Appendix F - SPCC Plan

SPILL PREVENTION, CONTROL, AND COUNTERMEASURE PLAN

Wynnewood Refining Company, LLC 906 South Powell Avenue Wynnewood, Garvin County, Oklahoma 73098

July 27, 2015

Prepared For: Wynnewood Refining Company, LLC Wynnewood, Oklahoma

ENGlobal Project No. 10-130458 A&M Project No. 2152-006

Prepared By:

ENGlobal Engineering and Construction Services, Inc. 2448 East 81st Street, Suite 3300 Tulsa, Oklahoma 74137-4288 Phone (918) 270-1171 & Fax (918) 270-1177

and

A & M Engineering and Environmental Services, Inc. 10010 East 16th Street Tulsa, Oklahoma 74128-4813 Phone (918) 665-6575 & Fax (918) 665-6576

Section		Title	Page
1.0	Intro	duction	1
2.0	Gene	ral Applicability [40 C.F.R. §112.1]	2
	2.1	Non-Transportation-Related Facility Engaged in Refining [40 C.F.R. §112.1(b)]	2
	2.2	Reasonable Expectation to Discharge Oil to Navigable Waters or Adjoining Shorelines in Quantities that May Be Harmful [40 C.F.R. §112.1(b)]	3
		2.2.1 Surface Water Characteristics	3
		2.2.2 Groundwater Characteristics	4
		2.2.3 Soil and Geology Characteristics	4
	2.3	Aboveground Oil Storage Capacity Exceeding 1,320 U.S. Gallons [40 C.F.R. §112.1(d)(2)(ii)]	5
	2.4	Purpose and Scope [40 C.F.R. §112.1(e)]	6
3.0	Defin	itions [40 C.F.R. §112.2]	6
4.0	Requi	irement to Prepare and Implement a SPCC Plan [40 C.F.R. §112.3]	9
	4.1	Requirement to Maintain and Implement an Amended Plan No Later Than November 10, 2011 [40 C.F.R. §112.3(a)]	9
	4.2	Professional Engineer Certification [40 C.F.R. §112.3(d)]	9
	4.3	Plan Location and Availability [40 C.F.R. §112.3(e)(1)]	10
5.0	-	Notifications and Amendment of SPCC Plan by Regional Administrator .F.R. §112.4]	10
	5.1	USEPA Region 6 Written Notification [40 C.F.R. §112.4 (a)]	10
	5.2	State and Local Emergency Planning Commission Written Notification [40 C.F.R. §112.4 (c)]	
		5.2.1 Oklahoma Hazardous Materials Response Commission	11
		5.2.2 Local Emergency Planning Commission	12
	5.3	Amendment of Plan by the Regional Administrator [40 C.F.R. §112.4 (d)]	12
	5.4	Response to Request by the Regional Administrator for Plan Amendment [40 C.F.R. §112.4 (e)]	12

_

Section	1		Title	Page
6.0	Amen	dment	of SPCC Plan by Owners or Operators [40 C.F.R. §112.5]	13
	6.1	Chang	es in Facility Configuration [40 C.F.R. §112.5(a)]	13
	6.2	Schedu	uled Plan Reviews [40 C.F.R. §112.5(b)]	13
	6.3	Techni	ical Amendments [40 C.F.R. §112.5(c)]	14
7.0	Qualif	fied Fac	cilities Plan Requirements [40 C.F.R. §112.6(c)]	14
8.0	Gener	al Requ	uirements for SPCC Plans [40 C.F.R. §112.7]	14
	8.1	Manag	gement Approval and Designated Person [40 C.F.R. §112.7]	14
	8.2	Cross-	Reference with SPCC Provisions [40 C.F.R. §112.7]	14
	8.3		ies, Procedures, Methods, or Equipment Not Yet Fully Operational F.R. §112.7]	14
	8.4	Facilit	y Conformance with Applicable Requirements [40 C.F.R. §112.7(a)(1))].15
	8.5	Deviat	ions from Applicable Requirements [40 C.F.R. §112.7(a)(2)]	15
		8.5.1	Facility Drainage from Undiked Areas Containing Mobile/Portable Containers [40 C.F.R. §112.8(b)(3)]	15
		8.5.2	Integrity Testing of Mobile/Portable Containers [40 C.F.R. §112.8(c)(6)]	16
		8.5.3	Overfill Prevention for Mobile/Portable Containers [40 C.F.R. §112.8(c)(8)]	17
		8.5.4	Aboveground Piping Warning [40 C.F.R. §112.8(d)(5)]	18
	8.6	Facilit	y Oil Storage Diagram [40 C.F.R. §112.7(a)(3)]	18
		8.6.1	Storage Container Contents and Capacities [40 C.F.R. §112.7(a)(3)(i)] 19
	8.7	Discha	rge Prevention Measures [40 C.F.R. §112.7(a)(3)(ii)]	19
	8.8	Discha	arge or Drainage Controls [40 C.F.R. §112.7(a)(3)(iii)]	19
		8.8.1	Bulk Storage Containers	19
		8.8.2	Mobile/Portable Containers	20
		8.8.3	Oil-Filled Electrical Equipment	20
		8.8.4	Oil-Filled Operating Equipment	20
		8.8.5	Oil-Filled Manufacturing Equipment	20

Section		Title	Page
		8.8.6 Transfer Areas, Equipment and Activities	21
		8.8.6.1 Loading and Unloading Areas/Racks	21
		8.8.6.2 Bulk Chemicals Unloading Areas	21
		8.8.6.3 Equipment	21
		8.8.6.4 Supplier Approval	
		8.8.6.5 Loading/Unloading Procedures	
		8.8.6.6 Draining Storm Water from Containment Areas and Sump	os 22
8	.9	Countermeasures for Discharge Discovery [40 C.F.R. §112.7(a)(3)(iv)]	
8	.10	Methods of Disposal [40 C.F.R. §112.7(a)(3)(v)]	
8	.11	Contact List [40 C.F.R. §112.7(a)(3)(vi)]	
8	.12	Discharge Notification Procedures and Form [40 C.F.R. §112.7(a)(4)]	
8	.14	Discharge Response [40 C.F.R. §112.7(a)(5)]	
		8.14.1 Minor Spill Response [112.7(a)(3)(iv)]	
		8.14.2 Major Spill Response [112.7(a)(3)(iv)]	
		8.14.3 Oil Spill Contingency Plan	
8	.15	Potential Discharge Volumes and Direction of Flow [40 C.F.R. §112.7(b)])] 25
		8.15.1 Bulk Material Storage Areas	
		8.15.2 Mobile/Portable Material Storage Areas	
		8.15.3 Oil-Filled Operational Equipment Areas	
		8.15.4 Loading and Unloading Areas/Racks	
		8.15.5 Transfer Areas	
8	.16	Containment and Diversionary Structures [40 C.F.R. §112.7(c)]	
		8.16.1 Dikes, Berms, or Retaining Walls Sufficiently Impervious to Contain Oil	
		8.16.2 Curbing or Drip Pans	
		8.16.3 Sumps and Collection Systems	
		8.16.4 Culverting, Gutters, or other Drainage Systems	

Section	Title	Page
	8.16.5 Weirs, Booms, or Other Barriers	
	8.16.6 Spill Diversion and Retention Ponds	
	8.16.7 Sorbent Materials	
8.1	7 Practicability of Secondary Containment [40 C.F.R. §112.7(d)]	
	8.17.1 Intra-Facility Gathering Lines	
8.1	8 Inspections, Tests, and Records [40 C.F.R. §112.7(e)]	
	8.18.1 Periodic Integrity Testing	
	8.18.2 Inspection Records	
8.1	9 Personnel, Training, and Discharge Prevention Procedures[40 C.F.R. §112.7(f)]	
	8.19.1 Personnel Training [40 C.F.R. §112.7(f)(1)]	
	8.19.2 Designated Person Accountable for Discharge Prevention [40 C.F.R. §112.7(f)(2)]	
	8.19.3 Discharge Prevention Briefings [40 C.F.R. §112.7(f)(3)]	30
8.2	0 Security (Excluding Oil Production Facilities) [40 C.F.R. §112.7(g)]	30
	8.20.1 Fencing [40 C.F.R. §112.7(g)]	30
	8.20.2 Valves	30
	8.20.3 Pump Starter Controls	30
	8.20.4 Loading/Unloading Piping Connections	30
	8.20.5 Lighting	
8.2	1 Facility Tank Car and Tank Truck Loading/Unloading Rack (Excluding Offshore Facilities) [40 C.F.R. §112.7(h)]	
	8.21.1 Catchment Basin [40 C.F.R. §112.7(h)(1)]	
	8.21.2 Interlock Warning [40 C.F.R. §112.7(h)(2)]	
	8.21.3 Inspected Prior to Filling/Departure [40 C.F.R. §112.7(h)(3)]	
8.2	2 Brittle Fracture Evaluation [40 C.F.R. §112.7(i)]	

Section		Title	Page
	8.23	Conformance with State and Local Applicable Requirements [40 C.F.R. §112.7(j)]	32
	8.24	Qualified Oil-Filled Operational Equipment [40 C.F.R. §112.7(k)]	33
9.0	SPCC	Provisions for Onshore Facilities (Excluding Production Facilities)	33
	9.1	Facility Drainage [40 C.F.R. §112.8(b)]	33
		9.1.1 Diked Storage Area Drainage [40 C.F.R. §112.8(b)(1)]	33
		9.1.1.1 Valves for the Drainage of Diked Storage Areas [40 C.F.R. §112.8(b)(2)]	33
		9.1.2 Un-diked Storage Area Drainage [40 C.F.R. §112.8(b)(3)]	34
	9.2	Diversion System [40 C.F.R. §112.8(b)(4)]	35
	9.3	Equipment Failure or Human Error [40 C.F.R. §112.8(b)(5)]	35
	9.4	Bulk Storage Containers [40 C.F.R. §112.8(c)), (c)(1) and (c)(2)]	36
	9.5	Drainage of Diked Areas [40 C.F.R. §112.8(c)(3)]	36
	9.6	Corrosion Protection [40 C.F.R. §112.8(c)(4)]	36
	9.7	Partially Buried and Bunkered Storage Tanks [40 C.F.R. §112.8(c)(5)]	36
	9.8	Aboveground Container Integrity Testing [40 C.F.R. §112.8(c)(6)]	36
		9.8.1 Aboveground Storage Tanks	36
		9.8.2 Mobile/Portable Containers	37
	9.9	Heating Coils [40 C.F.R. §112.8(c)(7)]	37
	9.10	Overfill Protection Systems [40 C.F.R. §112.8(c)(8)]	37
		9.10.1 Aboveground Storage Tanks (ASTs)	37
		9.10.2 Mobile/Portable Containers	37
		9.10.3 Oil-Filled Electrical and Operational Equipment	38
		9.10.4 Oil-Filled Manufacturing Equipment	38
	9.11	Effluent Treatment Facilities [40 C.F.R. §112.8(c)(9)]	38
	9.12	Visible Discharges [40 C.F.R. §112.8(c)(10)]	38
	9.13	Mobile and Portable Containers [40 C.F.R. §112.8(c)(11)]	38

_

Section	n Title	Page
	9.14 Transfer Operations, Pumping, and In-Plant Processes [40 C.F.R. §112.8(d)] 39
	9.14.1 Buried Piping [40 C.F.R. §112.8(d)(1)]	39
	9.14.2 Piping Connections [40 C.F.R. §112.8(d)(2)]	39
	9.14.3 Pipe Supports [40 C.F.R. §112.8(d)(3)]	39
	9.14.4 Aboveground Valves, Piping, and Appurtenances [40 C.F.R. §112.8(d)(4)]	39
	9.14.5 Protection of Aboveground Piping and Other Transfer Operations from Vehicular Traffic [40 C.F.R. §112.8(d)(5)]	40
10.0	Facility Response Plan [40 C.F.R. §112.20]	40
	10.1 Facility Response Plan Applicability [40 C.F.R. §112.20(f)(1)]	40
11.0	References / Bibliography	41

LIST OF APPENDICIES

- A Wynnewood Refining Company, LLC Figures
- B Site Location Maps
- C Certifications
- D Plan Review Logs
- E Oil Storage Maps
- F Oil Storage Inventory
- G Potential Volume Released, Discharge Rate, Direction of Flow, and Secondary Containment
- H Sufficiently Impervious Determination
- I Loading/Unloading Procedures
 - Attachment 1 Ethanol Unloading Operations
 - Attachment 2 PLF-Driver Loading
 - Attachment 3 Jet Fuel Truck Loading
 - Attachment 4 Truck Loading Rack Operation
 - Attachment 5 Truck Unloading rack Operation
 - Attachment 6 Solvent Rack Truck Loading
 - Attachment 7 Asphalt Railcar Loading
 - Attachment 8 Solvent Railcar Loading
- J Inspections, Tests and Evaluations
- K Oil Discharge History
- L Sufficient Freeboard Determination
- M Facility Inspection Checklists
- N Example SPCC Personnel Training program Outline
- O Emergency Contacts
- P Discharge Response Equipment Inventory
- Q Discharge Notification Procedures and Form

ACRONYMS AND ABBREVIATIONS

API	American Petroleum Institute		
ASME	American Society of Mechanical Engineers		
AST	Aboveground Storage Tank		
Bbls	Barrels		
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act		
C.F.R.	Code of Federal Regulations		
DOI	United States Department of Interior		
DOT	United States Department of Transportation		
EPCRA	Emergency Planning and Community Right-to-Know Act		
ERC	Emergency Response Coordinator		
FCCU	Fluid Catalytic Cracking Unit		
FEMA	Federal Emergency Management Agency		
FRP	Facility Response Plan		
FWPCA	Federal Water Pollution Control Act		
GIS	Geographic Information Systems		
HMTA	Hazardous Materials Transportation Act		
JP-8	Military Jet Fuel		
kVA	Kilovolt Amperes		
LACT	Lease Automatic Custody Transfer		
LEPC	Local Emergency Planning Committee		
LPG	Liquefied Petroleum Gas		
LSR	Light Straight Run		
LUA	Loading and Unloading Area		
LUR	Loading and Unloading Rack		
MOU	Memorandum of Understanding		
MSA	Material Storage Area		
NAICS	North American Industrial Classification System		
NGL	Natural Gas Liquids		
NRC	National Response Center		

ACRONYMS AND ABBREVIATIONS (Cont'd)

ODEQ	Oklahoma Department of Environmental Quality		
OPDES	Oklahoma Pollutant Discharge Elimination System		
OSHA	Occupational Safety and Health Act		
PE	Professional Engineer		
PMA	Polymer Modified Asphalt		
PMSA	Portable Material Storage Area		
RA	Regional Administrator		
SARA	Superfund Amendments and Reauthorization Act		
SERC	State Emergency Response Commission		
SPCC	Spill Prevention, Control and Countermeasure		
STI	Steel Tank Institute		
SWMU	Solid Waste Management Unit		
TKI	Tessenderlo-Kerley, Inc.		
USCG	United States Coast Guard		
USEPA	United States Environmental Protection Agency		
UT	Ultrasonic Testing		
VTB	Vacuum Tower Bottoms		
WRC	Wynnewood Refining Company, LLC		

SPILL PREVENTION, CONTROL AND COUNTERMEASURE PLAN

1.0 Introduction

This Spill Prevention, Control and Countermeasure (SPCC) Plan (the "Plan") has been prepared to document environmental management activities implemented by Wynnewood Refining Company, LLC (WRC), located in Wynnewood, Oklahoma, to prevent oil discharges from occurring and to prepare WRC to respond in a safe, effective, and timely manner to mitigate the impacts of a discharge. The outline of this Plan follows the exact order presented in 40 C.F.R. Part 112 (Part) therefore a cross-reference of provisions is not required or provided.

This Plan identifies the following items that WRC performs to comply with the SPCC rule:

- Complete monthly and annual site inspections as outlined in Section 8.18 (Inspection, Tests, and Records) of this Plan using the inspection checklists provided in Appendix M.
- Perform preventive maintenance of equipment, secondary containment systems, and discharge prevention systems as described in this Plan to keep them in proper operating condition.
- Complete annual employee training as outlined in Section 8.19 (Personnel, Training, and Discharge Prevention Procedures) of this Plan.
- Prepare for and respond to major and minor spills as discussed in Section 8.14 (Discharge Response) of this Plan.
- Submit this Plan to the United States Environmental Protection Agency (EPA) Region 6 Regional Administrator (RA) and the Oklahoma Department of Environmental Quality (ODEQ), along with other information as discussed in Section 5.0 of this Plan, if either of the following occurs:
 - The facility discharges more than 1,000 gallons of oil into or upon the navigable waters of the U.S. or adjoining shorelines in a single spill event; or
 - The facility discharges oil in a quantity greater than 42 gallons in each of two spill events within any 12-month period.
- Review this Plan at least once every five (5) years and amend it to include more effective

prevention and control technology, if such technology will significantly reduce the likelihood of a spill event and has been proven effective in the field at the time of the review. Plan amendments, other than administrative changes, must be recertified by a Professional Engineer (PE) on the certification page (Appendix C).

- Amend this Plan within six (6) months whenever there is a change in facility design, construction, operation, or maintenance that materially affects the facility's spill potential. The revised Plan must be recertified by a PE.
- Review this Plan on an annual basis. Update the Plan to reflect any "administrative changes" that are applicable, such as personnel changes or revisions to contact information, such as phone numbers. Administrative changes must be documented in the Administrative Amendment Log (Appendix D), but do not have to be certified by a PE.

2.0 General Applicability [40 C.F.R. §112.1]

Pursuant to 40 C.F.R. §112.1(b), this Part applies to any owner or operator of a nontransportation-related onshore or offshore facility engaged in drilling, producing, gathering, storing, processing, refining, transferring, distributing, using, or consuming oil and oil products, which due to its location, could reasonably be expected to discharge oil in quantities that may be harmful into or upon the navigable waters of the United States or adjoining shorelines, that has oil in any aboveground container and has an aggregate aboveground storage capacity greater than 1,320 U.S. gallons of oil.

WRC is required to prepare, amend, and implement a SPCC Plan based on satisfaction of the following applicability requirements.

2.1 Non-Transportation-Related Facility Engaged in Refining [40 C.F.R. §112.1(b)]

WRC owns and operates a crude oil refinery located primarily in Section 23, Township 2 North, Range 1 EIM, Garvin County, Oklahoma and secondarily in the SW¹/₄ NE¹/₄ NW¹/₄ of Section 26, Township 2 North, Range 1 EIM, Murray County, Oklahoma or at 906 South Powell Ave., Wynnewood, Oklahoma 73098. Crude oil is transported to the refinery via two separate third-party pipelines and is received into storage tanks located at or near the refinery. Some crude oil is received by truck. The refinery yields the following products: LPGs, gasoline, diesel fuel, asphalt, jet fuel and other products (slurry, sulfur and gas oil, and specialty products such as propylene and solvents). A refinery block flow diagram, plot plan and crude/product lines routing and location diagram are shown as Figures 1, 2 and 3, respectively, in Appendix A.

Tessenderlo-Kerley, Inc. (TKI) owns and operates an ammonium thiosulfate fertilizer plant located on WRC property (Figures 4 and 5 of Appendix B). TKI is, however, excluded from this Plan for purposes of SPCC compliance. WRC will coordinate with TKI regarding the identification and response to any oil spills from either facility.

WRC is bordered on the north by the City of Wynnewood, on the east by State Highway 77, on the south by State Highway 17A and on the west by North 3270 Road. A railroad traverses the central section of the site from north to south.

2.2 Reasonable Expectation to Discharge Oil to Navigable Waters or Adjoining Shorelines in Quantities that May Be Harmful [40 C.F.R. §112.1(b)]

2.2.1 Surface Water Characteristics

The Washita River, a perennial stream, is located approximately 1 ¹/₄ miles west of the site (Figure 4 of Appendix B). West Sandy Creek, an intermittent stream, is located west and immediately adjacent to a non-process area of the refinery property. An unnamed tributary to Turkey Sandy Creek, an intermittent stream, traverses the property beginning in the northeast corner passing to the south and west and exiting the site in the south central section of the site. Neither West Sandy Creek, the unnamed tributary of Turkey Sandy Creek nor the Washita River are designated as an Outstanding Resource Water, High Quality Water or a Sensitive Water Supply in Appendix A of the Oklahoma Water Quality Standards. No natural ponds or wetlands are located within the site.

WRC sits, in part, in the "approximate" Zone A of the 100-year flood plain (Figures 6 and 7 of

Appendix B). Zone A is qualified as "approximate" since the Federal Emergency Management Agency (FEMA) has not completed a detailed study of the flood plain beyond the southern edge of Garvin County. As a result, delineation of the 100-year flood plain beyond the limits of the detailed study is identified as "approximate".

In the eastern portion of the site, Zone A of the 100-year flood plain follows the path of the unnamed tributary of Turkey Sandy Creek. In the western portion of the site, Zone A of the 100-year flood plain follows the path of West Sandy Creek. No part of the site is located in a designated floodway.

Surface runoff generally follows surface topography and generally travels from northeast to southwest across the area (Figure 8 of Appendix B).

2.2.2 Groundwater Characteristics

The site is underlain by the Washita River aquifer, a major alluvial aquifer. Depth to groundwater is reported to range from approximately 5 feet in the western section of the site to 17 feet in the eastern section of the site. Since groundwater tends to follow surface topography, it is inferred that groundwater generally travels from northeast to southwest beneath the site.

2.2.3 Soil and Geology Characteristics

Approximately one-third of the site soil is classified as Urban Land (process area). The remaining two-thirds of the site soils are predominantly characterized as Teller Loam (Figure 9 of Appendix B).

Site geology is described as alluvium (Figure 10 of Appendix B). The site does not contain any sinkholes, shallow limestone formations or Karst conditions. The Oklahoma Department of Environmental Quality Geographic Information System (GIS) database viewer shows no earthquake faults near the site.

2.3 Aboveground Oil Storage Capacity Exceeding 1,320 U.S. Gallons [40 C.F.R. §112.1(d)(2)(ii)]

WRC's reported oil storage capacity is summarized in Table 1 below. Detailed storage tank inventories are provided in Appendix F.

Table 1

Container Type	Capacity, Bbls	Contents	Description	
Aboveground Bulk Storage	2,766,647	(1)	(1)	
Mobile/Portable Bulk Storage	3,047	(2)	(2)	
Underground Bulk Storage	0	N/A	N/A	
Oil-Filled Electrical Equipment	5	(3)	(3)	
Oil-Filled Operating Equipment	21	(4)	(4)	
Oil-Filled Manufacturing Equipment	34,428	(5)	(5)	
Mobile Refueler	0	N/A	N/A	
Motive Power Container	0	N/A	N/A	
Total Oil Storage Capacity: 2,804,148 Barrels				

WRC Oil Storage Capacity

¹ Table 6 of Appendix F.

² Table 7 of Appendix F

³ Table 8 of Appendix F.

⁴ Table 9 of Appendix F.

⁵ Table 10 of Appendix F.

The following storage capacity is not considered in determining applicability of SPCC requirements:

- Equipment subject to the authority of the U.S. Department of Transportation, U.S. Department of the Interior, or Minerals Management Service, as defined in Memoranda of Understanding dated November 24, 1971, and November 8, 1993; Tank trucks that return to an otherwise regulated facility that contain only residual amounts of oil (EPA Policy letter);
- Completely buried tanks subject to all the technical requirements of 40 C.F.R. Part 280 or a state program approved under 40 C.F.R. Part 281;

- Any facility or part thereof used exclusively for wastewater treatment (production, recovery or recycling of oil is not considered wastewater treatment); (This does not include other oil containers located at a wastewater treatment facility, such as generator tanks or transformers);
- Containers smaller than 55 U.S. gallons;
- Permanently closed containers (as defined in §112.2);
- Motive power containers (as defined in §112.2);
- Hot-mix asphalt or any hot-mix asphalt containers;
- Pesticide application equipment and related mix containers;
- Intra-facility gathering lines subject to the regulatory requirements of 40 C.F.R. Part 192 or 195.

2.4 Purpose and Scope [40 C.F.R. §112.1(e)]

The purpose of this Plan is to form a comprehensive spill prevention program which WRC shall use to minimize the reasonable potential for discharging oil in quantities that may be harmful into or upon navigable waters of the United States or adjoining shorelines and to prepare WRC to respond in a safe, effective, and timely manner to mitigate the impacts of any discharge.

This Plan has been prepared to meet the requirements of 40 C.F.R. Part 112, and supersedes any earlier Plan developed to meet provisions in effect since 1974.

In addition to fulfilling the requirements of 40 C.F.R. Part 112, this Plan is a reference for oil storage and containment information; a tool to communicate practices on preventing and responding to discharges with employees; a guide to periodic training programs; and a guide to facility inspections.

3.0 Definitions [40 C.F.R. §112.2]

Bulk Storage Container means any container used to store oil. These containers are used for purposes including, but not limited to, the storage of oil prior to use, while being used, or prior to

further distribution in commerce. Oil-filled electrical, operating, or manufacturing equipment is not a bulk storage container.

Completely Buried Tank means any container completely below grade and covered with earth, sand, gravel, asphalt, or other material. Containers in vaults, bunkered tanks, or partially buried tanks are considered aboveground storage containers for purposes of this part.

Facility means any mobile or fixed, onshore or offshore building, property, parcel, lease, structure, installation, equipment, pipe, or pipeline (other than a vessel or a public vessel) used in oil well drilling operations, oil production, oil refining, oil storage, oil gathering, oil processing, oil transfer, oil distribution, and oil waste treatment, or in which oil is used, as described in Appendix A to this part. The boundaries of a facility depend on several site specific factors, including but not limited to, the ownership or operation of buildings, structures, and equipment on the same site and types of activity at the site. Contiguous or non-contiguous buildings, properties, parcels, leases, structures, installations, pipes, or pipelines under the ownership or operation of the same person may be considered separate facility. On this definition governs whether a facility is subject to this part.

Loading/Unloading Rack means a fixed structure (such as a platform, gangway) necessary for loading or unloading a tank truck or tank car, which is located at a facility subject to the requirements of this part. A loading/unloading rack includes a loading or unloading arm, and may include any combination of the following: piping assemblages, valves, pumps, shut-off devices, overfill sensors, or personnel safety devices.

Mobile Refueler means a bulk storage container onboard a vehicle or towed, that is designed or used solely to store and transport fuel for transfer into or from an aircraft, motor vehicle, locomotive, vessel, ground service equipment, or other oil storage container.

Motive Power Container means any onboard bulk storage container used primarily to power the movement of a motor vehicle or ancillary onboard oil-filled operation equipment. An

7

onboard bulk storage container which is used to store or transfer oil for further distribution is not a motive power container. The definition of motive power container does not include oil drilling or workover equipment, including rigs.

Navigable Waters of the United States means "navigable waters" as defined in section 501(7) of the FWPCA, and includes: (1) all navigable waters of the United States, as defined in judicial decisions prior to passage of the 1972 Amendments to the FWPCA (Pub. L. 92-500), and tributaries of such waters; (2) interstate waters; (3) intrastate lakes, rivers, and streams which are utilized by interstate travelers for recreational or other purposes; and (4) intrastate lakes, rivers, and streams from which fish or shellfish are taken and sold in interstate commerce.

Oil means oil of any kind or in any form, including, but not limited to: fats, oils, or greases of animal, fish, or marine mammal origin; vegetable oils, including oils from seeds, nuts, fruits, or kernels; and, other oils and greases, including petroleum, fuel oil, sludge, synthetic oils, mineral oils, oil refuse, or oil mixed with wastes other than dredged spoil.

Oil-Filled Operational Equipment means equipment that includes an oil storage container (or multiple containers) in which the oil is present solely to support the function of the apparatus or the device. Oil-filled operational equipment is not considered a bulk storage container, and does not include oil-filled manufacturing equipment (flow-through process). Examples of oil-filled operational equipment include, but are not limited to, hydraulic systems, lubricating systems (e.g., those for pumps, compressors and other rotating equipment, including pump jack lubrication systems), gear boxes, machining coolant systems, heat transfer systems, transformers, circuit breakers, electrical switches, and other systems container oil solely to enable the operation of the device.

Owner or Operator means any person owning or operating an onshore facility or an offshore facility, and in the case of any abandoned offshore facility, the person who owned or operated or maintained the facility immediately prior to such abandonment.

8

Permanently Closed means any container or facility for which:

- All liquid and sludge has been removed from each container and connecting line; and
- All connecting lines and piping have been disconnected from the container and blanked off, all valves (except for ventilation valves) have been closed and locked, and conspicuous signs have been posted on each container stating that it is a permanently closed container and noting the date of closure.

Spill Prevention, Control, and Countermeasure Plan; SPCC Plan, or Plan means the document required by §112.3 that detail the equipment, workforce, procedures, and steps to prevent, control, and provide adequate countermeasures to a discharge.

Storage Capacity of a Container means the shell capacity of the container.

4.0 Requirement to Prepare and Implement a SPCC Plan [40 C.F.R. §112.3]

This written SPCC Plan has been prepared for implementation at the WRC facility in accordance with the requirements of 40 C.F.R. §112.7 and any other applicable section of this Part.

4.1 Requirement to Maintain and Implement an Amended Plan No Later Than November 10, 2011 [40 C.F.R. §112.3(a)]

WRC prepared and implemented a Spill Prevention, Control, and Countermeasure Plan on 09/30/03, which superseded prior editions of the Plan. A Plan review in 2008 determined that no amendments were needed. The most recent amendment process began in fall 2013.

4.2 Professional Engineer Certification [40 C.F.R. §112.3(d)]

A licensed Professional Engineer must review and certify this Plan to satisfy the requirements of 40 C.F.R. Part 112. By means of this certification the Professional Engineer attests:

• That he/she is familiar with the requirements of Part 112 of Title 40 of the *Code of Federal Regulations* (40 C.F.R. Part 112);

- That he/she or his/her agent has visited and examined the facility;
- That the Plan has been prepared in accordance with good engineering practice, including consideration of applicable industry standards and the requirements of 40 C.F.R. Part 112;
- That procedures for required inspections and testing have been established; and
- That the Plan is adequate for the facility.

The engineering certification shall in no way relieve the owner or operator of this facility of their duty to prepare and fully implement the Plan in accordance with the requirements of 40 C.F.R. Part 112.

The Professional Engineer Certification for this Plan is shown in Appendix C.

4.3 Plan Location and Availability [40 C.F.R. §112.3(e)(1)]

A complete copy of this Plan is to be maintained at the facility in the main office building. The main office is attended 7:30 a.m. to 4:00 p.m. CST, 5 days per week (closed on Holidays, Saturdays and Sundays).

5.0 Spill Notifications and Amendment of SPCC Plan by Regional Administrator [40 C.F.R. §112.4]

5.1 USEPA Region 6 Written Notification [40 C.F.R. §112.4 (a)]

In the event that the facility has a discharge of more than 1,000 U.S. gallons of oil in a single event or more than 42 U.S. gallons of oil in each of two discharge events occurring within any 12 month period, WRC shall submit the following information to the USEPA Region 6 RA within 60 days:

- 1. Name of the facility;
- 2. Name and contact information of responsible person;
- 3. Location of the facility;
- 4. Maximum storage or handling capacity of the facility and normal daily throughput;

- 5. Corrective action and countermeasures you have taken, including a description of equipment repairs and replacements;
- 6. An adequate description of the facility, including maps, flow diagrams, and topographical maps, as necessary;
- 7. The cause of the discharge, including a failure analysis of the system or subsystem in which the failure occurred;
- 8. Additional preventative measures taken or contemplated to minimize possibility of recurrence; and
- 9. Such other information as the RA may reasonably require pertinent to the Plan or discharge.

The written report shall be submitted to the USEPA Region 6 RA at the following address:

Environmental Protection Agency, Region 6 Regional Administrator 1445 Ross Avenue, Suite 1200 Dallas, Texas 75202-2733

5.2 State and Local Emergency Planning Commission Written Notification [40 C.F.R. §112.4 (c)]

5.2.1 Oklahoma Hazardous Materials Response Commission

In the event of a reportable discharge, as described in Section 5.1, a copy of the written report shall also be submitted to the Oklahoma Hazardous Materials Response Commission (SERC) at the following address:

Oklahoma Hazardous Materials Response Commission Monty Elder DEQ Customer Services P.O. Box 1677 Oklahoma City, OK 73101-1677

5.2.2 Local Emergency Planning Commission

In the event of a reportable discharge, as described in Section 5.1, a copy of the written report shall also be submitted to the Local Emergency Planning Commission (LEPC) at the following address:

Local Emergency Planning Committee Bud Ramming P.O. Box 237 Paul Valley, OK 73075

Upon receipt of the information, the SERC and/or LEPC may review and make recommendations to the RA as to further procedures, methods, equipment, and other requirements necessary to prevent and to contain discharges from the facility.

5.3 Amendment of Plan by the Regional Administrator [40 C.F.R. §112.4 (d)]

The RA may require that this Plan be amended based on a review of information submitted to the RA, as a result of information submitted to USEPA by the ODEQ, or based on an on-site review of the Plan.

Plan amendments may also be required if the RA finds that the Plan does not meet the requirements of 40 C.F.R. Part 112 or that amendment is necessary to prevent and contain discharges from the facility.

5.4 Response to Request by the Regional Administrator for Plan Amendment [40 C.F.R. §112.4 (e)]

In the event that the RA issues a request that this Plan be amended, within 30 days from receipt of such notice, WRC may submit written information, views, and arguments regarding the proposed amendment. After considering all relevant material presented, the RA must either notify WRC of any amendment required or rescind the notice. In the event that the RA issues a final amendment request, WRC must amend the Plan as required within 30 days after such notice, unless the RA, for good cause, specifies another effective date. The amended Plan must be implemented as soon as possible, but not later than six months after the Plan has been amended, unless the RA specifies another date.

6.0 Amendment of SPCC Plan by Owners or Operators [40 C.F.R. §112.5]

6.1 Changes in Facility Configuration [40 C.F.R. §112.5(a)]

This Plan must be amended whenever there is a change in the facility design, construction, operation, or maintenance that materially affects the facility's potential for the discharge of oil into or upon the navigable waters of the United States or adjoining shorelines.

Examples of changes that may require amendment of the Plan include, but are not limited to: commissioning or decommissioning containers; replacement, reconstruction, or movement of containers; reconstruction, replacement, or installation of piping systems; construction or demolition that might alter secondary containment structures; changes of product or service; or revision of standard operation or maintenance procedures at the facility. The amendment must be completed within 6 months and implemented as soon as possible but not later than 6 months following the preparation of the amendment.

6.2 Scheduled Plan Reviews [40 C.F.R. §112.5(b)]

A review and evaluation of this Plan shall be completed at least once every 5 years from the original date of certification. As a result of this review and evaluation, the Plan must be amended within 6 months of the review to include more effective prevention and control technology if the technology has been field-proven at the time of review and will significantly reduce the likelihood of a discharge of oil into or upon the navigable waters of the United States or adjoining shorelines. The amendment must be implemented as soon as possible but no later than 6 months following the preparation of the amendment.

Scheduled Plan reviews are to be signed and recorded in the Five Year Review Log (Table 3 of Appendix D).

6.3 Technical Amendments [40 C.F.R. §112.5(c)]

PE Certification is required if any technical amendments are made to the Plan. Technical amendments materially affect a facility's potential to discharge oil and require the application of good engineering practice.

PE Certifications are to be recorded in the Technical Amendment Log (Table 4 of Appendix D).

7.0 Qualified Facilities Plan Requirements [40 C.F.R. §112.6(c)]

WRC has an aboveground storage capacity greater than 10,000 U.S. gallons and does not meet the Tier I or Tier II qualified facility applicability requirements.

8.0 General Requirements for SPCC Plans [40 C.F.R. §112.7]

8.1 Management Approval and Designated Person [40 C.F.R. §112.7]

The owner or operator of a facility subject to 40 C.F.R. 112 must prepare a Plan in accordance with good engineering practices. The Plan must have the full approval of management at a level of authority to commit the necessary resources to fully implement the Plan. Management must approve this Plan each time it is updated.

A record of management approval is shown in Appendix C.

8.2 Cross-Reference with SPCC Provisions [40 C.F.R. §112.7]

This Plan follows the exact order presented in 40 C.F.R. Part 112. As a result, a cross-reference of provisions is not required.

8.3 Facilities, Procedures, Methods, or Equipment Not Yet Fully Operational [40 C.F.R. §112.7]

If the Plan calls for additional facilities or procedures, methods, or equipment not yet fully operational, they must be discussed in separate paragraphs, and details of their installation and operational start-up must explain separately.

All facilities, procedures and methods are fully operational.

8.4 Facility Conformance with Applicable Requirements [40 C.F.R. §112.7(a)(1)]

WRC stores oil or oil products in quantities which require the preparation of a written SPCC Plan as set forth at 40 C.F.R. Part 112. WRC maintains and implements both a SPCC Plan and an Integrated Contingency Plan (ICP) at the facility. WRC has taken reasonable steps necessary to comply with 40 C.F.R. Part 112. The following is a list of exceptions that require implementation for continued compliance:

 Certain secondary containment dikes have been identified as requiring repair or modification to provide sufficient containment for the entire capacity of the largest tank plus freeboard for precipitation based on a 25-year, 24-hour rainfall event. Further detail is provided in the applicable section of this SPCC Plan.

