/04/2016 Pace File No: 8462 Pace Order No: 132348

Lab Number: 16040156	
Sample Description: WRCDP-71(040116)	

Date Sampled: 04/01/2016	
Time Sampled: 0945	

				Dilution	<u>Reportir</u>	
<u>Analysis</u>	<u>Concentrati</u>			Factor	LOD	LOQ
Oklahoma GRO	ND	μg/	L	1.0	20	20
Oklahoma DRO	1700	μg/	L	4.0	400	400
BTEX						
Benzene	0.05 J	μg	L	1.0	0.04	1.0
Toluene	0.08 J	μg/		1.0	0.06	1.0
Ethylbenzene	ND	μg		1.0	0.1	1.0
m+p-Xylene	ND	μg	L	1.0	0.06	1.0
o-Xylene	ND	μg	L	1.0	0.1	1.0
		Det /T	00	Turat		
A malausia	Date/Time	Date/Time	QC Detab	Inst.	A	
<u>Analysis</u>	Prepared	<u>Analyzed</u>	Batch	Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO	N/A	04/06/16 2026	2GC2097	2GC2097	SPA	OK GRO
Oklahoma DRO	04/06/16 1300	04/08/16 1158	160406-2	1EX4099	SPA	OK DRO
BTEX	N/A	04/05/16 1530	1MS9096	1MS9096	RKR	8260B
Volatile Analysis Preparation Me						5030B
GC/FID Volatile Preparation Met	thod					5030B
OK DRO Preparation Method						OK DRO

Conclusion of Lab Number: 16040156

Lab Number: 16040157 Sample Description: WRCDP-80(040116)				Date Sampled: 04/01/2016 Time Sampled: 1250			
<u>Analysis</u> Oklahoma GRO Oklahoma DRO	Concentrat ND 480	ion	<u>Units</u> μg/L μg/L	Dilution <u>Factor</u> 1.0 1.0	<u>Reportin</u> <u>LOD</u> 20 100	n <u>g Limit</u> LOQ 20 100	
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	ND ND ND ND		μg/L μg/L μg/L μg/L μg/L	$1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0$	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0	
Analysis	Date/Time <u>Prepared</u>	Date/Time <u>Analyzed</u>	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)	

-Continued-

Date Reported: 04/18/2016 Date Received: 04/04/2016 Pace File No: 8462 Pace Order No: 132348

Analysis	Date/Time Prepared	Date/Time Analyzed	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Met OK DRO Preparation Method		04/06/16 2201 04/08/16 1353 04/05/16 1555	2GC2097 160406-2 1MS9096	2GC2097 1EX4099 1MS9096	SPA SPA RKR	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16040157

Lab Number: 16040158 Sample Description: WRCDP-86(040116)

Coffeyville Resources

Attn: Sam McCormick

Kansas City, KS 66103

10 E. Cambridge Circle Dr.

Client:

Date Sampled: 04/01/2016 Time Sampled: 1320

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrati</u> 411 SR 4400	<u>on Un</u> μg, μg,	/L	Dilution <u>Factor</u> 1.0 10	<u>Reportir</u> <u>LOD</u> 20 1000	n <u>g Limit</u> LOQ 20 1000
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	0.32 J 0.25 J ND 0.52 J 0.3 J	µg µg µg µg	/L /L /L	1.0 1.0 1.0 1.0 1.0	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0
Analysis	Date/Time <u>Prepared</u>	Date/Time Analyzed	QC Batch	Inst. Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Me OK DRO Preparation Method		04/07/16 1517 04/08/16 1227 04/06/16 1412	1GC2098 160406-2 1MS8097	1GC2098 1EX4099 1MS8097	SPA SPA GMA	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16040158

Date Reported: 04/18/2016 Date Received: 04/04/2016 Pace File No: 8462 Pace Order No: 132348

Lab Number: 16040159	
Sample Description: WRCDP-99(040116)	

	Date Sampled: 04/01/2016
Time Sampled: 1425	Time Sampled: 1425

				Dilution	<u>Reportir</u>	ng Limit
<u>Analysis</u>	<u>Concentrati</u>	on <u>Un</u>	its	Factor	LOD	LOQ
Oklahoma GRO	ND	μg	/L	1.0	20	20
Oklahoma DRO	940	μg	/L	2.0	200	200
BTEX						
Benzene	ND	μg	/L	1.0	0.04	1.0
Toluene	ND	μg		1.0	0.06	1.0
Ethylbenzene	ND	μg		1.0	0.1	1.0
m+p-Xylene	ND	μg	/L	1.0	0.06	1.0
o-Xylene	ND	μg	/L	1.0	0.1	1.0
			00	T .		
	Date/Time	Date/Time	QC	Inst.		
<u>Analysis</u>	Prepared	<u>Analyzed</u>	Batch	Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO	N/A	04/06/16 2304	2GC2097	2GC2097	SPA	OK GRO
Oklahoma DRO	04/06/16 1300	04/08/16 1800	160406-2	2EX4099	SPA	OK DRO
BTEX	N/A	04/05/16 1620	1MS9096	1MS9096	RKR	8260B
Volatile Analysis Preparation Me						5030B
GC/FID Volatile Preparation Me	thod					5030B
OK DRO Preparation Method						OK DRO

Conclusion of Lab Number: 16040159

Lab Number: 16040160 Date Sampled: 04/01/2016 Sample Description: WRCDP-106(040116) Time Sampled: 1510 Dilution Reporting Limit Analysis Concentration Units LOD Factor LOQ Oklahoma GRO ND μg/L 1.0 20 20 Oklahoma DRO 260 μg/L 1.0 100 100 BTEX 0.04 Benzene ND 1.0 1.0 μg/L Toluene 0.20 J 1.0 0.06 1.0 μg/L Ethylbenzene ND 1.0 0.1 1.0 μg/L m+p-Xylene 0.06 1.0 0.16 J 1.0 μg/L $\mu g/L$ o-Xylene ND 1.0 0.1 1.0 Date/Time Date/Time QC Inst. **Analysis** Prepared Analyzed Batch Method(s) Batch <u>Analyst</u>

-Continued-

Date Reported: 04/18/2016 Date Received: 04/04/2016 Pace File No: 8462 Pace Order No: 132348

Analysis	Date/Time Prepared	Date/Time Analyzed	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Met OK DRO Preparation Method		04/06/16 2335 04/08/16 1003 04/05/16 1645	2GC2097 160406-2 1MS9096	2GC2097 1EX4099 1MS9096	SPA SPA RKR	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16040160

Lab Number: 16040161 Sample Description: WRCDP-89(040216)

Coffeyville Resources

Attn: Sam McCormick

Kansas City, KS 66103

10 E. Cambridge Circle Dr.

Client:

Date Sampled: 04/02/2016 Time Sampled: 0940

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrati</u> 32 150	<u>on Uni</u> μg/ μg/	L	Dilution <u>Factor</u> 1.0 1.0	<u>Reportir</u> <u>LOD</u> 20 100	n <u>g Limit</u> LOQ 20 100
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	0.06 J ND ND ND ND	μg/ μg/ μg/	L L L	1.0 1.0 1.0 1.0 1.0	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0
Analysis	Date/Time Prepared	Date/Time Analyzed	QC Batch	Inst. Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Me OK DRO Preparation Method		04/07/16 1105 04/07/16 1921 04/05/16 1710	1GC2098 160406-2 1MS9096	1GC2098 1EX4098 1MS9096	SPA SPA RKR	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16040161

Date Reported: 04/18/2016 Date Received: 04/04/2016 Pace File No: 8462 Pace Order No: 132348

Date Sampled: 04/02/2016 Time Sampled: 1115

Lab Number: 16040162	
Sample Description: WRCDP-107(040216)	

Analysis	Concentrati			Dilution Factor	<u>Reportin</u> LOD	LOQ
Oklahoma GRO	ND	μg		1.0	20	20
Oklahoma DRO	ND	μg	′L	1.0	100	100
BTEX Benzene Toluene Ethylbenzene m+p-Xylene	ND ND ND ND	μg μg μg	L L L	1.0 1.0 1.0 1.0	0.04 0.06 0.1 0.06	$1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0$
o-Xylene	ND	μg	Ĺ	1.0	0.1	1.0
Analysis	Date/Time <u>Prepared</u>	Date/Time Analyzed	QC Batch	Inst. Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Met OK DRO Preparation Method		04/07/16 1136 04/07/16 1950 04/05/16 1734	1GC2098 160406-2 1MS9096	1GC2098 1EX4098 1MS9096	SPA SPA RKR	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16040162

Lab Number: 16040163 Sample Description: WRCDP-108(040216)				Date Sampled: 04/02/2016 Time Sampled: 1320			
<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentra</u> ND ND	<u>tion</u>	<u>Units</u> μg/L μg/L	Dilution <u>Factor</u> 1.0 1.0	<u>Reportin</u> <u>LOD</u> 20 100	n <u>g Limit</u> LOQ 20 100	
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	ND ND ND ND		μg/L μg/L μg/L μg/L μg/L	1.0 1.0 1.0 1.0 1.0	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0	
Analysis	Date/Time Prepared	Date/Time <u>Analyzed</u>	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)	

-Continued-

Date Reported: 04/18/2016 Date Received: 04/04/2016 Pace File No: 8462 Pace Order No: 132348

Analysis	Date/Time Prepared	Date/Time Analyzed	QC <u>Batch</u>	Inst. <u>Batch</u>	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Met OK DRO Preparation Method		04/07/16 1207 04/07/16 2018 04/05/16 1759	1GC2098 160406-2 1MS9096	1GC2098 1EX4098 1MS9096	SPA SPA RKR	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16040163

Lab Number: 16040164 Sample Description: WRCDP-112(040216)

Coffeyville Resources

Attn: Sam McCormick

Kansas City, KS 66103

10 E. Cambridge Circle Dr.

Client:

Date Sampled: 04/02/2016 Time Sampled: 1440

<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrati</u> ND 560 QC	<u>on Uni</u> μg/ μg/	L	Dilution <u>Factor</u> 1.0 1.0	<u>Reportir</u> <u>LOD</u> 20 100	ng <u>Limit</u> LOQ 20 100
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	ND ND ND ND ND	μg/ μg/ μg/	L L L	1.0 1.0 1.0 1.0 1.0	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0
Analysis	Date/Time <u>Prepared</u>	Date/Time Analyzed	QC Batch	Inst. Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Me OK DRO Preparation Method		04/07/16 1239 04/08/16 0134 04/05/16 1824	1GC2098 160406-3 1MS9096	1GC2098 2EX4098 1MS9096	SPA SPA RKR	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16040164

Sample Description: WRCDP-113(040216)

Lab Number: 16040165

Date Reported: 04/18/2016 Date Received: 04/04/2016 Pace File No: 8462 Pace Order No: 132348

Date Sampled: 04/02/2016

Time Sampled: 1610

1 1				1		
<u>Analysis</u> Oklahoma GRO Oklahoma DRO	<u>Concentrati</u> 29 1300	<u>on</u> <u>Un</u> μg/ μg/	L	Dilution <u>Factor</u> 1.0 2.0	<u>Reportir</u> LOD 20 200	n <u>g Limit</u> LOQ 20 200
BTEX Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene	ND ND ND ND	μg/ μg/ μg/ μg/	L L L	1.0 1.0 1.0 1.0 1.0	$0.04 \\ 0.06 \\ 0.1 \\ 0.06 \\ 0.1$	1.0 1.0 1.0 1.0 1.0
<u>Analysis</u>	Date/Time <u>Prepared</u>	Date/Time <u>Analyzed</u>	QC <u>Batch</u>	Inst. Batch	<u>Analyst</u>	Method(s)
Oklahoma GRO Oklahoma DRO BTEX Volatile Analysis Preparation Me GC/FID Volatile Preparation Me OK DRO Preparation Method		04/07/16 1414 04/08/16 1256 04/05/16 1849	1GC2098 160406-3 1MS9096	1GC2098 1EX4099 1MS9096	SPA SPA RKR	OK GRO OK DRO 8260B 5030B 5030B OK DRO

Conclusion of Lab Number: 16040165

Date Reported: 04/18/2016 Date Received: 04/04/2016 Pace File No: 8462 Pace Order No: 132348

Client: Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103

ND indicates not detected with the Limit of Detection (LOD) in parentheses. The Method Detection Limit (MDL) is a calculated value representing the lowest concentration, that based on a statistical calculation represents the lowest concentration that theoretically, can be detected. The MDL is equivalent to the LOD. The Limit of Quantitation (LOQ) is the lowest concentration of the analytical standard that was used for calibrating the instrument. If an analytical standard is analyzed at the LOQ, an error of as much as +/- 50% can be expected. The MDL and LOQ values have been adjusted for the dilution factor and percent solids, as applicable. Due to rounding differences these values may vary slightly from the reported concentration. N/A, if present, indicates Not Applicable.

All samples which require cooling were received at a temperature of less than 6 degrees Celsius.

No analysis with a holding time of seventy-two hours or less was performed in this Pace order.

J - The concentration or not detected (ND) value is below the Limit of Quantitation (LOQ) and is considered an estimated value.

QC - QC data qualifiers were noted. See the Quality Control Report.

SR - One or more surrogate recoveries for this analysis did not meet quality control limits. Please see the Quality Control Report for the sample surrogate data.

Accreditation Summary

Client: Coffeyville Resources Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103 Date Reported: 04/18/2016 Date Received: 04/04/2016 Pace File No: 8462 Pace Order No: 132348

NELAP accreditation is issued under each EPA regulatory program for a given matrix/analyte/method combination. Pace is NELAP accredited for each matrix/analyte/method and EPA program cited in this Laboratory Report, except for those listed in the table below and for analyses performed in the field. For most of the analyses listed in the table, NELAP accreditation is not offered under the listed EPA program and Pace is NELAP accredited for the analysis, using the same analytical technology, but under a different EPA program. Pace's full NELAP accreditation status may be viewed at www.kdheks.gov/envlab. Note that unless qualified otherwise in the Laboratory Report, Pace performs all analyses, including each analysis listed in the table below, utilizing NELAP protocol.

<u>Test</u> <u>Analysis</u> Pace is accredited for all analytes.

Pace Analytical®

Pace Analytical Services, Inc. 525 N. Eighth St. - Salina, KS 67401 785-827-1273 800-535-3076 Fax 785-823-7830

Matrix-Regulatory <u>Program</u>

Method

Pace NELAP Accredited in Other <u>Reg. Program</u>

Quality Control Report **Batch Summary**

Page: 20

			-		
Client:	Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103				Date Reported: 04/18/2016 Date Received: 04/04/2016 Pace File No: 8462 Pace Order No: 132348
Test Code	Testname	QC Batch	Date/Time		MS Lab No. Date/Time Analyzed
		1GC2097		LCS1GC2097 04/06/16 0852	16040151MS 04/06/16 1333
	nbers associated with this batch: 44 16040145 16040146 16040148	16040151			
	Oklahoma GRO	2GC2097		LCS2GC2097 04/06/16 1646	16040156MS 04/06/16 2058
	nbers associated with this batch: 47 16040150 16040155 16040156	16040157	16040159 16040160		
	Oklahoma GRO	1GC2098	BLK1GC2098 04/07/16 1002	LCS1GC2098 04/07/16 0930	16040164MS 04/07/16 1311
	nbers associated with this batch: 49 16040154 16040158 16040161	16040162	16040163 16040164	16040165	
	Oklahoma DRO	160405-1	160405BLK1 04/05/16 1301	160405LCS1 04/05/16 1330	16040151MS 04/05/16 1820
	nbers associated with this batch: 44 16040145 16040146 16040147	16040148			
CL122	Oklahoma DRO	160406-2	160406BLK2 04/07/16 1432	160406LCS2 04/07/16 1501	16040154MS 04/07/16 2116
	nbers associated with this batch: 54 16040155 16040156 16040157	16040158			
CL122	Oklahoma DRO	160406-3	160406BLK3 04/07/16 2311	160406LCS3 04/07/16 2339	16040164MS 04/08/16 0203
	nbers associated with this batch: 64 16040165		-		
MS295	BTEX	1MS8096		LCS1MS8096 04/05/16 1510	
	nbers associated with this batch: 44 16040148 16040150 16040152	16040153			
MS295		1MS9096		LCS1MS9096 04/05/16 1416	
	nbers associated with this batch: 56 16040157 16040159 16040160	16040161			65
MS295	BTEX	1MS8097		LCS1MS8097 04/06/16 0924	16040151MS 04/06/16 1524
	nbers associated with this batch: 49 16040151 16040158			0.000.2002	
MS295		1MS8098		LCS1MS8098 04/07/16 1500	16040275MS 04/07/16 2058
	nbers associated with this batch: 45 16040146 16040147				

Quality Control Report Method Blank, LCS, MS/MSD Data

Client: Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103

Page: 21

Date Reported: 04/18/2016 Date Received: 04/04/2016 Pace File No: 8462 Pace Order No: 132348

	Method	LCS	LCS	LCS Spike		Spiked S (% Reco	very)	MS/MSD	MS/MSD Spike		Spiked S Precision	Data
Analysis	Blank	% Rec	Limits	Level	Units	MS	MSD	Limits	Level	Units	RPD	Limit
QC Batch: 160405-1	For samples	prepared on:	04/05/2016 0715			Spiked sar	nple: 16040151					
Oklahoma DRO	ND(100)	93.6	80.0-120	500	μg/L	86.0	81.3	80.0-120	500	$\mu g/L$	5.60	20.0
QC Batch: 160406-2	For samples	prepared on:	04/06/2016 1300			Spiked sar	nple: 16040154					
Oklahoma DRO	ND(100)	110	80.0-120	500	μg/L	37.3 ML	F	80.0-120	559	$\mu g/L$	**	20.0
QC Batch: 160406-3	For samples	prepared on:	04/06/2016 1300			Spiked sar	nple: 16040164					
Oklahoma DRO	ND(100)	99.0	80.0-120	500	μg/L	43.5 ML	F	80.0-120	500	$\mu g/L$	**	20.0
QC Batch: 1GC2097	For sample a	nalyzed on: 0	4/06/2016			Spiked sar	nple: 16040151					
Oklahoma GRO	ND(20)	99.3	80.0-120	200	µg/L	98.5	102	80.0-120	200	μg/L	3.50	20.0
Surrogate Data:					10							
4-BFB (8015D)	92.4	93.4	84.0-121	20.0	µg/L	93.3	94.6	84.0-121	20.0	μg/L		
FLUOROBENZENE (8015D)	101	101	71.7-132	20.0		101	99.0	71.7-132	20.0			
FLUOROBENZENE (8013D)	101	101	/1./-132	20.0	µg/L	101	99.0	/1./-132	20.0	µg/L		
QC Batch: 1GC2098	-	nalyzed on: 0			_	-	nple: 16040164			_		
Oklahoma GRO	ND(20)	100.	80.0-120	200	μg/L	102	100.	80.0-120	200	μg/L	2.00	20.0
Surrogate Data:												
4-BFB (8015D)	90.5	94.2	84.0-121	20.0	μg/L	95.5	92.5	84.0-121	20.0	μg/L		
FLUOROBENZENE (8015D)	97.9	99.6	71.7-132	20.0	μg/L	99.4	97.8	71.7-132	20.0	μg/L		
QC Batch: 1MS8096	For sample a	nalyzed on: 0	4/05/2016			Spiked sar	nple:					
BTEX						MN	MN					
Benzene	ND(0.04)	103	80.0-120	10.0	µg/L			79.6-118		μg/L	**	9.8
Toluene	ND(0.06)	99.7	80.0-120	10.0	μg/L			89.7-116		μg/L	**	8.0
Ethylbenzene	ND(0.1)	96.4	80.0-120	10.0	μg/L			89.1-114		μg/L	**	6.5
m+p-Xylene	ND(0.06)	95.7	80.0-120	20.0	μg/L			88.6-116		μg/L	**	6.7
o-Xylene	ND(0.1)	97.5	80.0-120	10.0	μg/L			88.3-115		μg/L	**	8.1
•	ND(0.1)	91.5	80.0-120	10.0	µg/L			88.5-115		µg/L		0.1
Surrogate Data:	07.0	0.6.1	74.2.122	10.0	a	101		74.2.122		a	**	
1,2-DICHLOROETHANE-d4	97.9	96.1	74.3-123	10.0	μg/L	MN	MN	74.3-123		μg/L		
TOLUENE-d8	97.0	100.	80.0-120	10.0	μg/L	MN	MN	80.0-120		μg/L	**	
QC Batch: 1MS8097	For sample a	nalyzed on: 0	4/06/2016			Spiked sar	nple: 16040151					
BTEX												
Benzene	ND(0.04)	108	80.0-120	10.0	μg/L	107	109	79.6-118	10.0	μg/L	1.90	9.8
Toluene	ND(0.06)	99.3	80.0-120	10.0	μg/L	98.8	98.3	89.7-116	10.0	μg/L	0.50	8.0
Ethylbenzene	ND(0.1)	96.0	80.0-120	10.0	μg/L	92.7	92.4	89.1-114	10.0	μg/L	0.30	6.5
m+p-Xylene	ND(0.06)	95.1	80.0-120	20.0	μg/L	91.1	90.3	88.6-116	20.0	μg/L	0.90	6.7
o-Xylene	ND(0.1)	97.0	80.0-120	10.0	μg/L	94.2	96.1	88.3-115	10.0	μg/L	2.00	8.1
Surrogate Data:												
1,2-DICHLOROETHANE-d4	100.	97.1	74.3-123	10.0	µg/L	106	108	74.3-123	10.0	μg/L		
TOLUENE-d8	94.7	96.7	80.0-120	10.0	μg/L	98.3	99.2	80.0-120	10.0	μg/L μg/L		
OC Batch: 1MS8098	For comple a	nalyzed on: 0	4/07/2016			Sniked ear	nple: 16040275					
BTEX	For sample a	naiyzeu 011. 0	-,07/2010			MN	MN					
Benzene	ND(0.04)	90.9	80.0-120	10.0	ца/Т	1111		79.6-118	10.0	цα/Т	**	9.8
Toluene	ND(0.04)	90.9 86.1	80.0-120 80.0-120	10.0	μg/L			79.0-118 89.7-116	10.0	μg/L ug/I	**	9.8 8.0
					μg/L					µg/L	**	
Ethylbenzene	ND(0.1)	82.3	80.0-120	10.0	μg/L			89.1-114	10.0	µg/L		6.5
m+p-Xylene	ND(0.06)	81.2	80.0-120	20.0	μg/L			88.6-116	20.0	µg/L	**	6.7
o-Xylene	ND(0.1)	84.5	80.0-120	10.0	μg/L			88.3-115	10.0	µg/L	**	8.1
Surrogate Data:												
1,2-DICHLOROETHANE-d4	98.9	95.4	74.3-123	10.0	μg/L	MN	MN	74.3-123	10.0	μg/L	**	
TOLUENE-d8	95.5	97.3	80.0-120	10.0	μg/L	MN	MN	80.0-120	10.0	μg/L	**	

Quality Control Report Method Blank, LCS, MS/MSD Data

Client: Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103

Page: 22

Date Reported: 04/18/2016 Date Received: 04/04/2016 Pace File No: 8462 Pace Order No: 132348

	Method	LCS	LCS	LCS Spike		Spiked S (% Reco		MS/MSD	MS/MSI Spike	D	Spiked S Precisio	
Analysis	Blank	% Rec	Limits	Level	Units	MS	MSD	Limits	Level	Units	RPD	Limit
QC Batch: 1MS9096	For sample a	nalyzed on: 0	4/05/2016			Spiked sa	mple:					
BTEX						MN	MN					
Benzene	ND(0.04)	98.6	80.0-120	10.0	μg/L			79.6-118		μg/L	**	9.8
Toluene	ND(0.06)	107	80.0-120	10.0	µg/L			89.7-116		μg/L	**	8.0
Ethylbenzene	ND(0.1)	104	80.0-120	10.0	μg/L			89.1-114		μg/L	**	6.5
m+p-Xylene	ND(0.06)	106	80.0-120	20.0	μg/L			88.6-116		μg/L	**	6.7
o-Xylene	ND(0.1)	105	80.0-120	10.0	μg/L			88.3-115		μg/L	**	8.1
Surrogate Data:												
1,2-DICHLOROETHANE-d4	99.3	96.0	74.3-123	10.0	μg/L	MN	MN	74.3-123		μg/L	**	
TOLUENE-d8	107	112	80.0-120	10.0	$\mu g/L$	MN	MN	80.0-120		$\mu g/L$	**	
QC Batch: 2GC2097	For sample a	nalyzed on: 0	4/06/2016			Spiked sa	mple: 1604015	56				
Oklahoma GRO	ND(20)	102	80.0-120	200	μg/L	105	104	80.0-120	200	μg/L	1.00	20.0
Surrogate Data:												
4-BFB (8015D)	92.7	96.8	84.0-121	20.0	μg/L	97.2	95.3	84.0-121	20.0	μg/L		
FLUOROBENZENE (8015D)	102	102	71.7-132	20.0	µg/L	101	102	71.7-132	20.0	μg/L		

Data Qualifiers:

ML - The matrix spike and/or matrix spike duplicate recovery for this analyte was below the method or laboratory control limit. See LCS data for the basis for acceptance of this sample. The reported sample concentration is estimated.

F - MS and/or MSD sample data are not available due to insufficient sample volume.

MN - The MS/MSD sample analyses were not performed on a sample from this Pace order number.