8.5 Deviations from Applicable Requirements [40 C.F.R. §112.7(a)(2)]

This Plan may deviate from selected provisions of 40 C.F.R. Part 112 as specified at 40 C.F.R. 112.7(a)(2) provided that alternative measures provide equivalent environmental protection.

Deviations from Plan requirements and corresponding equivalent environmental protection measures are described below.

8.5.1 Facility Drainage from Undiked Areas Containing Mobile/Portable Containers [40 C.F.R. §112.8(b)(3)]

Pursuant to 40 C.F.R. §112.8(b)(3), facility drainage systems from undiked areas with a potential for a discharge (such as where piping is located outside containment walls or where tank truck discharges may occur outside the loading area) are to be designed to flow into ponds, lagoons, or catchment basins designed to retain oil or return it to the facility. Catchment basins must not be located in areas subject to periodic flooding.

For drainage from undiked areas containing mobile/portable containers, WRC achieves

equivalent environmental protection in the following alternate manner.

Inside the refinery process areas, discharge is to the refinery sewer system which is designed to contain and recover oil.

Where applicable, mobile/portable containers are provided with a portable secondary containment system considered to provide equivalent environmental protection which consists of a combination of daily visual inspections of the mobile/portable containers by qualified facility personnel and land-based spill response kits/equipment which minimize the reasonable potential for a discharge of oil in quantities that may be harmful to navigable waters or adjoining shorelines.

8.5.2 Integrity Testing of Mobile/Portable Containers [40 C.F.R. §112.8(c)(6)]

Pursuant to 40 C.F.R. §112.8(c)(6), each aboveground container is to be tested or inspected for integrity on a regular schedule and whenever material repairs are made. WRC must determine, in accordance with industry standards, the appropriate qualifications for personnel performing tests and inspections, the frequency and type of testing and inspections, which take into account container size, configuration, and design (such as containers that are: shop-built, field-erected, skid-mounted, elevated, equipped with a liner, double-walled, or partially buried).

All mobile/portable containers are shop-built containers and will not be tested for integrity.

Pursuant to 67 FR 47120 dated July 17, 2002, for certain smaller shop-built containers in which internal corrosion poses a minimal risk of failure; which are inspected at least monthly; and, for which all sides are visible (i.e., the container has no contact with the ground), visual inspection alone might suffice, subject to good engineering practice. In such case the owner or operator must explain in the Plan why visual integrity testing alone is sufficient and provides equivalent environmental protection.

Where applicable, mobile/portable containers are visually tested for integrity in a manner considered to be equivalent environmental protection and described as follows:

All small, shop-built containers are visually inspected daily by qualified personnel. The containers have minimal corrosion potential since the containers are either mounted such that they have no contact with the ground or are single-use containers. The container materials of construction are compatible with the oils stored so that internal corrosion poses a minimal risk of failure. Containers are located near drainage to the refinery sewer system, and/or are situated atop portable secondary containment for the container capacity. In the event of a spill, a land-based spill response kit prevents any discharge of oil in quantities that may be harmful from reaching any navigable water or adjoining shoreline. Spill response equipment, supplies, and personnel are maintained onsite.

8.5.3 Overfill Prevention for Mobile/Portable Containers [40 C.F.R. §112.8(c)(8)]

Pursuant to 40 C.F.R. §112.8(c)(8), each container installation is to be engineered or updated in accordance with good engineering practice to avoid discharges. At least one of the following devices must be provided:

- (i) High liquid level alarms with an audible or visual signal at a constantly attended operation or surveillance station. In smaller facilities an audible air vent may suffice.
- (ii) High liquid level pump cutoff devices set to stop flow at a predetermined container content level.
- (iii) Direct audible or code signal communication between the container gauger and the pumping station.
- (iv) A fast response system for determining the liquid level of each bulk storage container such as digital computers, telepulse, or direct vision gauges. If you use this alternative, a person must be present to monitor gauges and the overall filling of bulk storage containers.
- (v) Liquid level sensing devices shall be regularly tested to ensure proper operation.

Mobile/portable containers do not have an overfill prevention system as a matter of good engineering practice.

WRC achieves equivalent environmental protection in the following alternate manner. Where applicable, mobile/portable containers have an overfill protection procedure considered to be equivalent environmental protection and is described as follows. Mobile/portable containers arrive (1) pre-filled from a vendor; (2) are constantly attended and observed during filling operations; and (3) have secondary containment, as described in Section 8.5.2 and/or spill response protection.

8.5.4 Aboveground Piping Warning [40 C.F.R. §112.8(d)(5)]

Pursuant to 40 C.F.R. §112.8(d)(5), all vehicles entering the facility shall be warned to be sure that no vehicle will endanger aboveground piping or other oil transfer operations.

67 FR 47126 dated July 17, 2002, states that no particular height restriction is incorporated into the rule. Rather, aboveground piping at any height must be protected from vehicular traffic unless the piping is so high that all vehicular traffic passes underneath the piping.

Where applicable, the following aboveground piping precautions are considered equivalent environmental protection. The vast majority of aboveground oil piping is located either within diked areas with limited access and/or located high enough such that all vehicular traffic passes beneath the piping. This limits the danger to aboveground piping from vehicles. In addition and where appropriate, clearance elevations are displayed on aboveground pipe racks which may be susceptible to vehicular traffic. Only emergency, maintenance, and other authorized vehicles have access to the processing areas. A safety permitting system is used for vehicle and equipment access to processing areas to avoid risks associated with aboveground piping.

8.6 Facility Oil Storage Diagram [40 C.F.R. §112.7(a)(3)]

Figures 11 and 12 (Appendix E) show Material Storage Areas (MSAs) for the aboveground bulk storage containers and Portable Material Storage Areas (PMSAs) for the mobile/portable storage

containers. Figures 13 through 17 (Appendix E) show storage locations for oil-filled electrical equipment. Figures 18 and 19 (Appendix E) show storage locations for oil-filled operating equipment and oil-filled manufacturing equipment, respectively. Figure 20 (Appendix E) show the transfer area loading/unloading operations map. Figure 3 (Appendix A) and Figure 21 (Appendix E) show the piping maps. Figures 22 and 23 of Appendix E show base flood elevations for West Sandy Creek and the unnamed tributary to Turkey Sandy Creek, respectively.

8.6.1 Storage Container Contents and Capacities [40 C.F.R. §112.7(a)(3)(i)]

Exempt oil storage containers are shown in Table 5 of Appendix F. MSAs for aboveground tanks are shown in Table 6 of Appendix F. PMSAs for mobile/portable storage containers are shown in Table 7 of Appendix F.

8.7 Discharge Prevention Measures [40 C.F.R. §112.7(a)(3)(ii)]

WRC has provided adequate discharge prevention measures through the implementation of this Plan. The following sections describe discharge prevention measures for the routine handling of oil (including loading, unloading, and facility transfer operations) taken to implement the Plan. Implementation generally includes training of employees and supervisors handling oil in the topics covered by this Plan; routine inspections and testing to prevent and discover discharges; application of security measures to deter vandalism that might result in a discharge; and operating engineering controls to prevent discharges from bulk storage containers, mobile/portable containers, oil-filled operational equipment, and transfer areas.

8.8 Discharge or Drainage Controls [40 C.F.R. §112.7(a)(3)(iii)]

8.8.1 Bulk Storage Containers

Aboveground bulk storage tanks containing oil are provided with a primary containment system consisting of a steel single wall constructed in accordance with either STI or API standards and compatible with the material stored and the conditions of storage, i.e., pressure and temperature. Specific secondary containment systems are described in Table 6 of Appendix F and satisfy the general secondary requirements of 40 C.F.R. §112.7(a)(3)(iii). Certain secondary containment

dikes have been identified as requiring repair or modification to provide sufficient containment for the entire capacity of the largest tank plus freeboard for precipitation based on a 25-year, 24hour rainfall event. Calculated capacities of specific secondary containment systems are presented in Table 22 (Appendix L). WRC has begun implementation of the necessary corrective work.

8.8.2 Mobile/Portable Containers

Mobile/portable containers are provided with a primary containment system consisting of materials which are compatible with the material stored and the conditions of storage, i.e., pressure and temperature. Mobile/portable containers are provided with general secondary containment systems as described in Table 7 of Appendix F.

8.8.3 Oil-Filled Electrical Equipment

Oil-filled electrical equipment having an oil storage capacity greater than or equal to 55 gallons are provided with a primary containment system consisting of materials which are compatible with the material stored and the conditions of storage, i.e., pressure and temperature. Oil-filled electrical equipment is provided with general secondary containment systems as described in Table 8 of Appendix F.

8.8.4 Oil-Filled Operating Equipment

Oil-filled operating equipment having an oil storage capacity greater than or equal to 55 gallons are provided with a primary containment system consisting of materials which are compatible with the material stored and the conditions of storage, i.e., pressure and temperature. Oil-filled operating equipment is provided with general secondary containment systems as described in Table 9 of Appendix F.

8.8.5 Oil-Filled Manufacturing Equipment

Oil-filled manufacturing equipment is provided with a primary containment system consisting of materials which are compatible with the material processed and the conditions of operation, i.e.,

pressure and temperature. Oil-filled manufacturing equipment is provided with general secondary containment systems as described in Table 10 of Appendix F.

8.8.6 Transfer Areas, Equipment and Activities

8.8.6.1 Loading and Unloading Areas/Racks

Loading and unloading areas/racks are provided with secondary containment systems as described in Table 11 of Appendix F. Piping is provided with a secondary containment system as described in Table 12 of Appendix F.

8.8.6.2 Bulk Chemicals Unloading Areas

Bulk chemicals are unloaded directly into storage containers at the process units, or delivered in portable containers to the warehouse dock. Chemicals in portable containers are hauled to a fenced tote storage area located on the west side of the building, or directly to process areas in the refinery. No reportable spills from the bulk chemicals unloading area have occurred in the past 12 months.

In the event of a spill, bulk chemicals unloading areas are provided with a secondary containment system consisting of curbing and/or the refinery sewer collection system, and/or a land-based spill response kit which is used to prevent any discharge of oil in quantities that may be harmful to any navigable water or adjoining shoreline. Totes in process areas are placed on containment units designed to contain the entire tote contents, and/or discharge to the refinery sewer system. Drainage from the warehouse tote storage area flows to a catchment basin which is pumped to the refinery sewer system.

8.8.6.3 Equipment

In the transfer areas, fill ports for all ASTs are equipped with drip pans to contain small leaks from the piping/hose connections. In addition, all fill ports are secured within a fenced area, enclosure, or fitted with a locking cap. Fill port caps are to be opened only when being filled and replaced when filling is complete.

21

8.8.6.4 Supplier Approval

All suppliers must meet the minimum requirements and regulations for tank truck unloading as established by the United States Department of Transportation.

WRC also ensures that all suppliers understand the site layout, know the protocols for entering the site and loading or unloading product, and have the necessary spill equipment on board to respond to a spill from the vehicle delivery hose.

8.8.6.5 Loading/Unloading Procedures

WRC and LACT/Crude tank truck and railcar product delivery procedures are described in Appendix I.

8.8.6.6 Draining Storm Water from Containment Areas and Sumps

Tank dikes, impoundments, piping/dispenser sumps are drained only under the direct supervision of facility personnel. Dike drainage occurs only via sumps and pumps operated by facility personnel.

- Dike drain valves are normally kept locked in a closed position except when draining the dike.
- Accumulated storm water is inspected for sheen, and only water without a visible sheen is released. Storm water is discharged via a discharge permit issued by the Oklahoma Department of Environmental Quality. Contaminated storm water is discharged to the refinery wastewater treatment plant, operated under a discharge permit issued by the Oklahoma Department of Environmental Quality.

8.9 Countermeasures for Discharge Discovery [40 C.F.R. §112.7(a)(3)(iv)]

WRC employs adequate countermeasures for discharge discovery, response, and cleanup through implementation of this Plan. In addition, WRC retains appropriate oil spill removal companies to ensure the availability of necessary personnel and equipment for discharge discovery, response and cleanup.

8.10 Methods of Disposal [40 C.F.R. §112.7(a)(3)(v)]

Any material spilled on-site is cleaned up in a manner that minimizes environmental impacts. Waste material generated by the clean-up process is handled in accordance with Federal and State waste disposal requirements. All waste is sent to commercial, off-site disposal facilities that are appropriately authorized to handle such waste.

8.11 Contact List [40 C.F.R. §112.7(a)(3)(vi)]

A list of emergency contacts is shown in Appendix O. This list includes facility contacts, spill response contractor contacts, discharge notification contacts, state and local emergency response contacts.

8.12 Discharge Notification Procedures and Form [40 C.F.R. §112.7(a)(4)]

Any size discharge (i.e., one that creates a sheen, emulsion, or sludge) that affects or threatens to affect navigable waters or adjoining shorelines must be reported immediately to the National Response Center (1-800-424-8802), SERC, and LEPC. Discharge Notification Procedures and a documentation form are shown in Appendix Q. Oil discharge records should be maintained in Appendix K.

8.14 Discharge Response [40 C.F.R. §112.7(a)(5)]

This section describes the cleanup response and protocols to follow in the event of an oil spill. Depending on the volume and characteristics of the material released, WRC has defined a spill response as either a "Minor Spill Response" or "Major Spill Response" ("Spill Emergency"). An inventory of available discharge response equipment maintained by WRC is provided in Appendix P.

8.14.1 Minor Spill Response [112.7(a)(3)(iv)]

A "Minor Spill Response" is defined as one that poses no significant harm to human health or the environment. These spills involve generally small quantities and can usually be cleaned up by WRC personnel. Other characteristics of a minor spill include the following:

- the spilled material is easily stopped or controlled at the time of the spill;
- the spill is localized;
- the spilled material is not likely to reach surface water or groundwater;
- there is little danger to human health, and there is little danger of fire or explosion.

In the event of a minor spill the following guidelines shall apply:

- Stop the source if the spill is ongoing.
- Contain the spill with spill response materials and equipment.
- Place spill debris in properly labeled waste containers.
- Prepare and submit an incident report.

8.14.2 Major Spill Response [112.7(a)(3)(iv)]

Characteristics of a "Major Spill Response" include the following:

- the spill is large enough to spread beyond the immediate spill area;
- the spilled material enters surface water;
- the spill requires special training and equipment for response;
- there is a danger of fire or explosion.

In the event of a spill emergency, the following guidelines shall apply:

- Stop the source if the spill is ongoing only if safe to do so.
- Activate the refinery emergency response plan.
- Perform external notifications as required (can use form in Appendix Q).
- Restore stable conditions.
- Implement cleanup activities.

8.14.3 Oil Spill Contingency Plan

WRC has prepared an Integrated Contingency Plan (ICP) for response to any refinery emergency, including oil spills. The ICP has been designed to fulfill the regulatory requirements of 40 C.F.R. Part 112.7(d) and 112.20 – 112.21. A copy of the ICP can be found at the main office during regular business hours.

8.15 Potential Discharge Volumes and Direction of Flow [40 C.F.R. §112.7(b)]

8.15.1 Bulk Material Storage Areas

Maximum potential release volumes, discharge rate, directions of spill flow and secondary containment for each bulk material storage area are shown in Table 13 of Appendix G.

8.15.2 Mobile/Portable Material Storage Areas

Maximum potential release volumes, discharge rate, directions of spill flow and secondary containment for each mobile/portable material storage area are shown in Table 14 of Appendix G.

8.15.3 Oil-Filled Operational Equipment Areas

Maximum potential release volumes, discharge rate, directions of spill flow and secondary containment for each oil-filled operational equipment area (i.e., electrical, operating, and manufacturing) are shown in Tables 15, 16 and 17 of Appendix G.

8.15.4 Loading and Unloading Areas/Racks

Maximum potential release volumes, discharge rate, directions of spill flow and secondary containment for each loading and unloading area/rack are shown in Table 18 of Appendix G.

8.15.5 Transfer Areas

Maximum potential release volumes, discharge rate, directions of spill flow and secondary containment for each piping area are shown in Table 19 of Appendix G.

8.16 Containment and Diversionary Structures [40 C.F.R. §112.7(c)]

Appropriate containment and/or diversionary structures or equipment has been provided to minimize the potential for discharges as described in §112.1(b). Certain secondary containment dikes have been identified as requiring repair or modification to provide sufficient containment for the entire capacity of the largest tank plus freeboard for precipitation based on a 25-year, 24-hour rainfall event. Calculated capacities of specific secondary containment systems are presented in Table 22 (Appendix L).

8.16.1 Dikes, Berms, or Retaining Walls Sufficiently Impervious to Contain Oil

Secondary containment systems consisting of berms or retaining walls sufficiently impervious (Table 20 of Appendix H) to contain the oil until the time at which cleanup occurs has been provided for aboveground bulk storage containers.

8.16.2 Curbing or Drip Pans

WRC utilizes drip pans in the fuel transfer areas, when hoses are uncoupled during bulk transfer operations, and for pumps, valves, and fittings to isolate and contain small drips or leaks until the source of the leak is repaired.

8.16.3 Sumps and Collection Systems

WRC utilizes sumps in the loading rack areas to collect spills and leaks. WRC also utilizes the refinery sewer system as a collection system to collect oil from the process areas of the refinery.

8.16.4 Culverting, Gutters, or other Drainage Systems

Culverting and/or gutters have been provided to direct spills to remote containment or treatment areas where appropriate.

8.16.5 Weirs, Booms, or Other Barriers

Storm water Outfall 002 is provided with an underflow dam to prevent oil escape and overflow weir filled with hay bales, should stormwater levels rise high enough. The hay bales can be used in combination with the weir to remove oil from the surface of the water.

Spill mats and storm drain covers are utilized to block or prevent the flow of oil to the refinery stormwater collection system.

8.16.6 Spill Diversion and Retention Ponds

WRC utilizes several storm water detention ponds around the refinery for collection of stormwater runoff, subsequently discharged under the facility's OPDES discharge permit.

8.16.7 Sorbent Materials

Sorbent materials, i.e., insoluble materials or mixtures of materials (such as booms, spill pads, pillows, socks, and mats) are used to isolate and contain small drips or leaks until the source of the leak is repaired. WRC also utilizes the sorbent materials as an active containment measure (or countermeasure) to contain and collect small-volume discharges before they reach any navigable water or adjoining shoreline.

8.17 Practicability of Secondary Containment [40 C.F.R. §112.7(d)]

WRC management has determined that the use of secondary containment structures or readily available equipment to prevent discharged oil from reaching navigable waters or adjoining shores is practicable and effective for all areas at the facility with the exception of intra-facility gathering lines as described below.

8.17.1 Intra-Facility Gathering Lines

The SPCC Guidance for Regional Inspectors August 28, 2013 states the following:

The term "gathering lines" refers to piping or pipelines that transfer crude oil product between tank batteries, within or between facilities. Gathering lines often originate from an oil production facility's lease automatic custody transfer (LACT) unit, which transfers oil to other facilities involved in gathering, refining or pipeline transportation operations. EPA considers gathering lines subject to EPA's jurisdiction if they are located within the boundaries of an otherwise regulated SPCC facility (that is, intra-facility gathering lines) (73 FR 74274,

December 5, 2008). Intra-facility gathering lines subject to DOT requirements at 49 CFR parts 192 or 195 are exempt from the SPCC rule entirely.

Intra-facility gathering lines, associated valves and equipment are provided with a primary containment system consisting of materials which are compatible with the materials processed and the conditions of operation, i.e., pressure and temperature.

In lieu of secondary containment WRC has an Integrated Contingency Plan which includes provisions for oil spills, including a written commitment of manpower, equipment, and materials required to expeditiously control and remove any quantity of oil discharged that may be harmful.

WRC has also implemented an intra-facility gathering line maintenance program which consists of visually inspecting and/or testing intra-facility gathering lines and associated appurtenance on a periodic and regular schedule for leaks, oil discharges, corrosion, or other conditions that could lead to a discharge. Repairs required by any regularly scheduled visual inspection, test, or evidence of a discharge are promptly made. In addition, actions required to stabilize and to remediate any accumulations of oil discharges associated with intra-facility gathering lines and associated appurtenances are promptly made.

8.18 Inspections, Tests, and Records [40 C.F.R. §112.7(e)]

WRC routinely performs inspections for malfunctions, deterioration, operator errors, leaks, damage, discharge, or corrosion of SPCC-regulated valves, pumps, tanks, piping, oil handling storage and handling equipment, and spill prevention equipment, to minimize the possibility of oil spills.

A list of equipment and areas where detailed inspections may be necessary, along with recommended inspection schedules, is given in Table 23 of Appendix M. Inspections conducted to satisfy the requirements of other environmental programs or routine maintenance activities may suffice for the inspection requirements of this Plan provided such inspections cover the requirements listed and the elements identified in the inspection form provided in Appendix M.

WRC safety and operations personnel are on duty 24 hours per day, 7 days per week. Inspection rounds of the facility, which include visual observation of oil storage containers and equipment, are made a minimum of twice daily. Facility security inspections are performed multiple times daily.

Monthly container inspections are performed by WRC personnel using the checklist in Table 24 of Appendix M. Issues regarding oil storage containers or piping are reported to the operations supervisor, with work orders written for corrective action.

Oil analyses of oil-filled electrical transformers are performed by contract personnel.

8.18.1 Periodic Integrity Testing

Periodic visual and formal integrity testing of aboveground bulk storage tanks are performed by qualified personnel in accordance with the requirements in API 653.

Aboveground storage tank inspection and integrity test requirements, based on tank fabrication type and size, are shown in Table 21 of Appendix J.

8.18.2 Inspection Records

Inspections will be documented and signed or initialed by appropriately trained personnel. Inspections records will be maintained for a minimum of 3 years. Integrity inspection records are maintained in the refinery Inspection Department.

8.19 Personnel, Training, and Discharge Prevention Procedures [40 C.F.R. §112.7(f)] 8.19.1 Personnel Training [40 C.F.R. §112.7(f)(1)]

Oil handling employees are trained in general facility operations and the operation and maintenance of equipment to prevent discharges as part of their normal job training. Discharge prevention procedure protocols are included with employee emergency response plan training. A SPCC Personnel Training Program Outline is provided in Appendix N. Records of employee training are maintained by the refinery Training Department.

8.19.2 Designated Person Accountable for Discharge Prevention [40 C.F.R. §112.7(f)(2)]

The Refinery Manager is the designated person accountable for oil discharge prevention.

8.19.3 Discharge Prevention Briefings [40 C.F.R. §112.7(f)(3)]

Oil-handling personnel take part in discharge prevention briefings at least once per year. Topics include discharge procedure protocols, known discharges, failures, malfunctioning components, facility emergency response plan training, and applicable pollution control laws.

8.20 Security (Excluding Oil Production Facilities) [40 C.F.R. §112.7(g)]

8.20.1 Fencing [40 C.F.R. §112.7(g)]

The facility is fenced, gated, and periodically patrolled. The facility has entrance gates that are locked and /or guarded 24 hours a day. Speed limits are posted to minimize potential vehicle accidents within the facility. Security cards are used to control facility access.

8.20.2 Valves

Valves that control the flow of oil have adequate security measures so that they remain in the closed position when in non-operating or non-standby status. The fencing, access control, and periodic security patrols (Section 8.20.1) provide such security.

8.20.3 Pump Starter Controls

Starter controls on pumps in non-operating or standby status are located at a site accessible only by authorized personnel. The fencing, access control, and periodic security patrols (Section 8.20.1) provide such security.

8.20.4 Loading/Unloading Piping Connections

Piping connections are capped when not in service or when in standby service for an extended time.

8.20.5 Lighting

Outdoor lighting is sufficient to assist in the discovery of spills or discharges from containers during hours of darkness and the prevention of discharges occurring through acts of vandalism.

8.21 Facility Tank Car and Tank Truck Loading/Unloading Rack (Excluding Offshore Facilities) [40 C.F.R. §112.7(h)]

Figure 20 of Appendix E shows the locations of the loading and unloading areas (LUA) and loading and unloading racks (LUR) and directions of spill flow. Table 11 of Appendix G shows the potential volume released, discharge rate, direction of flow, and secondary containment for each unloading and unloading area/rack.

8.21.1 Catchment Basin [40 C.F.R. §112.7(h)(1)]

Where loading/unloading rack drainage does not flow into a catchment basin or treatment facility designed to handle discharges, a quick drainage system for tank car or tank truck loading/unloading racks should be used. Containment systems should be designed to hold at least the maximum capacity of any single compartment of a tank car or tank truck loaded or unloaded at the facility.

WRC utilizes a loading/unloading rack drainage system as described in Table 11 of Appendix F.

8.21.2 Interlock Warning [40 C.F.R. §112.7(h)(2)]

WRC utilizes an interlock warning light or physical barrier system, warning signs, wheel chocks or vehicle brake system in the area adjacent to a loading/unloading rack, to prevent vehicles from departing before complete disconnection of flexible or fixed oil transfer lines.

8.21.3 Inspected Prior to Filling/Departure [40 C.F.R. §112.7(h)(3)]

Prior to filling and departure of any tank car or tank truck, appropriate personnel shall closely inspect for discharges the lowermost drain and all outlets of such vehicles, and if necessary, ensure that they are tightened, adjusted, or replaced to prevent liquid discharge while in transit.

8.22 Brittle Fracture Evaluation [40 C.F.R. §112.7(i)]

In the event that any field-erected tank undergoes a repair, alteration, reconstruction, or change in service that might affect the risk of a discharge or failure, this tank should be evaluated for risk of discharge or failure, following API-653 or an equivalent approach, and corrective actions shall be taken as necessary.

8.23 Conformance with State and Local Applicable Requirements [40 C.F.R. §112.7(j)]

The State of Oklahoma does not have regulations in place that specifically supersede federal SPCC requirements set forth in 40 C.F.R. Part 112.

WRC holds Oklahoma Pollutant Discharge Elimination System (OPDES) Permit OK0000825 from the Oklahoma Department of Environmental Quality (ODEQ) which authorizes the discharge of treated process wastewater via Outfall 001 to the Washita River and treated storm water runoff via Outfall 002 to an unnamed tributary of Turkey Sandy Creek. A copy of OPDES Permit OK000825 is maintained on-site.

WRC holds RCRA Operations and Post-Closure Permit 000396549 from the ODEQ Land Protection Division for the operation of hazardous waste storage tank (Tank 2007) and for post closure monitoring of a Solid Waste Management Unit (SWMU) located just south of the API separator. A copy of the RCRA Operations and Post-Closure Permit 000396549 is maintained on-site.

WRC complies with the Emergency Planning and Community Right-to-Know Act (EPCRA), also known as Superfund Amendments and Reauthorization Act (SARA) Title III regarding emergency planning and preparedness at both the state and local levels. The State Emergency Response Commission (SERC) is responsible for overseeing EPCRA requirements in the State of Oklahoma. The Local Emergency Planning Committee (LEPC) works to understand chemical hazards in the community, develop emergency plans in case of an accidental release, and look for ways to prevent chemical accidents.

8.24 Qualified Oil-Filled Operational Equipment [40 C.F.R. §112.7(k)]

WRC utilizes oil-filled operational equipment and meets the qualifying criteria for this portion of the regulation in that it has "had no single discharge as described in §112.1(b) from any oil-filled operational equipment exceeding 1,000 U.S. gallons or no two discharges as described in §112.1(b) from any oil-filled equipment each exceeding 42 U.S. gallons within any twelve month period in the three years prior to the Plan certification date."

WRC has, however, chosen not to implement the alternate secondary containment requirements described in 40 C.F. R. §112.7(k).

9.0 SPCC Provisions for Onshore Facilities (Excluding Production Facilities)

9.1 Facility Drainage [40 C.F.R. §112.8(b)]

9.1.1 Diked Storage Area Drainage [40 C.F.R. §112.8(b)(1)]

Some tank dikes (on east side of US Highway 77) can discharge to the refinery's OPDES permitted stormwater outfall 002. (If not, these dikes are discharged to outfall 001 from the wastewater treatment plant.) Storm water collected inside these secondary containment areas is restrained with a valve that remains in the closed position when not in use. Discharge from secondary containment to storm water drainage is only allowed when collected water is visually inspected and found not to be impacted by oil. Many tank dikes discharge only to the refinery wastewater treatment system, which includes oil recovery and discharges via permitted outfall 001.

9.1.1.1 Valves for the Drainage of Diked Storage Areas [40 C.F.R. §112.8(b)(2)]

Drainage from diked storage areas and secondary containment at the facility is restrained by valves of manually open/closed design (not flapper-type drain valves). If drainage is released to a watercourse and not into an on-site wastewater treatment plant, the retained storm water is inspected prior to discharge to ensure that no pollutants are discharged in quantities that may be harmful to any navigable water or adjoining shoreline.

9.1.2 Un-diked Storage Area Drainage [40 C.F.R. §112.8(b)(3)]

Drainage systems from un-diked areas with a potential for a discharge (such as where piping is located outside containment walls or where tank truck discharge may occur outside the loading area) should be designed to flow into ponds, lagoons, or catchment basins designed to retain oil or return it to the facility. Catchment basins shall not be located in areas subject to periodic flooding.

Surface drainage from un-diked storage areas in the western section of the refinery is directed to either permitted surface impoundment F04 or F05. F04 is equipped with pumps that can transfer water to the wastewater treatment system which discharges via Outfall 001 to the Washita River. F05 is a total retention surface impoundment.

Surface drainage in the central section of the refinery is directed to either the refinery sewer system then to the wastewater treatment system prior to being discharged via Outfall 001 to the Washita River, or to the storm water conveyance channel through an underflow dam with a hay bale-stuffed overflow weir/screen prior to being discharged via Outfall 002 to the unnamed tributary to Turkey Sandy Creek. In this section of the refinery, WRC also utilizes a combination of BMPs including a vegetative filter strip and land-based spill response equipment to prevent the discharge of oil in quantities that may be harmful to any navigable water or adjoining shoreline.

No surface drainage occurs from un-diked areas in the eastern and southern sections of the refinery. Storm water runoff is directed to the south and west. Storm water from the eastern section eventually discharges via Outfall 002. In these sections of the refinery, WRC utilizes a combination of BMPs including a vegetative filter strip and land-based spill response equipment to prevent any discharge of oil in quantities that may be harmful to any navigable water or adjoining shoreline.

9.2 Diversion System [40 C.F.R. §112.8(b)(4)]

If facility drainage is not engineered as in (Section 9.1.2), the final discharge of all ditches inside the facility shall be equipped with a diversion system that would, in the event of an uncontrolled discharge, retain oil in the facility.

Facility drainage in the western and central sections of the refinery is engineered as described in Section 9.1.2. Drainage in the eastern and southern sections of the refinery is contained as necessary and conveyed to the wastewater treatment system. Non-process areas at the eastern section of the refinery drain to OPDES-permitted stormwater outfall 002. WRC can utilize a combination of BMPs in the eastern and southern sections of the refinery including a combination of vegetative filter strips and land-based spill equipment to prevent the discharge of oil in harmful quantities to any navigable water or adjoining shoreline.

9.3 Equipment Failure or Human Error [40 C.F.R. §112.8(b)(5)]

Where drainage waters are treated in more than one treatment unit and such treatment is continuous, and pump transfer is needed, two "lift" pumps shall be provided and at least one of the pumps shall be permanently installed. Whatever techniques used, engineer facility drainage systems to prevent a discharge as described in §112.1(b) in case there is an equipment failure or human error at the facility.

Surface drainage waters in the western section of the refinery are retained in surface impoundment F04 or F05 and pumped, on an as able basis, to the refinery wastewater treatment system. Surface drainage waters in the central section of the refinery are directed to the wastewater treatment system on a continuous basis without the need of any pump. Surface drainage waters in the eastern and southern sections of the refinery do not require the use of dedicated pumps. As a result, equipment failure or human error will not facilitate the discharge of un-diked surface waters.

9.4 Bulk Storage Containers [40 C.F.R. §112.8(c)), (c)(1) and (c)(2)]

Aboveground bulk storage tanks containing oil are provided with primary and secondary containment systems as described in Table 6 of Appendix F. WRC's tank dike design is being updated to provide containment for the entire capacity of the largest tank, plus freeboard for precipitation based on the 25-year, 24-hour rainfall event, consistent with the wastewater treatment system design. That rainfall event is 7.1". Dike capacities are summarized in Table 22 of Appendix L. An implementation schedule for dike updates is presented in Table 22A.

9.5 Drainage of Diked Areas [40 C.F.R. §112.8(c)(3)]

Dikes are drained under direct facility supervision. The accumulated water is observed for signs of oil prior to draining. The gate valves are normally kept in a closed position and locked except when draining the dike.

9.6 Corrosion Protection [40 C.F.R. §112.8(c)(4)]

This section is not applicable since no underground storage tanks are present at the facility.

9.7 Partially Buried and Bunkered Storage Tanks [40 C.F.R. §112.8(c)(5)]

This section is not applicable since no partially buried or bunkered storage tanks are present at the facility.

9.8 Aboveground Container Integrity Testing [40 C.F.R. §112.8(c)(6)]

9.8.1 Aboveground Storage Tanks

WRC utilizes aboveground storage tanks (and associated piping) which are subject to the periodic integrity testing of 40 C.F.R. §112.8(c)(6).

Integrity testing is done in accordance API 653 and/or Steel Tank Institute (STI) Standard for the Inspection of Aboveground Storage Tanks, SP001 (latest version). Table 21 of Appendix J shows the classification of bulk storage containers and the corresponding integrity testing requirements.

If non-destructive integrity testing is performed on one of the regulated bulk storage containers at the facility, a record of the test is maintained in the refinery Inspection Department. If visual inspections conducted pursuant to Section 8.18 of this Plan identify the likelihood of a tank failure, the facility shall have the subject tank physically tested in accordance with API 653 requirements.

9.8.2 Mobile/Portable Containers

All mobile/portable containers used to store oil at the facility are United States Department of Transportation (US DOT) approved.

WRC achieves equivalent environmental protection for integrity testing as stated in Section 8.5.2 of this Plan.

9.9 Heating Coils [40 C.F.R. §112.8(c)(7)]

Internal heating coils, used on asphalt and heavy oil storage tanks, do not discharge into any navigable waterway and/or adjoining shoreline. Steam return and exhaust lines are monitored for signs of leakage as routine operator inspections.

9.10 Overfill Protection Systems [40 C.F.R. §112.8(c)(8)]

9.10.1 Aboveground Storage Tanks (ASTs)

All ASTs are equipped with direct-read liquid level gauges which are visible to personnel. In addition, all fixed ASTs are equipped with high level alarms set at 90 percent of the rated capacity.

All overfill prevention systems are checked on a monthly basis during the monthly inspection of the facility, following the manufacturer recommendations.

9.10.2 Mobile/Portable Containers

Mobile/portable containers are refilled in accordance with the procedure described in Section 8.5.3 of this Plan.

9.10.3 Oil-Filled Electrical and Operational Equipment

Oil-filled electrical and operational equipment are refilled in accordance with the procedure described in Section 8.5.3 of this Plan.

9.10.4 Oil-Filled Manufacturing Equipment

Process operations are controlled from a control room with pressure, temperature and flow safety devices including audio and visual alarms and automatic shut downs. Safety devices are tested regularly to ensure proper operation.

9.11 Effluent Treatment Facilities [40 C.F.R. §112.8(c)(9)]

WRC holds OPDES Permit OK000825 which authorizes the discharge of process wastewater and storm water via Outfalls 001 and 002, respectively. Process wastewater and storm water effluent discharges are monitored and records maintained according to the requirements of OPDES permit OK000825.

9.12 Visible Discharges [40 C.F.R. §112.8(c)(10)]

Visible discharges from any container or appurtenance (seams, gaskets, piping, pumps, valves, rivets, and bolts) are quickly corrected upon discovery.

Oil is promptly removed from any dike and disposed via oil recovery back into the refinery process units and/or the refinery wastewater treatment system.

9.13 Mobile and Portable Containers [40 C.F.R. §112.8(c)(11)]

Small portable oil storage containers, such as 55-gallon drums, are stored at locations where drainage and/or washdown to the refinery sewer system can occur. For drums inside the maintenance shop, secondary containment is provided by floor and building walls. Any discharged material is quickly contained and cleaned up using sorbent pads and appropriate cleaning products.

9.14 Transfer Operations, Pumping, and In-Plant Processes [40 C.F.R. §112.8(d)]

Transfer operations equipment include piping, valves, gauges, regulators, compressors, pumps and other mechanical devices used to transfer oil from one place to another within the facility. Pipelines used to transport oil exclusively within the confines of a non-transportation-related facility are regulated under the SPCC program. Pipelines used to transport oil for interstate or intrastate commerce are transportation-related systems and regulated by the Department of Transportation's (DOT) Office of Pipeline Safety (OPS) program.

9.14.1 Buried Piping [40 C.F.R. §112.8(d)(1)]

Most buried oil piping was installed prior to August 16, 2002. Any buried piping installed after August 16, 2002 utilizes protective wrapping and coating to satisfy the cathodic protection standards for piping. When a section of buried line is exposed, it will be visually inspected for deterioration. If corrosion damage is discovered, further inspection will be performed and corrective action taken, if deemed appropriate. Plastic or fiberglass-reinforced pipes do not need protective coating or cathodic protection.

9.14.2 Piping Connections [40 C.F.R. §112.8(d)(2)]

Piping connections to the bulk storage tanks or loading racks are capped or blind-flanged and marked to origin when the pipeline is not in service. Lines that are not in service or are on standby for an extended period of time are capped or blank-flanged and marked as to their origin.

9.14.3 Pipe Supports [40 C.F.R. §112.8(d)(3)]

Piping supports have been designed to prevent structural failure of pipelines by minimizing abrasion and corrosion and allow for expansion and contraction.

9.14.4 Aboveground Valves, Piping, and Appurtenances [40 C.F.R. §112.8(d)(4)]

Aboveground piping, valves, and appurtenances associated with each piece of equipment are visually inspected often, as part of daily operator rounds. Appurtenances can include, as appropriate, such equipment as flange joints, expansion joints, valve glands and bodies, catch pans, pipe supports, locking of valves, and metal surfaces. Any component found to be in a poor

condition or leaking will be replaced as soon as practicable.

Integrity and leak testing of buried piping is conducted at the time of installation, modification, or replacement.

9.14.5 Protection of Aboveground Piping and Other Transfer Operations from Vehicular Traffic [40 C.F.R. §112.8(d)(5)]

Pursuant to 40 C.F.R. §112.8(d)(5), vehicles entering a facility must be warned to be sure that no vehicle will endanger aboveground piping or other oil transfer operations. However, Federal Register 67, No. 137/Wednesday, July 17, 2002/Rules and Regulations page 47126 states,

"No particular height restriction is incorporated into the rule. Rather, aboveground piping at any height must be protected from vehicular traffic unless the piping is so high that all vehicular traffic passes underneath the piping."

The vast majority of aboveground oil piping is located within diked areas with limited access and/or located very high such that all vehicular traffic passes underneath the piping. This limits the danger to above ground piping from vehicles and is considered to be equivalent environmental protection.

10.0 Facility Response Plan [40 C.F.R. §112.20]

10.1 Facility Response Plan Applicability [40 C.F.R. §112.20(f)(1)]

WRC has an Integrated Contingency Plan which includes a written commitment of manpower, equipment, and materials required to expeditiously control and remove any quantity of oil discharged that may be harmful to any navigable water or adjoining shoreline. The plan is applicable to all types of refinery emergencies and has been designed to fulfill the regulatory requirements of 40 C.F.R. Part 112.7(d) and 112.20 – 112.21. A copy of the Integrated Contingency Plan can be found at the main office.

11.0 References / Bibliography

Statutes

- 33 U.S.C. §1251 *et seq.*; Federal Water Pollution Control Act. Online at: <u>http://www.law.cornell.edu/uscode/text33</u>
- 33 U.S.C. §2701 to 2761. Oil Pollution Act of 1990. Online at: <u>http://www.gpo/fdsys/pkg/USCODE-2010-title33/html/USCODE-2010-title33chap40.htm</u>

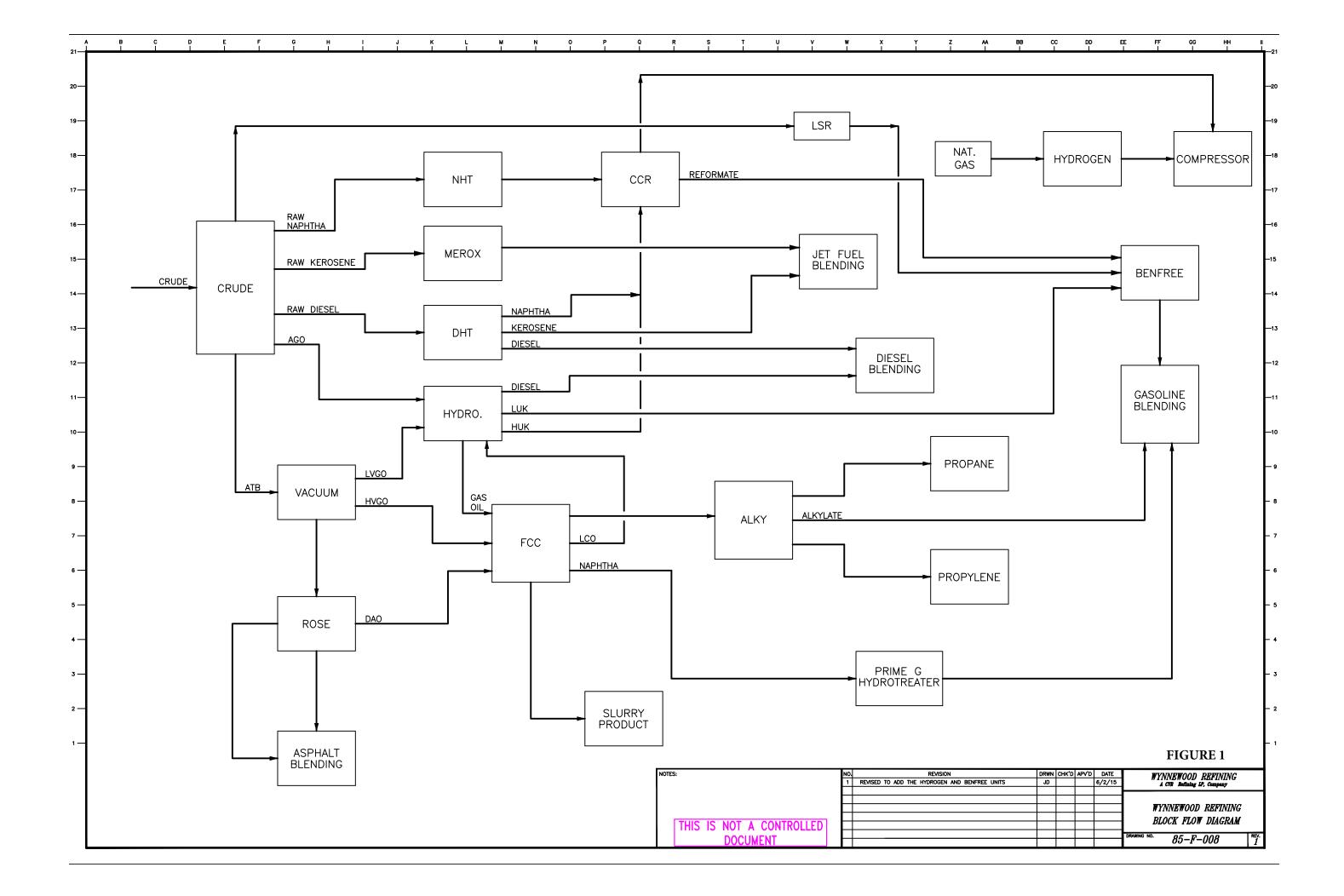
Regulations

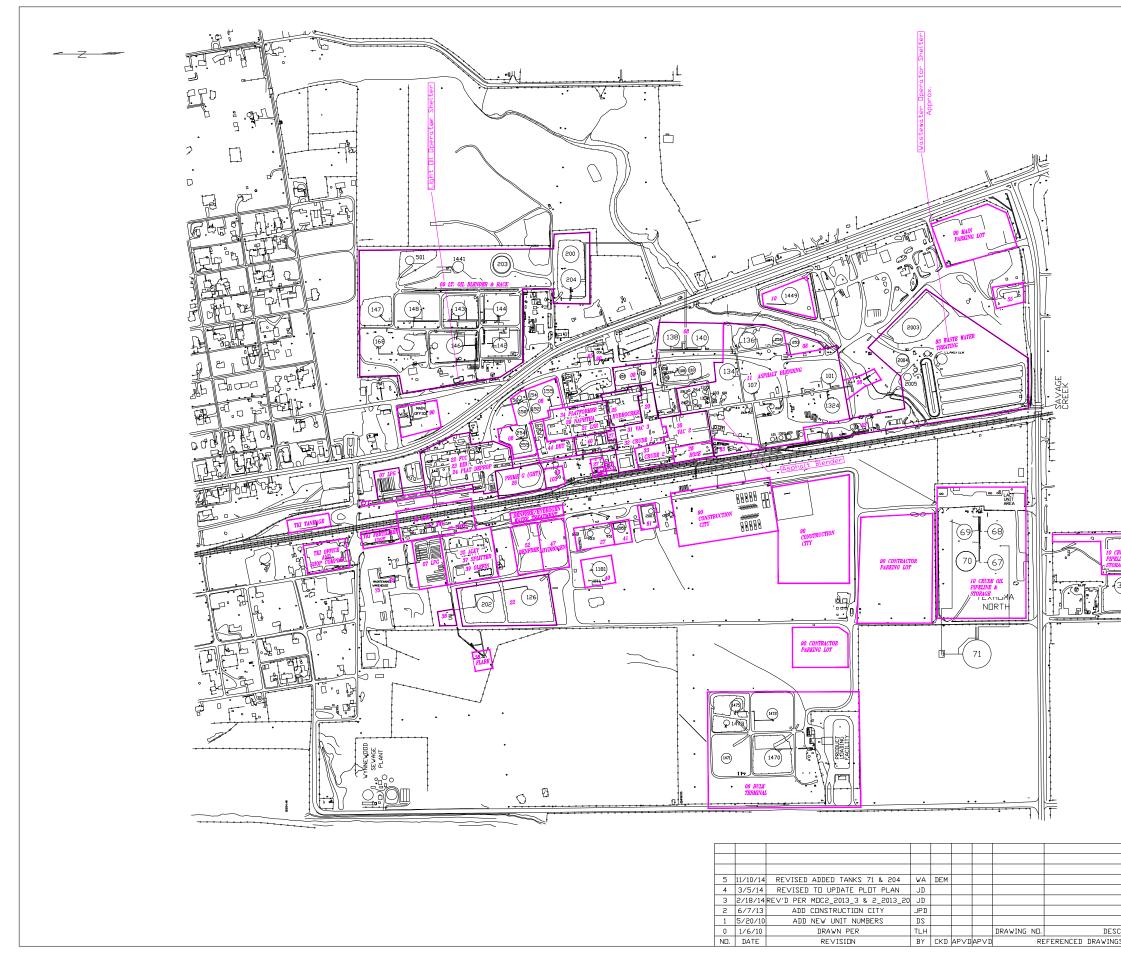
- 40 C.F.R. 112. Oil Pollution Prevention and Response; Non-Transportation-Related Onshore and Offshore Facilities, Final Rule, U.S. Environmental Protection Agency, 67 Federal Register 137 (July 17, 2002). Online at http://www.gpoaccess.gov/ecfr
- OAC 165:26. Rules for Aboveground Storage Tanks, May 15, 2013. Oklahoma Corporation Commission. Online at: <u>http://www.occ.state.ok.us</u>
- Title 265, Chapter 25. Oklahoma State Fire Marshal. Rules and Regulations for Combustible Liquids. Online at: <u>http://www.ok.gov/fire/</u>

Codes

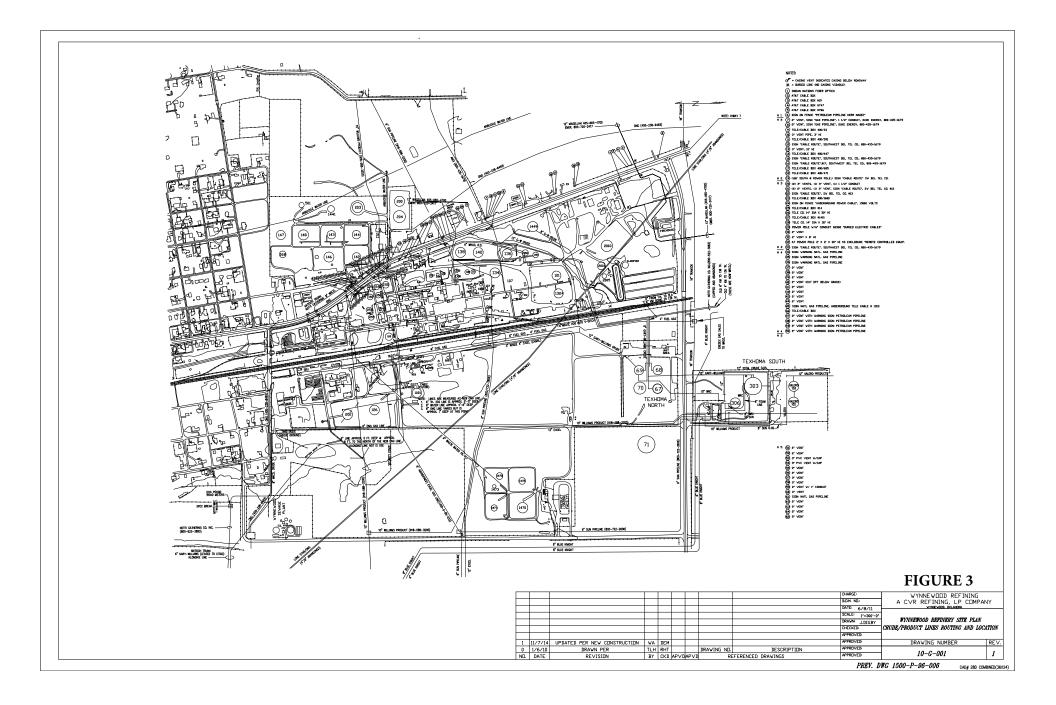
- NFPA 30, "Flammable and Combustible Liquids Code", 2003 Edition. National Fire Protection Association. Online at: <u>http://www.nfpa.org/</u>
- NFPA 30A, "Code for Motor Fuel Dispensing and Repair Garages", 2003 Edition. National Fire Protection Association. Online at: <u>http://www.nfpa.org/</u>

Standards

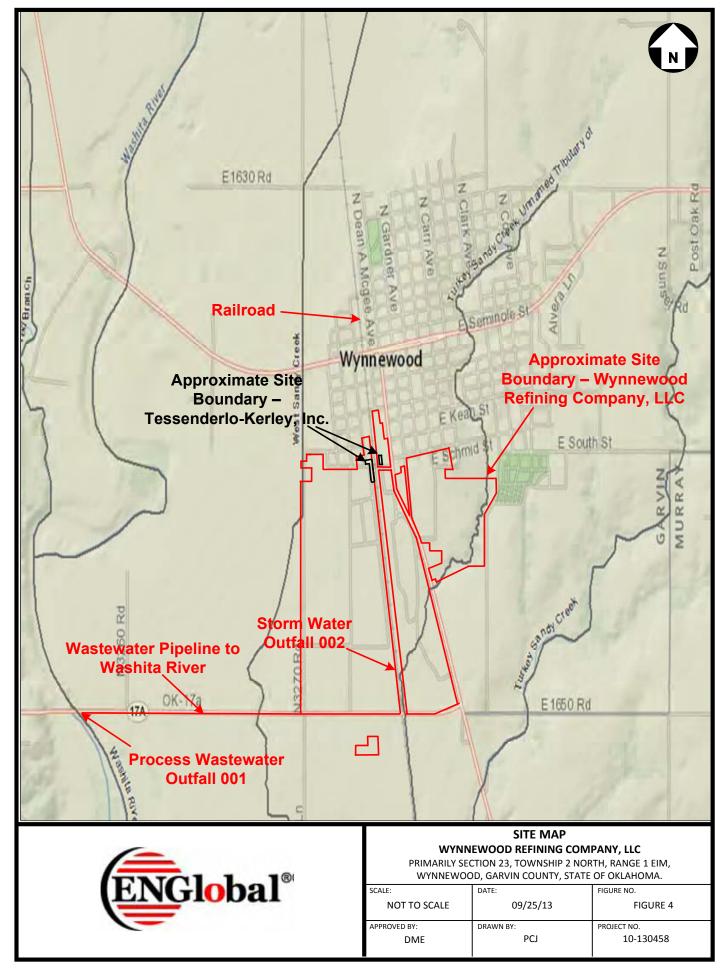

- Steel Tanks Institute, "Standard for Inspection of Aboveground Storage Tanks SP001", 3rd Ed., July 2005. Online at: <u>http://www.steeltank.com/</u>
- 9. American Petroleum Institute, API Standard 653, "Tank Inspection, Repair, Alteration, and Reconstruction", Third Edition, Addendum 1, September 2003.
 Online at: <u>http://www.api.org</u>


General

 10. U.S. Environmental Protection Agency, "SPCC Guidance for Regional Inspectors", Version 1.0, December 16, 2013. Online at: <u>http://www.epa.gov/oilspill/pdfs/guidance/SPCC_Guidance_fulltext.pdf</u>


Appendix A

Wynnewood Refining Company, LLC Figures





			NE & UNIT DESIGNATIONS	
		ZONE 1	#1 CRUDE UNIT	
			#3 VACUUM	
			#2 CRUDE UNIT	
			JE VACUUM MBROX	
			ROSE UNIT	
		3727 ZONE 2	FUEL GAS TREATER (RPG)	
			PCCU	
			DEISOBUTANIZER (DIB) PLAT DEPROPANIZER	
			LPG AREA	
			ALKY UNIT FLARE/STORM WATER	
			SPLITTER	
			OLEFIN SOUR WATER STRIPPER	
		3742	SULFUR RECOVERY UNIT	
		3726	GASOLINE HYDROTREATER	
		ZONE 3		
			DISTILLATE HYDROTREATER HYDROCRACKER UNIT	
		3740	STEAM PROD. & UTILITY DIST.	
			PLATFORMER LSR HYDROTREATER	
		3729	NAPHTHA HYDROTREATER	
		ZONE 4 3710	CRUDB OIL, PIPELINE & STORAGE	
		3711	ASPHALT BLENDING, OXIDIZER	
			LT. OIL, SOLVENT & TANK CAR LT. OIL BLENDER & RACK	
			BULK TERMINAL	
		3783 ZONE 5	WASTE WATER TREATING	
			SAFETY SECURITY	
			WAREHOUSE MAINTENANCE GENERAL	
			LAB TECHNICAL SERVICES	
			GENERAL ENVIRONMENTAL AIR ENVIRONMENTAL	
			SOLID WASTE ENVIRONMENTAL	
			OPERATIONS/GENERAL RELIABILITY & PROJECTS	
TEXHOMA SOUTH	t		BUILDINGS/GROUNDS	
8 011 303				
	· · · · · · · · · · · · · · · · · · ·			
	· Ol 🕴			
	· · · ·			
	······			
	· + ·			
			FIGURE 2	
			FIGURE 2	10150(36X24
			CAD# PRC	21015D(36x24
	B.D.M. ND.:		CAD# PRC	1015D(36X24
	B.D.M. ND.: DATE: 2/26/14 SCALE: 1'=300'-0'		CAD# PRO	xT015D(36X24)
	B.D.M. ND.: DATE: 2/26/14		CAD & PRO WYNNEWOOD REFINING COMPANY A GYMENIA BAR GARAGE WYNNEWOOD REFINERY PLOT PLAN)TO15D(36X24)
	B.D.M. ND.: DATE: 2/26/14 SCALE: 1'=300'-0' DRAWN: J. DIGBY CHECKED: APPRIVED:		CAD # PRO WYNNEWOOD REFINING COMPANY Day-Filiand Day Organistic Database WYNNEWOOD REFINERY PLOT PLAN COST CENTERS	
	B.D.M. ND.: DATE: 2/26/14 SCALE: 1'=300'-0' DRAWN: J. DIGBY CHECKED:		CAD & PRO WYNNEWOOD REFINING COMPANY A GYMENIA BAR GARAGE WYNNEWOOD REFINERY PLOT PLAN	10150(36x24)

Appendix B Site Location Maps

DME

PCJ

10-130458

BOUNDARIES ARE APPROXIMATE

LEGEND

ZONE	EXPLANATION
Α	AREAS OF 100-YEAR FLOODING
В	AREAS BETWEEN LIMITS OF THE
	100-YEAR AND 500-YEAR FLOOD ZONE
С	AREAS OF MINIMAL FLOODING
Х	AREAS LOCATED OUTSIDE THE 100-YEAR
	OR 500-YEAR FLOOD ZONES

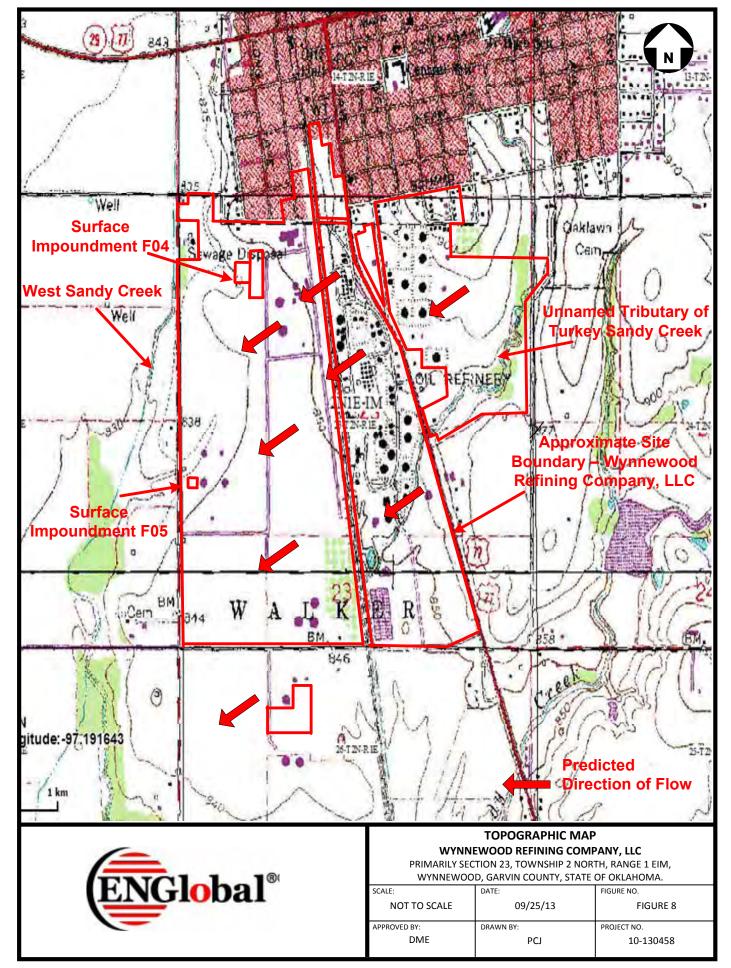
FEDERAL EMERGENCY MANAGEMENT AGENCY FLOOD MAP WYNNEWOOD REFINING COMPANY, LLC

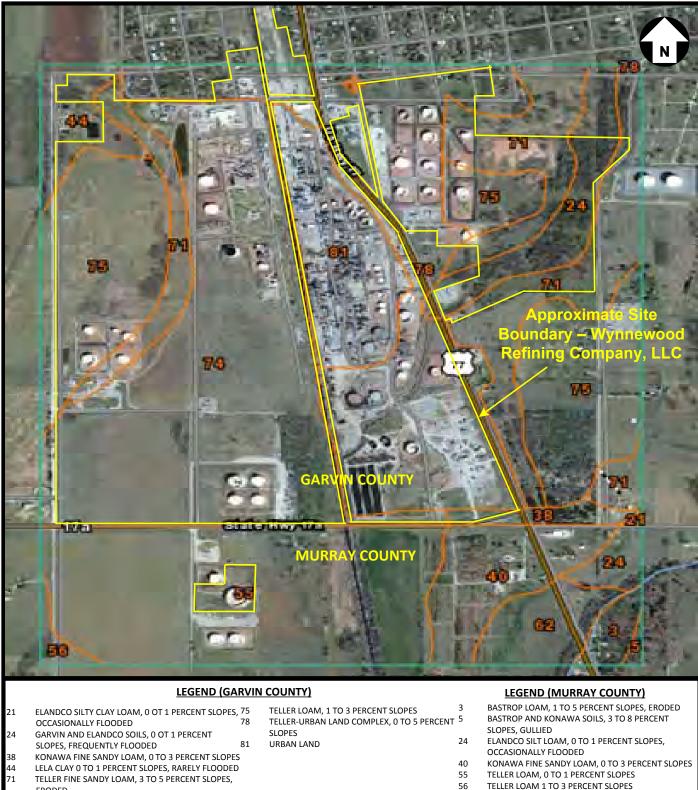
PRIMARILY SECTION 23, TOWNSHIP 2 NORTH, RANGE 1 EIM, WYNNEWOOD, GARVIN COUNTY, STATE OF OKLAHOMA.

SCALE:	DATE:	FIGURE NO.
NOT TO SCALE	09/25/13	FIGURE 6
APPROVED BY:	DRAWN BY:	PROJECT NO.
DME	PCJ	10-130458

Note: FEMA has not completed a study to determine flood hazard for portions of unincorporated Murray County therefore a complete flood map is not available at this time.

LEGEND


ZONE	EXPLANATION
A	AREAS OF 100-YEAR FLOODING
В	AREAS BETWEEN LIMITS OF THE
	100-YEAR AND 500-YEAR FLOOD ZONE
С	AREAS OF MINIMAL FLOODING
Х	AREAS LOCATED OUTSIDE THE 100-YEAR
	OR 500-YEAR FLOOD ZONES


FEDERAL EMERGENCY MANAGEMENT AGENCY FLOOD MAP WYNNEWOOD REFINING COMPANY, LLC

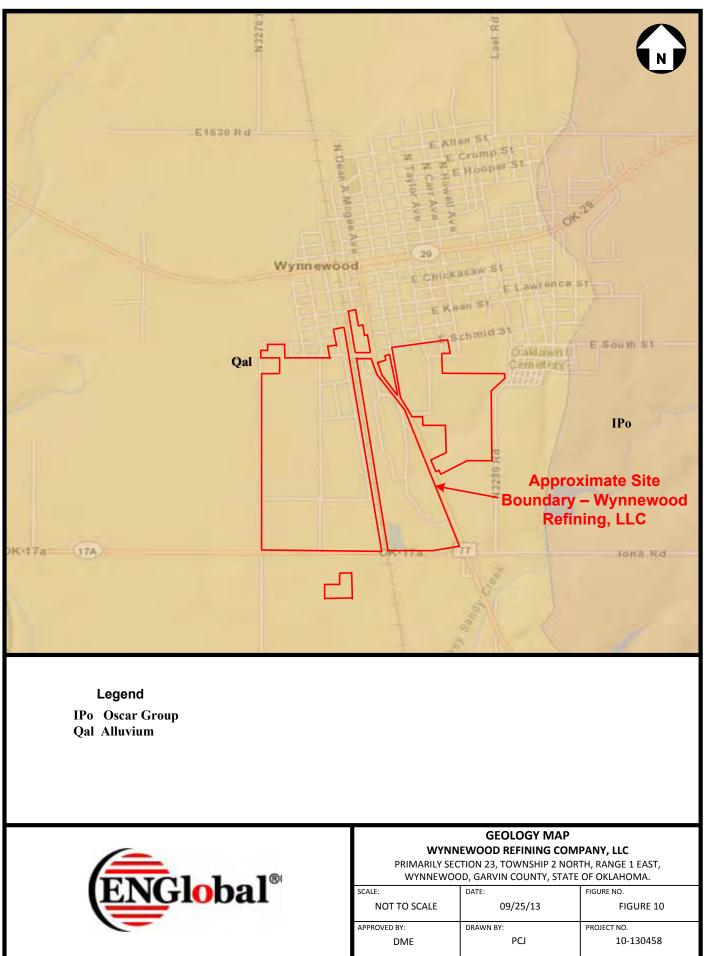
PRIMARILY SW¼ NE¼ NW¼ OF SECTION 26, TOWNSHIP 2 NORTH, RANGE 1 EIM, WYNNEWOOD, MURRAY COUNTY, STATE OF OKLAHOMA.

SCALE:	DATE:	FIGURE NO.
NOT TO SCALE	09/25/13	FIGURE 7
APPROVED BY:	DRAWN BY:	PROJECT NO.
DME	PCJ	10-130458

SOURCE: 7.5-MINUTE TOPOGRAPHIC MAP – OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY WEBSITE

- ERODED
- 74 TELLER LOAM, 0 TO 1 PERCENT SLOPES

WATONGA SILTY CLAY LOAM, 0 TO 1 PERCENT SLOPES, RARELY FLOODED


62

SOIL MAP WYNNEWOOD REFINING COMPANY, LLC

PRIMARILY SECTION 23, TOWNSHIP 2 NORTH, RANGE 1 EIM, WYNNEWOOD, GARVIN COUNTY, STATE OF OKLAHOMA.

SCALE:	DATE:	FIGURE NO.
NOT TO SCALE	09/25/13	FIGURE 9
APPROVED BY:	DRAWN BY:	PROJECT NO.
DME	PCJ	10-130458

BOUNDARIES ARE APPROXIMATE

Appendix C Certifications

Professional Engineer Certification

The undersigned Registered Professional Engineer is familiar with the requirements of Part 112 of Title 40 of the *Code of Federal Regulations* (40 C.F.R. Part 112) and has visited and examined the facility, or has supervised examination of the facility by appropriately qualified personnel.

The undersigned Registered Professional Engineer attests that this Spill Prevention, Control, and Countermeasure Plan has been prepared in accordance with good engineering practice, including consideration of applicable industry standards and the requirements of 40 C.F.R. Part 112; that procedures for required inspections and testing have been established; and that this Plan is adequate for the facility. This certification shall in no way relieve the owner/operator of the duty to prepare and fully implement this Plan in accordance with 40 C.F.R. Part 112.

Professional Engineer:	Deren M. Ertugrul, P.I	83.0 0.0
Signature:	Decen M Eu	24595
Registration Number:	24595	OKLAHOMA
State of Registration:	Oklahoma	

Date of Certification:

7/28/2015

Management Approval

WRC is committed to preventing the discharge of oil in quantities that may be harmful into or upon navigable waters of the United States and adjoining shorelines from the Wynnewood, Oklahoma facility. This Plan has the full approval of WRC management at a level of authority to commit the necessary resources to fully implement the Plan. WRC has committed the necessary resources to implement the measures described in this Plan.

The Vice President and General Manager is the Designated Person Accountable for Oil Spill Prevention at the facility and has the authority to commit the necessary resources to implement this Plan.

Authorized Facility Representative:		Michael Swanson	
Title:	Vice President and Gene	eral Manager	
Signature:			_
Date:			

Certification of the Applicability of the Substantial Harm Criteria

Facility Name: Wynnewood Refining Company, LLCFacility Address: 906 South Powell Ave.Wynnewood, OK 73098

- Does the facility transfer oil over water to or from vessels and does the facility have a total oil storage capacity greater than or equal to 42,000 gallons?
 Yes No x
- 2. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and does the facility lack secondary containment that is sufficiently large to contain the capacity of the largest aboveground oil storage tank plus sufficient freeboard to allow for precipitation within any aboveground storage tank area?

Yes x No

3. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and is the facility located at a distance (as calculated using the appropriate formula in 40 C.F.R. Part 112 Appendix C, Attachment C-III or a comparable formula) such that discharge from the facility could cause injury to fish and wildlife and sensitive environments?

Yes x No

4. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and is the facility located at a distance (as calculated using the appropriate formula in 40 C.F.R. Part 112 Appendix C, Attachment C-III or a comparable formula) such that a discharge from the facility would shut down a public drinking water intake?

Yes No x

Certification of the Applicability of the Substantial Harm Criteria (Cont'd)

5. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and has the facility experienced a reportable oil spill in an amount greater than or equal to 10,000 gallons within the last 5 years?

Yes No x

Certification

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals responsible for obtaining this information, I believe that the submitted information is true, accurate, and complete.

Signature

Title

Name

Date

Appendix D Plan Review Logs

Table 3

Five Year Review Log

Review Date	Plan Amendment		Name and Signature of Person Authorized to
	Will Amend	Will Not Amend	Name and Signature of Person Authorized to Review this Plan
09/30/2003	Revised SPCC Plan Developed		Name: Dave Roderick Signature:
09/30/2008		Will not amend.	Name: Sidney G. Cabbiness Signature
09/30/2013	Amending		Name: Sidney G. Cabbiness Signature:
			0
1		the second state of the se	

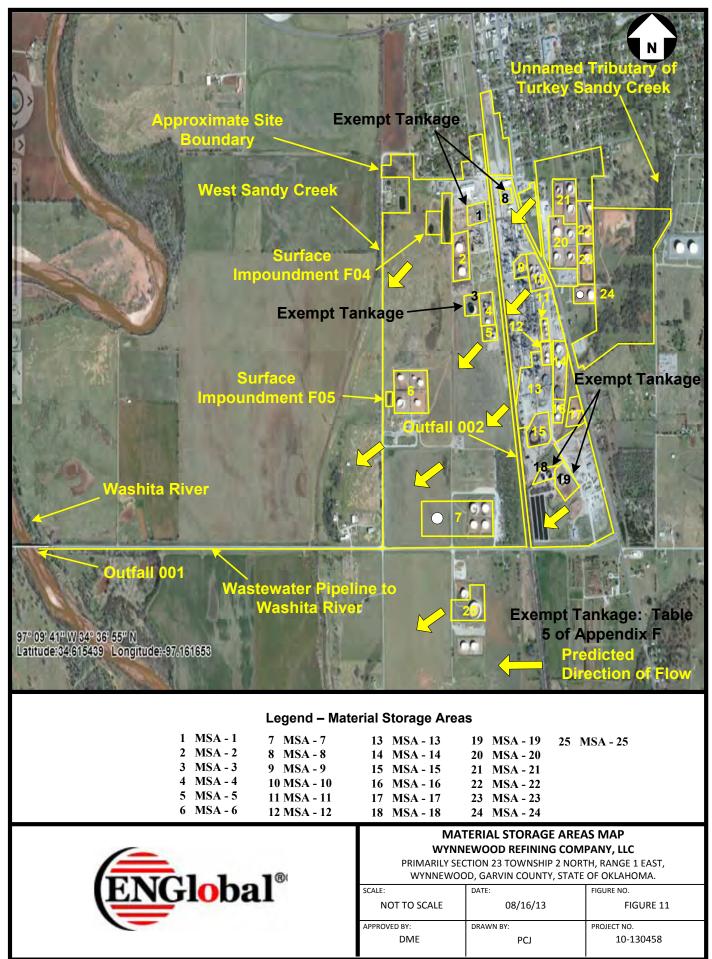
¹ Pursuant to 40 C.F.R. §112.5(b), I have completed a review and evaluation of the SPCC Plan for WRC on the review date, and will (will not) amend the Plan as a result.

Table 4aAdministrative Amendment Log

Review Date	Revision Number	Description of Administrative Amendment	Revision Author	Revision Authorized By	Revision Approved By

Table 4b

Technical Amendment Log


Review Date	Revision Number	Description of Technical Amendment	P.E. Name	Licensing State	Registration Number
09/30/2013 through July 2015		 Addition of Tessenderlo-Kerley, Inc. (TKI) to facility site plan.¹ Increase secondary containment capacity, i.e., raise berms on the following tankage areas, in accordance with implementation plan (Table 22A): 150, 152, 154 and 155 147 146 126 and 202 111, 256 and 257 108, 110, 250 and 251 501 203-completed with construction of 204; combined containment of 203, 200, & 204 dikes 136 and 138 252 and 253 1449-completed 2014 101 and 1324 67, 68, 69 and 70 303 Addition of the following processing units: Benfree Unit and Hydrogen Unit. Completed Nov. 2014 Commissioning of the following new tanks: 110, 204 and 71. Dikes for 71 and 204 (combined with 203 & 200 dikes) sized for 100% tk capacity plus freeboard for 25-yr 24-hr storm. Completed Dec. 2014 	Deren M. Ertugrul, P.E.	ОК	24595

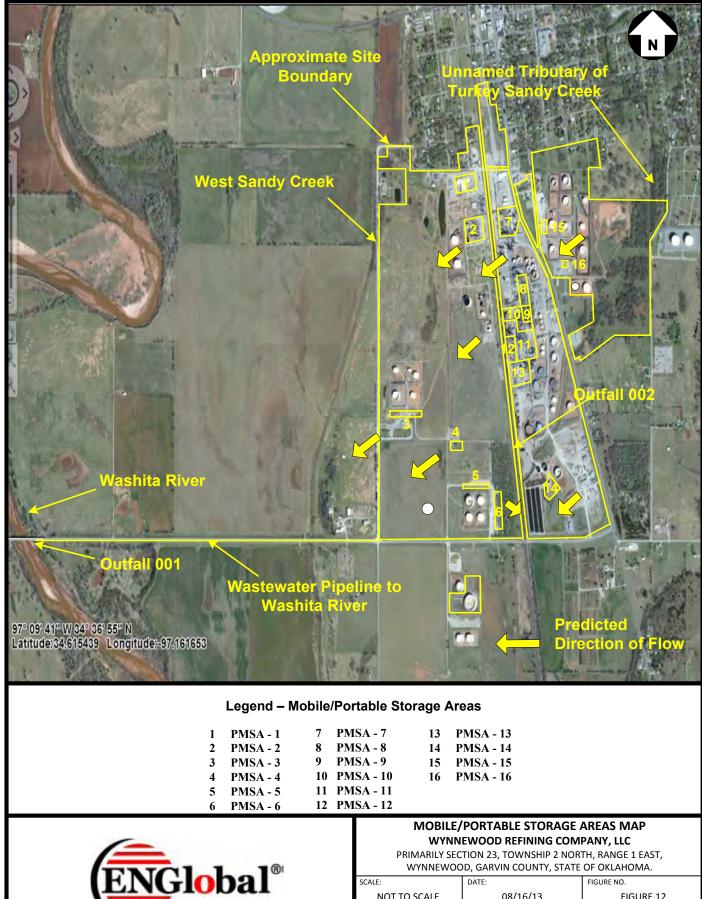
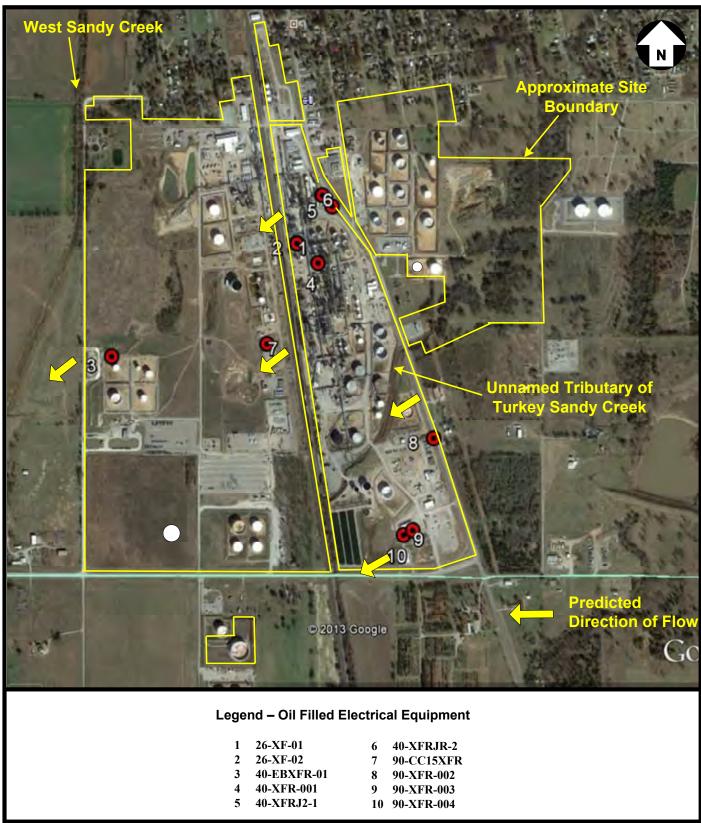

¹ TKI is excluded from this Plan for purposes of SPCC compliance.