** - RPD calculation not applicable/not available for this analysis.

Quality Control Report Sample Surrogate Data

Client: Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103 Date Reported: 04/18/2016 Date Received: 04/04/2016 Pace File No: 8462 Pace Order No: 132348

Surrogate	Date Da Prepared An	nte nalyzed	Spike Level	Units	% Recovery	Acceptable % Limits
Lab Number: 16040144	Sample I	Description: T	'rin Blank			
GC/FID Volatile	Sumple	bescription. I	TIP Diank			
4-BFB (8015D)	04/	/06/2016	20	μg/L	93.6	84.0-121
FLUOROBENZENE (8015D)	04/	/06/2016	20	μg/L	101	71.7-132
BTEX						
1,2-DICHLOROETHANE-d4		/05/2016	10	μg/L	94.3	74.3-123
TOLUENE-d8	04/	/05/2016	10	μg/L	95.9	80.0-120
Lab Number: 16040145	Sample I	Description: V	VRCDP-45(0330	16)		
GC/FID Volatile	•			,		
4-BFB (8015D)	04/	/06/2016	1000	μg/L	96.5	84.0-121
FLUOROBENZENE (8015D)	04/	/06/2016	1000	µg/L	106	71.7-132
BTEX				_		
1,2-DICHLOROETHANE-d4		/07/2016	2000	µg/L	100.	74.3-123
TOLUENE-d8	04/	/07/2016	2000	μg/L	96.0	80.0-120
Lab Number: 16040146	Sample I	Description: V	VRCDP-DUPE3			
GC/FID Volatile 4-BFB (8015D)	04/	/06/2016	1000	µg/L	93.6	84.0-121
FLUOROBENZENE (8015D)		/06/2016	1000	μg/L μg/L	106	71.7-132
BTEX				P8-		
1,2-DICHLOROETHANE-d4	04/	/07/2016	2000	μg/L	98.5	74.3-123
TOLUENE-d8	04/	/07/2016	2000	µg/L	95.3	80.0-120
Lab Number: 16040147	Somulo I	Decemintion, W	VDCDD 52(0220	16)		
GC/FID Volatile	Sample 1	Description: v	VRCDP-53(0330	10)		
4-BFB (8015D)	04/	/06/2016	40	μg/L	96.5	84.0-121
FLUOROBENZENE (8015D)		/06/2016	40	μg/L	101	71.7-132
BTEX				10		
1,2-DICHLOROETHANE-d4	04/	/07/2016	10	μg/L	100.	74.3-123
TOLUENE-d8	04/	/07/2016	10	µg/L	97.6	80.0-120
Lab Number: 16040148	Sample I	Description · V	VRCDP-111(033	016)		
GC/FID Volatile	Sumple	bescription.	(055			
4-BFB (8015D)	04/	/06/2016	20	μg/L	94.7	84.0-121
FLUOROBENZENE (8015D)	04/	/06/2016	20	μg/L	102	71.7-132
BTEX						
1,2-DICHLOROETHANE-d4		/05/2016	10	μg/L	98.3	74.3-123
TOLUENE-d8	04/	/05/2016	10	μg/L	95.8	80.0-120
Lab Number: 16040149	Sample I	Description: V	VRCDP-55(0330	16)		
GC/FID Volatile 4-BFB (8015D)	04/	/07/2016	80	µg/L	98.5	84.0-121
FLUOROBENZENE (8015D)		/07/2016	80	μg/L μg/L	98.9	71.7-132
BTEX	0.1	0//2010	00	µ6/2	2012	111 102
1,2-DICHLOROETHANE-d4	04/	/06/2016	50	μg/L	104	74.3-123
TOLUENE-d8	04/	/06/2016	50	µg/L	98.1	80.0-120
Lab Number: 16040150	Sample I	Description: V	VRCDP-51(0330	16)		
GC/FID Volatile	04	106/2016	20	ша/Г	02.7	84.0.121
4-BFB (8015D) FLUOROBENZENE (8015D)		/06/2016 /06/2016	20 20	μg/L μg/I	92.7 100.	84.0-121 71.7-132
BTEX	04/	00/2010	20	µg/L	100.	/1./-1.52
1,2-DICHLOROETHANE-d4	04/	/05/2016	10	µg/L	97.1	74.3-123
· · · ·						

Date Reported: 04/18/2016 Date Received: 04/04/2016 Pace File No: 8462 Pace Order No: 132348

Surrogate	Date Date Prepared Analyze	Spike d Level	Units	% Recovery	Acceptable % Limits	
Lab Number: 16040150 BTEX	Sample Descri	ption: WRCDP-5	1(033016)			
TOLUENE-d8	04/05/20	16 10	μg/L	96.1	80.0-120	
Lab Number: 16040151 GC/FID Volatile	Sample Descri	ption: WRCDP-50	6(033116)			
4-BFB (8015D)	04/06/20	16 20	μg/L	94.1	84.0-121	
FLUOROBENZENE (8015D) BTEX	04/06/20	16 20	µg/L	102	71.7-132	
1,2-DICHLOROETHANE-d4	04/06/20	16 10	μg/L	104	74.3-123	
TOLUENE-d8	04/06/20	16 10	μg/L	96.9	80.0-120	
Lab Number: 16040152 GC/FID Volatile	Sample Descri	ption: WRCDP-48	8(033116)			
4-BFB (8015D)	04/06/20	16 20	μg/L	91.7	84.0-121	
FLUOROBENZENE (8015D) BTEX	04/06/20	16 20	µg/L	99.9	71.7-132	
1,2-DICHLOROETHANE-d4	04/05/20	16 10	µg/L	95.9	74.3-123	
TOLUENE-d8	04/05/20	16 10	μg/L	95.5	80.0-120	
Lab Number: 16040153 GC/FID Volatile	Sample Descri	ption: WRCDP-8	5(033116)			
4-BFB (8015D)	04/06/20	16 20	µg/L	89.3	84.0-121	
FLUOROBENZENE (8015D) BTEX	04/06/20	16 20	µg/L	95.7	71.7-132	
1,2-DICHLOROETHANE-d4	04/05/20	16 10	μg/L	96.3	74.3-123	
TOLUENE-d8	04/05/20	16 10	μg/L	97.2	80.0-120	
Lab Number: 16040154 GC/FID Volatile	Sample Descri	ption: WRCDP-8.	3(033116)			
4-BFB (8015D)	04/07/20	16 20	μg/L	93.2	84.0-121	
FLUOROBENZENE (8015D) BTEX	04/07/20	16 20	µg/L	99.4	71.7-132	
1,2-DICHLOROETHANE-d4	04/05/20	16 10	µg/L	98.3	74.3-123	
TOLUENE-d8	04/05/20	16 10	μg/L	95.5	80.0-120	
Lab Number: 16040155 GC/FID Volatile	Sample Descri	ption: WRCDP-72	2(040116)			
4-BFB (8015D)	04/06/20	16 20	μg/L	93.1	84.0-121	
FLUOROBENZENE (8015D) BTEX	04/06/20	16 20	µg/L	99.6	71.7-132	
1,2-DICHLOROETHANE-d4	04/05/20	16 10	μg/L	95.8	74.3-123	
TOLUENE-d8	04/05/20	16 10	μg/L	97.4	80.0-120	
Lab Number: 16040156 GC/FID Volatile	Sample Descri	ption: WRCDP-7	1(040116)			
4-BFB (8015D)	04/06/20	16 20	µg/L	92.7	84.0-121	
FLUOROBENZENE (8015D) BTEX	04/06/20		µg/L	100.	71.7-132	
1,2-DICHLOROETHANE-d4	04/05/20		μg/L	96.8	74.3-123	
TOLUENE-d8	04/05/20	16 10	µg/L	106	80.0-120	
Lab Number: 16040157 GC/FID Volatile	Sample Descri	ption: WRCDP-8	0(040116)			
4-BFB (8015D)	04/06/20	16 20	µg/L	89.1	84.0-121	

Date Reported: 04/18/2016 Date Received: 04/04/2016 Pace File No: 8462 Pace Order No: 132348

Surrogate	Date Date Prepared Analy	yzed	Spike Level	Units	% Recovery	Acceptable % Limits	
Lab Number: 16040157	Sample Des	scription:	WRCDP-80(04	0116)			
GC/FID Volatile	~~~ P			,			
FLUOROBENZENE (8015D)	04/06	/2016	20	μg/L	100.	71.7-132	
BTEX							
1,2-DICHLOROETHANE-d4		/2016	10	μg/L	98.7	74.3-123	
TOLUENE-d8	04/05	/2016	10	μg/L	107	80.0-120	
Lab Number: 16040158	Sample Des	scription:	WRCDP-86(04	0116)			
GC/FID Volatile							
4-BFB (8015D)	04/07	/2016	20	µg/L	122 SI	84.0-121	
FLUOROBENZENE (8015D)	04/07	/2016	20	μg/L	98.8	71.7-132	
BTEX							
1,2-DICHLOROETHANE-d4		/2016	10	μg/L	104	74.3-123	
TOLUENE-d8	04/06	/2016	10	μg/L	97.3	80.0-120	
Lab Number: 16040159	Sample Des	scription:	WRCDP-99(04	0116)			
GC/FID Volatile	0.1/0	0016	20	a	00.6	04.0.101	
4-BFB (8015D)		/2016	20	μg/L α/I	89.6	84.0-121	
FLUOROBENZENE (8015D) BTEX	04/00	/2016	20	μg/L	99.2	71.7-132	
1,2-DICHLOROETHANE-d4	04/05	/2016	10	μg/L	100.	74.3-123	
TOLUENE-d8		/2016	10	μg/L	106	80.0-120	
				10			
Lab Number: 16040160	Sample Des	scription:	WRCDP-106(0	40116)			
GC/FID Volatile							
4-BFB (8015D)		/2016	20	μg/L	88.0	84.0-121	
FLUOROBENZENE (8015D) BTEX	04/06	/2016	20	µg/L	96.4	71.7-132	
1,2-DICHLOROETHANE-d4	04/05	/2016	10	μg/L	96.7	74.3-123	
TOLUENE-d8	04/05	/2016	10	μg/L	106	80.0-120	
Lab Number: 16040161	Sample Des	scription:	WRCDP-89(04	0216)			
GC/FID Volatile 4-BFB (8015D)	04/07	/2016	20		94.6	84.0-121	
FLUOROBENZENE (8015D)		/2016	20 20	μg/L μg/L	101	71.7-132	
BTEX	04/07	/2010	20	μg/L	101	11.1-152	
1,2-DICHLOROETHANE-d4	04/05	/2016	10	μg/L	105	74.3-123	
TOLUENE-d8		/2016	10	μg/L	108	80.0-120	
Lab Number: 16040162 GC/FID Volatile	Sample Des	scription:	WRCDP-107(0	40216)			
4-BFB (8015D)	04/07	/2016	20	μg/L	93.4	84.0-121	
FLUOROBENZENE (8015D)	04/07	/2016	20	µg/L	99.8	71.7-132	
BTEX							
1,2-DICHLOROETHANE-d4	04/05	/2016	10	μg/L	100.	74.3-123	
TOLUENE-d8	04/05	/2016	10	μg/L	107	80.0-120	
Lab Number: 16040163 GC/FID Volatile	Sample Des	scription:	WRCDP-108(0	40216)			
4-BFB (8015D)	04/07	/2016	20	μg/L	91.9	84.0-121	
FLUOROBENZENE (8015D)		/2016	20 20	μg/L μg/L	99.3	71.7-132	
BTEX	04/07			~B~2			
1,2-DICHLOROETHANE-d4	04/05	/2016	10	μg/L	97.3	74.3-123	
TOLUENE-d8		/2016	10	μg/L	107	80.0-120	

Quality Control Report Sample Surrogate Data

Client: Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103 Page: 26

Date Reported: 04/18/2016 Date Received: 04/04/2016 Pace File No: 8462 Pace Order No: 132348

Surrogate	Date <u>Prepared</u>	Date Analyzed	Spike Level	Units	% Recovery	Acceptable % Limits	
Lab Number: 16040164	Sam	ole Description:	WRCDP-112(040216)			
GC/FID Volatile	-	· -					
4-BFB (8015D)		04/07/2016	20	μg/L	93.0	84.0-121	
FLUOROBENZENE (8015D)		04/07/2016	20	μg/L	99.4	71.7-132	
BTEX							
1,2-DICHLOROETHANE-d4		04/05/2016	10	μg/L	96.8	74.3-123	
TOLUENE-d8		04/05/2016	10	µg/L	105	80.0-120	
Lab Number: 16040165	Samj	ple Description:	WRCDP-113(040216)			
GC/FID Volatile							
4-BFB (8015D)		04/07/2016	20	μg/L	91.2	84.0-121	
FLUOROBENZENE (8015D)		04/07/2016	20	μg/L	101	71.7-132	
BTEX							
1,2-DICHLOROETHANE-d4		04/05/2016	10	μg/L	99.3	74.3-123	
TOLUENE-d8		04/05/2016	10	μg/L	106	80.0-120	

Data Qualifiers:

SI - One or more surrogate recoveries for this analysis were not within the laboratory or method control limits. The sample result(s) or reporting limit(s) for this analysis are estimated due to sample matrix interferences.