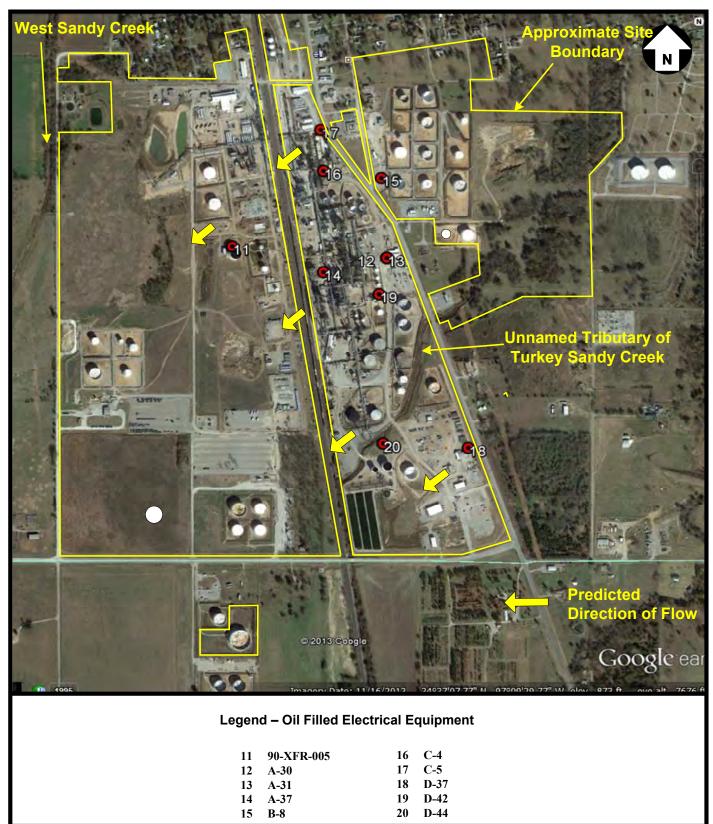
Table 4b Technical Amendment Log

Review Date	Description of Technical Amendment	P.E. Name	Licensing State	Registration Number


Appendix E Oil Storage Maps

WYNNEWOOD, GARVIN COUNTY, STATE OF OKLAHOMA.			
SCALE:	DATE:	FIGURE NO.	
NOT TO SCALE	08/16/13	FIGURE 12	
APPROVED BY: DME	DRAWN BY: PCJ	PROJECT NO. 10-130458	

BOUNDARIES ARE APPROXIMATE

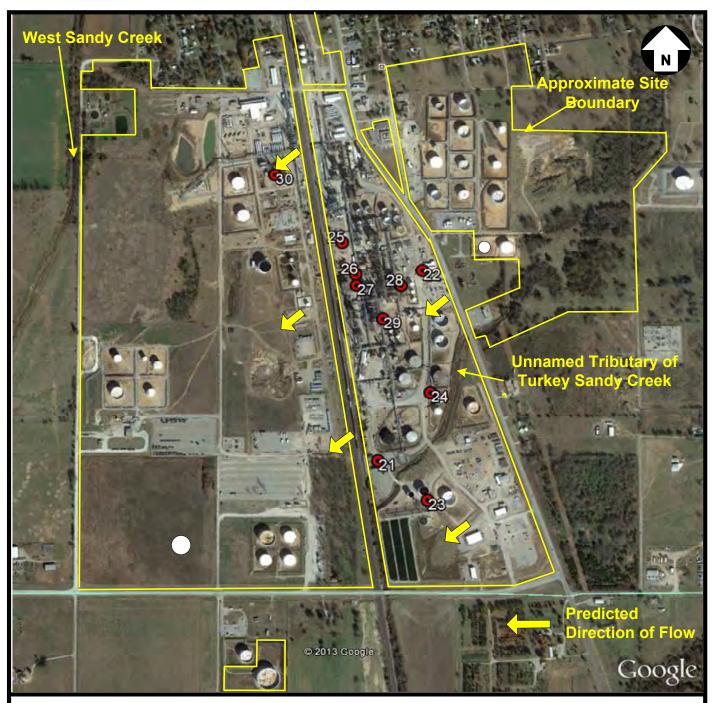


OIL-FILLED ELECTRICAL STORAGE AREAS MAP WYNNEWOOD REFINING COMPANY, LLC

PRIMARILY SECTION 23, TOWNSHIP 2 NORTH, RANGE 1 EAST, WYNNEWOOD, GARVIN COUNTY, STATE OF OKLAHOMA.

SCALE:	DATE:	FIGURE NO.
NOT TO SCALE	08/16/13	FIGURE 13
APPROVED BY:	DRAWN BY:	PROJECT NO.
DME	PCJ	10-130458

BOUNDARIES ARE APPROXIMATE



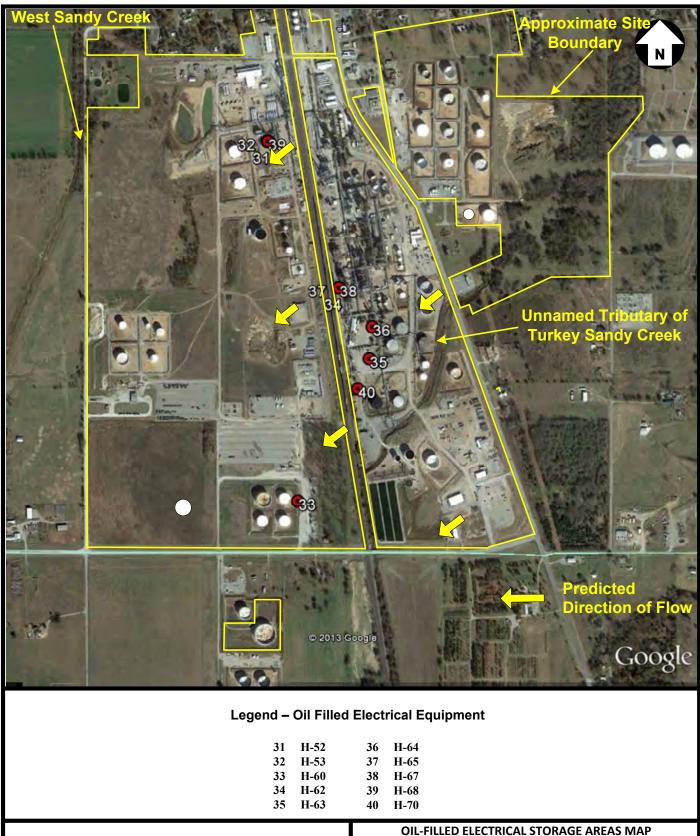
OIL-FILLED ELECTRICAL STORAGE AREAS MAP WYNNEWOOD REFINING COMPANY, LLC PRIMARILY SECTION 23, TOWNSHIP 2 NORTH, RANGE 1 EAST,

WYNNEWOOD, GARVIN COUNTY, STATE OF OKLAHOMA.

SCALE:	DATE:	FIGURE NO.
NOT TO SCALE	08/16/13	FIGURE 14
APPROVED BY:	DRAWN BY:	PROJECT NO.
DME	PCJ	10-130458

Legend – Oil Filled Electrical Equipment

21	D-48	26	E-23
22	D-52	27	E-25
23	D-53	28	G-90
24	D-54	29	Н-33
25	E-21	30	H-51

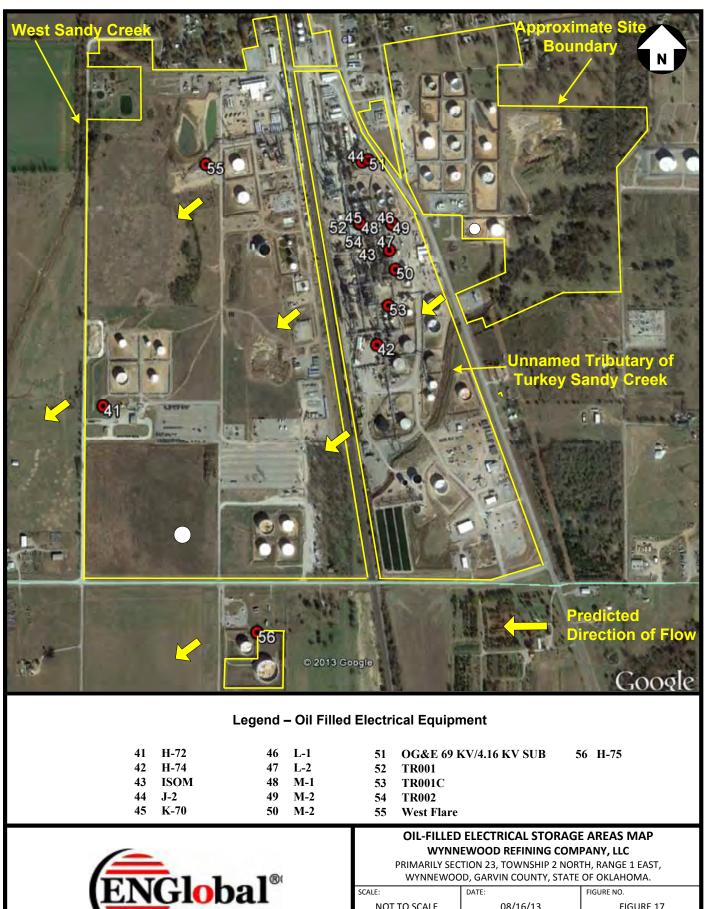


OIL-FILLED ELECTRICAL STORAGE AREAS MAP WYNNEWOOD REFINING COMPANY, LLC

PRIMARILY SECTION 23, TOWNSHIP 2 NORTH, RANGE 1 EAST, WYNNEWOOD, GARVIN COUNTY, STATE OF OKLAHOMA.

WYNNEWOOD, GARVIN COUNTY, STATE OF OKLAHOWA.			
SCALE:	DATE:	FIGURE NO.	
NOT TO SCALE	08/16/13	FIGURE 15	
APPROVED BY:	DRAWN BY:	PROJECT NO.	
DME	PCJ	10-130458	

BOUNDARIES ARE APPROXIMATE



Global®

WYNNEWOOD REFINING COMPANY, LLC

PRIMARILY SECTION 23, TOWNSHIP 2 NORTH, RANGE 1 EAST, WYNNEWOOD, GARVIN COUNTY, STATE OF OKI AHOMA

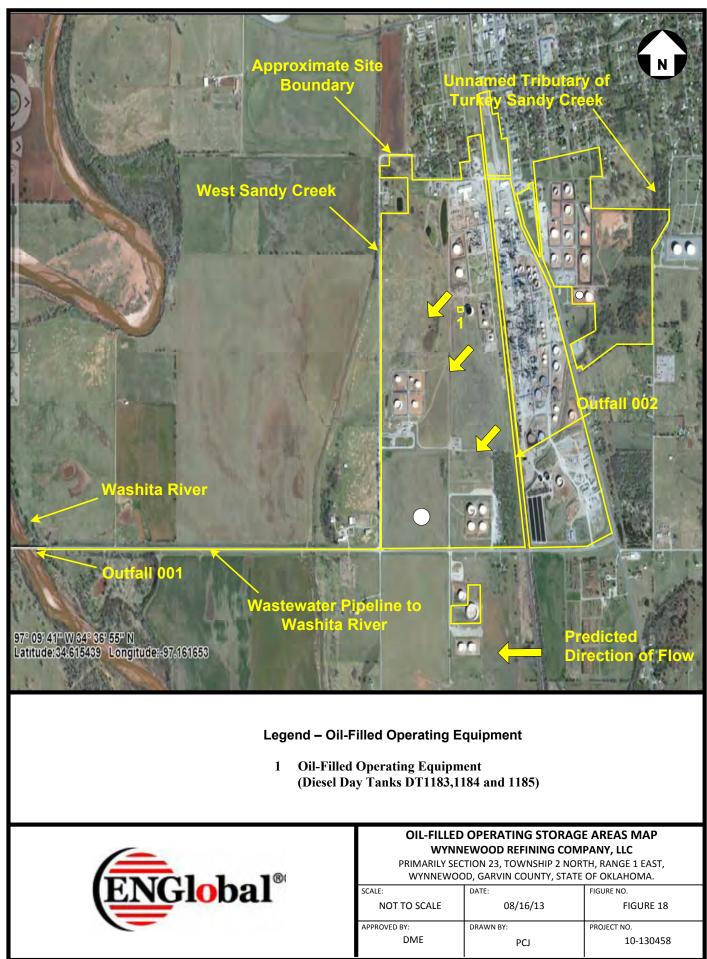
WINNEWOOD, GARVIN COUNTY, STATE OF ORLAHOMA.			
SCALE:	DATE:	FIGURE NO.	
NOT TO SCALE	08/16/13	FIGURE 16	
APPROVED BY:	DRAWN BY:	PROJECT NO.	
DME	PCJ	10-130458	

NOT TO SCALE

DME

APPROVED BY:

08/16/13


PCJ

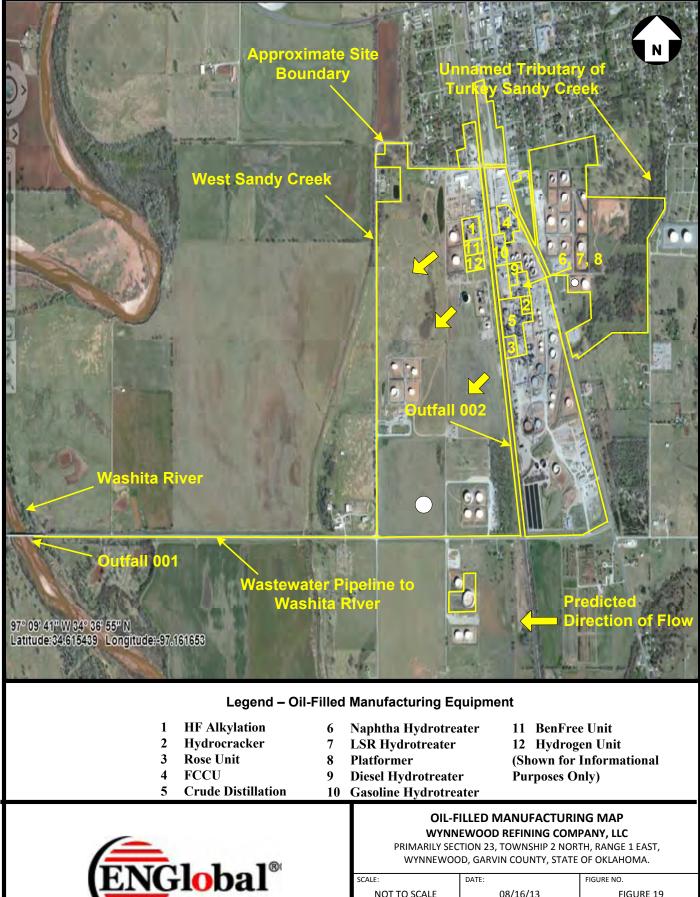
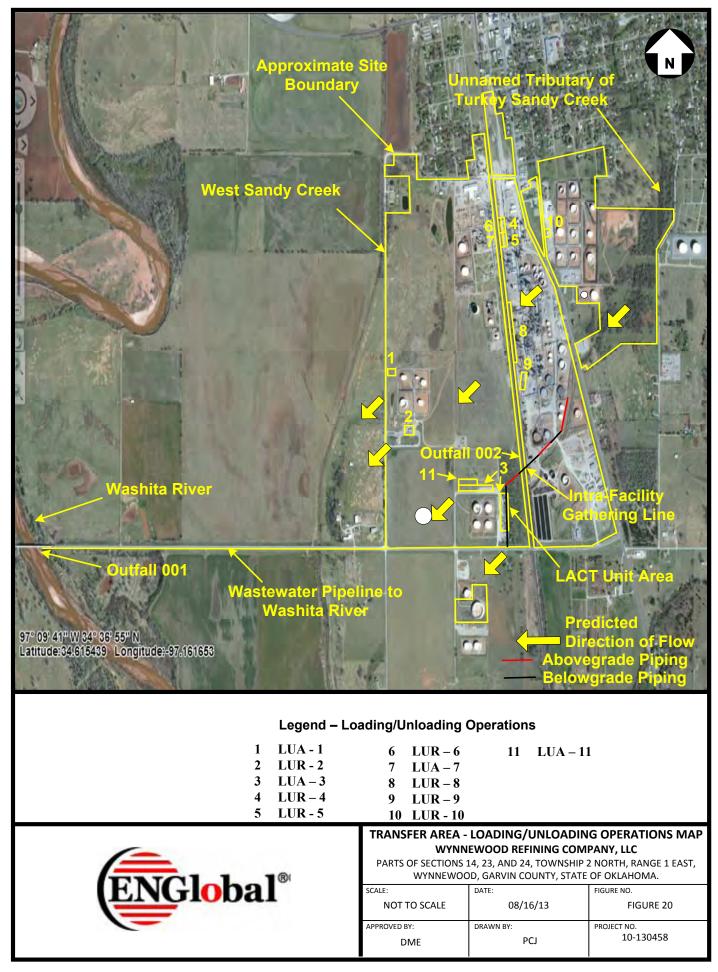

DRAWN BY:

FIGURE 17


10-130458

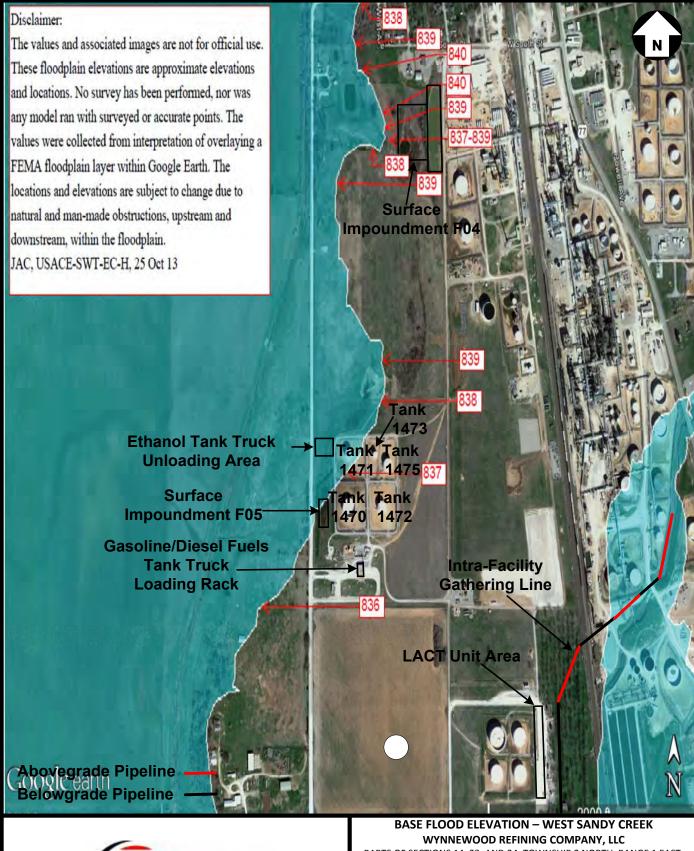
PROJECT NO.

SCALE:	DATE:	FIGURE NO.
NOT TO SCALE	08/16/13	FIGURE 19
APPROVED BY:	DRAWN BY:	PROJECT NO.
DME	PCJ	10-130458

ENGlobal®	SCALE: NOT TO SCALE APPROVED BY: DME	DATE: 08/16/13 DRAWN BY: PCJ	FIGURE NO. FIGURE 21 PROJECT NO. 10-130458
	WYNI PARTS OF SECTIONS	ANSFER AREA - PIPIN NEWOOD REFINING CON 14, 23, AND 24, TOWNSHIP OD, GARVIN COUNTY, STAT	IPANY, LLC 2 NORTH, RANGE 1 EAST,
Lu 1 LUA - 1 2 LUR - 2 3 LUA - 3 4 LUR - 4 5 LUR - 5	egend – Piping 6 LUR – 6 7 LUA – 7 8 LUR – 8 9 LUR – 9 10 LUR - 10	11 LUA – 11	
Outfall 001 Wastewater Pipeli Washita Rive 97° 09' 41" W 34° 36' 55" N Latitude: 34.615439 Longitude: -97.161653	ine to	Abov	CT Unit Area edicted rection of Flow egrade Piping vgrade Piping
Washita River		ank: 007 1002- 1002- 1002- 1002- 1002- 1002- 1002- 1002- 1002- 1002- 1002- 1002- 1002- 1002- 1002- 1002- 1002- 1007 1007 1007 1007 1007 1007 1007 100	tors tec-Facility troing Line
West Sandy Creek		inamed Tributal ur Cy Sandy Cr	ry of
Approximate	Site	THE F	

1.40

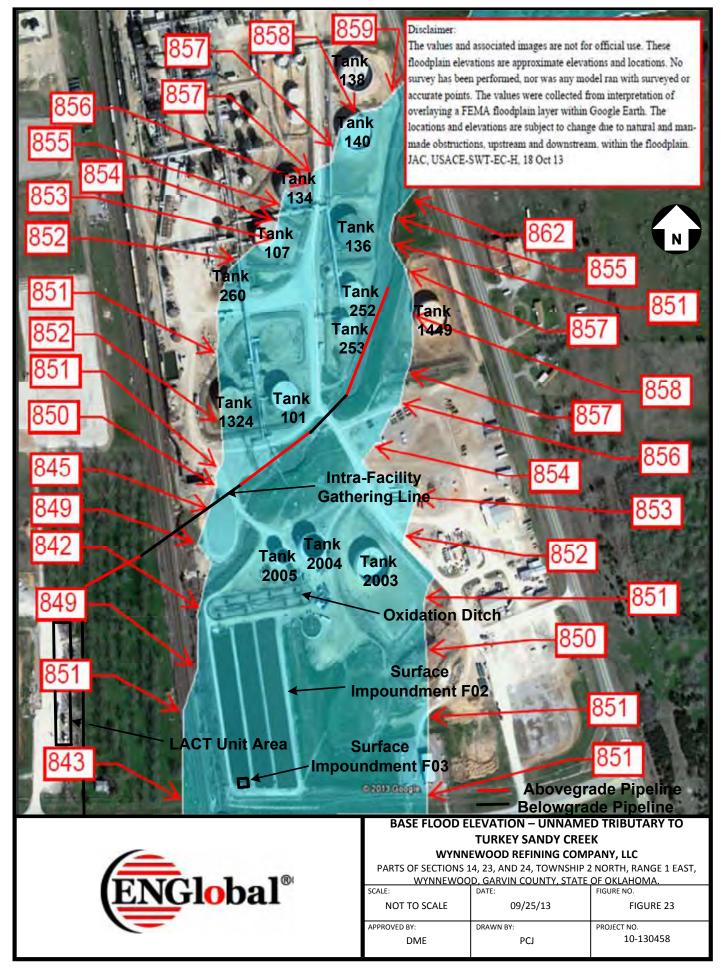
-


大 の の で で の

87 233

12.

A allow


202

PARTS OF SECTIONS 14, 23, AND 24, TOWNSHIP 2 NORTH, RANGE 1 EAST, WYNNEWOOD, GARVIN COUNTY, STATE OF OKLAHOMA.

SCALE:	DATE:	FIGURE NO.
NOT TO SCALE	09/25/13	FIGURE 22
APPROVED BY:	DRAWN BY:	PROJECT NO.
DME	PCJ	10-130458

Appendix F Oil Storage Inventory

SPCC Exempt Tankage

Tank	Number	Regulatory Citation
MSA – 1		
6D-1	D-191	
6D-4	D-1401	
D-170	D-1402	
D-172	D-1403	
D-174	D-1404	67 FR 47076 (July 17, 1992)
D-176	D-1405	
D-178	D-1406	
D-180	D-1407	
D-190	D-1408	
MSA – 3		
1181		40 C.F.R. §112.1(b)
MSA – 8		
182	185	
183	186	67 FR 47076 (July 17, 1992)
184	187	
MSA – 18		
2003		40 C.F.R. §112.1(d)(6)
MSA – 19		
2004	2005	40 C.F.R. §112.1(d)(6)

Material Storage Areas – Containment, Overfill Protection, Testing and Inspections

Tank Number	Tank Material/Fabrication Type/ Foundation Design	Maximum Capacity (Bbls)	Contents	Type of Secondary Containment/ Drainage Control	Overfill Protection and Testing & Inspections
MSA-1					
6D-1 ¹	Steel Single Wall ³ , Shop-Fabricated, Elevated on Supports	564	Alky Treat Charge	(18)	(18)
6D-4 ¹	Steel Single Wall ³ , Shop-Fabricated, Elevated on Supports	564	Alky Treat Charge	(18)	(18)
D-170 ¹	Steel Single Wall ³ , Shop-Fabricated, Elevated on Supports	712	Normal Butane	(18)	(18)
D-172 ¹	Steel Single Wall ³ , Shop-Fabricated, Elevated on Supports	712	Normal Butane	(18)	(18)
D-174 ¹	Steel Single Wall ³ , Shop-Fabricated, Elevated on Supports	712	Propane	(18)	(18)
D-176 ¹	Steel Single Wall ³ , Shop-Fabricated, Elevated on Supports	712	Propane	(18)	(18)
D-178 ¹	Steel Single Wall ³ , Shop-Fabricated, Elevated on Supports	712	Normal Butane	(18)	(18)
D-180 ¹	Steel Single Wall ³ , Shop-Fabricated, Elevated on Supports	712	Iso-Butane	(18)	(18)
D-190 ¹	Steel Single Wall ³ , Shop-Fabricated, Elevated on Supports	565	Alky Treat Charge	(18)	(18)
D-191 ¹	Steel Single Wall ³ , Shop-Fabricated, Elevated on Supports	1,164	Alky Treat Charge	(18)	(18)
D-1401 ¹	Steel Single Wall ³ , Shop-Fabricated, Elevated on Supports	1,581	Normal Butane	(18)	(18)
D-1402 ¹	Steel Single Wall ³ , Shop-Fabricated, Elevated on Supports	1,581	Normal Butane	(18)	(18)
D-1403 ¹	Steel Single Wall ³ , Shop-Fabricated, Elevated on Supports	1,581	Normal Butane	(18)	(18)
D-1404 ¹	Steel Single Wall ³ , Shop-Fabricated, Elevated on Supports	1,581	Normal Butane	(18)	(18)
D-1405 ¹	Steel Single Wall ³ , Shop-Fabricated, Elevated on Supports	1,581	Normal Butane	(18)	(18)
D-1406 ¹	Steel Single Wall ³ , Shop-Fabricated, Elevated on Supports	2,143	Propylene	(18)	(18)
D-1407 ¹	Steel Single Wall ³ , Shop-Fabricated, Elevated on Supports	2,143	Propylene	(18)	(18)
D-1408 ¹	Steel Single Wall ³ , Shop-Fabricated, Elevated on Supports	2,143	Propylene	(18)	(18)
MSA-2			· · · · · · · · · · · · · · · · · · ·		
126 ¹	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand	79,500	Gas Oil/LCO	(5, 6, 7, 8)	(10, 11, 12, 13, 14, 15)
202^{1}	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand	80,000	Gas Oil	(5, 6, 7, 8)	(10, 11, 12, 13, 14, 15)
MSA-3					
1181 ¹	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Asphalt	100,000	Arbuckle Water	(16)	(16)
MSA-4					
951 ¹	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand	10,000	Out-of-Service		
953 ¹	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand	10,000	Out-of-Service		
2051 ¹	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand	20,000	Sour Water	(5, 6, 7, 8)	(10, 11, 12, 13, 14, 15)
MSA-5					
2007^{1}	Steel Single Wall ⁴ , Field-Erected, Concrete Slab	5,100	API Separator Sludge	(5, 6, 7, 8)	(10, 11, 12, 13, 14, 15)

Table 6 (Cont'd)

Material Storage Areas - Containment, Overfill Protection, Testing and Inspections

Tank Number	Tank Material/Fabrication Type/ Foundation Design	Maximum Capacity (Bbls)	Contents	Type of Secondary Containment/ Drainage Control	Overfill Protection and Testing & Inspections
MSA-6					
1470^{1}	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand	79,600	Regular Unleaded	(5, 6, 7, 8)	(10, 11, 12, 13, 14, 15)
1471 ¹	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand	34,800	Unleaded Premium	(5, 6, 7, 8)	(10, 11, 12, 13, 14, 15)
1472 ¹	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand	34,700	Ultra Low Sulfur Diesel	(5, 6, 7, 8)	(10, 11, 12, 13, 14, 15)
1473 ¹	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand	9,600	Unleaded Premium	(5, 6, 7, 8)	(10, 11, 12, 13, 14, 15)
1475 ¹	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand	34,700	Ultra Low Sulfur Diesel	(5, 6, 7, 8)	(10, 11, 12, 13, 14, 15)
1476 ¹	Steel Single Wall ⁴ , Shop-fabricated, Concrete Slab	170	Out-of-Service		
MSA-7					
67 ¹	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand	68,884	Crude Oil	(5, 6, 7, 8)	(10, 11, 12, 13, 14, 15)
68^{1}	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand	68,884	Crude Oil	(5, 6, 7, 8)	(10, 11, 12, 13, 14, 15)
69 ¹	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand	68,884	Crude Oil	(5, 6, 7, 8)	(10, 11, 12, 13, 14, 15)
70^{1}	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Asphalt	150,000	Crude Oil	(5, 6, 7, 8)	(10, 11, 12, 13, 14, 15)
71 ¹	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Asphalt	250,000	Crude Oil	(5, 6, 7, 8)	(10, 11, 12, 13, 14, 15)
MSA-8					
182^{1}	Steel Single Wall ³ , Field-Erected, Elevated on Supports	1,427	Mixed Butane	(18)	(18)
183 ¹	Steel Single Wall ³ , Field-Erected, Elevated on Supports	1,427	Mixed Butane	(18)	(18)
184^{1}	Steel Single Wall ³ , Field-Erected, Elevated on Supports	1,533	Mixed Butane	(18)	(18)
185 ¹	Steel Single Wall ³ , Field-Erected, Elevated on Supports	1,533	Iso-Butane	(18)	(18)
186 ¹	Steel Single Wall ³ , Field-Erected, Elevated on Supports	2,370	Iso-Butane	(18)	(18)
187 ¹	Steel Single Wall ³ , Field-Erected, Elevated on Supports	2,400	Iso-Butane	(18)	(18)
MSA-9					
254 ¹	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand	24,800	Cat Gasoline	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)
255 ¹	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand	24,800	Straight Run Gasoline	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)
MSA-10					
150 ¹	Steel Single Wall ⁴ , Field-Erected, Sand	24,800	Platformate	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)
152 ¹	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Asphalt	24,800	Platformate	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)
154 ¹	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand	24,800	Gasoline	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)
155 ¹	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Asphalt	40,000	Sour Naptha	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)
156 ¹	Steel Single Wall ⁴ , Field-Erected, Unknown	2,500	Out-of-Service		

	Material Storage Areas - Containment, Overini Protection, Testing and Inspections							
Tank Number	Tank Material/Fabrication Type/ Foundation Design	Maximum Capacity (Bbls)	Contents	Type of Secondary Containment/ Drainage Control	Overfill Protection and Testing & Inspections			
MSA-11								
111 ¹	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand	5,000	JP-8	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)			
256^{1}	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand	5,000	JP-5	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)			
257 ¹	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand	10,000	Unified Naphtha	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)			
MSA-12								
108^{1}	Steel Single Wall ⁴ , Field-Erected, Sand	13,800	JP-8	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)			
110 ¹	Steel Single Wall ⁴ , Field-Erected, Sand	15,000	Light Cycle Oil/DSL	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)			
250^{1}	Steel Single Wall ⁴ , Field-Erected, Sand	10,000	KW1-1/100W	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)			
251 ¹	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand	10,000	100W	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)			
MSA-13								
107^{1}	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand	78,000	Asphalt (64-22)	(5, 6, 7, 8, 9, 19)	(10, 11, 12, 13, 14, 15)			
120 ¹	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand	2,800	Out-of-Service					
134 ¹	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand	80,000	Asphalt VTB/64-22	(5, 6, 7, 8, 9, 19)	(10, 11, 12, 13, 14, 15)			
260^{1}	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand	5,100	Light Distillate	(7, 9)	(10, 11, 12, 13, 14, 15)			
262^{1}	Steel Single Wall ⁴ , Field-Erected, Sand	5,100	Dirty VAS Gas Oil	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)			
263 ¹	Steel Single Wall ⁴ , Field-Erected, Sand	5,100	Slop Oil	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)			
264^{1}	Steel Single Wall ⁴ , Field-Erected, Sand	5,100	Asphalt	(5, 6, 7, 8, 9, 19)	(10, 11, 12, 13, 14, 15)			
265^{1}	Steel Single Wall ⁴ , Field-Erected, Sand	5,100	PMA Base Stock	(5, 6, 7, 8, 9, 19)	(10, 11, 12, 13, 14, 15)			
269^{1}	Steel Single Wall ⁴ , Field-Erected, Sand	5,100	MC Base Asphalt	(5, 7, 9, 19)	(10, 11, 12, 13, 14, 15)			
601^{1}	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand	5,000	Asphalt Resins	(5, 6, 7, 8, 9, 19)	(10, 11, 12, 13, 14, 15)			
1321 ¹	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand	5,000	Roofing Asphalt	(5, 7, 9, 19)	(10, 11, 12, 13, 14, 15)			
1323 ¹	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand	4,512	Coating Asphalt	(5, 7, 9, 19)	(10, 11, 12, 13, 14, 15)			
1331 ¹	Steel Single Wall ⁴ , Field-Erected, Concrete Slab	5,000	PMA Asphalt	(5, 6, 7, 8, 9, 19)	(10, 11, 12, 13, 14, 15)			
1332^{1}	Steel Single Wall ⁴ , Field-Erected, Concrete Slab	5,000	PMA Asphalt	(5, 6, 7, 8, 9, 19)	(10, 11, 12, 13, 14, 15)			
1333 ¹	Steel Single Wall ⁴ , Field-Erected, Concrete Slab	5,000	PMA Asphalt	(5, 6, 7, 8, 9, 19)	(10, 11, 12, 13, 14, 15)			
1337 ²	Steel Single Wall ⁴ , Field-Erected, Concrete Slab	2,000	Closed					
1338 ²	Steel Single Wall ⁴ , Field-Erected, Concrete Slab	2,000	Closed					
2002 ¹	Steel Single Wall ⁴ , Shop-fabricated, Concrete Slab	100	Out-of-Service					
MSA-14								
136 ¹	Steel Single Wall ⁴ , Field-Erected, Sand	75,470	Asphalt VTB	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)			
138 ¹	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Asphalt	80,000	Light Distillate	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)			
140^{1}	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Asphalt	80,000	Heavy Distillate	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)			

 Table 6 (Cont'd)

 Material Storage Areas - Containment, Overfill Protection, Testing and Inspections

Tank NumberTank Material Fabrication Type/ Foundation DesignMaximum Capacity (Bbb)ContentsType of Secondary Containment/ Drainage ControlOverfill Protection and Testing & Inspections1011Steel Single Wall*, Field-Erceted, Sand66,590Asphalt VTB ($5, 6, 7, 8, 9, 19$)(10, 11, 12, 13, 14, 15)1324*Steel Single Wall*, Field-Erceted, Concrete Ringwall/Sand26,800Shurry Oil($5, 6, 7, 8, 9, 19$)(10, 11, 12, 13, 14, 15)1324*Steel Single Wall*, Field-Erceted, Concrete Ringwall/Sand25,000Ultra Low Suffur Disest($5, 6, 7, 8, 9$)(10, 11, 12, 13, 14, 15)1449*Steel Single Wall*, Field-Erceted, Concrete Ringwall/Sand76,425Raw Crude($5, 6, 7, 8, 9$)(10, 11, 12, 13, 14, 15)1449*Steel Single Wall*, Field-Erceted, Concrete Ringwall/Sand76,425Raw Crude(16)(16)1449*Steel Single Wall*, Field-Erceted, Concrete Ringwall/Sand26,000Storm Water(17)(17)2003*Steel Single Wall*, Field-Erceted, Concrete Ringwall/Sand20,000Waste Water(17)(17)142*Steel Single Wall*, Field-Erceted, Sand55,000Ulneaded Gasoline($5, 6, 7, 8, 9$)($10, 11, 12, 13, 14, 15$)143*Steel Single Wall*, Field-Erceted, Sand55,000Ulneaded Gasoline($5, 6, 7, 8, 9$)($10, 11, 12, 13, 14, 15$)144*Steel Single Wall*, Field-Erceted, Sand55,000Ulneaded Gasoline($5, 6, 7, 8, 9$)($10, 11, 12, 13, 14, 15$)144*Steel Single Wall*, Field-Erceted, Sand<		Material Storage Areas - Contai	Material Storage Areas - Containment, Overfill Protection, Testing and Inspections							
	Number			Contents						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
MSA.16 Construction 252 ¹ Steel Single Wall ¹ , Field-Erected, Sand 26,800 Slurry Oil (5, 6, 7, 8, 9) (10, 11, 12, 13, 14, 15) 253 ¹ Steel Single Wall ¹ , Field-Erected, Concrete Ringwall/Sand 25,000 Ultra Low Sulfur Diesel (5, 6, 7, 8, 9) (10, 11, 12, 13, 14, 15) MSA.17 Steel Single Wall ¹ , Field-Erected, Concrete Ringwall/Sand 76,425 Raw Crude (5, 6, 7, 8, 9) (10, 11, 12, 13, 14, 15) MSA.18 Steel Single Wall ¹ , Field-Erected, Concrete Ringwall/Sand 86,000 Storm Water (16) (16) 2003 ¹ Steel Single Wall ¹ , Field-Erected, Concrete Ringwall/Sand 54,356 Waste Water (17) (17) 2004 ¹ Steel Single Wall ¹ , Field-Erected, Concrete Ringwall/Sand 55,000 Unleaded Gasoline (5, 6, 7, 8, 9) (10, 11, 12, 13, 14, 15) 142 ¹ Steel Single Wall ¹ , Field-Erected, Sand 55,000 Unleaded Gasoline (5, 6, 7, 8, 9) (10, 11, 12, 13, 14, 15) 143 ¹ Steel Single Wall ¹ , Field-Erected, Sand 55,000 Unleaded Gasoline (5, 6, 7, 8, 9) (10, 11, 12, 13, 14, 15) 144 ¹ Steel Single Wall ¹ , Field-E			,		(5, 6, 7, 8, 9, 19)	(10, 11, 12, 13, 14, 15)				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand	66,590	Asphalt VTB/64-22	(5, 6, 7, 8, 9, 19)	(10, 11, 12, 13, 14, 15)				
253 ¹ Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand 25,000 Ultra Low Sulfur Diesel (5, 6, 7, 8, 9) (10, 11, 12, 13, 14, 15) MSA-17										
MSA-17 Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand 76,425 Raw Crude (5, 6, 7, 8, 9) (10, 11, 12, 13, 14, 15) 2003 ¹ Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand 86,000 Storm Water (16) (16) 2004 ¹ Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand 54,356 Waste Water (17) (17) 2005 ¹ Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand 20,000 Waste Water (17) (17) 2005 ¹ Steel Single Wall ⁴ , Field-Erected, Sand 55,000 Unleaded Gasoline (5, 6, 7, 8, 9) (10, 11, 12, 13, 14, 15) 143 ¹ Steel Single Wall ⁴ , Field-Erected, Sand 55,000 Unleaded Gasoline (5, 6, 7, 8, 9) (10, 11, 12, 13, 14, 15) 144 ¹ Steel Single Wall ⁴ , Field-Erected, Sand 55,000 Unleaded Gasoline (5, 6, 7, 8, 9) (10, 11, 12, 13, 14, 15) 144 ¹ Steel Single Wall ⁴ , Field-Erected, Sand 80,000 Unleaded Gasoline (5, 6, 7, 8, 9) (10, 11, 12, 13, 14, 15) 164 ¹ Steel Single Wall ⁴ , Field-Erected, Sand 80,000 Cat Gasoline (5, 6, 7, 8, 9) (10, 11,			26,800	Slurry Oil	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)				
1449 ¹ Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand 76,425 Raw Crude (5, 6, 7, 8, 9) (10, 11, 12, 13, 14, 15) 2003 ³ Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand 86,000 Storm Water (16) (16) MSA-19	253 ¹	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand	25,000	Ultra Low Sulfur Diesel	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)				
MSA-18 Constraint Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand 86,000 Storm Water (16) (16) 2004 ¹ Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand 54,356 Waste Water (17) (17) 2005 ¹ Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand 20,000 Waste Water (17) (17) 2005 ¹ Steel Single Wall ⁴ , Field-Erected, Sand 55,000 Unleaded Gasoline (5, 6, 7, 8, 9) (10, 11, 12, 13, 14, 15) 143 ¹ Steel Single Wall ⁴ , Field-Erected, Sand 55,000 Unleaded Gasoline (5, 6, 7, 8, 9) (10, 11, 12, 13, 14, 15) 144 ¹ Steel Single Wall ⁴ , Field-Erected, Sand 55,000 Unleaded Gasoline (5, 6, 7, 8, 9) (10, 11, 12, 13, 14, 15) 146 ¹ Steel Single Wall ⁴ , Field-Erected, Sand 80,000 Unleaded Gasoline (5, 6, 7, 8, 9) (10, 11, 12, 13, 14, 15) 147 ¹ Steel Single Wall ⁴ , Field-Erected, Sand 75,900 Unleaded Gasoline (5, 6, 7, 8, 9) (10, 11, 12, 13, 14, 15) 148 ¹ Steel Single Wall ⁴ , Field-Erected, Sand 35,700 Alkylate Gasoline (5, 6, 7, 8, 9) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
2003 ¹ Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand 86,000 Storm Water (16) (16) MSA-19	1449 ¹	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand	76,425	Raw Crude	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)				
MSA-19 New Year										
	2003 ¹	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand	86,000	Storm Water	(16)	(16)				
20051Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand20,000Waste Water(17)(17)MSA-20U1421Steel Single Wall ⁴ , Field-Erected, Sand55,000Unleaded Gasoline(5, 6, 7, 8, 9)(10, 11, 12, 13, 14, 15)1431Steel Single Wall ⁴ , Field-Erected, Sand55,000Unleaded Gasoline(5, 6, 7, 8, 9)(10, 11, 12, 13, 14, 15)1441Steel Single Wall ⁴ , Field-Erected, Sand55,000Unleaded Gasoline(5, 6, 7, 8, 9)(10, 11, 12, 13, 14, 15)1461Steel Single Wall ⁴ , Field-Erected, Sand80,000Unleaded Gasoline(5, 6, 7, 8, 9)(10, 11, 12, 13, 14, 15)1641Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand10,000LUK(5, 6, 7, 8, 9)(10, 11, 12, 13, 14, 15)1471Steel Single Wall ⁴ , Field-Erected, Sand80,000Cat Gasoline(5, 6, 7, 8, 9)(10, 11, 12, 13, 14, 15)1481Steel Single Wall ⁴ , Field-Erected, Sand75,900Unleaded Gasoline(5, 6, 7, 8, 9)(10, 11, 12, 13, 14, 15)1681Steel Single Wall ⁴ , Field-Erected, Sand75,900Unleaded Gasoline(5, 6, 7, 8, 9)(10, 11, 12, 13, 14, 15)1481Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand25,700JP-8(5, 6, 7, 8, 9)(10, 11, 12, 13, 14, 15)1441 ¹ Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand25,700JP-8(5, 6, 7, 8, 9)(10, 11, 12, 13, 14, 15)1441 ¹ Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt80,000Ultra Low Sulfur Die										
MSA-20 Image: Constraint of the start of t			54,356	Waste Water	(17)	(17)				
1421Steel Single Wall ⁴ , Field-Erected, Sand55,000Unleaded Gasoline $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 1431Steel Single Wall ⁴ , Field-Erected, Sand55,000Unleaded Gasoline $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 1441Steel Single Wall ⁴ , Field-Erected, Sand55,000Unleaded Gasoline $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 1441Steel Single Wall ⁴ , Field-Erected, Sand80,000Unleaded Gasoline $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 1641Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand10,000LUK $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 1642Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand10,000Cat Gasoline $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 1643Steel Single Wall ⁴ , Field-Erected, Sand80,000Cat Gasoline $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 1644Steel Single Wall ⁴ , Field-Erected, Sand75,900Unleaded Gasoline $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 1645Steel Single Wall ⁴ , Field-Erected, Sand35,700Alkylate Gasoline $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 1684Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand25,700JP-8 $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 1441Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Sand35,700JP-8 $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 1441Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Sand80,000Ult	2005 ¹	Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand	20,000	Waste Water	(17)	(17)				
143^1 Steel Single Wall ⁴ , Field-Erected, Sand55,000Unleaded Gasoline $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 144^1 Steel Single Wall ⁴ , Field-Erected, Sand55,000Unleaded Gasoline $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 146^1 Steel Single Wall ⁴ , Field-Erected, Sand80,000Unleaded Gasoline $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 164^1 Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand10,000LUK $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 164^1 Steel Single Wall ⁴ , Field-Erected, Sand80,000Cat Gasoline $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 147^1 Steel Single Wall ⁴ , Field-Erected, Sand80,000Cat Gasoline $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 148^1 Steel Single Wall ⁴ , Field-Erected, Sand35,700Unleaded Gasoline $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 168^1 Steel Single Wall ⁴ , Field-Erected, Sand35,700Alkylate Gasoline $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 1441^1 Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand25,700JP-8 $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 1441^1 Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Sand25,700JP-8 $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 1441^1 Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Sand25,700JP-8 $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 1441^1 Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt										
144^1 Steel Single Wall ⁴ , Field-Erected, Sand $55,000$ Unleaded Gasoline $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 146^1 Steel Single Wall ⁴ , Field-Erected, Sand $80,000$ Unleaded Gasoline $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 164^1 Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand $10,000$ LUK $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ $MSA-21$ $I147^1$ Steel Single Wall ⁴ , Field-Erected, Sand $80,000$ Cat Gasoline $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 147^1 Steel Single Wall ⁴ , Field-Erected, Sand $80,000$ Cat Gasoline $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 148^1 Steel Single Wall ⁴ , Field-Erected, Sand $75,900$ Unleaded Gasoline $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 168^1 Steel Single Wall ⁴ , Field-Erected, Sand $35,700$ Alkylate Gasoline $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ $MSA-22$ $Steel Single Wall4, Field-Erected, Concrete Ringwall/Sand25,700JP-8(5, 6, 7, 8, 9)(10, 11, 12, 13, 14, 15)MSA-23203^1Steel Single Wall4, Field-Erected, Conc. Ringwall/Sand80,000Ultra Low Sulfur Diesel(5, 6, 7, 8, 9)(10, 11, 12, 13, 14, 15)MSA-24204^1Steel Single Wall4, Field-Erected, Conc. Ringwall/Asphalt80,000Ultra Low Sulfur Diesel(5, 6, 7, 8, 9)(10, 11, 12, 13, 14, 15)MSA-24204^1Steel Single Wall4, Field-Erected, Conc. Ringwall/Asphalt80,$		Steel Single Wall ⁴ , Field-Erected, Sand	55,000	Unleaded Gasoline	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)				
146^1 Steel Single Wall ⁴ , Field-Erected, Sand $80,000$ Unleaded Gasoline $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 164^1 Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand $10,000$ LUK $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ $MSA-21$ 147^1 Steel Single Wall ⁴ , Field-Erected, Sand $80,000$ Cat Gasoline $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 148^1 Steel Single Wall ⁴ , Field-Erected, Sand $75,900$ Unleaded Gasoline $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 168^1 Steel Single Wall ⁴ , Field-Erected, Sand $35,700$ Alkylate Gasoline $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 168^1 Steel Single Wall ⁴ , Field-Erected, Sand $35,700$ Alkylate Gasoline $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 164^1 Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand $25,700$ JP-8 $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 1441^1 Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Sand $25,700$ JP-8 $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ $MSA-23$ 203^1 Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt $80,000$ Ultra Low Sulfur Diesel $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 200^1 Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt $80,000$ Low Sulfur Diesel $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 204^1 Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt $80,000$ Low Sulfur Diesel $(5, 6, 7, $		Steel Single Wall ⁴ , Field-Erected, Sand	55,000	Unleaded Gasoline	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)				
164^1 Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand $10,000$ LUK $(5,6,7,8,9)$ $(10,11,12,13,14,15)$ $MSA-21$ 147^1 Steel Single Wall ⁴ , Field-Erected, Sand $80,000$ Cat Gasoline $(5,6,7,8,9)$ $(10,11,12,13,14,15)$ 148^1 Steel Single Wall ⁴ , Field-Erected, Sand $75,900$ Unleaded Gasoline $(5,6,7,8,9)$ $(10,11,12,13,14,15)$ 168^1 Steel Single Wall ⁴ , Field-Erected, Sand $35,700$ Alkylate Gasoline $(5,6,7,8,9)$ $(10,11,12,13,14,15)$ 168^1 Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand $25,700$ JP-8 $(5,6,7,8,9)$ $(10,11,12,13,14,15)$ 501^1 Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand $25,700$ JP-8 $(5,6,7,8,9)$ $(10,11,12,13,14,15)$ 1441^1 Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand $25,700$ JP-8 $(5,6,7,8,9)$ $(10,11,12,13,14,15)$ $MSA-23$ 203^1 Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt $80,000$ Ultra Low Sulfur Diesel $(5,6,7,8,9)$ $(10,11,12,13,14,15)$ $MSA-24$ 200^1 Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt $80,000$ Low Sulfur Diesel $(5,6,7,8,9)$ $(10,11,12,13,14,15)$ 204^1 Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt $150,000$ Diesel $(5,6,7,8,9)$ $(10,11,12,13,14,15)$ 204^1 Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt $150,000$ Diesel $(5,6,7,8,9)$ $(10,11,12,13,14,15)$ 303^1 <	144 ¹	Steel Single Wall ⁴ , Field-Erected, Sand	55,000	Unleaded Gasoline	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)				
MSA-21 Constrained Constate <thconstate< th=""> C</thconstate<>		Steel Single Wall ⁴ , Field-Erected, Sand	80,000	Unleaded Gasoline	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)				
147^1 Steel Single Wall ⁴ , Field-Erected, Sand $80,000$ Cat Gasoline $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 148^1 Steel Single Wall ⁴ , Field-Erected, Sand $75,900$ Unleaded Gasoline $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 168^1 Steel Single Wall ⁴ , Field-Erected, Sand $35,700$ Alkylate Gasoline $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 168^1 Steel Single Wall ⁴ , Field-Erected, Sand $35,700$ Alkylate Gasoline $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ $MSA-22$ 501^1 Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand $25,700$ JP-8 $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 1441^1 Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand $35,700$ JP-8 $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ $MSA-23$ 203^1 Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt $80,000$ Ultra Low Sulfur Diesel $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 204^1 Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt $80,000$ Low Sulfur Diesel $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 204^1 Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt $150,000$ Diesel $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ $MSA-25$ 303^1 Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand $250,000$ Raw Crude $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$		Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand	10,000	LUK	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)				
148^1 Steel Single Wall ⁴ , Field-Erected, Sand $75,900$ Unleaded Gasoline $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 168^1 Steel Single Wall ⁴ , Field-Erected, Sand $35,700$ Alkylate Gasoline $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ $MSA-22$ 501^1 Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand $25,700$ JP-8 $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 1441^1 Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand $35,700$ JP-8 $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ $MSA-23$ 203^1 Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt $80,000$ Ultra Low Sulfur Diesel $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 200^1 Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt $80,000$ Low Sulfur Diesel $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 204^1 Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt $80,000$ Low Sulfur Diesel $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 204^1 Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt $150,000$ Diesel $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ $MSA-25$ 303^1 Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand $250,000$ Raw Crude $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$										
168^1 Steel Single Wall ⁴ , Field-Erected, Sand $35,700$ Alkylate Gasoline $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ $MSA-22$ 501^1 Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand $25,700$ JP-8 $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 1441^1 Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand $35,700$ JP-8 $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ $MSA-23$ 203^1 Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt $80,000$ Ultra Low Sulfur Diesel $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ $MSA-24$ 200^1 Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt $80,000$ Low Sulfur Diesel $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 204^1 Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt $80,000$ Low Sulfur Diesel $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 204^1 Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt $150,000$ Diesel $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ $MSA-25$ 303^1 Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand $250,000$ Raw Crude $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$			/	Cat Gasoline	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)				
MSA-22 Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand 25,700 JP-8 $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 1441 ¹ Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand 35,700 JP-8 $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ MSA-23		Steel Single Wall ⁴ , Field-Erected, Sand	75,900	Unleaded Gasoline	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)				
501^1 Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand $25,700$ JP-8 $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 1441^1 Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand $35,700$ JP-8 $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ MSA-23 203^1 Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt $80,000$ Ultra Low Sulfur Diesel $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ MSA-24 200^1 Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt $80,000$ Low Sulfur Diesel $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 204^1 Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt $80,000$ Low Sulfur Diesel $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 204^1 Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt $150,000$ Diesel $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ MSA-25 303^1 Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand $250,000$ Raw Crude $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$	168 ¹	Steel Single Wall ⁴ , Field-Erected, Sand	35,700	Alkylate Gasoline	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)				
1441^1 Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand $35,700$ JP-8 $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ MSA-23 203^1 Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt $80,000$ Ultra Low Sulfur Diesel $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ MSA-24 200^1 Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt $80,000$ Low Sulfur Diesel $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 200^1 Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt $80,000$ Low Sulfur Diesel $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 204^1 Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt $150,000$ Diesel $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ MSA-25 303^1 Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand $250,000$ Raw Crude $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$										
MSA-23 Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt 80,000 Ultra Low Sulfur Diesel $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ MSA-24 200 ¹ Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt 80,000 Low Sulfur Diesel $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 204 ¹ Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt 150,000 Diesel $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ MSA-25 303 ¹ Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand 250,000 Raw Crude $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$				JP-8	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)				
203^1 Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt 80,000 Ultra Low Sulfur Diesel $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ MSA-24 200 ¹ Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt 80,000 Low Sulfur Diesel $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ 204^1 Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt 150,000 Diesel $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$ MSA-25 303 ¹ Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand 250,000 Raw Crude $(5, 6, 7, 8, 9)$ $(10, 11, 12, 13, 14, 15)$		Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand	35,700	JP-8	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)				
MSA-24 200 ¹ Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt 80,000 Low Sulfur Diesel (5, 6, 7, 8, 9) (10, 11, 12, 13, 14, 15) 204 ¹ Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt 150,000 Diesel (5, 6, 7, 8, 9) (10, 11, 12, 13, 14, 15) MSA-25 303 ¹ Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand 250,000 Raw Crude (5, 6, 7, 8, 9) (10, 11, 12, 13, 14, 15)										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt	80,000	Ultra Low Sulfur Diesel	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)				
204 ¹ Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt 150,000 Diesel (5, 6, 7, 8, 9) (10, 11, 12, 13, 14, 15) MSA-25 303 ¹ Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand 250,000 Raw Crude (5, 6, 7, 8, 9) (10, 11, 12, 13, 14, 15)										
MSA-25 Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand 250,000 Raw Crude (5, 6, 7, 8, 9) (10, 11, 12, 13, 14, 15)			80,000	Low Sulfur Diesel	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)				
303 ¹ Steel Single Wall ⁴ , Field-Erected, Concrete Ringwall/Sand 250,000 Raw Crude (5, 6, 7, 8, 9) (10, 11, 12, 13, 14, 15)	2041	Steel Single Wall ⁴ , Field-Erected, Conc. Ringwall/Asphalt	150,000	Diesel	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)				
Total Aboveground Bulk Storage Capacity: 2,766,647 bbls			250,000	Raw Crude	(5, 6, 7, 8, 9)	(10, 11, 12, 13, 14, 15)				
	Total Abo	veground Bulk Storage Capacity: 2,766,647 bbls								

 Table 6 (Cont'd)

 Material Storage Areas - Containment, Overfill Protection, Testing and Inspections

Table 6 Legend

- ¹ Active (currently contains liquid substances or temporarily empty and resumption of storage is anticipated within one year or contains no liquid substances but has not been closed according to 40 C.F.R. 112.2).
- ² Closed (currently contains no liquid substances and resumption of storage is not anticipated within one year and tank has been closed in accordance with 40 C.F.R. 112.2).
- ³ Constructed in accordance with STI standards and compatible with the material stored and the conditions of storage, i.e., pressure and temperature.
- ⁴ Constructed in accordance with API standards and compatible with the material stored and the conditions of storage, i.e., pressure and temperature.
- ⁵ A sufficiently impervious floor and berm which is capable of containing the oil until the time at which cleanup occurs (Table 20 of Appendix H).
- ⁶ Sufficient freeboard as determined in Table 22 of Appendix L.
- ⁷ Land-based spill response kits which are available in both quantity and location to prevent the discharge of oil in harmful quantities to navigable waters or adjoining shorelines.
- ⁸ Drainage of uncontaminated storm water is not allowed from the bermed area unless inspected prior to discharge to storm water outfall 002, or unless discharged to refinery sewer system. Facility normally keeps the bypass valve sealed closed; inspects the retained storm water to ensure that its presence will not cause a discharge; opens the bypass valve and reseals it.
- ⁹ Drainage to refinery sewer system which is capable of holding the contents of the process units and piping consisting of approximately 91,714 barrels (based on the September 24, 2003 SPCC).
- ¹⁰ An oil spill contingency plan and a written commitment of manpower, equipment and materials required to expeditiously control and remove any quantity of oil discharged that may be harmful to any navigable water or adjoining shoreline.
- ¹¹ High liquid level alarm with an audible or visual signal at a constantly attended operation or surveillance station.
- ¹² Liquid level sensing devices must be regularly tested to ensure proper operation.
- ¹³ Monthly visual inspections by qualified WRC personnel performed in accordance with Tables 24 of Appendix M and in combination with another testing technique such as hydrostatic testing or another system of non-destructive shell testing performed by certified personnel in accordance with API 653.
- ¹⁴ WRC personnel periodically inspect the outside of each container for signs of deterioration, discharges, or accumulation of oil inside bermed areas.
- ¹⁵ If field-constructed aboveground containers undergo a repair, alternation, reconstruction and, or a change in service that might affect the risk of a discharge or failure due to brittle fracture or other catastrophe, or has discharge oil or failed due to brittle fracture failure or other catastrophe, the container is evaluated for risk of discharge or failure due to brittle fracture or other catastrophe and appropriate actions taken.
- ¹⁶ Exempt pursuant to 40 C.F.R. 112.1(b).
- ¹⁷ Exempt pursuant to 40 C.F.R. 112.1(d)(6).
- ¹⁸ Exempt pursuant to 67 FR 47076 dated July 17, 2002.
- ¹⁹ Exempt pursuant to 40 C.F.R. 112.1(d)(8), product will rapidly solidify.

Unit or Tank ID	Type of Container	Typical Container Capacity, gallons	Contents	Typical Number of Containers in Area	Type of Secondary Containment/ Drainage Control	Overfill Protection and Testing & Inspections
PMSA – 1						
IT-1	(1, 2)	2,000	Gasoline	1	(3)	(4, 5)
IT-2	(1, 2)	1,000	Diesel	1	(3)	(4, 5)
PMSA – 2						
IT-33	(1, 2)	564	Corrosion Inhibitor	1	(3)	(4, 5)
PMSA – 3						
141	(1, 2)	8,000	Cetane	1	(3)	(4, 5)
1413	(1, 2)	8,000	Fuel Additive	1	(3)	(4, 5)
1414	(1, 2)	6,000	Fuel Additive	1	(3)	(4, 5)
1415	(1, 2)	4,000	Fuel Additive	1	(3)	(4, 5)
1416	(1, 2)	3,000	Fuel Additive	1	(3)	(4, 5)
1417	(1, 2)	2,000	Fuel Additive	1	(3)	(4, 5)
1418	(1, 2)	2,000	Fuel Additive	1	(3)	(4, 5)
1419	(1, 2)	Unknown	Fuel Additive	1	(3)	(4, 5)
1424	(1, 2)	2,000	Diesel Additive	1	(3)	(4, 5)
1425	(1, 2)	1,000	Blue Diesel Dye	1	(3)	(4, 5)
1426	(1, 2)	1,000	Fuel Additive	1	(3)	(4, 5)
1486	(1, 2)	1,000	Blue Diesel Dye	1	(3)	(4, 5)
PMSA – 4						
1901	(1, 2)	170	Petroleum	1	(3)	(4, 5)
$\mathbf{PMSA} - 5^{6}$						
53	(1, 2)	16,800	Raw Crude Oil	1	(3)	(4, 5)
54	(1, 2)	16,800	Raw Crude Oil	1	(3)	(4, 5)
55	(1, 2)	16,800	Raw Crude Oil	1	(3)	(4, 5)
PW01	(1, 2)	Unknown	Raw Crude Oil	1	(3)	(4, 5)
PW02	(1, 2)	Unknown	Raw Crude Oil	1	(3)	(4, 5)
PW03	(1, 2)	Unknown	Raw Crude Oil	1	(3)	(4, 5)

 Table 7

 Portable Material Storage Areas – Containment, Overfill Protection, Testing and Inspections

Table 7 (Cont'd)

Portable Material Storage Areas – Containment, Overfill Protection, Testing and Inspections

Unit or Tank ID	Type of Container	Typical Container Capacity, gallons	Contents	Typical Number of Containers in Area	Type of Secondary Containment/ Drainage Control	Overfill Protection and Testing & Inspections
$PMSA - 6^{6}$					<u> </u>	
(4)	(1, 2)	Unknown	Raw Crude Oil	1	(3)	(4, 5, 6)
(4)	(1, 2)	Unknown	Raw Crude Oil	1	(3)	(4, 5, 6)
W1	(1, 2)	Unknown	Raw Crude Oil	1	(3)	(4, 5, 6)
W2	(1, 2)	Unknown	Raw Crude Oil	1	(3)	(4, 5, 6)
(6)	(1, 2)	Unknown	Raw Crude Oil	1	(3)	(4, 5, 6)
(6)	(1, 2)	Unknown	Raw Crude Oil	1	(3)	(4, 5, 6)
1501	(1, 2)	Unknown	Raw Crude Oil	1	(3)	(4, 5, 6)
1502	(1, 2)	400	Raw Crude Oil	1	(3)	(4, 5, 6)
1503	(1, 2)	400	Raw Crude Oil	1	(3)	(4, 5, 6)
65	(1, 2)	400	Raw Crude Oil	1	(3)	(4, 5, 6)
PMSA – 7						
IT-3	(1, 2)	1,975	Lube Oil	1	(3)	(4, 5)
IT-5	(1, 2)	1,000	Lube Oil	1	(3)	(4, 5)
IT-9	(1, 2)	1,000	Corrosion Inhibitor	1	(3)	(4, 5)
IT-10	(1, 2)	1,000	Corrosion Inhibitor	1	(3)	(4, 5)
IT-19	(1, 2)	2,325	Solvent Cleaner	1	(3)	(4, 5)
IT-21	(1, 2)	1,600	Corrosion Inhibitor	1	(3)	(4, 5)
IT-23	(1, 2)	750	Corrosion Inhibitor	1	(3)	(4, 5)
IT-34	(1, 2)	560	Corrosion Inhibitor	1	(3)	(4, 5)
IT-36	(1, 2)	1,000	Corrosion Inhibitor	1	(3)	(4, 5)
IT-40	(1, 2)	6,428	Corrosion Inhibitor	1	(3)	(4, 5)
PMSA – 8						
IT-4	(1, 2)	1,321	Lube Oil	1	(3)	(4, 5)
IT-32	(1, 2)	560	Corrosion Inhibitor	1	(3)	(4, 5)
PMSA – 9						
IT-18	(1, 2)	3,171	Lube Oil	1	(3)	(4, 5)
PMSA – 10						
IT-11	(1, 2)	2,000	Demulsifier	1	(3)	(4, 5)
IT-24	(1, 2)	1,000	Corrosion Inhibitor	1	(3)	(4, 5)
IT-25	(1, 2)	750	Corrosion Inhibitor	1	(3)	(4, 5)
IT-29	(1, 2)	750	Corrosion Inhibitor	1	(3)	(4, 5)
IT-41	(1, 2)	2,000	Anti-foulant	1	(3)	(4, 5)

Table 7 (Cont'd)

Portable Material Storage Areas – Containment, Overfill Protection, Testing and Inspections

Unit or Tank ID	Type of Container	Typical Container Capacity, gallons	Contents	Typical Number of Containers in Area	Type of Secondary Containment/ Drainage Control	Overfill Protection and Testing & Inspections	
PMSA -10 (Cont'd)							
IT-11	(1, 2)	2,000	Demulsifier	1	(3)	(4, 5)	
IT-37	(1, 2)	560	Corrosion Inhibitor	1	(3)	(4, 5)	
PMSA – 11							
IT-7	(1, 2)	1,000	Corrosion Inhibitor	1	(3)	(4, 5)	
IT-8	(1, 2)	750	Corrosion Inhibitor	1	(3)	(4, 5)	
IT-26	(1, 2)	750	Corrosion Inhibitor	1	(3)	(4, 5)	
IT-27	(1, 2)	1,000	Corrosion Inhibitor	1	(3)	(4, 5)	
IT-30	(1, 2)	1,000	Corrosion Inhibitor	1	(3)	(4, 5)	
IT-31	(1, 2)	750	Corrosion Inhibitor	1	(3)	(4, 5)	
IT-42	(1, 2)	1,000	Anti-foulant	1	(3)	(4, 5)	
PMSA – 12							
IT-13	(1, 2)	250	Demulsifier	1	(3)	(4, 5)	
IT-35	(1, 2)	673	Corrosion Inhibitor	1	(3)	(4, 5)	
6092	(1, 2)	5,600	Fuel Additive	1	(3)	(4, 5)	
PMSA – 13							
IT-22	(1, 2)	765	Corrosion Inhibitor	1	(3)	(4, 5)	
PMSA – 14							
2001	AST vertical	21,000	Oily Wastewater	1	(3)	(4, 5)	
2002	AST vertical	4,200	Oily Wastewater	1	(3)	(4, 5)	
PMSA – 15							
IT-19	(1, 2)	2,325	Solvent Cleaner		(3)	(4, 5)	
PMSA – 16							
IT-37	(1, 2)	560	Corrosion Inhibitor	1	(3)	(4, 5)	
Total Mobile	Portable Bulk Storage	e Capacity: 3,047 bbls					

Steel single wall shop-fabricated container.

² Constructed in accordance with STI standards and compatible with the material stored and the conditions of storage, i.e., pressure and temperature.

³ A land-based spill response kit which is capable of preventing the discharge of oil in harmful quantities to navigable waters or adjoining shorelines.

⁴ Mobile/portable containers are refilled in accordance with the procedure described in Section 8.5.3 of this Plan.

⁵ Qualified WRC personnel will perform monthly and annual visual inspections in combination with an environmentally equivalent integrity testing method. Any deficiencies identified are promptly corrected.

⁶ Tanks are not owned by WRC and are shown for information purposes only. These tank owners have their own SPCC plans. LACT spill prevention procedures are described in Appendix I.

Oil-Filled Electrical Equipment – Containment, Overfill Protection, Testing and Inspections

Map ID	Unit No.	Transformer (kVA)	Serial Number	Type of Container	Volume of Oil (Gallons)	Type of Oil	Type of Secondary Containment/ Drainage Control	Overfill Protection and Testing & Inspections
1	26-XF-01	2,500	3403914409	(1, 2)	476	Natural Ester	(3)	(4, 5)
2	26-XF-02	2,500	3390094309	(1, 2)	455	Natural Ester	(3)	(4, 5)
3	40-EBXFR-01	(7)	(7)	(1, 2)	(7)	(7)	(3)	(4, 5)
4	40-XFR-001	(7)	(7)	(1, 2)	(7)	(7)	(3)	(4, 5)
5	40-XFRJ2-1	(7)	(7)	(1, 2)	(7)	(7)	(3)	(4, 5)
6	40-XFRJ2-2	(7)	(7)	(1, 2)	(7)	(7)	(3)	(4, 5)
7	90-CC15XFR	(7)	(7)	(1, 2)	(7)	(7)	(3)	(4, 5)
8	90-XFR-002	(7)	(7)	(1, 2)	(7)	(7)	(3)	(4, 5)
9	90-XFR-003	(7)	(7)	(1, 2)	(7)	(7)	(3)	(4, 5)
10	90-XFR-004	(7)	(7)	(1, 2)	(7)	(7)	(3)	(4, 5)
11	90-XFR-005	(7)	(7)	(1, 2)	(7)	(7)	(3)	(4, 5)
12	A-30	(7)	(7)	(1, 2)	(7)	(7)	(3)	(4, 5)
13	A-31	(7)	(7)	(1, 2)	(7)	(7)	(3)	(4, 5)
14	A-37	1,000	PB4302	(1, 2)	223	Mineral Oil	(3)	(4, 5)
15	B-8	(7)	(7)	(1, 2)	(7)	(7)	(3)	(4, 5)
16	C-4	1,500	01J423222	(1, 2)	419	High MW Oil	(3)	(4, 5)
17	C-5	(7)	(7)	(1, 2)	(7)	(7)	(3)	(4, 5)
18	D-37	(7)	(7)	(1, 2)	(7)	(7)	(3)	(4, 5)
19	D-42	(7)	(7)	(1, 2)	(7)	(7)	(3)	(4, 5)
20	D-44	(7)	(7)	(1, 2)	(7)	(7)	(3)	(4, 5)
21	D-48	(7)	(7)	(1, 2)	(7)	(7)	(3)	(4, 5)
22	D-52	(7)	(7)	(1, 2)	(7)	(7)	(3)	(4, 5)
23	D-53	300	0526001712	(1, 2)	258	Mineral Oil	(3)	(4, 5)
24	D-54	(7)	(7)	(1, 2)	(7)	(7)	(3)	(4, 5)
25	E-21	1,000	12E81	(1, 2)	308	Mineral Oil	(3)	(4, 5)
26	E-23	1,000	866003437	(1, 2)	328	Mineral Oil	(3)	(4, 5)
27	E-25	(7)	(7)	(1, 2)	(7)	(7)	(3)	(4, 5)
28	G-90	1,000	920690A1	(1, 2)	375	Mineral Oil	(3)	(4, 5)
29	H-33	(7)	(7)	(1, 2)	(7)	(7)	(3)	(4, 5)
30	H-51	1,000	G762452	(1, 2)	453	Mineral Oil	(3)	(4, 5)
31	H-52	1,000	G762451	(1, 2)	453	Mineral Oil	(3)	(4, 5)
32	H-53	1,000	G76246	(1, 2)	354	Mineral Oil	(3)	(4, 5)

Table 8 (Cont'd)

Oil-Filled Electrical Equipment – Containment, Overfill Protection, Testing and Inspections

Map ID	Unit No.	Transformer (kVA)	Serial Number	Type of Container	Volume of Oil (Gallons)	Type of Oil	Type of Secondary Containment/ Drainage Control	Overfill Protection and Testing & Inspections
33	H-60	(7)	(7)	(1, 2)	(7)	(7)	(3)	(4, 5)
34	H-62	1,000	GM2056582	(1, 2)	480	Mineral Oil	(3)	(4, 5)
35	H-63	1,000	GM2056581	(1, 2)	460	Mineral Oil	(3)	(4, 5)
36	H-64	1,000	G131290	(1, 2)	453	Mineral Oil	(3)	(4, 5)
37	H-65	1,000	GM277550	(1, 2)	230	Mineral Oil	(3)	(4, 5)
38	H-67	1,000	85530	(1, 2)	340	Mineral Oil	(3)	(4, 5)
39	H-68	500	80V1863	(1, 2)	250	Mineral Oil	(3)	(4, 5)
40	H-70	(7)	(7)	(1, 2)	(7)	(7)	(3)	(4, 5)
41	H-72	750	920152A1	(1, 2)	345	Mineral Oil	(3)	(4, 5)
56	H-74	(7)	(7)	(1, 2)	(7)	(7)	(3)	(4, 5)
42	H-75	(7)	(7)	(1, 2)	(7)	(7)	(3)	(4, 5)
43	ISOM	(7)	(7)	(1, 2)	(7)	(7)	(3)	(4, 5)
44	J-2	(7)	(7)	(1, 2)	(7)	(7)	(3)	(4, 5)
45	K-70	1,000	2422189	(1, 2)	350	Mineral Oil	(3)	(4, 5)
46	L-1	(7)	(7)	(1, 2)	(7)	(7)	(3)	(4, 5)
47	L-2	1,000	07081617	(1, 2)	275	High MW Oil	(3)	(4, 5)
48	M-1	10,000	0526001699	(1, 2)	1,445	Mineral Oil	(3)	(4, 5)
49	M-2	750	0526001701	(1, 2)	352	Mineral Oil	(3)	(4, 5)
50	M-2	(7)	(7)	(1, 2)	(7)	(7)	(3)	(4, 5)
51	OG&E 69 KV/ 4 16 KV Sub							(6)
52	TR001	(7)	(7)	(1, 2)	(7)	(7)	(3)	(4, 5)
53	TR001C	(7)	(7)	(1, 2)	(7)	(7)	(3)	(4, 5)
54	TR002	(7)	(7)	(1, 2)	(7)	(7)	(3)	(4, 5)
55	West Flare	(7)	(7)	(1, 2)	(7)	(7)	(3)	(4, 5)
Total Oil	-Filled Electrical Equ	ipment Storage	Capacity: 5 bbls					

- Table 8 Legend

 1
 Typically consists of mild welded steel reinforced with sheets to avoid oil losses.

 2
 Constructed in accordance with STI standards and compatible with the material stored and the conditions of storage, i.e., pressure and temperature.