Quality Control Report Continuing Calibration Report

Client: Coffeyville Resources Attn: Sam McCormick 10 E. Cambridge Circle Dr. Kansas City, KS 66103 Page: 27

Date Reported: 04/18/2016 Date Received: 04/04/2016 Pace File No: 8462 Pace Order No: 132348

Da	ate of	Instrument	Amount in	Amount		Percent
	<u>nalysis</u>	Batch ID		Detected	<u>Units</u>	<u>Recovery</u>
Oklahoma GRO 04	/06/2016	1GC2097				strument Batch.
Oklahoma GRO 04	/06/2016	2GC2097	CCV recover	y acceptable	for this Ir	strument Batch.
Oklahoma GRO 04	/07/2016	3GC2097	CCV recovery	y acceptable	for this Ir	strument Batch.
Oklahoma GRO 04	/07/2016	1GC2098	CCV recover	y acceptable	for this Ir	strument Batch.
Oklahoma GRO 04	/07/2016	2GC2098	CCV recover	y acceptable	for this Ir	strument Batch.
Oklahoma DRO 04	/05/2016	1EX4096	CCV recover	y acceptable	for this Ir	strument Batch.
Oklahoma DRO 04	/05/2016	2EX4096	CCV recover	y acceptable	for this Ir	strument Batch.
Oklahoma DRO 04	/06/2016	3EX4096	CCV recover	y acceptable	for this Ir	strument Batch.
Oklahoma DRO 04	/06/2016	1EX4097	CCV recover	y acceptable	for this Ir	strument Batch.
Oklahoma DRO 04	/06/2016	2EX4097	CCV recover	y acceptable	for this Ir	strument Batch.
Oklahoma DRO 04	/07/2016	1EX4098	CCV recover	y acceptable	for this Ir	strument Batch.
Oklahoma DRO 04	/07/2016	2EX4098	CCV recover	y acceptable	for this Ir	strument Batch.
Oklahoma DRO 04	/08/2016	3EX4098	CCV recover	y acceptable	for this Ir	strument Batch.
Oklahoma DRO 04	/08/2016	1EX4099	CCV recover	y acceptable	for this Ir	strument Batch.
Oklahoma DRO 04	/08/2016	2EX4099	CCV recover	y acceptable	for this Ir	strument Batch.
Oklahoma DRO 04	/08/2016	3EX4099	CCV recover	y acceptable	for this Ir	strument Batch.
BTEX 04	/05/2016	1MS8096				strument Batch.
BTEX 04	/06/2016	1MS8097	CCV recover	y acceptable	for this Ir	strument Batch.
BTEX 04	/06/2016	2MS8097				strument Batch.
BTEX 04	/07/2016	1MS8098				strument Batch.
BTEX 04	/08/2016	2MS8098				strument Batch.
BTEX 04	/05/2016	1MS9096				strument Batch.
	/05/2016	2MS9096				strument Batch.

525 N. 8th Street, Salina, KS 67401 (785)827-1273 (800)535-3076 Fax (785)823-7830 www.cas-lab.com

CHAIN OF CUSTODY RECORD

Continental Order Number: 13234 8

	t/Reporting Informati	on			1	Invoic	e Infor	matic	m						P	ARAMET	ERS/CO	NTAINE	R TYPE	(preserva	utive)		COMMENTS
Company Name; Coffeyville Resources, LL	c	-		Company Nam Coffeyville I											1	<u> </u>		 			T T		
Address:				Address:											· ·								
10 East Cambridge Circle				10 East Carr	ıbridge Ci	tcle [Эт. / Ş	uite	250						(HCI	ਤ							
City: Kansas City	State: Kansas	Zip: 66103		City: Kansas City	_			Stat	te; ITSAS		Zip: 661	03		E E	vials	L (HC							
Contact: Sam McCormick / Jerome McSe				Contact:			<u> </u>							l vials	glass 40 ml viats (HCL)	2× amber 1L (HCL)							
E-mail:	mey			Sam McConnic	.k				· ·					40 m ⁷	glass '					Ì		ľ	
samccormick@cvrenergy.	com / jdmcsorley	@cvrenerg	v.com	E-mail:										glass	ě		ļ	ļ					
Phone Number: 913-982-0457	Fax Nun			Phone Number: 913-982-0457				Fax	Numt	ber:				BTEX (8020/8015) • 3x glass 40 ml vials (HCL)	(8015)	118/000							
Sampler's Name / Company:(Pri	inted)	Sampler's	Name:(Signat			Purel	hase Or	rder I	Numb	 साः		•	\dashv	108/0	(8020	SO (8)							
Jerome McSorley Project Name:	Facility Name / A		har 1	<u></u>)	\bot				-	<u> </u>			(802)	GRO	n de la						Ì	
WRC Interior Delineation	WRC Wynnewo			\mathcal{O}		Composite G-Grab	[8]		ander of					втех	Oklahoma GRO (8020/8015) -	Oklahoma DRO (8000/8100) -		2					
SAMPLE IDENTIF (30 Characters or		Matrix (Sample Type)	Regulatory Program	Date Sampled	Time Sampled	55	Total Containe	HCI	HOWN	EONH	#OSZH	NONE	OTHRE:		ö								
Trip Blank	?	0	0	03/30/16	8:00	G	8	8						X	Χ	X				<u> </u>	+		Provided by Lab
WRCDP-45(033016)		GW	0	03/30/16	8:45	G	8	8		\square			\square	X	Χ	X				t	<u>+</u> +		
WRCDP-DUPE3		GW	0	03/30/16	8:45	G	8	8						X	X	X				 	1		Duplicate
WRCDP-53(033016)		GW	0	03/30/16	10:00	G	8	8	\square					X	X	X				[<u>+</u> +		
WRCDP-111(033016)		GW	0	03/30/16	10:40	G	8	8		\square		1		X	X	X					├ ── †		
WRCDP-55(033016)		GW	0	03/30/16	14:00	G	8	8				-		X	X	X	-				++		
WRCDP-51(033016)		GW	0	03/30/16	14:50	G	8	8				\neg		X	X	X				<u> </u>	<u> </u>	†	
WRCDP-56(033116)		GW	0	03/31/16	9;20	G	8	8						X	X	X					╂──┼		
WRCDP-56 MS/MSD		GW	0	03/31/16	9:20	G	9	9				+	\neg	X	X	X						<u> </u>	MS/MSD
WRCDP-48(033116)		GW	0	03/31/16	10:40	G	8	8				-†	1	X	X	X					 		TAPO LATO D
WRCDP-85(033116)		GW	0	03/31/16	14:10	G	8	8	i †		-+	\dashv		X	X	X							
Matrix (Sample Type): DW	V=Drinking Water,	GW =Gre	ound Water,	WW=Wast	e Water,	₩=₩	vipe,		-Solid	1/Soil	i, s	L=S	ludge			= Oil/Or	ganie Lic	l quid, (0=Other	r,	<u>ا ــــــــــــــــــــــــــــــــــــ</u>	l	
Regulatory Program: <u>N</u> =NP	DES, <u>R</u> =RCRA	∖, <u>D</u>=D ті	inking Water	r, <u>SL</u> =503	Sludge,	<u>0</u> =0	Other,	<u>n</u> }	<u>R</u> =No	n RC					()	lease note if	non-standar	d turnaroun	d. Rush & I	Emergency :	subject to addit Emergency TAT	tional charge	e)
RELINQUISHED BY:	N	~>	\leq		date H-4	-/ (теме //	:: 1 0C		RECE	VED	BY:	مر		P		o) (1641		1987 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	DATE:		TIME
RECEQUISHED BY	~	\sim			DATE:			TIME			RECEI	IVEB	BY		_	<u> </u>	<u> </u>				DATE:	$\frac{\pi}{2}$	<u> 100</u>
ECEIVED AD AB BY:	<u>K</u>				<u>4.47</u>	6		<u>15</u>	; <u>5</u> (1													
Smay 4	The	 .			date:	Ĺ	ľ	time /S	-57		SHIPPI AIRBII		A:			_					SEAL #: SEAL DAT		
2.2007 1. 0				ł	1. 1.	$\underline{\checkmark}$		\leq								_							

H: COCCOC 2016 Delineation 046316.xls/WRC_Delineation 14-3/2016

PLEASE NOTE THE ATTACHED CONTINENTAL SAMPLE ACCEPTANCE POLICY

www.cas-lab.com

CHAIN OF CUSTODY RECORD

Continental Order Number: 132348

Page 2 of 3

Client/R	eporting Informatio	ut:	···	1	Ŀ	nvoice	Inform	ution		·					 P.	ARAME	ERS/CO	NTAINE	RTYPE	(preserv	ative)		COMMENTS
Company Name: Coffeyville Resources, LLC				Company Name Coffeyville F		LLC											1					<u> </u>	· · · · · · · · · · · · · · · · · · ·
Address: 10 East Cambridge Circle D	Dr. / Suite 250			Address: 10 East Carn	bridge Cir	cle D	hr. / Si	uite :	250					G	(HCL)	E E							
City: Kansas City	State: Kansas	Zip: 66103		City: Kansas City				State Kan	•		Zip: 661()3		als (HCI	40 ml vials (HCL)	JL (HC							
Contact: Sam McConnick / Jerome McSorl	ley			Contact: Sam McConnic	k									0 mil via	glass 40 r	k amber							
E-mail: samecormick@cvrenergy.co	om / jdmcsorley(acvrenergy	/.com	E-mail:										BTEX (8020/8015) - 3x glæss 40 mil vials (HCL)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	100) - 2;							
Phone Number. 913-982-0457	Fax Nun			Phone Number: 913-982-0457				Fax	Vuenb	er.				15) - 3>	20/8015	8/000/8							
Sampler's Name / Company:(Print Jerome McSorley	ied)	Sampler's I	Name (Signat	men ~		Purch	iase Or	der N	umbe	f:				(8020/80	RO (80	a DRO							
Project Name: WRC Interior Delineation	Facility Name / A WRC Wynnewo			2	\square	oosite Bo	le hers				ved Bor			BTEX (Oklahoma GRO (8020/8015)	Oklahoma DRO (8000/8100) - 2x amber 1L (HCL)							
SAMPLE IDENTIFIC (30 Characters or)		Mateix (Sample Type)	Regulatory Program	Date Sampled	Time Sampled	C-Compos	Total Containe	HCI	HONN	ENO3	H2SO4	NONE	OTHER		ð								
WRCDP-83(033116)		GW	0	03/31/16	15:45	G	8	8						X	Χ	X					1		
WRCDP-72(040116)	· · · · · · · · · · · ·	GW	0	04/01/16	9:10	G	в	8						Χ	X	Χ							
WRCDP-71(040116)		GW	0	04/01/16	9:45	G	8	8						Χ	X	X							
WRCDP-80(040116)		GW	0	04/01/16	12:50	G	8	8						X	Χ	Χ					1		
WRCDP-86(040116)		GW	0	04/01/16	13:20	G	8	U						Χ	Χ	Χ					1		
WRCDP-99(040116)		GW	0	04/01/16	14;25	G	8	8						Χ	Χ	Χ							
WRCDP-106(040116)		GW	0	04/01/16	15:10	G	8	8						Χ	Χ	X			-			I	
WRCDP-89(040216)		GW	0	04/02/16	9:40	G	8	8						Χ	Χ	Χ							
WRCDP-107(040216)		GW	0	04/02/16	11:15	G	8	8				·		X	Χ	Χ							
WRCDP-108(040216)		GW	0	04/02/16	13:20	G	8	8						X	X	Χ			1	1			
WRCDP-112(040216)		GW	0	04/02/16	14:40	G	8	8						Χ	Χ	Χ							-
Matrix (Sample Type): DW	V=Drinking Water	, GW ≖Gr	ound Water	, WW=Was	te Water,	₩=\	Vipe,	S	Solid	1/Soi	l, S	SL≃S	ludg	e, A =A	vir, OI	.= Oil/O	rganic L	iquid,	0=Oth	er,			
Regulatory Program: <u>N</u> =NP	DES, <u>R</u> =RCR	A, <u>D</u> =Dr	rinking Wate	er, <u>SL</u> =503	Słudge,	<u>0</u> =(Other,	<u>n1</u>	<u>l</u> =No	n RC	RA I	MW	ſ								cy subject to a Emergency 7		
REENQUISHED BY:	24	\leq			date: 4-4	-/6			00	2	RECE	$\frac{1}{2}$	à		L		_				DATE:		теме: 1/07
RELENQUISHED BY:	RC				DATE: DATE:	14		time /S	3	5	RECE			<i></i>							DATE:		TIME:
Macenter for the Smooth for	Jan -				DATE: 14-14			тын /S	5		SHIP P AIRBI		1A:								SEAL #: SEAL D		