 3
 Land-based spill response kits which are available in both quantity and location to prevent the discharge of oil in harmful quantities to navigable waters or adjoining shorelines.

 4
 To the second storage of the second storage of the second storage.

- ⁴ Tanks are refilled by qualified private contractors using appropriate safety precautions.
 ⁵ Quarterly visual inspections for leaks and loose connections and annual oil analysis by a qualified private contractor. Any deficiencies identified are promptly corrected.
 ⁶ Unit is not owned by WRC and is shown for information purposes only. WRC coordinates with OG&E regarding spill prevention of this transformer. Volume not included in WRC oil storage capacity.
- ⁷ Information not available at the time of Plan drafting.

Oil-Filled Operating Equipment – Containment, Overfill Protection, Testing and Inspections

Location	Equipment	Type of Container	Volume of Oil (Gallons)	Type of Oil	Type of Secondary Containment/ Drainage Control	Overfill Protection and Testing & Inspections			
Fire Water Unit	Diesel Day Tank DT1183	(1, 2)	300	Diesel Fuel	(3, 4)	(5, 6)			
Fire Water Unit	Diesel Day Tank DT1184	(1, 2)	300	Diesel Fuel	(3, 4)	(5, 6)			
Fire Water Unit	Diesel Day Tank DT1185	(1, 2)	300	Diesel Fuel	(3, 4)	(5, 6)			
Total Oil-Filled O	Total Oil-Filled Operating Equipment Storage Capacity: 21 bbls								

1

2

Typically consists of a mild welded steel container. Constructed in accordance with STI standards and compatible with the material stored and the conditions of storage, i.e., pressure and temperature. Land-based spill response kits which are available in both quantity and location to prevent the discharge of oil in harmful quantities to navigable waters or adjoining shorelines. 3

⁴ Sufficiently impervious concrete building floor and walls.
 ⁵ Oil-filled operating equipment is refilled in accordance with the procedure described in Section 8.5.3 of the Plan.
 ⁶ Monthly visual inspections by qualified WRC personnel for any leaks or loose connections. Any deficiencies identified are promptly corrected.

Oil-Filled Manufacturing Equipment – Containment, Leak Detection, Testing and Inspections

Equipment	Contents	Type of Container	Capacity (Bbls) ³	Type of Secondary Containment/ Drainage Control	Leak Detection, Testing & Inspections
HF Alkylation	Intermediate oil product	(1, 2)	2,658	(4, 5, 6)	(7, 8, 9)
Hydrocracker	Intermediate oil product	(1, 2)	2,965	(4, 5, 6)	(7, 8, 9)
Rose Unit	Intermediate oil product	(1, 2)	1,977	(4, 5, 6)	(7, 8, 9)
FCCU	Intermediate oil product	(1, 2)	6,616	(4, 5, 6)	(7, 8, 9)
Crude Distillation	Intermediate oil product	(1, 2)	9,591	(4, 5, 6)	(7, 8, 9)
Naphtha Hydrotreater	Intermediate oil product	(1, 2)	839	(4, 5, 6)	(7, 8, 9)
LSR Hydrotreater	Intermediate oil product	(1, 2)	326	(4, 5, 6)	(7, 8, 9)
Platformer	Intermediate oil product	(1, 2)	1,419	(4, 5, 6)	(7, 8, 9)
Diesel Hydrotreater	Intermediate oil product	(1, 2)	1,166	(4, 5, 6)	(7, 8, 9)
Gasoline Hydrotreater	Intermediate oil product	(1, 2)	1,327	(4, 5, 6)	(7, 8, 9)
Benfree Unit	Intermediate oil product	(1, 2)	5,544	(4, 5, 6)	(7, 8, 9)
Hydrogen Plant	Hydrogen, methane, ethane, traces of LPG-weight gases	(1, 2)	NA; no oil	(4, 5, 6)	(7, 8, 9)
	LPG-weight gases pment Storage Capacity: 34,428 bbls	(1, 2)	INA, IIO OII	(4, 5, 6)	(7, 8, 9)

Petroleum processing equipment.

² Constructed in accordance with appropriate industry standards, i.e., STI, API or ASME, and compatible with the material stored and the conditions of storage, i.e., pressure and temperature.

³ Oil-filled manufacturing equipment volume = (total unit volume - tank volume)*(7.48 gal/ft³)/42 gal/bbl, using RMP unit inventories.

⁴ Drainage to refinery sewer system which is capable of holding the contents of the process units and piping consisting of approximately 91,714 barrels (based on the September 24, 2003 SPCC).

⁵ Land-based spill response kits which are available in both quantity and location to prevent the discharge of oil in harmful quantities to navigable waters or adjoining shorelines.

⁶ An oil spill contingency plan and a written commitment of manpower, equipment and materials required to expeditiously control and remove any quantity of oil discharged that may be harmful to any navigable water or adjoining shoreline.

⁷ Process operations are controlled from an explosion proof control room with pressure, temperature and flow safety devices including audio and visual alarms and automatic shut downs.

⁸ Safety devices are tested regularly to ensure proper operation.

⁹ Daily visual inspections by qualified WRC personnel for any leaks or loose connections. Inspections by qualified contractor personnel during unit turnarounds. Any deficiencies identified are promptly corrected.

Loading and Unloading Areas/Racks - Containment, Delivery Procedures and Inspections

Area/Rack	Contents	Type of Secondary Containment, Delivery Procedures and Inspections	
LUA – 1 Tank Truck Unloading Area	Ethanol	(1, 2, 4, 5, 9, 10)	
LUR – 2 Tank Truck Loading Rack	Unleaded Gasoline/Diesel	(1, 2, 3, 4, 5, 9, 10)	
LUA – 3 Tank Truck Loading Area (LACT Unit Area)	Crude Oil	(1, 5, 9, 10, 11)	
LUR – 4 Railcar Loading Rack	LPG	(8, 9, 10)	
LUR – 5 Railcar Loading Rack	Sulfur	(8, 9, 10)	
LUA – 6 Tank Truck Loading Area	LPG	(8, 9, 10)	
LUA – 7 Tank Truck Loading Area	Gas Oil	(2, 4, 5, 3, 9, 10)	
LUR – 8 Railcar Loading Rack	Asphalt, Kerosene	(2, 3, 4, 9, 10)	
LUR – 9 Tank Truck Loading Rack	Asphalt	(2, 7, 9, 10)	
LUR – 10 Tank Truck Loading Rack	JP-8	(1, 2, 4, 9, 10)	
LUA – 11 Tank Truck Unloading Area	Crude Oil	(1, 5, 9, 10, 11)	

¹ A sufficiently impervious floor and berm capable of containing the oil until the time at which cleanup occurs (Table 20 of Appendix H).

2

3

Sloped drainage to an open sump and then to an in-ground oil/water separator. Sloped drainage to an open sump and then diversion to the refinery wastewater treatment system. Sized containment for the single largest compartment of any tank truck or railcar handled at this location. 4

Land-based spill response kits which are available in both quantity and location to prevent the discharge of oil in harmful quantities to navigable waters or adjoining shorelines. Exempt pursuant to 40 C.F.R. 112.1(b). 5

6

⁶ Exempt pursuant to 40 C.F.K. 112.1(0).
⁷ Exempt pursuant to 40 C.F.R. 112.1(d)(8).
⁸ Exempt pursuant to 67 FR 47076 dated July 17, 2002.
⁹ Periodic visual inspections by qualified WRC personnel for any leaks or loose connections. Any deficiencies identified are promptly corrected.
¹⁰ WRC and LACT Unit Area delivery procedures are shown in Appendix I.
¹¹ Continue of the three corrections.

 Table 12

 Piping – Containment, Leak Detection, Testing and Inspections

Type of Piping	Fabrication	Secondary Containment, Leak Detection, Testing and Inspections
Transfer piping to and from bulk storage containers, both aboveground and buried	(1)	(3, 4, 6, 7, 8, 9, 12)
Intra-facility gathering line	(1)	(3, 4, 6, 7, 8, 9, 11, 12)
Transfer piping from API separators to tank no. 2007	(2)	(2, 3, 4, 6, 7, 8, 9, 12)
Transfer piping associated with manufacturing equipment, both aboveground and buried	(1)	(3, 4, 6, 7, 8, 9, 10, 12)
Piping associated with oil-filled operational equipment	(1)	(3, 4, 6, 7, 8, 9, 12)
Out-of-service pipelines	(1)	(5, 12)

¹ Single steel wall pipe constructed in accordance with ASME B31.3 standards and compatible with the material processed and the conditions of processing, i.e., pressure and temperature.

² Double steel wall pipe constructed in accordance with ASME B31.3 standards and compatible with the material processed and the conditions of processing, i.e., pressure and temperature.

³ Aboveground valves and piping are visually examined monthly by qualified WRC personnel for the general conditions of items such as: flange joints, valve glands and bodies, drip/catch pans, pipe supports, bleeder and gauge valves, valve locks/seals, expansion joints and metal surfaces. Any deficiencies identified are promptly corrected.

⁴ Pipe supports are designed to minimize abrasion and corrosion and allow for expansion and contraction. Insulated lines are typically equipped with guide shores to permit expansion while un-insulated lines are bare against supports. Pipe supports are visually inspected monthly by qualified WRC personnel. Any deficiencies identified are promptly corrected.

⁵ Pipelines that are out-of-service or pipelines or placed on standby service for an extended time are capped or blind-flanged at the terminal connection and marked as to the origin.

⁶ All buried piping that is installed or replaced after 8-16-02 must have protective coating and wrapping and cathodic protection.

⁷ When a section of buried line is exposed, it is carefully examined for deterioration by a qualified piping inspector in accordance with API-570 and API-RP-1110 inspection standards. If corrosion is found, additional examination and corrective action must be taken as deemed appropriate considering the magnitude of the damage.

⁸ Conduct integrity and leak testing of buried piping at the time of installation, modification, construction, relocation, or replacement by a qualified piping inspector. Piping is to be inspected at a maximum of 10 year intervals.

⁹ Land-based spill response kits which are available in both quantity and location to prevent the discharge of oil in harmful quantities to navigable waters or adjoining shorelines.

¹⁰ Drainage to refinery sewer system which is capable of holding the contents of the process units and piping consisting of approximately 91,714 barrels (based on the September 24, 2003 SPCC).

¹¹ An oil spill contingency plan and a written commitment of manpower, equipment and materials required to expeditiously control and remove any quantity of oil discharged that may be harmful to any navigable water or adjoining shoreline.

¹² WRC has approximately 140 groundwater monitoring wells located around the refinery for groundwater monitoring, remediation, and hydrocarbon recovery. The remediation and monitoring program is overseen by the Land Protection Division of the Oklahoma Department of Environmental Quality. Any deficiencies identified are promptly corrected.

Appendix G

Potential Volume Release, Discharge Rate, Direction of Flow, and Secondary Containment

Material Storage Areas - Potential Volume Released, Discharge Rate,

Direction of Flow, and Secondary Containment

Potential Event	Maximum Volume Released (Bbls)	Maximum Discharge Rate	Direction of Flow	Secondary Containment		
MSA – 1						
Failure of aboveground tank	2,143	Gradual to instantaneous	Atmosphere	(9)		
Tank overfill	1 to 120	10 gal/min				
Pipe failure	1 to 50	5 gal/min	Atmosphere			
Leaking pipe	1 to 10	1 gal/min				
MSA – 2						
Failure of aboveground tank	80,000	Gradual to instantaneous		(4, 5,10)		
Tank overfill	1 to 120	10 gal/min	(2)			
Pipe failure	1 to 50	5 gal/min				
Leaking pipe	1 to 10	1 gal/min				
MSA – 3						
Failure of aboveground tank	100,000	Gradual to instantaneous	(2)	(6)		
Tank overfill	1 to 120	10 gal/min				
Pipe failure	1 to 50	5 gal/min				
Leaking pipe	1 to 10	1 gal/min				
MSA – 4						
Failure of aboveground tank	20,000	Gradual to instantaneous		(4, 5,10)		
Tank overfill	1 to 120	10 gal/min	(2)			
Pipe failure	1 to 50	5 gal/min	(2)			
Leaking pipe	1 to 10	1 gal/min				
MSA – 5						
Failure of aboveground tank	5,100	Gradual to instantaneous		(4, 5,10)		
Tank overfill	1 to 120	10 gal/min	(2)			
Pipe failure	1 to 50	5 gal/min	(2)			
Leaking pipe	1 to 10	1 gal/min				

Material Storage Areas - Potential Volume Released, Discharge Rate,

Potential Event	Maximum Volume Released (Bbls)	Maximum Discharge Rate	Direction of Flow	Secondary Containment
MSA – 6				
Failure of aboveground tank	79,600	Gradual to instantaneous		
Tank overfill	1 to 120	10 gal/min	(2)	(4, 5,10)
Pipe failure	1 to 50	5 gal/min		(4, 5,10)
Leaking pipe	1 to 10	1 gal/min		
MSA – 7				
Failure of aboveground tank	250,000	Gradual to instantaneous		
Tank overfill	1 to 120	10 gal/min	(1)	(4, 5,10)
Pipe failure	1 to 50	5 gal/min	(1)	(4, 5,10)
Leaking pipe	1 to 10	1 gal/min		
MSA – 8				
Failure of aboveground tank	2,400	Gradual to instantaneous		
Tank overfill	1 to 120	10 gal/min	Atmosphere	(9)
Pipe failure	1 to 50	5 gal/min		
Leaking pipe	1 to 10	1 gal/min		
MSA – 9				
Failure of aboveground tank	24,800	Gradual to instantaneous		
Tank overfill	1 to 120	10 gal/min	(1)	(4, 5,10)
Pipe failure	1 to 50	5 gal/min	(1)	
Leaking pipe	1 to 10	1 gal/min		
MSA – 10				
Failure of aboveground tank	40,000	Gradual to instantaneous		
Tank overfill	1 to 120	10 gal/min	(1)	(4, 5, 10)
Pipe failure	1 to 50	5 gal/min	(1)	(4, 5,10)
Leaking pipe	1 to 10	1 gal/min		
MSA – 11				
Failure of aboveground tank	10,000	Gradual to instantaneous		
Tank overfill	1 to 120	10 gal/min	(1)	(4, 5, 10)
Pipe failure	1 to 50	5 gal/min	(1)	(4, 5,10)
Leaking pipe	1 to 10	1 gal/min		

Material Storage Areas - Potential Volume Released, Discharge Rate,

Potential Event	Maximum Volume Released (Bbls)	Maximum Discharge Rate	Direction of Flow	Secondary Containment
MSA – 12				
Failure of aboveground tank	15,000	Gradual to instantaneous		
Tank overfill	1 to 120	10 gal/min	(1)	(4, 5,10)
Pipe failure	1 to 50	5 gal/min		(4, 5,10)
Leaking pipe	1 to 10	1 gal/min		
MSA – 13				
Failure of aboveground tank	5,100	Gradual to instantaneous		
Tank overfill	1 to 120	10 gal/min	(1)	(4, 5,10)
Pipe failure	1 to 50	5 gal/min	(1)	(4, 5,10)
Leaking pipe	1 to 10	1 gal/min		
MSA – 14				
Failure of aboveground tank	80,456	Gradual to instantaneous		
Tank overfill	1 to 120	10 gal/min	(1)	(4, 5,10)
Pipe failure	1 to 50	5 gal/min		
Leaking pipe	1 to 10	1 gal/min		
MSA – 15				
Failure of aboveground tank	64,000	Gradual to instantaneous		(4, 5,10)
Tank overfill	1 to 120	10 gal/min	(1)	
Pipe failure	1 to 50	5 gal/min	(1)	(4, 5,10)
Leaking pipe	1 to 10	1 gal/min		
MSA – 16				
Failure of aboveground tank	26,800	Gradual to instantaneous		
Tank overfill	1 to 120	10 gal/min	(1)	(4, 5,10)
Pipe failure	1 to 50	5 gal/min	(1)	(4, 5,10)
Leaking pipe	1 to 10	1 gal/min		
MSA – 17				
Failure of aboveground tank	76,425	Gradual to instantaneous	(1)	
Tank overfill	1 to 120	10 gal/min		(4.5.10)
Pipe failure	1 to 50	5 gal/min	(1)	(4, 5,10)
Leaking pipe	1 to 10	1 gal/min		

Material Storage Areas - Potential Volume Released, Discharge Rate,

Potential Event	Maximum Volume Released (Bbls)	Maximum Discharge Rate	Direction of Flow	Secondary Containment
MSA – 18				
Failure of aboveground tank	86,000	Gradual to instantaneous	(1)	
Tank overfill	1 to 120	10 gal/min		(5)
Pipe failure	1 to 50	5 gal/min		(3)
Leaking pipe	1 to 10	1 gal/min		
MSA – 19				
Failure of aboveground tank	54,356	Gradual to instantaneous		
Tank overfill	1 to 120	10 gal/min	(1)	(5)
Pipe failure	1 to 50	5 gal/min	(1)	(5)
Leaking pipe	1 to 10	1 gal/min		
MSA – 20				
Failure of aboveground tank	80,000	Gradual to instantaneous		
Tank overfill	1 to 120	10 gal/min	(1)	(4, 5,10)
Pipe failure	1 to 50	5 gal/min		
Leaking pipe	1 to 10	1 gal/min		
MSA – 21				
Failure of aboveground tank	80,000	Gradual to instantaneous		(4, 5,10)
Tank overfill	1 to 120	10 gal/min	(1)	
Pipe failure	1 to 50	5 gal/min	(1)	
Leaking pipe	1 to 10	1 gal/min		
MSA – 22				
Failure of aboveground tank	35,700	Gradual to instantaneous		
Tank overfill	1 to 120	10 gal/min	(1)	(4, 5, 10)
Pipe failure	1 to 50	5 gal/min	(1)	(4, 5,10)
Leaking pipe	1 to 10	1 gal/min		
MSA – 23				
Failure of aboveground tank	80,000	Gradual to instantaneous		
Tank overfill	1 to 120	10 gal/min	(1)	(4, 5, 10)
Pipe failure	1 to 50	5 gal/min	(1)	(4, 5,10)
Leaking pipe	1 to 10	1 gal/min		

Material Storage Areas - Potential Volume Released, Discharge Rate,

Direction of Flow, and Secondary Containment

Potential Event	Maximum Volume Released (Bbls)	Maximum Discharge Rate	Direction of Flow	Secondary Containment
MSA – 24				
Failure of aboveground tank	150,000	Gradual to instantaneous		
Tank overfill	1 to 120	10 gal/min	(2)	(4, 5,10)
Pipe failure	1 to 50	5 gal/min	(2)	(4, 5,10)
Leaking pipe	1 to 10	1 gal/min		
MSA – 25				
Failure of aboveground tank	250,000	Gradual to instantaneous		
Tank overfill	1 to 120	10 gal/min	(1)	(4, 5, 10)
Pipe failure	1 to 50	5 gal/min	(1)	(4, 5,10)
Leaking pipe	1 to 10	1 gal/min		

Direction of flow is SW to the unnamed tributary to Turkey Sandy Creek. Direction of flow is SW to West Sandy Creek. Direction of flow is SW to the Washita River.

2

3

4 A sufficiently impervious floor and berm which is capable of containing the oil until the time at which cleanup occurs (Table 20 of Appendix H).

5 Land-based spill response kits which are available in both quantity and location to prevent the discharge of oil in harmful quantities to navigable waters or adjoining shorelines.

Exempt pursuant to 40 C.F.R. 112.1(b). 6

7 Exempt pursuant to 40 C.F.R. 112.1(d)(6).

⁸ Exempt pursuant to 40 C.F.R. 112.1(d)(8).
 ⁹ Exempt pursuant to 67 FR 47076 dated July 17, 2002.
 ¹⁰ Sufficient freeboard as determined in Table 22 of Appendix L.

Table 14

Portable Material Storage Areas - Potential Volume Released, Discharge Rate,

Potential Event	Maximum Volume Released (Bbls)	Maximum Discharge Rate	Direction of Flow	Secondary Containment
PMSA - 1				
Failure of portable tank	2,000	Gradual to instantaneous		
Tank overfill	1 to 5	1 gal/min	(2)	(3)
Leaking tank	1 to 5	1 gal/min	1	
PMSA – 2				
Failure of portable tank	564	Gradual to instantaneous		
Tank overfill	1 to 5	1 gal/min	(2)	(3)
Leaking tank	1 to 5	1 gal/min		
PMSA – 3				
Failure of portable tank	8,000	Gradual to instantaneous		
Tank overfill	1 to 5	1 gal/min	(2)	(3)
Leaking tank	1 to 5	1 gal/min		
PMSA – 4				
Failure of portable tank	170	Gradual to instantaneous		(3)
Tank overfill	1 to 5	1 gal/min	(2)	
Leaking tank	1 to 5	1 gal/min		
$PMSA - 5^4$				
Failure of tank	400	Gradual to instantaneous		
Tank overfill	1 to 5	1 gal/min	(2)	(3)
Leaking tank	1 to 5	1 gal/min		
$PMSA - 6^4$				
Failure of tank	400	Gradual to instantaneous		
Tank overfill	1 to 5	1 gal/min	(1)	(3)
Leaking tank	1 to 5	1 gal/min		
PMSA – 7				
Failure of portable tank	6,428	Gradual to instantaneous		
Tank overfill	1 to 5	1 gal/min	(1)	(3)
Leaking tank	1 to 5	1 gal/min		

Portable Material Storage Areas - Potential Volume Released, Discharge Rate,

Potential Event	Maximum Volume Released (Bbls)	Maximum Discharge Rate	Direction of Flow	Secondary Containment
PMSA – 8				
Failure of portable tank	1,321	Gradual to instantaneous		
Tank overfill	1 to 5	1 gal/min	(1)	(3)
Leaking tank	1 to 5	1 gal/min		
PMSA – 9				
Failure of portable tank	3,171	Gradual to instantaneous		
Tank overfill	1 to 5	1 gal/min	(1)	(3)
Leaking tank	1 to 5	1 gal/min		
PMSA – 10				
Failure of portable tank	2,000	Gradual to instantaneous		
Tank overfill	1 to 5	1 gal/min	(1)	(3)
Leaking tank	1 to 5	1 gal/min		
PMSA - 11	·			·
Failure of portable tank	1,000	Gradual to instantaneous		(3)
Tank overfill	1 to 5	1 gal/min	(1)	
Leaking tank	1 to 5	1 gal/min		
PMSA – 12				
Failure of portable tank	5,600	Gradual to instantaneous		(3)
Tank overfill	1 to 5	1 gal/min	(1)	
Leaking tank	1 to 5	1 gal/min		
PMSA – 13				
Failure of portable tank	765	Gradual to instantaneous		
Tank overfill	1 to 5	1 gal/min	(1)	(3)
Leaking tank	1 to 5	1 gal/min		
PMSA – 14				
Failure of portable tank	21,000	Gradual to instantaneous		
Tank overfill	1 to 5	1 gal/min	(1)	(3)
Leaking tank	1 to 5	1 gal/min		
PMSA – 15				
Failure of portable tank	2,325	Gradual to instantaneous		
Tank overfill	1 to 5	1 gal/min	(1)	(3)
Leaking tank	1 to 5	1 gal/min		

Portable Material Storage Areas - Potential Volume Released, Discharge Rate,

Direction of Flow, and Secondary Containment

Potential Event	Maximum Volume Released (Bbls)	Maximum Discharge Rate	Direction of Flow	Secondary Containment
PMSA - 16				
Failure of portable tank	560	Gradual to instantaneous		
Tank overfill	1 to 5	1 gal/min	(1)	(3)
Leaking tank	1 to 5	1 gal/min		

1

2

Direction of flow is SW to the unnamed tributary to Turkey Sandy Creek. Direction of flow is SW to West Sandy Creek. Land-based spill response kits/equipment which are available in both quantity and location to prevent the discharge of oil in harmful quantities to navigable waters or adjoining 3 shorelines.

⁴ LACT tanks owned by others who have their own SPCC plans. Info here for information purposes only. The 400-bbl LACT tanks are not installed as portable tanks.

Table 15 Oil-Filled Electrical Equipment - Potential Volume Released, Discharge Rate,

Potential Event	Maximum Volume Released (gallons)	Maximum Discharge Rate	Direction of Flow	Secondary Containment
Unit No. 26-XF-01				
Failure of tank	476	Gradual to instantaneous		
Tank overfill	1 to 2	1 gal/min	(1)	(3)
Leaking tank	1 to 2	1 gal/min		
Unit No. 26-XF-02				
Failure of tank	455	Gradual to instantaneous		
Tank overfill	1 to 2	1 gal/min	(1)	(3)
Leaking tank	1 to 2	1 gal/min		
Unit No. 40-EBXFR-01				
Failure of tank	(4)	Gradual to instantaneous		
Tank overfill	1 to 2	1 gal/min	(2)	(3)
Leaking tank	1 to 2	1 gal/min		
Unit No. 40-XFR-001	· · ·			
Failure of tank	(4)	Gradual to instantaneous		(3)
Tank overfill	1 to 2	1 gal/min	(1)	
Leaking tank	1 to 2	1 gal/min		
Unit No. 40-XFRJ2-1				
Failure of tank	(4)	Gradual to instantaneous		(3)
Tank overfill	1 to 2	1 gal/min	(1)	
Leaking tank	1 to 2	1 gal/min		
Unit No. 40-XFRJ2-2				
Failure of tank	(4)	Gradual to instantaneous		
Tank overfill	1 to 2	1 gal/min	(1)	(3)
Leaking tank	1 to 2	1 gal/min		
Unit No. 90-CC15XFR				
Failure of tank	(4)	Gradual to instantaneous		
Tank overfill	1 to 2	1 gal/min	(2)	(3)
Leaking tank	1 to 2	1 gal/min		
Unit No. 90-XFR-002				
Failure of tank	(4)	Gradual to instantaneous		
Tank overfill	1 to 2	1 gal/min	(1)	(3)
Leaking tank	1 to 2	1 gal/min		

Oil-Filled Electrical Equipment - Potential Volume Released, Discharge Rate,

Potential Event	Maximum Volume Released (gallons)	Maximum Discharge Rate	Direction of Flow	Secondary Containment
Unit No. 90-XFR-003				
Failure of tank	(4)	Gradual to instantaneous	(1)	
Tank overfill	1 to 2	1 gal/min		(3)
Leaking tank	1 to 2	1 gal/min		
Unit No. 90-XFR-004				
Failure of tank	(4)	Gradual to instantaneous		
Tank overfill	1 to 2	1 gal/min	(1)	(3)
Leaking tank	1 to 2	1 gal/min		
Unit No. 90-XFR-005				
Failure of tank	(4)	Gradual to instantaneous		
Tank overfill	1 to 2	1 gal/min	(2)	(3)
Leaking tank	1 to 2	1 gal/min		
Unit No. A-30				
Failure of tank	(4)	Gradual to instantaneous		(3)
Tank overfill	1 to 2	1 gal/min	(1)	
Leaking tank	1 to 2	1 gal/min		
Unit No. A-31				
Failure of tank	(4)	Gradual to instantaneous		
Tank overfill	1 to 2	1 gal/min	(1)	(3)
Leaking tank	1 to 2	1 gal/min		
Unit No. A-37				
Failure of tank	223	Gradual to instantaneous		
Tank overfill	1 to 2	1 gal/min	(1)	(3)
Leaking tank	1 to 2	1 gal/min		
Unit No. B-8				
Failure of tank	(4)	Gradual to instantaneous		
Tank overfill	1 to 2	1 gal/min	(1)	(3)
Leaking tank	1 to 2	1 gal/min		

Oil-Filled Electrical Equipment - Potential Volume Released, Discharge Rate,

Potential Event	Maximum Volume Released (gallons)	Maximum Discharge Rate	Direction of Flow	Secondary Containment
Unit No. C-4				
Failure of tank	419	Gradual to instantaneous		
Tank overfill	1 to 2	1 gal/min	(1)	(3)
Leaking tank	1 to 2	1 gal/min		
Unit No. C-5				
Failure of tank	(4)	Gradual to instantaneous		
Tank overfill	1 to 2	1 gal/min	(1)	(3)
Leaking tank	1 to 2	1 gal/min		
Unit No. D-37				
Failure of tank	(4)	Gradual to instantaneous		
Tank overfill	1 to 2	1 gal/min	(1)	(3)
Leaking tank	1 to 2	1 gal/min		
Unit No. D-42				
Failure of tank	(4)	Gradual to instantaneous		(3)
Tank overfill	1 to 2	1 gal/min	(1)	
Leaking tank	1 to 2	1 gal/min		
Unit No. D-44				
Failure of tank	(4)	Gradual to instantaneous		
Tank overfill	1 to 2	1 gal/min	(1)	(3)
Leaking tank	1 to 2	1 gal/min		
Unit No. D-48				
Failure of tank	(4)	Gradual to instantaneous		
Tank overfill	1 to 2	1 gal/min	(1)	(3)
Leaking tank	1 to 2	1 gal/min		
Unit No. D-52				
Failure of tank	(4)	Gradual to instantaneous		
Tank overfill	1 to 2	1 gal/min	(1)	(3)
Leaking tank	1 to 2	1 gal/min		
Unit No. D-53				
Failure of tank	258	Gradual to instantaneous		
Tank overfill	1 to 2	1 gal/min	(1)	(3)
Leaking tank	1 to 2	1 gal/min		

Oil-Filled Electrical Equipment - Potential Volume Released, Discharge Rate,

Potential Event	Maximum Volume Released (gallons)	Maximum Discharge Rate	Direction of Flow	Secondary Containment
Unit No. D-54				
Failure of tank	(4)	Gradual to instantaneous	(1)	
Tank overfill	1 to 2	1 gal/min		(3)
Leaking tank	1 to 2	1 gal/min		
Unit No. E-21				
Failure of tank	308	Gradual to instantaneous		
Tank overfill	1 to 2	1 gal/min	(1)	(3)
Leaking tank	1 to 2	1 gal/min		
Unit No. E-23				
Failure of tank	328	Gradual to instantaneous		
Tank overfill	1 to 2	1 gal/min	(1)	(3)
Leaking tank	1 to 2	1 gal/min		
Unit No. E-25				
Failure of tank	(4)	Gradual to instantaneous		(3)
Tank overfill	1 to 2	1 gal/min	(1)	
Leaking tank	1 to 2	1 gal/min		
Unit No. G-90				
Failure of tank	375	Gradual to instantaneous		
Tank overfill	1 to 2	1 gal/min	(1)	(3)
Leaking tank	1 to 2	1 gal/min		
Unit No. H-33				
Failure of tank	(4)	Gradual to instantaneous		
Tank overfill	1 to 2	1 gal/min	(1)	(3)
Leaking tank	1 to 2	1 gal/min		
Unit No. H-51				
Failure of tank	453	Gradual to instantaneous		
Tank overfill	1 to 2	1 gal/min	(2)	(3)
Leaking tank	1 to 2	1 gal/min		

Oil-Filled Electrical Equipment - Potential Volume Released, Discharge Rate,

Potential Event	Maximum Volume Released (gallons)	Maximum Discharge Rate	Direction of Flow	Secondary Containment
Unit No. H-52				
Failure of tank	453	Gradual to instantaneous		
Tank overfill	1 to 2	1 gal/min	(2)	(3)
Leaking tank	1 to 2	1 gal/min		
Unit No. H-53				
Failure of tank	354	Gradual to instantaneous		
Tank overfill	1 to 2	1 gal/min	(2)	(3)
Leaking tank	1 to 2	1 gal/min		
Unit No. H-60				
Failure of tank	(4)	Gradual to instantaneous		
Tank overfill	1 to 2	1 gal/min	(2)	(3)
Leaking tank	1 to 2	1 gal/min		
Unit No. H-62	·			
Failure of tank	480	Gradual to instantaneous		(3)
Tank overfill	1 to 2	1 gal/min	(2)	
Leaking tank	1 to 2	1 gal/min		
Unit No. H-63				
Failure of tank	460	Gradual to instantaneous		
Tank overfill	1 to 2	1 gal/min	(1)	(3)
Leaking tank	1 to 2	1 gal/min		
Unit No. H-64	·			
Failure of tank	453	Gradual to instantaneous		
Tank overfill	1 to 2	1 gal/min	(1)	(3)
Leaking tank	1 to 2	1 gal/min		
Unit No. H-65				
Failure of tank	230	Gradual to instantaneous		
Tank overfill	1 to 2	1 gal/min	(1)	(3)
Leaking tank	1 to 2	1 gal/min		

Oil-Filled Electrical Equipment - Potential Volume Released, Discharge Rate,

Potential Event	Maximum Volume Released (gallons)Maximum Discharge Rate		Direction of Flow	Secondary Containment	
Unit No. H-67					
Failure of tank	340	Gradual to instantaneous			
Tank overfill	1 to 2	1 gal/min	(1)	(3)	
Leaking tank	1 to 2	1 gal/min			
Unit No. H-68					
Failure of tank	250	Gradual to instantaneous			
Tank overfill	1 to 2	1 gal/min	(2)	(3)	
Leaking tank	1 to 2	1 gal/min			
Unit No. H-70					
Failure of tank	(4)	Gradual to instantaneous			
Tank overfill	1 to 2	1 gal/min	(1)	(3)	
Leaking tank	1 to 2	1 gal/min			
Unit No. H-72					
Failure of tank	345	Gradual to instantaneous		(3)	
Tank overfill	1 to 2	1 gal/min	(2)		
Leaking tank	1 to 2	1 gal/min			
Unit No. H-74					
Failure of tank	(4)	Gradual to instantaneous			
Tank overfill	1 to 2	1 gal/min	(1)	(3)	
Leaking tank	1 to 2	1 gal/min			
Unit No. H-75					
Failure of tank	(4)	Gradual to instantaneous			
Tank overfill	1 to 2			(3)	
Leaking tank	1 to 2	1 gal/min			
Unit No. ISOM					
Failure of tank	(4)	Gradual to instantaneous			
Tank overfill	1 to 2	1 gal/min	(1)	(3)	
Leaking tank	1 to 2	1 gal/min			

Oil-Filled Electrical Equipment - Potential Volume Released, Discharge Rate,

Potential Event	Maximum Volume Released (gallons)	Maximum Discharge Rate	Direction of Flow	Secondary Containment	
Unit No. J-2					
Failure of tank	(4)	Gradual to instantaneous			
Tank overfill	1 to 2	1 gal/min	(1)	(3)	
Leaking tank	1 to 2	1 gal/min			
Unit No. K-70					
Failure of tank	350	Gradual to instantaneous			
Tank overfill	1 to 2	1 gal/min	(1)	(3)	
Leaking tank	1 to 2	1 gal/min			
Unit No. L-1					
Failure of tank	(4)	Gradual to instantaneous			
Tank overfill	1 to 2	1 gal/min	(1)	(3)	
Leaking tank	1 to 2	1 gal/min			
Unit No. L-2					
Failure of tank	275	Gradual to instantaneous			
Tank overfill	1 to 2	1 gal/min	(1)	(3)	
Leaking tank	1 to 2	1 gal/min			
Unit No. M-1					
Failure of tank	1,445	Gradual to instantaneous		(3)	
Tank overfill	1 to 2	1 gal/min	(1)		
Leaking tank	1 to 2	1 gal/min			
Unit No. M-2					
Failure of tank	352	Gradual to instantaneous			
Tank overfill	1 to 2	1 gal/min	(1)	(3)	
Leaking tank	1 to 2	1 gal/min			
Unit No. OG&E					
Failure of tank	(4)	Gradual to instantaneous			
Tank overfill	1 to 2	1 gal/min	(1)	(3)	
Leaking tank	1 to 2	1 gal/min			
Unit No. TR001					
Failure of tank	(4)	Gradual to instantaneous			
Tank overfill	1 to 2	1 gal/min	(1)	(3)	
Leaking tank	1 to 2	1 gal/min			

Oil-Filled Electrical Equipment - Potential Volume Released, Discharge Rate,

Direction of Flow, and Secondary Containment

Potential Event	Maximum Volume Released (gallons)	Maximum Discharge Rate	Direction of Flow	Secondary Containment	
Unit No. TR001C					
Failure of tank	(4)	Gradual to instantaneous			
Tank overfill	1 to 2	1 to 2 1 gal/min (1)		(3)	
Leaking tank	1 to 2	1 gal/min			
Unit No. TR002					
Failure of tank	(4)	Gradual to instantaneous			
Tank overfill	1 to 2	1 gal/min	(1)	(3)	
Leaking tank	1 to 2	1 gal/min			
Unit No. West Flare					
Failure of tank	(4)	Gradual to instantaneous			
Tank overfill	1 to 2	1 gal/min	(2)	(3)	
Leaking tank	1 to 2	1 gal/min			

¹ Direction of flow is SW to the unnamed tributary to Turkey Sandy Creek.
 ² Direction of flow is SW to West Sandy Creek.
 ³ Land-based spill response kits which are available in both quantity and location to prevent the discharge of oil in harmful quantities to navigable waters or adjoining shorelines.
 ⁴ Information not available at the time of Plan drafting.

Table 16

Oil-Filled Operating Equipment - Potential Volume Released, Discharge Rate,

Direction of Flow, and Secondary Containment

Potential Event	Maximum Volume Released (Gallons)	Maximum Discharge Rate	Direction of Flow	Secondary Containment	
Diesel Day Tank Nos. DT1183, DT1184 and DT1185					
Failure of tank	300	Gradual to instantaneous			
Tank overfill	0 to 1	1 gal/min (1)		(2, 3)	
Pipe failure	0 to 1	1 gal/min			

1

2

Direction of flow is SW to West Sandy Creek. Sufficiently impervious concrete building floor and walls. Land-based spill response kits which are available in both quantity and location to prevent the discharge of oil in harmful quantities to navigable waters or adjoining shorelines. 3

Table 17

Oil-Filled Manufacturing Equipment - Potential Volume Released, Discharge Rate,

Direction of Flow, and Secondary Containment¹

Potential Event	Maximum Volume Released (Bbls)	Maximum Discharge Rate	Direction of Flow	Secondary Containment	
HF Alkylation					
Failure of process vessel (Depropanizer Tower)	1,494	, (2)		(1, 5, 6)	
Pipe failure	100 to 200	100 to 200 20 gal/min		(4, 5, 6)	
Leaking pipe	1 to 5	1 gal/min			
Hydrorcracker					
Failure of process vessel (Main Fractionator)	1,289	Gradual to instantaneous	(2)		
Pipe failure	100 to 200	20 gal/min	(3)	(4, 5, 6)	
Leaking pipe	1 to 5	1 gal/min			
Rose Unit					
Failure of process vessel (Solvent Surge Drum)	463	Gradual to instantaneous		(1.5.6)	
Pipe failure	100 to 200	20 gal/min	(3)	(4, 5, 6)	
Leaking pipe	1 to 5	1 gal/min			
FCCU					
Failure of process vessel (Main Column)			(2)	(1, 5, 6)	
Pipe failure	100 to 200	20 gal/min	(3)	(4, 5, 6)	
Leaking pipe	1 to 5	1 gal/min			
Crude Distillation					
Failure of process vessel (Stripper Column)	1,903	,			
Pipe failure	100 to 200	20 gal/min	(3)	(4, 5, 6)	
Leaking pipe	1 to 5	1 gal/min			

Oil-Filled Manufacturing Equipment - Potential Volume Released, Discharge Rate,

Potential Event	Maximum Volume Released (Bbls)	Maximum Discharge Rate	Direction of Flow	Secondary Containment	
Naptha Hydrotreater					
Failure of process vessel (Naphtha Stripper Column)	567	Gradual to instantaneous			
Pipe failure	100 to 200	20 gal/min	(3)	(4, 5, 6)	
Leaking pipe	1 to 5	1 gal/min			
LSR Hydrotreater					
Failure of process vessel (LSR Stabilizer)	142	Gradual to instantaneous			
Pipe failure	100 to 200	20 gal/min	(3)	(4, 5, 6)	
Leaking pipe	1 to 5	1 gal/min			
Platformer					
Failure of process vessel (Plat Stabilizer)	280	Gradual to instantaneous			
Pipe failure	100 to 200	20 gal/min	(3)	(4, 5, 6)	
Leaking pipe	1 to 5	1 gal/min			
Diesel Hydrotreater					
Failure of process vessel (Hot Separator Feed)	137	Gradual to instantaneous	$\langle 2 \rangle$	(4, 5, 6)	
Pipe failure	100 to 200	20 gal/min	(3)		
Leaking pipe	1 to 5	1 gal/min			
Gasoline Hydrotreater					
Failure of process vessel (HDS Reactor)	331	Gradual to instantaneous	$\langle 2 \rangle$	(1.5.5)	
Pipe failure	100 to 200	20 gal/min	(3)	(4, 5, 6)	
Leaking pipe	1 to 5	1 gal/min			
Benfree Unit					
Failure of process vessel (Benzene Reactor)	32	Gradual to instantaneous	$\langle 2 \rangle$	(4, 5, 6)	
Pipe failure	100 to 200	20 gal/min	(3)		
Leaking pipe	1 to 5	1 gal/min			
Hydrogen Plant					
No liquids in process	NA	NA	(3)	(4, 5, 6)	

- Table 17 Legend

 ¹
 WRC Risk Management Plan Documentation

 ²
 Direction of flow is SW to West Sandy Creek.

 ³
 Direction of flow is SW to the unnamed tributary to Turkey Sandy Creek.

 ⁴
 Drainage to refinery sewer system which is capable of holding the contents of the process units and piping consisting of approximately 91,714 barrels (based on the September

 24, 2003 SPCC).
- ⁵ Land-based spill response kits which are available in both quantity and location to prevent the discharge of oil in harmful quantities to navigable waters or adjoining shorelines.
- ⁶ An oil spill contingency plan and a written commitment of manpower, equipment and materials required to expeditiously control and remove any quantity of oil discharged that may be harmful to any navigable water or adjoining shoreline.

Table 18 Loading and Unloading Areas/Racks - Potential Volume Released, Discharge Rate,

Potential Event	Maximum Volume Released (gallons)	Maximum Discharge Rate	Direction of Flow	Secondary Containment	
LUA – 1		-			
Tank truck leak	1 to 6,000	Gradual to instantaneous			
Tank truck leak or failure outside the berm	1 to 10	1 gal/min	(1)	(3)	
Hose leak during truck loading	1 to 5	1 gal/min			
LUR – 2					
Tank truck leak	1 to 6,000	Gradual to instantaneous			
Tank truck leak or failure outside the berm	1 to 10	1 gal/min	(1)	(3)	
Hose leak during truck loading	1 to 5	1 gal/min			
LUA – 3					
Tank truck leak	1 to 6,000	Gradual to instantaneous			
Tank truck leak or failure outside the berm	1 to 10	1 gal/min	(1)	(3)	
Hose leak during truck loading	1 to 5	1 gal/min			
LUR – 4					
Railcar leak	1 to 30,000	Gradual to instantaneous			
Railcar leak or failure outside the berm	1 to 10	10 gal/min	(2)	(3)	
Hose leak during railcar loading	1 to 5	1 gal/min			
LUR – 5					
Railcar leak	1 to 30,000	Gradual to instantaneous			
Railcar leak or failure outside the berm	1 to 10	10 gal/min	(2)	(3)	
Hose leak during truck loading	1 to 5	1 gal/min			
LUA – 6					
Tank truck leak	1 to 6,000	Gradual to instantaneous			
Tank truck leak or failure outside the berm	1 to 10	1 gal/min	(2)	(3)	
Hose leak during truck loading	1 to 5	1 gal/min			

Table 18 (Cont'd) Loading and Unloading Areas/Racks - Potential Volume Released, Discharge Rate,

Direction of Flow, and Secondary Containment

Potential Event	Maximum Volume Released (gallons)	Maximum Discharge Rate	Direction of Flow	Secondary Containment	
LUA – 7		-		-	
Tank truck leak	1 to 6,000	1 to 6,000 Gradual to instantaneous			
Tank truck leak or failure outside the berm	1 to 10	1 gal/min	(1)	(3)	
Hose leak during truck loading	1 to 5	1 gal/min			
LUR – 8					
Railcar leak	1 to 30,000	Gradual to instantaneous			
Railcar leak or failure outside the berm	1 to 10	10 gal/min	(1)	(3)	
Hose leak during truck loading	1 to 5	1 gal/min			
LUR – 9					
Tank truck leak	1 to 6,000	Gradual to instantaneous			
Tank truck leak or failure outside the berm	1 to 10	1 gal/min	(1)	(3)	
Hose leak during truck loading	1 to 5	1 gal/min			
LUR – 10					
Tank truck leak	1 to 6,000	Gradual to instantaneous			
Tank truck leak or failure outside the berm	1 to 10	1 gal/min	(2)	(3)	
Hose leak during railcar loading	1 to 5	1 gal/min			
LUR – 11					
Tank truck leak	1 to 6,000	Gradual to instantaneous			
Tank truck leak or failure outside the berm	1 to 10	1 gal/min	(2)	(3)	
Hose leak during railcar loading	1 to 5	1 gal/min			

Table 18 Legend1120311011<

Table 19

Piping - Potential Volume Released, Discharge Rate,

Direction of Flow, and Secondary Containment

Potential Event	Maximum Volume Released (gallons)	Maximum Discharge Rate	Direction of Flow	Secondary Containment		
Transfer Piping to and from Bulk Storage Containers, both Aboveground and Buried						
Pipe Failure	1 to 50	5 gal/min	(1)	(2)		
Leaking Pipe	1 to 10	1 gal/min	(1)	(2)		
Intra-facility gathering line						
Pipe Failure	1 to 50	5 gal/min	(1)	(2, 4)		
Leaking Pipe	1 to 10	1 gal/min	(1)	(2, 4)		
Transfer piping form API separators to ta	nk no. 2007					
Pipe Failure	1 to 50	5 gal/min	(1)	(5)		
Leaking Pipe	1 to 10	1 gal/min	(1)	(5)		
Transfer Piping Associated with Manufact	turing Equipment, both Above	ground and Buried				
Pipe Failure	1 to 50	5 gal/min	(1)	(2, 3, 4)		
Leaking Pipe	1 to 10	1 gal/min	(1)	(2, 3, 4)		
Piping associated with Oil-Filled Operation	nal Equipment					
Pipe Failure	1 to 50	5 gal/min	(1)	(2)		
Leaking Pipe	1 to 10	1 gal/min	(1)	(2)		
Out-of-Service Pipelines						
Pipe Failure	1 to 50	5 gal/min	(1)			
Leaking Pipe	1 to 10	1 gal/min	(1)			

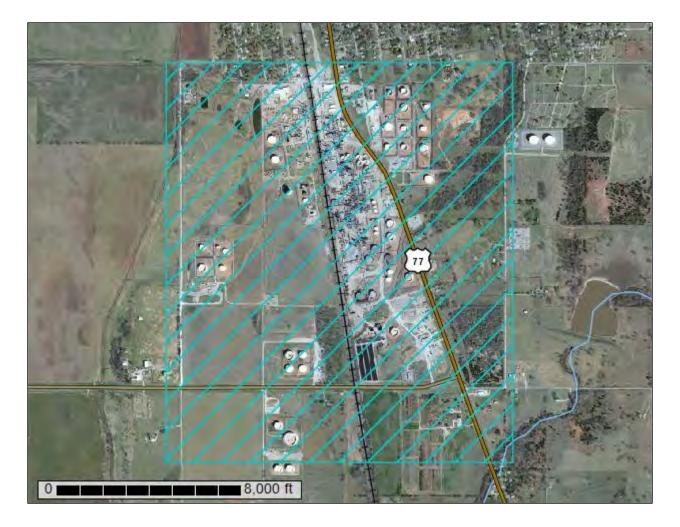
Direction of flow is west to southwest beneath the site. Land-based spill response kits which are available in both quantity and location to prevent the discharge of oil in harmful quantities to navigable waters or adjoining shorelines. 2 3 Drainage to refinery sewer system which is capable of holding the contents of the process units and piping consisting of approximately 91,714 barrels (based on the September

24, 2003 SPCC).

⁴ An oil spill contingency plan and a written commitment of manpower, equipment and materials required to expeditiously control and remove any quantity of oil discharged that may be harmful to any navigable water or adjoining shoreline.

⁵ Double steel wall pipe constructed in accordance with ASME B31.3 standards and compatible with the material processed and the conditions of processing, i.e., pressure and temperature.

Appendix H Sufficiently Impervious Determination



United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for Garvin County, Oklahoma, and Murray County, Oklahoma

Wynnewood Refining Company, LLC

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://soils.usda.gov/sqi/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (http://offices.sc.egov.usda.gov/locator/app? agency=nrcs) or your NRCS State Soil Scientist (http://soils.usda.gov/contact/ state_offices/).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Soil Data Mart Web site or the NRCS Web Soil Survey. The Soil Data Mart is the data storage site for the official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	7
Soil Map	8
Legend	9
Map Unit Legend	.10
Map Unit Descriptions	.10
Garvin County, Oklahoma	.13
24—Garvin and Elandco soils, 0 to 1 percent slopes, frequently flooded	.13
38—Konawa fine sandy loam, 1 to 3 percent slopes	.15
44—Lela clay, 0 to 1 percent slopes, rarely flooded	.16
71—Teller fine sandy loam, 3 to 5 percent slopes, eroded	.17
74—Teller loam, 0 to 1 percent slopes	.18
75—Teller loam, 1 to 3 percent slopes	.20
78—Teller-Urban land complex, 0 to 5 percent slopes	.21
81—Urban land	.22
Murray County, Oklahoma	.24
3—Bastrop loam, 1 to 5 percent slopes, eroded	.24
24—Elandco silt loam, 0 to 1 percent slopes, occasionally flooded	.24
40—Konawa fine sandy loam, 0 to 3 percent slopes	.25
55—Teller loam, 0 to 1 percent slopes	.26
56—Teller loam, 1 to 3 percent slopes	.27
62—Watonga silty clay loam, 0 to 1 percent slopes, rarely flooded	.29
References	.30

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the

individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soillandscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report Soil Map

MAP LEGEND			MAP INFORMATION	
Area of In	terest (AOI) Area of Interest (AOI)	000	Spoil Area	The soil surveys that comprise your AOI were mapped at 1:24,00
Soils	Area of interest (Nor)	٥	Stony Spot	Warning: Soil Map may not be valid at this scale.
	Soil Map Unit Polygons	0	Very Stony Spot	
~	Soil Map Unit Lines	\$	Wet Spot	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil lin
	Soil Map Unit Points	\triangle	Other	placement. The maps do not show the small areas of contrasting
_	Point Features		Special Line Features	soils that could have been shown at a more detailed scale.
6	Blowout	Water Fea		
8	Borrow Pit	\sim	Streams and Canals	Please rely on the bar scale on each map sheet for map measurements.
*	Clay Spot	Transpor		medouremento.
ô	Closed Depression	+++	Rails	Source of Map: Natural Resources Conservation Service
×	Gravel Pit	~	Interstate Highways	Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857)
		\sim	US Routes	
	Gravelly Spot	\sim	Major Roads	Maps from the Web Soil Survey are based on the Web Mercator
0	Landfill	\sim	Local Roads	projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the
A.	Lava Flow	Backgrou	ind	Albers equal-area conic projection, should be used if more accurate
عليه	Marsh or swamp	Mar.	Aerial Photography	calculations of distance or area are required.
~	Mine or Quarry			This product is generated from the USDA-NRCS certified data as
0	Miscellaneous Water			the version date(s) listed below.
0	Perennial Water			Soil Survey Area: Garvin County, Oklahoma
\vee	Rock Outcrop			Survey Area Data: Version 9, Dec 8, 2009
+	Saline Spot			
• ••	Sandy Spot			Soil Survey Area: Murray County, Oklahoma Survey Area Data: Version 8, Dec 10, 2009
	Severely Eroded Spot			
0	Sinkhole			Your area of interest (AOI) includes more than one soil survey are
*	Slide or Slip			These survey areas may have been mapped at different scales, w a different land use in mind, at different times, or at different leve
<u>ک</u>	Sodic Spot			of detail. This may result in map unit symbols, soil properties
ø	Sourc Spor			interpretations that do not completely agree across soil survey a boundaries.
				Soil map units are labeled (as space allows) for map scales 1:50,0 or larger.
				Date(s) aerial images were photographed: Jan 28, 2011—May 2011

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident

Map Unit Legend

	Garvin County, Oklahoma (OK049)					
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI			
24	Garvin and Elandco soils, 0 to 1 percent slopes, frequently flooded	28.0	3.3%			
38	Konawa fine sandy loam, 1 to 3 percent slopes	7.7	0.9%			
44	Lela clay, 0 to 1 percent slopes, rarely flooded	24.5	2.9%			
71	Teller fine sandy loam, 3 to 5 percent slopes, eroded	92.5	11.0%			
74	Teller loam, 0 to 1 percent slopes	202.2	24.0%			
75	Teller loam, 1 to 3 percent slopes	127.9	15.2%			
78 Teller-Urban land complex, 0 to 5 percent slopes		149.7	17.8%			
81	Urban land	51.3	6.1%			
Subtotals for Soil Survey Area		683.8	81.3%			
Totals for Area of Interest		841.5	100.0%			

Murray County, Oklahoma (OK099)			
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
3	Bastrop loam, 1 to 5 percent slopes, eroded	0.8	0.1%
24	Elandco silt loam, 0 to 1 percent slopes, occasionally flooded	3.2	0.4%
40	Konawa fine sandy loam, 0 to 3 percent slopes	32.1	3.8%
55	Teller loam, 0 to 1 percent slopes	106.9	12.7%
56	Teller loam, 1 to 3 percent slopes	3.1	0.4%
62	Watonga silty clay loam, 0 to 1 percent slopes, rarely flooded	11.5	1.4%
Subtotals for Soil Survey Area		157.7	18.7%
Totals for Area of Interest		841.5	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named

according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or

anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Garvin County, Oklahoma

24—Garvin and Elandco soils, 0 to 1 percent slopes, frequently flooded

Map Unit Setting

Elevation: 200 to 1,500 feet *Mean annual precipitation:* 23 to 42 inches *Mean annual air temperature:* 57 to 70 degrees F *Frost-free period:* 185 to 290 days

Map Unit Composition

Garvin and similar soils: 55 percent *Elandco and similar soils:* 30 percent *Minor components:* 15 percent

Description of Garvin

Setting

Landform: Flood plains Down-slope shape: Linear Across-slope shape: Linear Parent material: Calcareous loamy and/or clayey alluvium

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: Frequent
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Available water capacity: High (about 10.0 inches)

Interpretive groups

Farmland classification: Not prime farmland *Land capability (nonirrigated):* 5w *Hydrologic Soil Group:* D *Ecological site:* Heavy bottomland PE 56-66 (R085XY045OK)

Typical profile

0 to 10 inches: Silty clay 10 to 30 inches: Clay 30 to 44 inches: Clay 44 to 80 inches: Clay

Description of Elandco

Setting

Landform: Flood plains Down-slope shape: Linear Across-slope shape: Linear Parent material: Loamy alluvium

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: Frequent
Frequency of ponding: None
Calcium carbonate, maximum content: 20 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Available water capacity: High (about 11.4 inches)

Interpretive groups

Farmland classification: Not prime farmland *Land capability (nonirrigated):* 5w *Hydrologic Soil Group:* B *Ecological site:* Loamy bottomland PE 56-66 (R085XY050OK)

Typical profile

0 to 15 inches: Silt loam 15 to 35 inches: Silty clay loam 35 to 62 inches: Silty clay loam

Minor Components

Port

Percent of map unit: 7 percent Landform: Flood plains Down-slope shape: Linear Across-slope shape: Linear Ecological site: Loamy Bottomland PE 44-64 (R080AY050OK)

Bergstrom

Percent of map unit: 7 percent Landform: Flood plains Down-slope shape: Linear Across-slope shape: Linear Ecological site: Loamy bottomland PE 56-66 (R085XY050OK)

Harjo

Percent of map unit: 1 percent Landform: Flood plains Down-slope shape: Linear Across-slope shape: Linear Ecological site: Meadow PE 44-64 (R080AY090OK)

38—Konawa fine sandy loam, 1 to 3 percent slopes

Map Unit Setting

Elevation: 500 to 1,500 feet *Mean annual precipitation:* 26 to 45 inches *Mean annual air temperature:* 58 to 64 degrees F *Frost-free period:* 200 to 230 days

Map Unit Composition

Konawa and similar soils: 80 percent Minor components: 20 percent

Description of Konawa

Setting

Landform: Paleoterraces Landform position (three-dimensional): Tread Down-slope shape: Convex Across-slope shape: Convex Parent material: Loamy and sandy alluvium

Properties and qualities

Slope: 1 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Moderate (about 8.6 inches)

Interpretive groups

Farmland classification: All areas are prime farmland *Land capability (nonirrigated):* 2e *Hydrologic Soil Group:* B *Ecological site:* Sandy Savannah PE 48 - 64 (R084AY075OK)

Typical profile

0 to 8 inches: Fine sandy loam 8 to 12 inches: Fine sandy loam 12 to 34 inches: Sandy clay loam 34 to 62 inches: Sandy clay loam 62 to 72 inches: Fine sandy loam

Minor Components

Teller

Percent of map unit: 10 percent

Landform: Paleoterraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Ecological site: Sandy Prairie PE 44-64 (R080AY073OK)

Konsil

Percent of map unit: 9 percent Landform: Hillslopes on hills Landform position (two-dimensional): Shoulder Down-slope shape: Convex Across-slope shape: Convex Ecological site: Deep sand savannah PE 44-64 (R084BY018OK)

Bocox

Percent of map unit: 1 percent Landform: Depressions on interdunes Down-slope shape: Concave Across-slope shape: Concave Ecological site: Meadow PE 44-64 (R080AY090OK)

44—Lela clay, 0 to 1 percent slopes, rarely flooded

Map Unit Setting

Elevation: 700 to 1,500 feet *Mean annual precipitation:* 26 to 40 inches *Mean annual air temperature:* 57 to 64 degrees F *Frost-free period:* 190 to 230 days

Map Unit Composition

Lela and similar soils: 80 percent *Minor components:* 20 percent

Description of Lela

Setting

Landform: Flood plains Down-slope shape: Linear Across-slope shape: Linear Parent material: Clayey alluvium

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: Rare
Frequency of ponding: None
Calcium carbonate, maximum content: 2 percent

Available water capacity: Moderate (about 7.7 inches)

Interpretive groups

Farmland classification: All areas are prime farmland *Land capability (nonirrigated):* 3s *Hydrologic Soil Group:* D *Ecological site:* Clayey Bottomland PE 44-64 (R080AY045OK)

Typical profile

0 to 24 inches: Clay 24 to 42 inches: Clay 42 to 72 inches: Clay

Minor Components

Mclain

Percent of map unit: 10 percent Landform: Flood plains Down-slope shape: Linear Across-slope shape: Linear Ecological site: Loamy Bottomland PE 44-64 (R080AY050OK)

Asher

Percent of map unit: 9 percent Landform: Flood plains Down-slope shape: Linear Across-slope shape: Linear Ecological site: Loamy Bottomland PE 44-64 (R080AY050OK)

Lebron

Percent of map unit: 1 percent Landform: Depressions on flood plains Down-slope shape: Concave Across-slope shape: Concave Ecological site: Meadow PE 44-64 (R080AY090OK)

71—Teller fine sandy loam, 3 to 5 percent slopes, eroded

Map Unit Setting

Elevation: 800 to 1,300 feet *Mean annual precipitation:* 26 to 40 inches *Mean annual air temperature:* 57 to 64 degrees F *Frost-free period:* 200 to 230 days

Map Unit Composition

Teller, eroded, and similar soils: 90 percent *Minor components:* 10 percent

Description of Teller, Eroded

Setting

Landform: Paleoterraces

Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Loamy alluvium

Properties and qualities

Slope: 3 to 5 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: High (about 10.1 inches)

Interpretive groups

Farmland classification: Not prime farmland *Land capability (nonirrigated):* 3e *Hydrologic Soil Group:* B *Ecological site:* Eroded Loamy Prairie PE 44-64 (R080AY856OK)

Typical profile

0 to 5 inches: Fine sandy loam 5 to 50 inches: Sandy clay loam 50 to 64 inches: Fine sandy loam

Minor Components

Norge, eroded

Percent of map unit: 10 percent Landform: Paleoterraces Landform position (three-dimensional): Tread Down-slope shape: Convex Across-slope shape: Linear Ecological site: Eroded Loamy Prairie PE 44-64 (R080AY856OK)

74—Teller loam, 0 to 1 percent slopes

Map Unit Setting

Elevation: 700 to 1,300 feet *Mean annual precipitation:* 26 to 40 inches *Mean annual air temperature:* 57 to 64 degrees F *Frost-free period:* 200 to 230 days

Map Unit Composition

Teller and similar soils: 90 percent *Minor components:* 10 percent

Description of Teller

Setting

Landform: Paleoterraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Loamy alluvium

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: High (about 10.7 inches)

Interpretive groups

Farmland classification: All areas are prime farmland *Land capability (nonirrigated):* 1 *Hydrologic Soil Group:* B *Ecological site:* Loamy Prairie PE 44-64 (R080AY056OK)

Typical profile

0 to 12 inches: Loam 12 to 18 inches: Loam 18 to 40 inches: Clay loam 40 to 60 inches: Fine sandy loam 60 to 75 inches: Fine sandy loam

Minor Components

Vanoss

Percent of map unit: 5 percent Landform: Paleoterraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Ecological site: Loamy Prairie PE 44-64 (R080AY056OK)

Norge

Percent of map unit: 5 percent Landform: Paleoterraces Landform position (three-dimensional): Tread Down-slope shape: Convex Across-slope shape: Linear Ecological site: Loamy Prairie PE 44-64 (R080AY056OK)

75—Teller loam, 1 to 3 percent slopes

Map Unit Setting

Elevation: 800 to 1,300 feet *Mean annual precipitation:* 26 to 40 inches *Mean annual air temperature:* 57 to 64 degrees F *Frost-free period:* 200 to 230 days

Map Unit Composition

Teller and similar soils: 95 percent *Minor components:* 5 percent

Description of Teller

Setting

Landform: Paleoterraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Loamy alluvium

Properties and qualities

Slope: 1 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: High (about 10.5 inches)

Interpretive groups

Farmland classification: All areas are prime farmland *Land capability (nonirrigated):* 2e *Hydrologic Soil Group:* B *Ecological site:* Loamy Prairie PE 44-64 (R080AY056OK)

Typical profile

0 to 12 inches: Loam 12 to 56 inches: Sandy clay loam 56 to 66 inches: Fine sandy loam

Minor Components

Norge

Percent of map unit: 5 percent Landform: Paleoterraces Landform position (three-dimensional): Tread Down-slope shape: Convex Across-slope shape: Linear Ecological site: Loamy Prairie PE 44-64 (R080AY056OK)

78—Teller-Urban land complex, 0 to 5 percent slopes

Map Unit Setting

Elevation: 700 to 2,000 feet *Mean annual precipitation:* 22 to 40 inches *Mean annual air temperature:* 57 to 64 degrees F *Frost-free period:* 185 to 230 days

Map Unit Composition

Teller and similar soils: 50 percent *Urban land:* 30 percent *Minor components:* 20 percent

Description of Teller

Setting

Landform: Paleoterraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Loamy alluvium

Properties and qualities

Slope: 1 to 5 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: High (about 10.7 inches)

Interpretive groups

Farmland classification: Not prime farmland *Land capability (nonirrigated):* 3e *Hydrologic Soil Group:* B

Typical profile

0 to 8 inches: Loam 8 to 16 inches: Loam 16 to 40 inches: Sandy clay loam 40 to 52 inches: Fine sandy loam 52 to 70 inches: Fine sandy loam

Description of Urban Land

Setting

Parent material: Loamy mine spoil or earthy fill

Interpretive groups

Farmland classification: Not prime farmland *Land capability (nonirrigated):* 8 *Hydrologic Soil Group:* D

Typical profile

0 to 60 inches: Variable

Minor Components

Vanoss

Percent of map unit: 10 percent Landform: Paleoterraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Ecological site: Loamy Prairie PE 44-64 (R080AY056OK)

Norge

Percent of map unit: 10 percent Landform: Paleoterraces Landform position (three-dimensional): Tread Down-slope shape: Convex Across-slope shape: Linear Ecological site: Loamy Prairie PE 44-64 (R080AY056OK)

81—Urban land

Map Unit Setting

Elevation: 700 to 2,000 feet *Mean annual precipitation:* 22 to 40 inches *Mean annual air temperature:* 57 to 64 degrees F *Frost-free period:* 185 to 230 days

Map Unit Composition

Urban land: 100 percent

Description of Urban Land

Setting

Parent material: Mine spoil or earthy fill

Interpretive groups

Farmland classification: Not prime farmland *Land capability (nonirrigated):* 8

Hydrologic Soil Group: D

Typical profile 0 to 60 inches: Variable

Murray County, Oklahoma

3—Bastrop loam, 1 to 5 percent slopes, eroded

Map Unit Setting

Elevation: 400 to 1,200 feet *Mean annual precipitation:* 28 to 40 inches *Mean annual air temperature:* 64 to 70 degrees F *Frost-free period:* 220 to 270 days

Map Unit Composition

Bastrop, eroded, and similar soils: 100 percent

Description of Bastrop, Eroded

Setting

Landform: Stream terraces Landform position (three-dimensional): Riser Down-slope shape: Linear Across-slope shape: Convex Parent material: Loamy alluvium

Properties and qualities

Slope: 1 to 5 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Available water capacity: Moderate (about 9.0 inches)

Interpretive groups

Farmland classification: Not prime farmland *Land capability (nonirrigated):* 3e *Hydrologic Soil Group:* B *Ecological site:* Eroded Sandy Savannah PE 44-64 (R084BY876OK)

Typical profile

0 to 7 inches: Loam 7 to 27 inches: Sandy clay loam 27 to 49 inches: Clay loam 49 to 80 inches: Sandy clay loam

24—Elandco silt loam, 0 to 1 percent slopes, occasionally flooded

Map Unit Setting

Elevation: 970 to 1,500 feet

Mean annual precipitation: 23 to 40 inches *Mean annual air temperature:* 57 to 70 degrees F *Frost-free period:* 190 to 240 days

Map Unit Composition

Elandco and similar soils: 100 percent

Description of Elandco

Setting

Landform: Flood plains Down-slope shape: Linear Across-slope shape: Linear Parent material: Loamy alluvium

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: Occasional
Frequency of ponding: None
Calcium carbonate, maximum content: 20 percent
Maximum salinity: Nonsaline (0.0 to 2.0 mmhos/cm)
Available water capacity: High (about 11.4 inches)

Interpretive groups

Farmland classification: All areas are prime farmland Land capability (nonirrigated): 2w Hydrologic Soil Group: B Ecological site: Loamy bottomland PE 56-66 (R085XY050OK)

Typical profile

0 to 21 inches: Silt loam 21 to 58 inches: Silty clay loam 58 to 80 inches: Silty clay loam

40—Konawa fine sandy loam, 0 to 3 percent slopes

Map Unit Setting

Elevation: 500 to 1,500 feet *Mean annual precipitation:* 30 to 40 inches *Mean annual air temperature:* 58 to 64 degrees F *Frost-free period:* 200 to 230 days

Map Unit Composition

Konawa and similar soils: 100 percent

Description of Konawa

Setting

Landform: Paleoterraces Landform position (three-dimensional): Tread Down-slope shape: Convex Across-slope shape: Convex Parent material: Loamy and sandy alluvium

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: High (about 9.2 inches)

Interpretive groups

Farmland classification: All areas are prime farmland *Land capability (nonirrigated):* 2e *Hydrologic Soil Group:* B *Ecological site:* Sandy Savannah PE 48 - 64 (R084AY075OK)

Typical profile

0 to 8 inches: Fine sandy loam 8 to 16 inches: Fine sandy loam 16 to 64 inches: Sandy clay loam 64 to 80 inches: Fine sandy loam

55—Teller loam, 0 to 1 percent slopes

Map Unit Setting

Elevation: 400 to 1,500 feet *Mean annual precipitation:* 26 to 40 inches *Mean annual air temperature:* 58 to 70 degrees F *Frost-free period:* 200 to 270 days

Map Unit Composition

Teller and similar soils: 90 percent *Minor components:* 10 percent

Description of Teller

Setting

Landform: Paleoterraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Loamy alluvium

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: High (about 10.8 inches)

Interpretive groups

Farmland classification: All areas are prime farmland *Land capability (nonirrigated):* 1 *Hydrologic Soil Group:* B *Ecological site:* Loamy Prairie PE 44-64 (R080AY056OK)

Typical profile

0 to 11 inches: Loam 11 to 22 inches: Loam 22 to 56 inches: Sandy clay loam 56 to 80 inches: Fine sandy loam

Minor Components

Konawa

Percent of map unit: 5 percent Landform: Paleoterraces Landform position (three-dimensional): Tread Down-slope shape: Convex Across-slope shape: Convex Ecological site: Deep Sand Savannah PE 48-64 (R084AY018OK)

Bastrop

Percent of map unit: 5 percent Landform: Stream terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Convex Ecological site: Sandy savannah PE 44-64 (R084BY076OK)

56—Teller loam, 1 to 3 percent slopes

Map Unit Setting

Elevation: 400 to 1,500 feet *Mean annual precipitation:* 26 to 40 inches *Mean annual air temperature:* 58 to 70 degrees F *Frost-free period:* 200 to 270 days

Map Unit Composition

Teller and similar soils: 90 percent *Minor components:* 10 percent

Description of Teller

Setting

Landform: Paleoterraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Loamy alluvium

Properties and qualities

Slope: 1 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: High (about 10.8 inches)

Interpretive groups

Farmland classification: All areas are prime farmland *Land capability (nonirrigated):* 2e *Hydrologic Soil Group:* B *Ecological site:* Loamy Prairie PE 44-64 (R080AY056OK)

Typical profile

0 to 10 inches: Loam 10 to 22 inches: Loam 22 to 55 inches: Sandy clay loam 55 to 80 inches: Fine sandy loam

Minor Components

Bastrop

Percent of map unit: 5 percent Landform: Stream terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Convex Ecological site: Sandy savannah PE 44-64 (R084BY076OK)

Konawa

Percent of map unit: 5 percent Landform: Paleoterraces Landform position (three-dimensional): Tread Down-slope shape: Convex Across-slope shape: Convex Ecological site: Sandy Savannah PE 48 - 64 (R084AY075OK)

62—Watonga silty clay loam, 0 to 1 percent slopes, rarely flooded

Map Unit Setting

Elevation: 800 to 1,300 feet *Mean annual precipitation:* 26 to 40 inches *Mean annual air temperature:* 57 to 64 degrees F *Frost-free period:* 200 to 220 days

Map Unit Composition

Watonga and similar soils: 100 percent

Description of Watonga

Setting

Landform: Flood plains Down-slope shape: Linear Across-slope shape: Linear Parent material: Calcareous clayey alluvium

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: Rare
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Available water capacity: High (about 10.1 inches)

Interpretive groups

Farmland classification: All areas are prime farmland *Land capability (nonirrigated):* 2s *Hydrologic Soil Group:* D *Ecological site:* Clayey Bottomland PE 44-64 (R080AY045OK)

Typical profile

0 to 18 inches: Silty clay loam 18 to 46 inches: Silty clay 46 to 80 inches: Silty clay

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://soils.usda.gov/

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://soils.usda.gov/

Soil Survey Staff. 2006. Keys to soil taxonomy. 10th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://soils.usda.gov/

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://soils.usda.gov/

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.glti.nrcs.usda.gov/

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://soils.usda.gov/

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://soils.usda.gov/ United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210.