H*COCCCC 2016 Function 040216.als/WRC_Delineation 24/3/2016

PLEASE NOTE THE ATTACHED CONTINENTAL SAMPLE ACCEPTANCE POLICY

www.cas-lab.com

CHAIN OF CUSTODY RECORD

Continental Order Number: 13234 8

Client/Reporting Information			lavoice Information					PARAMETERS/CONTAINER TYPE (preservative)						COMMENTS								
Company Name: Company Name																						
Coffeyville Resources, LLC			Coffeyville Resources, LLC																			
Address: 10 East Cambridge Circle Dr. / Suite 250			Address: 10 East Cambridge Circle Dr. / Suite 250								<u></u>											
City: State:	Zip:		City: State: Zip:						(j	E B	amber IL (HCL)											
Kansas City Kansas	2φ. 66103		Kansas City				Кал			2ip. 661()3		s (H	l via	10	1						1
Contact:					vial	Ē	2							i ·								
Sam McCormick / Jerome McSortey			Sam McCormic	k									TE C	188 4	E		ļ					
E-mail:			E-mail:										ss 4(1 X Z	14							
samccormick@cvrenergy.com / jdmcsorley@	cvrenerg	.com											e la	-3	8							
Phone Number: Fax Numb			Phone Number:				Fax 3	Numb	er:				015	8/0								
913-982-0457 913-982-0			913-982-0457							015)	50/2	8					1		ł			
Sampler's Name / Company:(Printed)	Sampler's	Name:(Signat	ure)		Purch	ase Or	der N	umbe	r:				20/8	l 🖉	8							ł
Jerome McSorley		the c	n	\geq									(80) (80)	SRO -	Ē							ĺ
Project Name: WRC Interior Delineation WRC Wynnewoo					C.Composite G.Composite G.Composite Total				mber of Preserved Boules			BTEX (8020/8015) - 3x glass 40 ml vials (HCL)	Okłahoma GRO (80/20/80)5) - 3x glass 40 mł vials (HCL)	Okiahoma DRO (8000/8100) - 2x								
SAMPLE IDENTIFICATION (30 Characters of less)	Matrix (Sample Type)	Regulatory Program	Date Sampled	Time Sampled	158	Cont	нс	HOBN	EONH	H2SO4	NONE	OTHER		0		ŝ						
WRCDP-113(040216)	GW	0	04/02/16	16:10	G	8	8						X	X	X							
									_		-		11							h		
	1		<u> </u>						_												i	·····
					ļ										ļ		ļ					
	1																					
					<u> </u>										 							
	1																					
																···· •					 	
																				1		
																	-					
			· · · · · · · · · · · · · · · · · · ·																			
												1										
Matrix (Sample Type): DW=Drinking Water,	GW=Gr	ound Water,	WW=Wast	te Water,	₩=\	Vipe,	S	-Solic	l/Soi	I, S	SL=S	Sludg	e, A =/		L= Oil/O							
Regulatory Program: <u>N</u> =NPDES, <u>R</u> =RCRA	., <u>D</u> ≕Dι	inking Wate	er, <u>SL</u> =503	Sludge,	<u>0</u> =0)ther,			n RC	CRA I	MW				(Please note ard TAT: (1:					Emergency T		ing days)
RELENQUISHED BY:				DATE:			TIME			RECE	IVED	BY:								DATE:		TIME:
11AKUNT			4-4-16 1100					/	~ 2					7-4,	16	1100						
RELINQUISHED BY:		_		DATE:			TIME			RECE	IVED	BY:	N					DATE:	- <u>ye</u>	TIME:		
1- 0							10	~_	<u> </u>													
Car Do				4- <i>4</i> -	6			$\underline{\sim}$	<u>ں</u>				<u>.</u>				·			an i s i i		<u> </u>
RECEIVED AT LAB BY:				and a second				A.						SEAL #:								
may tak		· · · · · · · · · · · · · · · · · · ·		9-4	-/6		15	5	\mathcal{O}	AIRBI	LL:									SEAL D	ATE;	

H:COC COC 2016 Delineation 040216 xts/WRC_Delineation 34/3/2016

PLEASE NOTE THE ATTACHED CONTINENTAL SAMPLE ACCEPTANCE POLICY

Client Name: Coffeyur	110	Pace File No.: 8462									
$\frac{D}{2} = \frac{D}{2} = \frac{D}$	1-m 4/DCAD_61	, 2-LTH WROP-89 , 2LTH WROP-99									
2-1+4 1.10 con	A IT VENUE CE CO	pp-107, 2LTA WRCOP 108									
a the well	P-117										
	<u> </u>										
<u></u>											
Cooler of	for this Pace Order No.										
Cooler Identification:	Other:	/ Client's Cooler / Box / Letter / Hand-delivered									
Date/Time Cooler Received:	4,4,16	15:50									
Delivered By:	UPS / FedX / AB Express / Fe	d Svcsy Mail / Walk-In / Other:									
Custody Seal:	Present: Intact / Broken Abs	/ Broken Absent: 1 Seal No:									
	Seal Name:	Seal Date:									
	Seal matches Chain of Custody:	Yes / No / NA									
Type of Packing Material:	Blue Ice (ace) Method De / Bubble / Foam / Paper / Peanuts / Vermiculite / None / Other:										
Cooler Temperature (°C):	Original Reading (°C) 2.14 Corrected Reading (°C) 1.9										
	Temperature. By: Temperature Blank Surface Temperature										
	Thermo. ID No.: Thermo. Correction Factor (°C):										
	Evidence of Cooling and da	ate received = date sampled									
Sample Receipt Discrep	oancies: 🛛 No 🗆 Yes	(See below for discrepancies.)									
Note: If discrepancies ar	e present, Pace will proceed wi	th analyses until/unless directed otherwise by the client.									
Chain of Custody not pr	esent - information taken from:	Sample excluded from Chain of Custody									
Cover Letter	Container 🛛	Sample listed on Chain of Custody, not received									
РОП	Pace Proj. Mgr. 🛛	Sample identification on container and Chain of Custody do not agre									
Container label absent	1. 7 1. 11 1 1	Air bubbles in Aqueous VOA vials larger than pea-size [approx. 6 mm									
Chain of Custody incom	plete [see detail below] date (time sampled (exc), TB or Dup)	 Cooler temperature exceeded 0.1 - 6.0 °C requirement [Do not mark if samples do not require cooling to 0.1 - 6.0 °C.] 									
•		 Broken or leaking containers (detail actions below) 									
Chain of Custody missing											
Chain of Custody missing											
 Chain of Custody missing Date or Time sampled obt Chain of Custody missing 											
 Chain of Custody missing Date or Time sampled obt Chain of Custody missin Chain of Custody missin 	ng sampler's name	 Sample container type or labeled chemical preservation inappropriat Other discrepancies:									
 Chain of Custody missing Date or Time sampled obt Chain of Custody missin Chain of Custody missin 	ng sampler's name ng matrix (sample type) formation: signature date time	 Sample container type or labeled chemical preservation inappropriat Other discrepancies:									
 Chain of Custody missing Date or Time sampled obt Chain of Custody missin Chain of Custody missin Missing relinquished in 	ng sampler's name ng matrix (sample type) formation: signature date time	 Sample container type or labeled chemical preservation inappropria Other discrepancies:									
 Chain of Custody missing Date or Time sampled obt Chain of Custody missin Chain of Custody missin Missing relinquished in 	ng sampler's name ng matrix (sample type) formation: signature date time	 Sample container type or labeled chemical preservation inappropria Other discrepancies:									
 Chain of Custody missing Date or Time sampled obt Chain of Custody missin Chain of Custody missin Missing relinquished in 	ng sampler's name ng matrix (sample type) formation: signature date time	 Sample container type or labeled chemical preservation inappropriat Other discrepancies:									

Pace Analytical		Pace Order No .: 132348
Cooler/Sample Receip	ot Form (C/S RF)	
Client Name: offen	yle	Pace File No.: 8462
Sample ID's in cooler: 24	TA WRCPP-48	2LTH WROP-51, 2-LTH WROPP-55
53-LTA WACDA	2.5%	
5k_ 4-4-16	· · · · · · · · · · · · · · · · · · ·	
• • • • • • • • • • • • • • • • • • •		
Cooler of		>
Cooler Identification:	Pace Cooler #:	/ Client's Cooler / Box / Letter / Hand-delivered
Date/Time Cooler Received:		15 50
Date/Time Cooler Received: Delivered By:	•	ield Svcs/ Mail / Walk-In / Other:
Custody Seal:		Absent: Seal No:
Subouy Jean	•	Seal Date:
·		ly: Yes / No / NAS
Type of Packing Material:	-	Bubble / Foam / Paper / Peanuts / Vermiculite / None / Other:
Cooler Temperature (°C):	•	3.0 Corrected Reading (°C) 2.5
	Temperature, By: Temperat	ture Blank Surface Temperature
	Thermo, ID No.:	Thermo. Correction Factor (°C):
	Evidence of Cooling and c	date received = date sampled
Sample Receipt Discrem	ancies: 🖬 No 🛛 Yes	(See below for discrepancies.)
	· · ·	
		with analyses until/unless directed otherwise by the client.
Chain of Custody not pre Cover Letter	esent - information taken from: Container 🛛	 Sample excluded from Chain of Custody Sample listed on Chain of Custody, not received
Cover Letter	Container 🗆 Pace Proj. Mgr. 🗖	Sample listed on Chain of Custody, not received Sample identification on container and Chain of Custody do not agree
Container label absent	· · · · · · · · · · · · · · · · · · ·	Air bubbles in Aqueous VOA vials larger than pea-size [approx. 6 mm]
Chain of Custody incomp	plete [see detail below]	Cooler temperature exceeded 0.1 - 6.0 °C requirement
· · ·	date/time sampled (excl. TB or Dup.)	
Date or Time sampled obt		 Broken or leaking containers (detail actions below) Sample container type or labeled chemical preservation inappropriate
 Chain of Custody missir Chain of Custody missir 	• •	Other discrepancies:
	formation: signature date tim	-
Detail to discrepancies/com		(
<u></u>	<u>. </u>	
	Date Completed:	4-4-16
Completed by:	Date Completed:	

	· · · · · · · · · · · · · · · · · · ·							
Pace Analytical		Pace Order No.: 132348						
Cooler/Sample Receip								
Client Name: Of Leyur	14.	Pace File No.: 8462						
Sample ID's in cooler:								
2-LTA W	RCOP- Dupe 3	2LTA WECOP45, 21TA WECOP53						
2-LTA 4	IRCOP-111 1-	LTH WECDP-112						
<u>211A-7</u>	Rill Blanks.							
		· · · · · · · · · · · · · · · · · · ·						
Cooler of	for this Pace Order No.							
Cooler Identification:		/ Client's Cooler / Box / Letter / Hand-delivered						
Date/Time Cooler Received:		15:50						
Delivered By:	1	ald Sves-/ Mail / Walk-In / Other:						
Custody Seal:		osent: 🖌 Seal No:						
	Seal Name:	Seal Date:						
	Seal matches Chain of Custody							
Type of Packing Material:		ubble / Foam / Paper / Peanuts / Vermiculite / None / Other:						
Cooler Temperature (°C):	Original Reading (°C) /. Corrected Reading (°C) 0.5							
	Temperature. By: Temperat	are Blank Surface Temperature						
		Thermo. Correction Factor (°C):0.5						
	Evidence of Cooling and d	late received = date sampled						
Sample Receipt Discrep	ancies: 🖬 No 🗖 Yes	(See below for discrepancies.)						
Note: If discrepancies are	present, Pace will proceed w	ith analyses until/unless directed otherwise by the client.						
Chain of Custody not pre	esent - information taken from:	Sample excluded from Chain of Custody						
Cover Letter	Container 🗖	Sample listed on Chain of Custody, not received						
РО 🗆	Pace Proj. Mgr. 🛛	Sample identification on container and Chain of Custody do not agree						
Container label absent		Air bubbles in Aqueous VOA vials larger than pea-size [approx. 6 mm]						
 Chain of Custody incomp Chain of Custody missing d 	olete [see detail below] late/time sampled (excl. TB or Dup.)	Cooler temperature exceeded 0.1 - 6.0 °C requirement [Do not mark if samples do not require cooling to 0.1 - 6.0 °C.]						
 Date or Time sampled obta 	-	Broken or leaking containers (detail actions below)						
Chain of Custody missin		Sample container type or labeled chemical preservation inappropriate						
Chain of Custody missin		Other discrepancies:						
Missing relinquished inf	ormation: signature date tim	e						
Detail to discrepancies/comm	nents:							
d.	Date Completed:	1-4-16.						
Completed by:								

.

Pace Analytical	·····	Pace Order No.:	132348
Cooler/Sample Receip	t Form (C/S RF)		
Client Name: Offers	ile	Pace File No.:	8462
Sample ID's in cooler:		······	
SHAWROR WR		2 LTA, WRCDP- 72	
2-LTA WEOD-	83. 24 WRCPP -2	85, ICHA-WRCOR	-86
1-LTA WRC	: NP-112		<u> </u>
Cooler of			
Cooler Identification:	Other:	/ Client's Cooler / Box / Letter / H	Hand-delivered
Date/Time Cooler Received:	4.4.16	15:50	a
Delivered By:	UPS / FedX / AB Expres	dd Svc3/ Mail / Walk-In / Other:	
Custody Seal:		osent: Seal No:	
		Seal Date:	
	Seal matches Chain of Custody	r; Yes / No / NAS	
Type of Packing Material:	Blue Ice (Tee / Melted Lee / Bu	ubble / Foam / Paper / Peanuts / Verm	uculite / None / Other:
Cooler Temperature (°C):	Original Reading (°C)	Corrected Reading ((°C)]9
	Tomporatura Bur Tomperati	ure Blank Surface Temperature	
	Thermo. ID No.:	Thermo. Correction Factor	r (°C):
[Evidence of Cooling and d		
Sample Receipt Discrep	ancies: 🖪 No 🛛 Yes	(See below for discrepancies.)	
Note: If discrepancies are	present, Pace will proceed w	vith analyses until/unless directed o	otherwise by the client.
	esent - information taken from:	Sample excluded from Chain of (
Cover Letter	Container	Sample listed on Chain of Custo	dy, not received
РО 🗖	Pace Proj. Mgr. 🛛		er and Chain of Custody do not agree
Container label absent	x		als larger than pea-size [approx. 6 mm]
Chain of Custody incomp		Cooler temperature exceeded 0.3 [Do not mark if samples do not r	1 - 6.0 °C requirement
	tate/time sampled (excl. TB or Dup.)	, —	
Date or Time sampled obta			etail actions below) ed chemical preservation inappropriate
Chain of Custody missinChain of Custody missin		Other discrepancies:	
	ng matrix (sample type) formation: signature date tim	· .	· · · · · · · · · · · · · · · · · · ·
Detail to discrepancies/comr			
Detail to discrepaticies/ cont			· · · · · · · · · · · · · · · · · · ·
	<u> </u>		·
· · · · · · · · · · · · · · · · · · ·			
			<u>.</u>
· · · · · · · · · · · · · · · · · · ·			
Completed by:	Date Completed:	4-4-16	

Pace Analytical	· · ·	Pace Order No.:
Cooler/Sample Receip	ot Form (C/S RF)	1 ace order No.: 13 2 34 P
Client Name: Offey	yle	Pace File No.: 8462
Sample ID's in cooler.		
Voc *	r	
	1- 113 2LA	
Cooler of		· · · · · · · · · · · · · · · · · · ·
Cooler Identification:	Pace Cooler #:9 Other:	/ Client's Cooler / Box / Letter / Hand-delivered
Date/Time Cooler Received:	Other:	15:50
Delivered By:		d SvcS/ Mail / Walk-In / Other:
Custody Seal:	Present: Intact / Broken Abs	ent: 🖌 Seal No:
	Seal Name:	Seal Date:
	Seal matches Chain of Custody:	Yes / No / NAS
Type of Packing Material:		bble / Foam / Paper / Peanuts / Vermiculite / None / Other:
Cooler Temperature (°C):	Original Reading (°C)	Corrected Reading (°C)Y
ļ	Temperature. By: Temperatur Thermo. ID No.:	re Blank Surface Temperature Thermo. Correction Factor (°C):0.5
	Evidence of Cooling and da	
	_	
Sample Receipt Discrep	ancies: 🕅 No 🗆 Yes	(See below for discrepancies.)
Note: If discrepancies are	present, Pace will proceed wi	th analyses until/unless directed otherwise by the client.
Chain of Custody not pre	esent - information taken from:	Sample excluded from Chain of Custody
Cover Letter	Container 🗖	Sample listed on Chain of Custody, not received
PO 🗆	Pace Proj. Mgr. 🛛	Sample identification on container and Chain of Custody do not agree
 Container label absent Chain of Custody incomp 	nlete [see detail helow]	 Air bubbles in Aqueous VOA vials larger than pea-size [approx. 6 mm] Cooler temperature exceeded 0.1 - 6.0 °C requirement
	late/time sampled (excl. TB or Dup.)	[Do not mark if samples do not require cooling to 0.1 - 6.0 °C.]
Date or Time sampled obta		Broken or leaking containers (detail actions below)
Chain of Custody missin		□ Sample container type or labeled chemical preservation inappropriate
Chain of Custody missir	ig matrix (sample type)	Other discrepancies:
Missing relinquished inf	ormation: signature date time	
Detail to discrepancies/com	nents:	
		· · · · · · · · · · · · · · · · · · ·
	1.0	
Completed by:	Date Completed:	<u>-710</u>

Appendix E – Summary of API Gravity Results

Appendix E

Well ID	Date	API Gravity
BMW-5	09/21/15	58.5
BMW-6	09/21/15	24.8 (a)
BMW-6	09/22/15	9.4 (a)
BMW-24	09/21/15	56.8
BMW-26	09/21/15	54.9
LMW-13	09/21/15	37.4
NMW-2	09/21/15	48.2
NMW-3	09/21/15	43.5
NMW-6	09/21/15	40.3
NMW-9	09/21/15	64.3
NMW-10	09/21/15	70.9
NMW-12	09/21/15	57.0
NMW-19	09/21/15	49.5
NRW-6	09/22/15	32.1
NRW-7	09/22/15	32.1
OMW-3	09/21/15	40.8
OMW-4	09/21/15	33.1
ORW-2	09/21/15	34.2
ORW-3	09/21/15	35.5

Summary of API Gravity Results Wynnewood Refining Company, LLC Wynnewood, Oklahoma

Samples of Light Non-Aqueous Phase Liquid were analyzed at the WRC laboratory according to ASTM-D287 method.

All results presented in degrees (°).

(a) API Gravity values are anomolously low at BMW-6. Results are considered suspect and are not used in groundwater elevation corrections.

Appendix 7.1 – Grain-size Distribution and Bench-scale Results

May 26, 2016

Project No. 2015-213-001

Judy Andrews WSP Environment & Energy 123 North Third St, Suite 507 Minneapolis, MN 55401

<u>Transmittal</u> <u>Laboratory Test Results</u> <u>WRC Tracer Test 31400030-05</u>

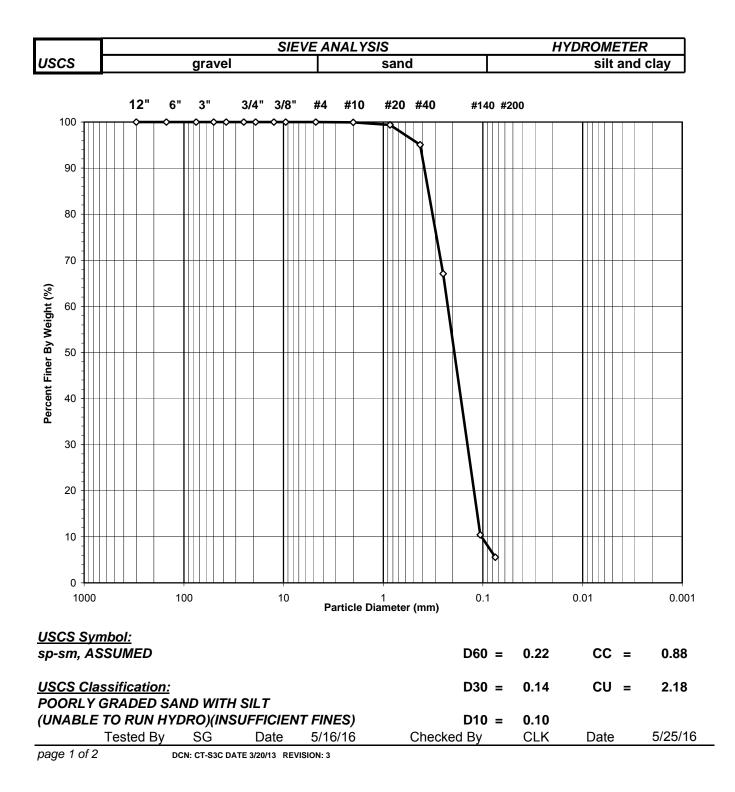
Please find attached the laboratory test results for the above referenced project. The tests were outlined on the Project Verification Form that was transmitted to your firm prior to the testing. The testing was performed in general accordance with the methods listed on the enclosed data sheets. The test results are believed to be representative of the samples that were submitted for testing and are indicative only of the specimens that were evaluated. We have no direct knowledge of the origin of the samples and imply no position with regard to the nature of the test results, i.e. pass/fail and no claims as to the suitability of the material for its intended use.

The test data and all associated project information provided shall be held in strict confidence and disclosed to other parties only with authorization by our Client. The test data submitted herein is considered integral with this report and is not to be reproduced except in whole and only with the authorization of the Client and Geotechnics. The remaining sample materials for this project will be retained for a minimum of 90 days as directed by the Geotechnics' Quality Program.

We are pleased to provide these testing services. Should you have any questions or if we may be of further assistance, please contact our office.

Respectively submitted, *Geotechnics, Inc*.

David R. Backstrom Laboratory Director


We understand that you have a choice in your laboratory services and we thank you for choosing Geotechnics.

SIEVE ANALYSIS

ASTM D 422-63 (2007)

Client: Client Reference: Project No.: Lab ID: WSP Group WRC Tracer Test 31400030-05 2016-213-001 2016-213-001-001 Boring No.: WRC-NBA Depth (ft): NA Sample No.: Soil (050316) Soil Color: Reddish Brown

WASH SIEVE ANALYSIS

ASTM D 422-63 (2007)

 Client:
 WSP Group

 Client Reference:
 WRC Tracer Test 31400030-05

 Project No.:
 2016-213-001

 Lab ID:
 2016-213-001-001

Boring No.: WRC-NBA Depth (ft): NA Sample No.: Soil (050316) Soil Color: Reddish Brown

Moisture Content of Passing 3/4" S	ample	Water Content of Retained 3/4" Sample	
Tare No.:	12	Tare No.:	NA
Wt. of Tare & Wet Sample (g):	1258.40	Weight of Tare & Wet Sample (g):	NA
Wt. of Tare & Dry Sample (g):	1100.33	Weight of Tare & Dry Sample (g):	NA
Weight of Tare (g):	202.66	Weight of Tare (g):	NA
Weight of Water (g):	158.07	Weight of Water (g):	NA
Weight of Dry Sample (g):	897.67	Weight of Dry Sample (g):	NA
Moisture Content (%):	17.6	Moisture Content (%):	NA
Wet Weight of -3/4" Sample (g):	NA	Weight of the Dry Sample (g):	897.67
Dry Weight of - 3/4" Sample (g):	847.8	Weight of - #200 Material (g):	49.88
Wet Weight of +3/4" Sample (g):	NA	Weight of + #200 Material (g):	847.79
Dry Weight of + 3/4" Sample (g):	0.00		
Total Dry Weight of Sample (g):	NA		

Sieve	Sieve	Weight of Soil	Percent	Accumulated	Percent	Accumulated
Size	Opening	Retained	Retained	Percent	Finer	Percent
				Retained		Finer
	(mm)	(g)	(%)	(%)	(%)	(%)
12"	300	0.00	0.00	0.00	100.00	100.00
6"	150	0.00	0.00	0.00	100.00	100.00
3"	75	0.00	0.00	0.00	100.00	100.00
2"	50	0.00	0.00	0.00	100.00	100.00
1 1/2"	37.5	0.00	0.00	0.00	100.00	100.00
1"	25.0	0.00	0.00	0.00	100.00	100.00
3/4"	19.0	0.00	0.00	0.00	100.00	100.00
1/2"	12.50	0.00	0.00	0.00	100.00	100.00
3/8"	9.50	0.00	0.00	0.00	100.00	100.00
#4	4.75	0.00	0.00	0.00	100.00	100.00
#10	2.00	0.83	0.09	0.09	99.91	99.91
#20	0.850	4.64	0.52	0.61	99.39	99.39
#40	0.425	38.77	4.32	4.93	95.07	95.07
#60	0.250	251.23	27.99	32.92	67.08	67.08
#140	0.106	508.80	56.68	89.60	10.40	10.40
#200	0.075	43.52	4.85	94.44	5.56	5.56
Pan	-	49.88	5.56	100.00	-	-

	Tested By	SG	Date	5/16/16	Checked By	CLK	Date	5/25/16
page 2 of 2	•	DCN: CT-S3C DA	TE 3/20/13 REV	'ISION: 3				

July 5, 2016

Paul D. Lindquist, EIT Project Consultant Environmental

123 North Third Street, Suite 507, Minneapolis, MN 55401

RE: Draft Report for In Situ Chemical Oxidation Treatability Study for Wynnwood, OK Version 1

Dear Paul:

Terra Systems, Inc. (TSI) has conducted treatability studies at over 100 sites in support of in situ chemical oxidation (ISCO) using potassium and sodium permanganate, activated persulfate, catalyzed hydrogen peroxide, or ozone, or in situ chemical reduction of volatile organics, semivolatiles organics, and metals. TSI does not perform ISCO or in situ reduction field projects, but works with a number of environmental engineering consultants including ERM, AMEC, TRC, Moraine Environmental, URS, GZA, WSP, and others to evaluate chemical oxidant demand and effectiveness in the laboratory before the consultants go to pilot or full-scale implementation. The treatability work was directed by Michael D. Lee, Ph.D. He has over 25 years of experience in conducting treatability studies and in situ bioremediation of chlorinated solvents and hydrocarbons. He has published over 100 papers. Erich Hauptmann prepared the treatability studies and did the sampling. He is a graduate of the University of Delaware with seven years of experience in the treatability lab.

I have prepared this draft report for the ISCO treatability study for the Wynnwood, OK site contaminated with hydrocarbons including benzene, toluene, ethylbenzene, and xylenes (BTEX), gasoline range organics (GRO), and diesel range organics (DRO). The soil was analyzed for the following parameters by Pace Laboratory of Salina, KS: BTEX, OK GRO, and OK DRO. The groundwater was analyzed for the following parameters by Pace Laboratory: BTEX, OK GRO, OK DRO, oxyanions (selenium, chromium, vanadium, molybdenum, and uranium), and chemical oxygen demand (COD). TSI measured the soil density, soil moisture, soil field holding capacity, and pH of the soil and groundwater and determined the quantities of 25% sodium hydroxide needed to raise and maintain the pH to 10.5 of 136 g soil and 15 mL groundwater for the following treatments: control, Peroxychem product Klozur 10 g/L sodium persulfate, 20 g/L Klozur persulfate, and 40 g/L Klozur persulfate.

A contaminant destruction evaluation was conducted with three dosages of Klozur sodium persulfate activated with sodium hydroxide and a control. Two replicates of each treatment were prepared in 1,000 mL bottles with 1,372 g soil (density of 1.98 g/cm³) and 300 mL groundwater

or approximately 70% by volume soil and 30% volume groundwater. The volume of sodium hydroxide required to maintain the pH above 10.5 determined in the initial characterization step were added to the two replicates. The pH, redox potential, and persulfate of one bottle from each treatment were recorded over time.

1.0 SUPPLY OF SAMPLES

WSP personnel sent representative soil and groundwater samples on ice and under standard Chain-of-Custody procedures directly to TSI at the following shipping address:

Michael D. Lee, Ph.D. Terra Systems, Inc. 130 Hickman Road, Suite 1 Claymont DE 19703 Phone: 302-798-9553 Fax: 302-798-9554 E-mail: <u>mlee@terrasystems.net</u>.

The following samples were supplied for the treatability studies:

- Six quarts (about 6 L or 10.3 kg including glass jars) of groundwater from a contaminated well
- 59 kg of contaminated soil. The soil was collected in 28 quart jars. The soil samples were collected from within the treatment zone.

The samples were collected with as little headspace as possible and shipped on ice. The samples were collected and shipped on May 5, 2016 and received at TSI on May 6, 2016.

2.0 SCOPE OF WORK

A comprehensive workplan for the completion of the proposed work was drafted. The experimental design for the bench-scale treatability study consisted of three phases of work:

- 1 Initial compositing and characterization of the site soil and groundwater;
- 2 Treatment effectiveness for three loading of sodium hydroxide activated Klozur sodium persulfate, and an unamend control
- 3 Report.

Each phase of work is described in detail in the sections that follow.

2.1 Initial Characterization of Site Soils and Groundwater

Prior to beginning the actual treatability experiments, the soil and groundwater samples were composited. The soil was analyzed for the following parameters by Pace Laboratory of Salina,

KS: BTEX (4 tared VOC vials with methanol), OK BTEX/GRO Low (2-ounce jar with septa), OK GRO High (4 tared VOC vials with methanol), and OK DRO (4-ounce jar). Pace Laboratories was paid directly by WSP. The groundwater was analyzed for the following parameters by Pace Laboratory: BTEX (three 40 mL VOA vials preserved with HCl), OK GRO (three 40 mL VOA vials preserved with HCl), OK DRO (1 L preserved with HCl), chemical oxygen demand or COD (120 mL plastic preserved with H₂SO₄), and oxyanions including selenium, chromium, vanadium, and molybdenum (250 mL plastic preserved with HNO₃). The Pace Laboratory does not have Oklahoma certification for uranium and subcontracted this analysis to Eurofins Lancaster Laboratories, Lancaster, PA. TSI measured the soil density and pH of the soil and groundwater and determined the quantities of 25% sodium hydroxide needed to raise and maintain the pH to 10.5 of 136 g soil and 30 mL groundwater for the following treatments: control, Klozur 10 g/L sodium persulfate, 20 g/L Klozur persulfate, and 40 g/L Klozur persulfate. The pH was monitored over a four-day incubation period. When the pH drifted below 10.5, additional 25% sodium hydroxide was added.

2.2 Initial Characterization Results

Table 1 presents the initial characterization results for the groundwater and soil. The groundwater contained 27.8 mg/L OK- GRO, 13 mg/L OK-DRO, 2.73 mg/L benzene, 4.77 mg/L toluene, 0.79 mg/L ethylbenzene, 2.62 mg/L m,p-xylenes, and 1.39 mg/L o-xylene. Oxyanions included 0.061 mg/L chromium, 0.00629 mg/L molybdenum, 0.0035 mg/L selenium, 0.057 mg/L vanadium, and 0.0101 mg/L uranium. There was 103 mg/L of COD.

Two soil samples were analyzed. The soil contained 170 to 180 mg/kg OK-GRO, 44 to 56 mg/kg OK-DRO, 0.108 to 0.122 mg/kg benzene, 1.5 to 1.72 mg/kg toluene, 1.22 to 1.34 mg/kg ethylbenzene, 4.11 to 4.5 mg/kg m,p-xylenes, and 1.92 to 2.12 mg/kg o-xylene. The soil moisture ranged from 82.5 to 84.2%. The soil density was 1.96 g/mL.

Table 2 contains the 25% sodium hydroxide titrations for the control, 10 g/L, 20 g/L, and 50 g/L persulfate solutions with 136 g soil and 30 mL groundwater. The initial pH of the control soil and groundwater was 7.2. In the persulfate-amended treatments, the initial pH ranged from 7.4 to 7.6. The pH was measured on 5/16/16 before and after 25% sodium hydroxide additions and on 5/19/16 and again on 5/20/16. Aliquots of 25% sodium hydroxide were added to raise the pH above 10.5. For the soil and groundwater without persulfate, 0.5 mL of the 25% sodium hydroxide was required or the equivalent of 0.92 g sodium hydroxide per kg of soil. The hydroxide demands increased as the persulfate dosages increased from 1.29 g/kg of the 10 g/L persulfate treatment, 1.47 g/kg for the 20 g/L persulfate treatment, and 1.65 g/kg for the 40 g/L persulfate treatment. These loadings of sodium hydroxide were used in the efficiency studies.

Sample	OK GRO	OK DRO	Benzene	Toluene	Ethylbenzene	m,p- Xylenes	o- Xylenes	Solids
Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	
Groundwater	27.8	13	2.73	4.77	0.79	2.62	1.39	
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	%
Soil A	170	44	0.122	1.72	1.34	4.5	2.12	82.5
Soil B	180	56	0.108	1.5	1.22	4.11	1.92	84.2
Avg Soil	175	50	0.115	1.61	1.28	4.305	2.02	83.4
Sample	Chromium	Molybdenum	Selenium	Vanadium	Uranium	COD		
Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		
Groundwater	0.061	0.00629	0.0035	0.057	0.0101	103		
Soil Density	1.96 g/mL							

Table 1. Initial Characterization Results

Table 2. Soil, Groundwater, and Persulfate Titrations

Sample	Control 136 g soil -	+ 30 mL GW		Sample	10 g/L PS 136 g soil + 30 n	nL GW + 0.6 g/L PS	S
-		Vol 25%				Vol 25%	
Date	Time	NaOH	pH	Date	Time	NaOH	pH
		mL	SU			mL	SU
5/16/2016	15:00	0	7.2	5/16/2016	15:00	0	7.6
		0.3	10.6			0.4	10.7
5/19/2016	8:15		9.8	5/19/2016	8:15		9.1
		0.4	12.0			0.6	10.4
5/20/2016	11:45		10.3			0.7	11.4
		0.5	11.0	5/20/2016	11:45		10.6
NaOH Demand g	/kg Soil		0.92				1.29
Sample	20 g/L PS 136 g soil + 30	mL GW + 0.6 g PS		Sample	40 g/L PS 136 g soil + 30	mL GW + 1.2 g PS	
		Vol 25%				Vol 25%	
Date	Time	NaOH	pH	Date	Time	NaOH	pH
		mL	SU			mL	SU
5/16/2016	15:00	0	7.4	5/16/2016	15:00	0	7.5
		0.5	12.3			0.6	11.5
5/19/2016	8:15		9.5	5/19/2016	8:15		9.4
		0.6	10.3			0.8	11.6
		0.7	11.2	5/20/2016	11:45		10.2
5/20/2016	11:45		10.3			0.9	11.8
5/20/2010	11.15						

2.3 Site Soil Persulfate Demand and Contaminant Destruction Efficiency Testing

Three loadings of Klozur sodium persulfate were added to separate 1,000 mL vessels containing an estimated 1,372 g site soil and 300 mL groundwater (ratio of 70% soil and 30% groundwater by volume). Table 3 presents the treatments and volumes of soil and groundwater used in the treatability studies. Sodium azide (1 g/L) was added to all treatments to minimize biodegradation losses. The Klozur sodium persulfate loadings resulted in oxidant concentrations of 10, 20, and 40 g/L groundwater. The groundwater with persulfate, sodium hydroxide, and sodium azide were added to the soil to thoroughly distribute the reagents. The bottles with soil, groundwater, and persulfate were closed and inverted several times to mix. Periodic measurements of pH, ORP, and oxidant concentrations in the groundwater phase were made from one replicate of the treatment and control vessels after 1-2, 246, 100, 150, and 173 hours. The oxidant concentrations were measured using a back titration method wherein 0.4 M ferrous ammonium sulfate solution was added to consume the persulfate to a portion of the groundwater with 10 mL 25% sulfuric acid and titrated with potassium permanganate. The concentration of residual persulfate in the groundwater is related to the volume of permanganate solution consumed versus a blank. After 7 days, the groundwater from the opened and unopened replicates were analyzed for pH, ORP, and oxidant concentrations. Groundwater samples from the unopened replicate were separated from soil by centrifugation. The groundwater was diluted 1 part GW to 1 parts distilled water and submitted to Pace Laboratories for analysis of BTEX (three 40 mL VOA vials preserved with HCl) and OK GRO (three 40 mL VOA vials preserved with HCl). The groundwater samples analyzed for OK DRO (were diluted 100 mL groundwater to 900 mL distilled water) and preserved with HCl). The 1:10 diluted groundwater from the 20 g/L persulfate treatment was analyzed for oxyanions including selenium, chromium, vanadium, and molybdenum (250 mL plastic preserved with HNO₃), and uranium (250 mL plastic preserved with HNO₃). After 7 days, soil samples from the unopened replicate were submitted to Pace Laboratories for analysis of BTEX (4 tared VOC vials with methanol), OK BTEX/GRO Low (2-ounce jar with septa), OK GRO High (4 tared VOC vials with methanol), and OK DRO (4-ounce jar).

Phase	Bottles	Soil	GW	Persulfate	Sodium Azide	Sodium Hydroxide
Thase	Dotties	g	mL	g	g	g
Initial Characterization		0		8	8	8
BTEX		20	130			
GRO		60	130			
DRO		120	1000			
COD			120			
Oxyanions			250			
Uranium			250			
pH Control		136	30		0.03	
pH 10 g/L Persulfate		136	30	0.3	0.03	?
pH 20 g/L Persulfate		136	30	0.6	0.03	?
pH 40 g/L Persulfate		136	30	1.2	0.03	?
Oxidant Demands						
Unamended Control	2	1372	300		0.3	
10,000 mg/kg Klozur + NaOH	2	1372	300	3	0.3	1.8
20,000 mg/kg Klozur + NaOH	2	1372	300	6	0.3	2.0
40,000 mg/kg Klozur + NaOH	2	1372	300	12	0.3	2.3
Total		11720	4400	44.1	2.52	

Table 3. Volumes of Soil and Groundwater

2.4 Site Soil Persulfate Demand Results

Table 4 presents the field parameters for the efficiency study. Sodium hydroxide was not added to the control treatment. The pH of the control ranged from 6.7 to 7.4 and the ORP from 262 to 339 mV.

In the treatment with 10 g/L persulfate (equivalent to 7.2 pounds per cubic yard of aquifer) and 1.8 g sodium hydroxide (equivalent to 4.3 pounds of sodium hydroxide per cubic yard), the pH ranged 12.9 after 2 hours to a low of 12.1; the loading of sodium hydroxide was sufficient to maintain the alkaline conditions necessary for activation of the persulfate. The redox potential was lower in this treatment (-30 to 48 mV); the high pH affected the ORP readings. The persulfate concentration was 6,287 mg/L after two hours due to the initial reaction with the soil. The persulfate concentration dropped to 3,478 mg/L in both the opened and unopened replicate after 172 hours. The soil oxidant demand was 1,426 mg/kg of soil. Based upon the soil density of 1.96 g/cm³ or 3,306 pounds per cubic yard of aquifer, the soil oxidant demand would be equivalent to 4.7 pounds sodium persulfate per cubic yard.

In the treatment with 20 g/L persulfate (equivalent to 14.5 pounds per cubic yard of aquifer) and 2.0 g sodium hydroxide (equivalent to 4.8 pounds per cubic yard of aquifer), the pH ranged 13.2 after 1.5 hours to a low of 12.3; the loading of sodium hydroxide was sufficient to maintain the alkaline conditions necessary for activation of the persulfate. The redox potential ranged from 11 to 152 mV. The persulfate concentration was 12,462 mg/L after two hours. The persulfate concentration dropped to 6,846 mg/L in the opened and 8,530 mg/L in the unopened replicate after 172 hours. The soil oxidant demand was 2,876 mg/kg of soil in the opened container and 2,508 mg/kg in the unopened container. The soil oxidant demand would be equivalent to 8.3 to 9.5 pounds sodium persulfate.

In the treatment with 40 g/L persulfate (equivalent to 28.9 pounds per cubic yard of aquifer) and 2.3 g sodium hydroxide (equivalent to 5.5 pounds per cubic yard of aquifer), the pH ranged 13.2 after 1 hours to a low of 12.3; the loading of sodium hydroxide was sufficient to maintain the alkaline conditions necessary for activation of the persulfate. The redox potential ranged from 98 to 227 mV. The persulfate concentration was 27,058 mg/L after two hours due to the initial reaction with the soil. The persulfate concentration dropped to 18,635 mg/L in the opened and 20,319 mg/L in the unopened replicate. The soil oxidant demand was 4,672 mg/kg of soil in the opened container and 4,303 mg/kg in the unopened container. Based upon the soil density, the soil oxidant demand would be equivalent to 14.2 to 15.4 pounds sodium persulfate.

Control	Date	Time	pH	ORP		
		Hours	SU	mV		
	6/2/2016	3	6.7	269		
Start 9:00	6/3/2016	26	7.4	294		
	6/6/2016	100	6.8	318		
	6/8/2016	150	7.4	296		
Open	6/9/2016	173	7.3	262		
Unopened	6/9/2016	173	7.0	339		
10 g/L PS	Date	Time	pH	ORP	Persulfate	SOD Demand mg/kg
1.8 g NaOH		Hours	ŜU	mV	mg/L	
	6/2/2016	2	12.9	48	6,287	
Start 10:00	6/3/2015	25	12.1	-30	6,287	
	6/6/2016	99	12.6	29	4,041	
	6/8/2016	149	12.3	-21	5,164	
Open	6/9/2016	172	12.5	33	3,478	1,426
Unopened	6/9/2016	172	12.6	10	3,478	1,426
20 g/L PS	Date	Time	pН	ORP	Persulfate	SOD Demand mg/kg
2.0 g NaOH		Hours	SU	mV	mg/L	
	6/2/2016	1.5	13.2	124	12,462	
Start 10:30	6/3/2016	24.5	12.3	39	13,023	
	6/6/2016	98.5	12.6	42	10,778	
	6/8/2016	148.5	12.3	11	96,55	
Open	6/9/2016	171.5	12.6	152	68,46	2,876
Unopened	6/9/2016	171.5	12.6	121	8,530	2,508
40 g/L PS	Date	Time	pН	ORP	Persulfate	SOD Demand mg/kg
2.3 g NaOH		Hours	SU	mV	mg/L	
	6/2/2016	1	13.2	193	27,058	
Start 11:00	6/3/2016	24	12.7	123	28,742	
	6/6/2016	98	12.6	98	23,689	
	6/8/2016	148	12.3	108	23,126	
-	6/9/2016	171	12.6	227	18,635	4,672
Open	0/9/2010	1/1	12.0	221	10,000	.,

Table 4. Field Parameters for Efficiency Tests

2.5 Contaminant Destruction Efficiency Testing Results

Table 5 presents the OK GRO, OK DRO, BTEX and anion concentrations in the initial characterization aqueous samples and in the Control, 10 g/L persulfate and 1.8 g sodium hydroxide, 20 g/L persulfate and 2.0 g sodium hydroxide, and the 40 g/L persulfate and 2.5 g sodium hydroxide treatments. Table 6 shows the percent reduction from the aqueous phase Initial Characterization to the Day 7 treatments. The OK GRO in the aqueous phase decreased from 27.8 mg/L in the Initial Characterization samples to 16.2 mg/L in the Control at Day 7 presumably due to volatilization as biodegradation was inhibited by the sodium azide. Aqueous OK GRO concentrations decreased as the persulfate loading increased to as low as 4.18 mg/L (85% reduction from the initial control). The aqueous OK DRO concentrations increased from the Initial Characterization samples in all treatments, but the change was greatest in the Control treatment. Aqueous benzene concentrations fell from 2.73 mg/L in the initial characterization samples to 1.26 mg/L in the control and to a low of 0.326 mg/L at the 40 g/L persulfate treatment (88.1% reduction from Initial Characterization). Aqueous concentrations of Toluene, Ethylbenzene, m,p-Xylenes, and o-Xylenes followed a similar pattern with limited decreases from the Initial Characterization to Day 7 Control (30.2 to 47.0%), 66.8 to 80.3% in the 10 g/L persulfate treatment, 63.8 to 84.0% in the 20 g/L persulfate treatment, and 88.4 to 95.2% in the 40 g/L persulfate treatment. Anions (chromium, molybdenum, selenium, vanadium, and uranium) also increased from the initial characterization samples to the Day 7 20 g/L persulfate treatment potentially due to the alkaline conditions extracting the metals from the soil.

Table 7 presents the OK GRO, OK DRO, BTEX and anion concentrations in the initial characterization soil samples and in the Control, 10 g/L persulfate and 1.8 g sodium hydroxide, 20 g/L persulfate and 2.0 g sodium hydroxide, and the 40 g/L persulfate and 2.3 g sodium hydroxide treatments. Table 8 shows the percent reduction from the soil phase Initial Characterization to the Day 7 treatments. The OK GRO in the soil phase decreased from an average of 175 mg/kg in the Initial Characterization samples to 130 mg/kg in the Control at Day 7 presumably due to volatilization as biodegradation was inhibited by the sodium azide. Soil OK GRO concentrations decreased as the persulfate loading increased to as low as 110 mg/kg (37.1% reduction from the initial control). The soil OK DRO concentrations increased from the average Initial Characterization samples in all treatments, but the change was greatest in the Control and 10 g/L persulfate treatments. Soil benzene concentrations increased from an average of 0.115 mg/kg in the initial characterization samples to 0.317 mg/kg in the control, 0.262 mg/kg in the 20 g/L persulfate treatment, and were reduced to a low of 0.0.0941 mg/kg at the 40 g/L persulfate treatment (18.2% reduction from Initial Characterization). Soil concentrations of Toluene, Ethylbenzene, m,p-Xylenes, and o-Xylenes followed a similar pattern with limited decreases from the Initial Characterization to Day 7 Control (25.5 to 44.1%), 11.0 to 20.3% in the 10 g/L persulfate treatment, 25.4 to 49.2% in the 20 g/L persulfate treatment, and 50.1 to 75.4% in the 40 g/L persulfate treatment.

Table 5. Aqueous Phase Efficiency Results

Carrie la	OV CDO	OV DDO	D	Talaana	E4b lb		- V-1	Channing	Malak daman	C-1	V	TI
Sample	OK GRO	OK DRO	Benzene	Toluene	Ethylbenzene	m,p-Xylenes	o-Xylenes	Chromium	Molybdenum	Selenium	Vanadium	Uranium
Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Groundwater	27.8	13	2.73	4.77	0.79	2.62	1.39	0.061	0.00629	0.0035	0.057	0.0101
Day 7												
Control	16.2	63.6	1.26	2.53	0.48	1.83	0.91					
10 g/L PS	6.16	15	0.83	1.132	0.262	0.516	0.33					
20 g/L PS	5.56	29	0.556	0.764	0.286	0.434	0.304	1.25	0.0791	0.02	1.24	0.063
40 g/L PS	4.18	24	0.326	0.246	0.092	0.1256	0.078					

0.02 Compound detected below method calibration limit and also found in laboratory blank.

Table 6. Percent Reductions in Aqueous Concentrations from Initial Characterization to Day 7

Sample	OK GRO	OK DRO	Benzene	Toluene	Ethylbenzene	m,p-Xylenes	o-Xylenes	Chromium	Molybdenum	Selenium	Vanadium	Uranium
Control	41.7	-389.2	53.8	47.0	39.2	30.2	34.5					
10 g/L PS	77.8	-15.4	69.6	76.3	66.8	80.3	76.3					
20 g/L PS	80.0	-123.1	79.6	84.0	63.8	83.4	78.1	-1949.2	-1157.6	-471.4	-2075.4	-523.8
40 g/L PS	85.0	-84.6	88.1	94.8	88.4	95.2	94.4					

Table 7. Soil Phase Efficiency Results

	OK GRO	OK DRO	Benzene	Toluene	Ethylbenzene	m,p-Xylenes	o-Xylenes	Solids
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	%
Soil A	170	44	0.122	1.72	1.34	4.5	2.12	82.5
Soil B	180	56	0.108	1.5	1.22	4.11	1.92	84.2
Avg Soil	175	50	0.115	1.61	1.28	4.305	2.02	83.4
Day 7								
Control	130	65	0.317	1.2	0.715	2.57	1.15	84.8
10 g/L PS	120	65	0.262	1.17	1.02	3.83	1.73	81.1
20 g/L PS	110	62	0.169	0.818	0.822	3.21	1.44	81.2
40 g/L PS	110	60	0.0941	0.392	0.51	2.15	0.888	82.0

Table 8. Percent Reductions in Soil Concentrations from Initial Characterization to Day 7

	OK GRO	OK DRO	Benzene	Toluene	Ethylbenzene	m,p-Xylenes	o-Xylenes
Control	25.7	-30.0	-175.7	25.5	44.1	40.3	43.1
10 g/L PS	31.4	-30.0	-127.8	27.3	20.3	11.0	14.4
20 g/L PS	37.1	-24.0	-47.0	49.2	35.8	25.4	28.7
40 g/L PS	37.1	-20.0	18.2	75.7	60.2	50.1	56.0

Table 9 shows the mass balance of the soil and groundwater for the OK DRO, OK GRO, and benzene, toluene, ethylbenzene, m,p-xylenes, and o-xylene. The OK GRO in the aqueous and soil phases decreased from an average of 248.4 mg in the Initial Characterization samples to 183.2 mg in the Control at Day 7 presumably due to volatilization as biodegradation was inhibited by the sodium azide. The mass balance on OK DRO concentrations increased in all treatments. The total benzene concentrations decreased from an average of 1.0 mg in the initial characterization samples to 0.81 mg in the control, 0.61 mg in the 10 g/L persulfate treatment, 0.40 mg in the 20 g/L persulfate treatment, and 0.23 mg in the 40 g/L persulfate treatment (76.8% reduction from Initial Characterization). Mass balance concentrations of Toluene, Ethylbenzene, m,p-Xylenes, and o-Xylenes followed a similar pattern with limited decreases from the Initial Characterization to Day 7 Control (33.9 to 43.6%), 19.2 to 46.6% in the 10 g/L persulfate treatment, 32.2 to 62.9% in the 20 g/L persulfate treatment, and 55.4 to 83.2% in the 40 g/L persulfate treatment.

3.0 CONCLUSIONS

The following conclusions can be reached from this treatability study:

- Between 49 and 66% of the persulfate was consumed in the 7-day incubation period with soil oxidant demands between 1,426 and 4,672 mg/kg (4.7 to 15.4 pounds per cubic yard).
- Sodium hydroxide loadings of 1.3 to 1.7 g/kg of soil (4.3 to 5.5 pounds per cubic yard) were sufficient to activate the persulfate at loadings of 2.2 to 8.7 g/kg (7.2 to 28.9 pounds per cubic yard).
- There were losses of GRO and BTEX in the aqueous and soil phases for the control likely due to volatilization.
- As the dosage of persulfate increased, greater removals of GRO and BTEX were noted in the aqueous and soil phases and on a mass balance basis.
- DRO increased in all treatments in the groundwater and soil phases; the alkaline conditions may have made the DRO more soluble.
- The aqueous oxyanion concentrations increased significantly in 20 g/L persulfate treatment. The alkaline treatment may have released the oxyanions from the soil.
- Repeated applications of persulfate or a longer treatment period would likely be required to reduce the GRO and BTEX to below the groundwater treatment standards.,
- A pilot is recommended to evaluate oxidant delivery and distribution and to confirm the treatment efficiency.

Should you have any questions about the draft report or need additional information, please feel free to contact me.

Sincerely, TERRA SYSTEMS, INC.

michael & lee, PRd.

Michael D. Lee, Ph.D. Vice-President Research and Development

Table 9. Mass Balance on Soil and Aqueous Phases (mg)

	OK GRO	OK DRO	Benzene	Toluene	Ethylbenzene	m,p-Xylenes	o-Xylenes
Units	mg	mg	mg	mg	mg	mg	mg
Avg Soil	248.4	72.5	1.0	3.6	2.0	6.7	3.2
Day 7							
Control	183.2	108.3	0.81	2.4	1.1	4.1	1.9
10 g/L PS	166.5	93.7	0.61	1.9	1.5	5.4	2.5
20 g/L PS	152.6	93.8	0.40	1.4	1.2	4.5	2.1
40 g/L PS	152.2	89.5	0.23	0.61	0.73	3.0	1.2

Table 10. Percent Reduction on Mass Balance on Soil and Aqueous Phases

	OK GRO	OK DRO	Benzene	Toluene	Ethylbenzene	m,p-Xylenes	o-Xylenes
Control	26.3	-49.3	16.8	33.9	43.6	39.1	42.0
10 g/L PS	33.0	-29.2	37.7	46.6	25.8	19.2	22.5
20 g/L PS	38.6	-29.3	59.2	62.9	39.1	32.2	35.2
40 g/L PS	38.7	-23.5	76.8	83.2	63.5	55.4	61.1