Table 20

Sufficiently Impervious Determination

Material	Contonto	Soil Domrach iliter	Secondary Containment System				ciently vious?
Storage Area	Contents	Permeability, in/hr ²	D	esign	Implementation/Maintenance	No	Yes
		111/111	Floor	Berm	Implementation/Maintenance	NU	165
MSA-1			(7)	(7)			
MSA-2			Native Soil	Native Soil/Asphalt	(3, 4)		Yes
MSA-3			(5)	(5)			
MSA-4	Ī		Native Soil	Native Soil/Asphalt	(3, 4)		Yes
MSA-5			Concrete Slab	Concrete Slab	(3, 4)		Yes
MSA-6	Ī		Native Soil	Native Soil/Asphalt	(3, 4)		Yes
MSA-7	Ī		Native Soil	Native Soil	(3, 4)		Yes
MSA-8			(7)	(7)			
MSA-9			Native Soil	Native Soil/Asphalt	(3, 4)		Yes
MSA-10			Native Soil	Native Soil/Asphalt	(3, 4)		Yes
MSA-11			Native Soil	Native Soil/Asphalt	(3, 4)		Yes
MSA-12			Native Soil	Native Soil/Asphalt	(3, 4)		Yes
MSA-13	(1)	0.6 - 2.0	Native Soil	Native Soil/Asphalt	(3, 4)		Yes
MSA-14			Native Soil	Native Soil/Asphalt	(3, 4)		Yes
MSA-15			Native Soil	Native Soil/Asphalt	(3, 4)		Yes
MSA-16			Native Soil	Native Soil/Asphalt	(3, 4)		Yes
MSA-17			Native Soil	Native Soil/Asphalt	(3, 4)		Yes
MSA-18			(6)	(6)			
MSA-19			(6)	(6)	(3, 4)		Yes
MSA-20			Native Soil	Native Soil/Asphalt	(3, 4)		Yes
MSA-21			Native Soil	Native Soil/Asphalt	(3, 4)		Yes
MSA-22			Native Soil	Native Soil/Asphalt	(3, 4)		Yes
MSA-23			Native Soil	Native Soil/Asphalt	(3, 4)		Yes
MSA-24			Native Soil	Native Soil/Asphalt	(3, 4)		Yes
MSA-25			Native Soil	Native Soil	(3, 4)		Yes

Table 20 Legend
¹ Table 6 of Appendix F.
² Natural Resources Conservation Service Soil Report for Garvin County and Murray County, Oklahoma (Appendix I).
³ Floor and berms are inspected periodically and following rain events for exterior seeps. Any deficiencies identified are promptly corrected.
⁴ Land-based spill response kits which are available in both quantity and location to prevent the discharge of oil in harmful quantities to navigable waters or adjoining shorelines.
⁵ Exempt pursuant to 40 C.F.R. 112.1(b).
⁶ Exempt pursuant to 40 C.F.R. 112.1(d)(6).
⁷ Exempt pursuant to 67 FR 47076 dated July 17, 2002.

Appendix I Loading/Unloading Procedures

Attachment 1 Ethanol Unloading Operations

Procedure Title: Ethanol Unloading Operations		Procedure Number: SOP-3706-203.01	
Zone: 4 Original Effective Date: 3/4/14		Revision No.: 1	Rev Date: 6/5/14
Procedure valid for 24 hours from 11/6/2014 2:53 PM		Page 1 of 3	

1.0 PURPOSE:

This procedure provides safe and consistent instructions to Ethanol Unloading Operations.

2.0 PREREQUISITES:

None

3.0 SPECIAL CONSIDERATIONS OR PRECAUTIONS:

- Standard Personal Protective Equipment (PPE) shall be donned before performance of this Procedure
- Any additional PPE as identified in SDS or in this procedure shall be donned before performing this procedure
- See Unit Operation Manual for the Safety Systems and their Functions
- Process or waste streams cannot bypass air emission control device. Bypassing to the flare is permissible as an emergency air emission control device, but flaring of streams containing H₂S or sulfides shall be minimized
- Chemicals in any process may cause severe burns to eyes, skin and all body tissue. Eye damage may be permanent. In case of contact, immediately flush skin or eyes with abundant amount of water for at least 15 to 20 minutes while removing contaminated clothing. After required flush of affected area seek immediate medical attention
- In the event of a spill to ground, to the refinery sewer, or the storm water ditch, and/or in the event of a release to the atmosphere above allowable limits, immediately notify your Zone Supervisor and the Environmental Department. Determine cause of the situation and take immediate steps to correct it

Written/Revised By: Brad Danker	Review Period: One Year
Approved by: Richard Elkins	Title: Zone Supervisor
Signature: SOF	Current Date of Approval: 6/18/14

Procedure Title: Ethanol Unloading Operations		Procedure Number: SOP-3706-203.01	
Zone: 4 Original Effective Date: 3/4/14		Revision No.: 1	
Procedure valid for 24 hours from 11/6/2014 2:53 PM		Page 2 of 3	

4.0 REQUIRED EQUIPMENT:

• N/A.

5.0 REFERENCES:

- P&ID
- Wynnewood Safety Policies
- Operating Manual

6.0 **PROCEDURE:** Startup Ethanol for Unloading Ethanol Trucks.

- 6.1 OPEN pump discharge.
- 6.2 OPEN pump suction.
- 6.3 OPEN suction valves upstream of pump suction.
- 6.4 ENSURE air is removed from lines.
- 6.5 VERIFY oil level in seal pot.
- 6.6 OPEN inlet to tank.
- 6.7 OPEN valve on unloading line from Ethanol pump at 1473TK dike.
- 6.8 OPEN inlet of 1473TK.
- 6.9 OPEN 4" gate valve to inlet line of 1473TK.

7.0 Ethanol Unloading

- 7.1 Driver will WEIGH in at North scales to weigh product.
- 7.2 Guard will ISSUE driver a gate, entry and exit remote for access to the Ethanol unloading rack.
- 7.3 Upon arrival at pad driver will:
 - SHUTDOWN engine
 - CHOCK wheels
 - GROUND trailer
- 7.4 Driver will HOOK UP hose from trailer to pump suction.
- 7.5 OPEN suction valve.
- 7.6 OPEN butterfly valve.
- 7.7 START pump.
- 7.8 VERIFY butterfly valve is closed when changing compartments.

Procedure Title: Ethanol Unloading Operations		Procedure Number: SOP-3706-203.01	
Zone: 4 Original Effective Date: 3/4/14			Revision No.: 1
Procedure valid for 24 hours from 11/6/2014 2:53 PM			Page 3 of 3

- 7.9 Once truck is unloaded SHUT OFF pump, in between compartments.
- 7.10 CLOSE suction valve.
- 7.11 DISCONNECT ground.
- 7.12 RETURN to weigh scale.
- 7.13 LEAVE gate, entry and exit remote at guard shack.
- 7.14 LEAVE a BOL with guard.

End of Procedure

Attachment 2 PLF-Driver Loading

Procedure Title	e: PLF-Driver Loading	Procedure Number	: SOP-3706-262.00
Zone 4	Original Effective Date: 12/30/2009	Revision No:	0
Procedure valid	for 24 hours from 11/6/2014 2:58 PM	Page 1 of 3	

1.0 PURPOSE:

This procedure provides safe and consistent instructions for Driver Loading Gasoline or Diesel Products at the Product Loading Facility (PLF).

2.0 PREREQUISITES:

None

3.0 SPECIAL CONSIDERATIONS OR PRECAUTIONS:

- Standard Personal Protective Equipment (PPE) shall be donned before performance of this Procedure
- Any additional PPE as identified in SDS or in this procedure shall be donned before performing this procedure
- Chemicals in any process may cause severe burns to eyes, skin, and all body tissue. Eye damage may be permanent. In case of contact, immediately flush skin or eyes with abundant amount of water for at least 15 to 20 minutes while removing contaminated clothing. After required flush of affected area seek immediate medical attention
- Process or waste streams cannot bypass air emission control device. Bypassing to the flare is permissible as an emergency air emission control device, but flaring of streams containing H₂S or sulfides shall be minimized
- Chemicals in any process may cause severe burns to eyes, skin and all body tissue. Eye damage may be permanent. In case of contact, immediately flush skin or eyes with abundant amount of water for at least 15 to 20 minutes while removing contaminated clothing. After required flush of affected area seek immediate medical attention
- In the event of a spill to ground, to the refinery sewer, or the storm water ditch, and/or in the event of a release to the atmosphere above allowable limits, immediately notify your Zone Supervisor and the Environmental Department. Determine cause of the situation and take immediate steps to correct it

4.0 REQUIRED EQUIPMENT:

None

5.0 REFERENCES:

- P&IDs
- Wynnewood Safety Policies
- Product Loading Facility Operating Manual

Written/Revised By: IPi	Review Period: One Year
Approved by: Brad Danker	Title: Zone Supervisor
Signature: SOF	Current Date of Approval: 11/19/13

Procedure Title: PLF-Driver Loading		Procedure Number: SOP-3706-262.00	
Zone 4	Original Effective Date: 12/30/2009	Revision No:	0
y		Page 2 of 3	

6.0 **PROCEDURE:** Driver Loading.

- 6.1 ENTER driver's ID number at gate DTN keypad.
- 6.2 ENTER driver's pin number.
- 6.3 ENTER terminal singly through south automatic gate.

<u>NOTE</u>

Only authorized drivers are allowed past the drivers lounge. Unauthorized personnel may go to the drivers lounge area during the loading procedure.

- 6.4 ENTER staging lane for one of the following desired bays:
 - North staging lane for bay numbers one (1) and two (2)
 - South staging lane for bay numbers two (2) and three (3)

SAFETY WARNING

DO NOT smoke or operate any spark making device inside Product Loading Facility (PLF) fence. Failure to comply may result in injury or death and will result in being permanently barred from the PLF.

- 6.5 ENTER desired bay.
- 6.6 SHUT OFF truck engine.
- 6.7 SET emergency brake.
- 6.8 CONNECT Scully ground system.
- 6.9 CONNECT vapor recovery system hose.
- 6.10 CONNECT loading arm to trailer.
- 6.11 ENTER the following driver's information into DTN keypad:
 - ENTER driver's ID number
 - ENTER driver's pin number
 - ENTER trailer number
 - ENTER customer number
 - PRESS YES to confirm
- 6.12 ENTER the following driver's information into ACCULOAD keypad:
 - SELECT product with F1
 - ENTER amount
 - PRESS start

Procedure Title: PLF-Driver Loading		Procedure Number: SOP-3706-262.00	
Zone 4	Original Effective Date: 12/30/2009	Revision No:	0
Procedure valid for 24 hours from 11/6/2014 2:58 PM		Page 3 of 3	

<u>NOTE</u>

Loading rate will ramp down 50 gallons before desired amount is reached.

- 6.13 REMAIN within reach of Acculoads product loading STOP button
- 6.14 MONITOR loading during entire loading process for leaks during loading.
- 6.15 REPEAT steps 6.9-12 for each truck compartment.
- 6.16 PERFORM the following to end loading:
 - A. PRESS enter then choose end loading on DTN Card reader
 - B. PRESS YES to confirm
- 6.17 DISCONNECT the following:
 - Loading Arms
 - Vapor Recovery Hose
 - Scully ground system
- 6.18 DRIVE to driver's lounge building.
- 6.19 ENTER driver's ID number into Signature Capturing Device to receive BOL.
- 6.20 ACCEPT BOL with signature and date.
- 6.21 EXIT through automatic gate.

End of Procedure

Attachment 3 Jet Fuel Truck Loading

Procedure Title: Jet Fuel Truck Loading		Procedure Number: SOP-3709-260.02	
Zone 4 Original Effective Date: 12/30/2009		Revision No: 2	Rev Date: 3/18/14
Procedure valid for 24 hours from 11/6/2014 02:58 PM		Page 1 of 3	

1.0 PURPOSE:

This procedure provides safe and consistent instructions for Loading Trucks at JP-8 Rack.

2.0 PREREQUISITES:

None

3.0 SPECIAL CONSIDERATIONS OR PRECAUTIONS:

- Standard Personal Protective Equipment (PPE) shall be donned before performance of this Procedure
- Any additional PPE as identified in SDS or in this procedure shall be donned before performing this procedure
- See Unit Operation Manual for the Safety Systems and their Functions
- Process or waste streams cannot bypass air emission control device. Bypassing to the flare is permissible as an emergency air emission control device, but flaring of streams containing H₂S or sulfides shall be minimized
- Chemicals in any process may cause severe burns to eyes, skin and all body tissue. Eye damage may be permanent. In case of contact, immediately flush skin or eyes with abundant amount of water for at least 15 to 20 minutes while removing contaminated clothing. After required flush of affected area seek immediate medical attention
- In the event of a spill to ground, to the refinery sewer, or the storm water ditch, and/or in the event of a release to the atmosphere above allowable limits, immediately notify your Zone Supervisor and the Environmental Department. Determine cause of the situation and take immediate steps to correct it

4.0 **REQUIRED EQUIPMENT:**

• Full body harness while inspecting top of trailer.

5.0 **REFERENCES**:

- P&IDs
- Wynnewood Safety Policies
- Wynnewood Refining Company common carrier tank truck checklist

Written/Revised By: Brad Danker	Review Period: One Year
Approved by: Tony Graves	Title: Zone Supervisor
Signature: SOF	Current Date of Approval: 3/18/14

Procedure Title: Jet Fuel Truck Loading		Procedure Number: SOP-3709-260.02
Zone 4	Original Effective Date: 12/30/2009	Revision No: 2
		Page 2 of 3

6.0 **PROCEDURE:** Truck Loading.

- 6.1 ENSURE driver performs the following:
 - A. OBSERVES no smoking requirement inside fenced area.
 - B. DRIVES less than five (5) miles per hour inside fenced area.
 - C. DRIVES to Loading Rack.
 - D. STOPS engine.
 - E. PLACES chock between tractor drive wheels.
 - F. CONNECTS ground cable.
 - G. OPENS fire valves.
 - H. REMOVES caps on loading heads.
 - I. CONNECTS vent hose.
 - J. REMAINS with truck while loading.
- 6.2 INSPECT compartments on top of trailer.
- 6.3 ENSURE top access ports are sealed with numbered seals.
- 6.4 DRAIN compartments into white bucket.
- 6.5 CONNECT loading arm.
- 6.6 SAMPLE truck after loading begins.
- 6.7 LOAD truck trailer using Accuload controller as follows:
 - A. PRESS F1 to change control from one product loading arms to the other (on West Bay only).
 - B. ENTER preset volume for compartment.
 - C. PRESS START.
 - D. REPEAT step 6.5, PRESS SET, then enter volume for compartment, and PRESS START.
 - E. REPEAT step 6.7-J for remaining compartments.
- 6.8 REPLACE caps on bottom after compartments are filled.
- 6.9 SEAL bottom caps with numbered seals.
- 6.10 COMPLETE Wynnewood Refining Company common carrier tank truck checklist.
- 6.11 ENSURE driver performs the following:
 - A. VERIFIES bottom cap seals are in place.
 - B. REMOVES vent hose from truck.
 - C. REMOVES ground cable from truck.

Procedure Title: Jet Fuel Truck Loading		Procedure Number: SOP-3709-260.02	
Zone 4	Original Effective Date: 12/30/2009	Revision No: 2	
Procedure valid for 24 hours from 11/6/2014 02:58 PM		Page 3 of 3	

- D. REMOVES wheel chock from between tractor wheels.
- E. REMOVES truck from loading rack.
- F. COMPLETES paper work BOL, end of day.

End of Procedure

Attachment 4 Truck Loading Rack Operation

Procedure Title: Truck Loading Rack Operation		Procedure Number:SOP-3711-260.02	
Zone 4	Original Effective Date: 12/30/2009	Revision No.: 2	Rev Date: 07/10/12
Procedure valid for 24 hours from 11/6/2014 02:59 PM		Page 1 of 3	

1.0 PURPOSE:

This procedure provides safe and consistent instructions for Truck Loading Rack Operation.

2.0 PREREQUISITES:

None

3.0 SPECIAL CONSIDERATIONS OR PRECAUTIONS:

- Standard Personal Protective Equipment (PPE) shall be donned before performance of this Procedure
- Any additional PPE as identified in SDS or in this procedure shall be donned before performing this procedure
- See Unit Operation Manual for the Safety Systems and their Functions
- Process or waste streams cannot bypass air emission control device. Bypassing to the flare is permissible as an emergency air emission control device, but flaring of streams containing H₂S or sulfides shall be minimized
- Chemicals in any process may cause severe burns to eyes, skin and all body tissue. Eye damage may be permanent. In case of contact, immediately flush skin or eyes with abundant amount of water for at least 15 to 20 minutes while removing contaminated clothing. After required flush of affected area seek immediate medical attention
- In the event of a spill to ground, to the refinery sewer, or the storm water ditch, and/or in the event of a release to the atmosphere above allowable limits, immediately notify your Zone Supervisor and the Environmental Department. Determine cause of the situation and take immediate steps to correct it

4.0 **REQUIRED EQUIPMENT:**

None

5.0 **REFERENCES**:

- Wynnewood Safety Policies
- Wynnewood Operating Manual
- SDS-Asphalt

Written/Revised By: IPi	Review Period: One Year	
Approved by: Brad Danker	Title: Zone Supervisor	
Signature: SOF	Current Date of Approval: 4/29/14	

Procedure Title: Truck Loading Rack Operation		Procedure Number:SOP-3711-260.02
Zone 4	Original Effective Date: 12/30/2009	Revision No.: 2
Procedure valid for 24 hours from 11/6/2014 02:59 PM		Page 2 of 3

6.0 PROCEDURE: Truck Loading

- 6.1 OBTAIN weigh scale ticket at control room printer.
- 6.2 VERIFY truck driver fills out weigh scale ticket.
- 6.3 ENSURE truck driver has on proper PPE.
- 6.4 DIRECT driver to follow loading procedures posted at bottom & top of loading rack stairs.

<u>NOTE</u>

Silicone is an anti-foam agent and is always kept at the blender for trailers that are damp but not wet. Trailers that are damp will require about two quarts of silicone. Once the silicone is added to the trailer, asphalt can be added to the trailer, but at a slow rate. If silicone is added to a trailer, the loader will check the trailer after a small amount of asphalt has been added. The loader will determine if it is safe to continue loading the trailer or not.

- 6.5 ASSIST driver in calculating correct loading weight.
- 6.6 DIRECT truck to correct loading bay.
- 6.7 VERIFY truck is on correct loading bay.
- 6.8 Driver DELIVERS truck keys to the control room.
- 6.9 VERIFY truck driver has attached ground cable.
- 6.10 ENTER gallons from appropriate tank(s) to be loaded on Blendtrol.
- 6.11 LOWER walkway/safety cage onto trailer (truck driver).
- 6.12 ENSURE truck driver is working inside safety cage.
- 6.13 ENSURE truck driver chains down the spill to dome lid.
- 6.14 ENSURE truck driver opens correct valve to spill.
- 6.15 PRESS start button on Controllogix control panel to start pump(s).
- 6.16 COLLECT sample if necessary per SOP-3711-280.
- 6.17 DELIVER sample to Laboratory.

<u>NOTE</u>

Pump(s) will shutdown when required volume is reached on control board.

- 6.18 ENSURE truck driver closes correct valve to spill.
- 6.19 ENSURE truck driver disconnects ground cable.
- 6.20 REMOVE chain from spill (truck driver).

Procedure Title: Truck Loading Rack Operation		Procedure Number:SOP-3711-260.02
Zone 4	Original Effective Date: 12/30/2009	Revision No.:2
Procedure valid for 24 hours from 11/6/2014 02:59 PM		Page 3 of 3

- 6.21 PLACE spill in drain box (truck driver).
- 6.22 RAISE walkway from trailer (truck driver).
- 6.23 Operator VERIFIES that rack is ready for the truck to pull out, then RETURN driver keys.
- 6.24 Truck PROCEEDS to scales.
- 6.25 COMPLETE card reader procedure SOP-3711-279.

End of Procedure

Attachment 5 Truck Unloading Rack Operation

Procedure Title: Truck Unloading Rack Operation		Procedure Numb	oer:SOP-3711-261.03
Zone 4	Original Effective Date: 12/30/2009	Revision No.: 3	Rev Date: 5/13/14
Procedure valid for 24 hours from 11/6/2014 03:06 PM		Page 1 of 4	

1.0 PURPOSE:

This procedure provides safe and consistent instructions for Truck Unloading Rack Operation.

2.0 PREREQUISITES:

None

3.0 SPECIAL CONSIDERATIONS OR PRECAUTIONS:

- Standard Personal Protective Equipment (PPE) shall be donned before performance of this Procedure
- Any additional PPE as identified in SDS or in this procedure shall be donned before performing this procedure
- See Unit Operation Manual for the Safety Systems and their Functions
- Process or waste streams cannot bypass air emission control device. Bypassing to the flare is permissible as an emergency air emission control device, but flaring of streams containing H₂S or sulfides shall be minimized
- Chemicals in any process may cause severe burns to eyes, skin and all body tissue. Eye damage may be permanent. In case of contact, immediately flush skin or eyes with abundant amount of water for at least 15 to 20 minutes while removing contaminated clothing. After required flush of affected area seek immediate medical attention
- In the event of a spill to ground, to the refinery sewer, or the storm water ditch, and/or in the event of a release to the atmosphere above allowable limits, immediately notify your Zone Supervisor and the Environmental Department. Determine cause of the situation and take immediate steps to correct it

4.0 **REQUIRED EQUIPMENT:**

None

5.0 REFERENCES:

- Wynnewood Safety Policies
- Wynnewood Operating Manual
- SDS-Asphalt, Diesel, 100W, KW1, DH 170, and gasoline

Written/Revised By: Brad Danker	Review Period: One Year
Approved by: Tony Graves	Title: Zone Supervisor
Signature: SOF	Current Date of Approval: 5/13/14

Procedure Title: Truck Unloading Rack Operation		Procedure Number:SOP-3711-261.03
Zone 4	Original Effective Date: 12/30/2009	Revision No.: 3
Procedure valid for 24 hours from 11/6/2014 03:06 PM		Page 2 of 4

6.0 PROCEDURE: Heavy Oils Truck Unloading.

- 6.1 PERFORM steps 6.2 through 6.6 if truck is from off site.
- 6.2 BRING truck into plant (truck driver).
- 6.3 PERFORM card reader procedure per SOP-3711-279 (truck driver).
- 6.4 OBTAIN weigh scale ticket at control room printer.
- 6.5 VERIFY truck driver fills out weigh scale ticket.
- 6.6 DIRECT driver to follow loading procedures posted at bottom & top of loading rack stairs.
- 6.7 DIRECT truck to heavy oil unloading rack.
- 6.8 OPEN dome lid on trailer (truck driver).
- 6.9 CONNECT ground wire to trailer (truck driver).
- 6.10 CHECK unloading hose and pump for water.
- 6.11 OPEN drain, rotate pump and drain hose if water is found.
- 6.12 PROCEED to step 6.13 if no water is found.
- 6.13 CONNECT unloading hose (truck driver).
- 6.14 LINE UP unloading pump (P1481) discharge line to appropriate tank.
- 6.15 OPEN P1481 suction valve.
- 6.16 OPEN truck outlet valve (truck driver).
- 6.17 START P1481 per SOP-3711-202.
- 6.18 MONITOR product level at dome lid in trailer while unloading (truck driver).
- 6.19 CLOSE truck outlet valve when required amount of product is transferred (truck driver).
- 6.20 DISCONNECT unloading hose (truck driver).
- 6.21 ENSURE hose is emptied.
- 6.22 DISCONNECT ground wire from trailer.
- 6.23 SHUTDOWN P1481 per SOP-3711-202.

7.0 136 Unloading Rack.

- 7.1 BRING truck into plant (truck driver).
- 7.2 DIRECT truck to weigh scale.
- 7.3 POSITION truck on weigh scale.
- 7.4 RECORD inbound weight on bill of lading form.

Procedure Title: Truck Unloading Rack Operation		Procedure Number:SOP-3711-261.03
Zone 4	Original Effective Date: 12/30/2009	Revision No.: 3
Procedure valid for 24 hours from 11/6/2014 03:06 PM		Page 3 of 4

- 7.5 DIRECT truck to 136 unloading rack.
- 7.6 OPEN dome lid on trailer (truck driver).
- 7.7 CALL light oil blender to sample truck per SOP-3711-284.
- 7.8 CONNECT ground wire to trailer (truck driver).
- 7.9 CONNECT unloading hose (truck driver).
- 7.10 LINE UP unloading pump (TP-253B) discharge line to appropriate tank.
- 7.11 START TP-253B per SOP-3711-202.
- 7.12 OPEN TP-253B suction valve.
- 7.13 OPEN truck outlet valve (truck driver).
- 7.14 MONITOR product level at dome lid in trailer while unloading (truck driver).
- 7.15 CLOSE truck outlet valve when required amount of product is transferred (truck driver).
- 7.16 CLOSE dome lid on trailer (truck driver).
- 7.17 DISCONNECT unloading hose (truck driver).
- 7.18 DIRECT truck to weigh scale.
- 7.19 POSITION truck on weigh scale.
- 7.20 RECORD outbound weight on bill of lading form.
- 7.21 SIGN bill of lading (operator and truck driver).
- 7.22 DELIVER plant copies of bill of lading to inbox at weigh scale building.
- 7.23 Truck EXITS plant.

8.0 TP1337 Heavy Oils Truck Unloading

- 8.1 PERFORM steps 6.2 through 6.6 if truck is from off site.
- 8.2 BRING truck into plant (truck driver).
- 8.3 PERFORM card reader procedure per SOP-3711-279 (truck driver).
- 8.4 OBTAIN weigh scale ticket at control room printer.
- 8.5 VERIFY truck driver fills out weigh scale ticket.
- 8.6 DIRECT driver to follow loading procedures posted at bottom & top of loading rack stairs.
- 8.7 DIRECT truck to heavy oil unloading rack.
- 8.8 OPEN dome lid on trailer (truck driver).
- 8.9 CONNECT ground wire to trailer (truck driver).

Procedure Title: Truck Unloading Rack Operation		Procedure Number:SOP-3711-261.03
Zone 4	Original Effective Date: 12/30/2009	Revision No.: 3
Procedure valid for 24 hours from 11/6/2014 03:06 PM		Page 4 of 4

- 8.10 CHECK unloading hose and pump for water.
- 8.11 OPEN drain, rotate pump and drain hose if water is found.
- 8.12 PROCEED to step 6.13 if no water is found.
- 8.13 CONNECT unloading hose (truck driver).

NOTE:

Cam lock ears need to be wired closed.

- 8.14 VERIFY available room in desired tank.
- 8.15 LINE UP unloading pump (TP1337) discharge line to appropriate tank.
- 8.16 OPEN TP1337 suction valve.
- 8.17 OPEN truck outlet valve (truck driver).
- 8.18 START TP1337 per SOP-3711-203.
- 8.19 MONITOR product level at dome lid in trailer while unloading (truck driver).
- 8.20 CLOSE truck outlet valve when required amount of product is transferred (truck driver).
- 8.21 DISCONNECT unloading hose (truck driver).
- 8.22 ENSURE hose is emptied.
- 8.23 DISCONNECT ground wire from trailer.
- 8.24 SHUTDOWN TP1337 per SOP-3711-203.

End of Procedure

Attachment 6 Solvent Rack Truck Loading

Procedure Title: Solvent Rack Truck Loading Operation		Procedure Num	ber:SOP-3711-287.02
Zone 4	Original Effective Date: 12/30/2009	Revision No.: 2	Rev Date: 7/10/13
Procedure valid for 24 hours from 11/6/2014 02:59 PM		Page 1 of 5	

1.0 PURPOSE:

This procedure provides safe and consistent instructions for Operation of Solvent Rack Truck Loading.

2.0 PREREQUISITES:

None

3.0 SPECIAL CONSIDERATIONS OR PRECAUTIONS:

- Standard Personal Protective Equipment (PPE) shall be donned before performance of this Procedure
- Any additional PPE as identified in SDS or in this procedure shall be donned before performing this procedure
- See Unit Operation Manual for the Safety Systems and their Functions
- Process or waste streams cannot bypass air emission control device. Bypassing to the flare is permissible as an emergency air emission control device, but flaring of streams containing H₂S or sulfides shall be minimized
- Chemicals in any process may cause severe burns to eyes, skin and all body tissue. Eye damage may be permanent. In case of contact, immediately flush skin or eyes with abundant amount of water for at least 15 to 20 minutes while removing contaminated clothing. After required flush of affected area seek immediate medical attention
- In the event of a spill to ground, to the refinery sewer, or the storm water ditch, and/or in the event of a release to the atmosphere above allowable limits, immediately notify your Zone Supervisor and the Environmental Department. Determine cause of the situation and take immediate steps to correct it

4.0 **REQUIRED EQUIPMENT:**

None

5.0 **REFERENCES**:

- Wynnewood Safety Policies
- Wynnewood Operating Manual
- SDS-100W
- SDS-KW1

Written/Revised By: IPi	Year Review Period: One Year
Approved by: Brad Danker	Title: Zone Supervisor
Signature: SOF	Current Date of Approval: 6/10/14

Procedure Title: Solvent Rack Truck Loading Operation		Procedure Number:SOP-3711-287.02
Zone 4 Original Effective Date: 12/30/2009 Revision No.: 2		Revision No.: 2
Procedure valid for 24 hours from 11/6/2014 02:59 PM		Page 2 of 5

- SDS-LCO Light Cycle Oil
- SDS-DH170
- SDS-Naphtha
- SOP-3711-201, Electric Centrifugal Pumps Operation
- SOP-3711-279, Card Reader Procedure

Procedure Title: Solvent Rack Truck Loading Operation		Procedure Number:SOP-3711-287.02
Zone 4	Original Effective Date: 12/30/2009	Revision No.: 2
Procedure valid for 24 hours from 11/6/2014 02:59 PM		Page 3 of 5

6.0 **PROCEDURE:** Truck Loading.

- 6.1 OBTAIN weigh scale ticket at control room printer.
- 6.2 VERIFY truck driver fills out weigh scale ticket.
- 6.3 ENSURE truck driver signs weigh scale ticket stating trailer is clean.
- 6.4 CALCULATE correct loading weight if necessary.
- 6.5 CALCULATE correct gallons to be loaded on truck.
- 6.6 DIRECT truck to solvent loading bay.
- 6.7 PLACE wheel chocks between duals (truck driver).
- 6.8 OPEN trailer vents (truck driver).
- 6.9 VERIFY truck motor is off.
- 6.10 CONNECT two-ball ground system (truck driver).
- 6.11 NOTIFY Light Oils which product is to be loaded.
- 6.12 VERIFY loading arm sight glass is clear and free of dye.
- 6.13 CONNECT loading arm to trailer (truck driver).

<u>WARNING</u>

DO NOT leave bypass valve around DH 170 control valve open when loading products other than DH 170. Failure to close bypass valve may result in off spec product.

- 6.14 UNLOCK correct valve(s) at loading rack.
- 6.15 OPEN correct valve(s) at loading rack.
- 6.16 START appropriate pump(s) at local panel per SOP-3711-201 (Electric Centrifugal Pumps Operation).

<u>NOTE</u>

Depending on the type of trailer being loaded, the mini-load meter may need to be set only once. Single compartment trailers will require only one meter setting to fill the trailer. Multi-compartment trailers could require as many as five meter settings before the trailer is loaded.

- 6.17 PRESS clear button at mini-load meter at loading rack.
- 6.18 PRESS set button.

Procedure Title: Solvent Rack Truck Loading Operation		Procedure Number:SOP-3711-287.02
Zone 4	Original Effective Date: 12/30/2009	Revision No.: 2
Procedure valid for 24 hours from 11/6/2014 02:59 PM		Page 4 of 5

- 6.19 ENTER gallons required on mini-load meter.
- 6.20 PRESS start button.
- 6.21 INJECT red dye into KW1 when required per the following:
 - A. OPEN quick opening discharge valve on loading arm from red dye pump.
 - B. OPEN suction valve from red dye tote to dye pump.
 - C. VERIFY minimum flow valve on dye pump is open.
 - D. UNLOCK local switch on dye pump.
 - E. PLACE dye pump switch in auto position to start pump.

<u>NOTE</u>

Close the quick opening valve on the loading arm from the dye pump once the pump ramps down to 100gpm. This will clear all dye from the line.

- F. Driver will WATCH flow meter down to the last 100gpm.
- G. SHUTDOWN red dye pump.
- H. BLOCK quick opening valve on the loading arm from the dye pump.
- I. Line should clear of dye as the remaining 100 gallons flush the line into the trailer.
- 6.22 COLLECT sample after loading approximately 400 gallons as per the following:
 - A. OPEN sample line to barrel.
 - B. PURGE line until clear.
 - C. PLACE sample bottle under sample line.
 - D. FILL sample bottle.
 - E. LABEL sample bottle.
 - F. DELIVER sample to Laboratory.

<u>NOTE</u>

Transfer will shutdown when required volume is reached on local control panel.

(Valve closes but pump stays running.)

- 6.23 SHUTDOWN loading pump when loading is complete.
- 6.24 CLOSE correct valve(s) at loading rack.
- 6.25 DISCONNECT loading arm from trailer (truck driver).

Procedure Title: Solvent Rack Truck Loading Operation		Procedure Number:SOP-3711-287.02
Zone 4 Original Effective Date: 12/30/2009 Revision No.: 2		Revision No.: 2
Procedure valid for 24 hours from 11/6/2014 02:59 PM		Page 5 of 5

- 6.26 REMOVE wheel chocks (truck driver).
- 6.27 CLOSE trailer vents (truck driver).
- 6.28 DISCONNECT two-ball ground system (truck driver).
- 6.29 VERIFY loading arm sight glass is clear and no trace of dye remains.
- 6.30 PROCEED to scales (truck driver).
- 6.31 COMPLETE card reader procedure SOP-3711-279 (Card Reader Procedure).

End of Procedure

Attachment 7

Asphalt Railcar Loading

Procedure	Title: Asphalt Railcar Loading	Procedure Numb	er: SOP-3711-288.01
Zone: 4	Original Effective Date: 2/5/13	Revision No.: 1	Rev Date: 4/23/13
Procedure v	alid for 24 hours from 11/6/2014 2:59 PM	Page 1 of 4	

1.0 PURPOSE:

This procedure provides safe and consistent instructions Asphalt Railcar Loading.

2.0 PREREQUISITES:

None

3.0 SPECIAL CONSIDERATIONS OR PRECAUTIONS:

- Standard Personal Protective Equipment (PPE) shall be donned before performance of this Procedure
- Any additional PPE as identified in SDS or in this procedure shall be donned before performing this procedure
- See Unit Operation Manual for the Safety Systems and their Functions
- Process or waste streams cannot bypass air emission control device. Bypassing to the flare is permissible as an emergency air emission control device, but flaring of streams containing H₂S or sulfides shall be minimized
- Chemicals in any process may cause severe burns to eyes, skin and all body tissue. Eye damage may be permanent. In case of contact, immediately flush skin or eyes with abundant amount of water for at least 15 to 20 minutes while removing contaminated clothing. After required flush of affected area seek immediate medical attention
- In the event of a spill to ground, to the refinery sewer, or the storm water ditch, and/or in the event of a release to the atmosphere above allowable limits, immediately notify your Zone Supervisor and the Environmental Department. Determine cause of the situation and take immediate steps to correct it

Written/Revised By: Brad Danker	Review Period: One Year
Approved by: Brad Danker	Title: Zone Supervisor
Signature: SOF	Current Date of Approval: 3/5/14

Procedure	Title: Asphalt Railcar Loading	Proc	cedure Number: SOP-3711-288.01
Zone: 4	Original Effective Date: 2/5/13		Revision No.: 1
Procedure v	alid for 24 hours from 11/6/2014 2:59 PM		Page 2 of 4

4.0 REQUIRED EQUIPMENT:

• N/A.

5.0 REFERENCES:

- P&ID
- Wynnewood Safety Policies
- Heavy Oils Operating Manual
- Tank Car Inspection Report
- Tank Car Daily Loading Report
- MSDS

6.0 **PROCEDURE:** Startup.

- 6.1 COMMUNICATE with Blender what product is to be loaded that day.
- 6.2 VERIFY cars spotted match cars on switch list for car number and product.
 - Notify Transportation Coordinator and Zone Supervisor of any discrepancies.
- 6.3 ENSURE railroad gate is closed and signs and derailers are in correct position.
- 6.4 CHOCK wheels on railcar.
- 6.5 GROUND railcar.

NOTE:

It is very important that each section of the form be checked very carefully. Any railcars that are loaded and shipped, that failed any part of the inspection form, would be subject to a very large fine from the Federal Railroad Administration. Ensure that railcars leaving that plant are that correct railcar and they meet all Federal Railroad law requirements.

- 6.6 INSPECT railcar and record information on the following reports:
 - Tank Car Inspection Report
 - Daily Loading Report

NOTE:

If a railcar fails inspection, **DO NOT** load and inform Zone supervision.

6.7 VERIFY placards are in place, in good condition and official placards.

Procedure	Title: Asphalt Railcar Loading	Procedure Number: SOP-3711-288.01		
Zone: 4	Original Effective Date: 2/5/13		Revision No.: 1	
Procedure v	alid for 24 hours from 11/6/2014 2:59 PM		Page 3 of 4	

- 6.8 REMOVE belly valve cap and VERIFY gasket is in place.
- 6.9 TIGHTEN belly valve cap with a 36" pipe wrench.
- 6.10 ENSURE belly valves open and close. LEAVE in closed position.
- 6.11 BEGIN opening dome lids and placing spills into cars. Spills must be chained.

NOTE:

DO NOT open spill valves at this time.

6.12 VERIFY no water is in railcar. If water is found, STOP and inform supervision.

SAFETY WARNING

DO NOT load product into a car that has water in it. Failure to comply with this warning may result in a spill and/or personal injury.

- 6.13 ENSURE all reports are complete and VERIFY information with Transportation Coordinator
- 6.14 NOTIFY asphalt blender on channel (4) you are ready to load one of the following products:
 - HVTB #2 vacuum tower bottoms
 - LVTB #3 vacuum tower bottoms
 - PG64-22
- 6.15 OPEN spill valve.
- 6.16 OPEN loading valve after asphalt blender has informed you product had been lined up and ready to load.
- 6.17 INFORM asphalt blender the valve is open and flow is established.
- 6.18 VISUALLY watch as railcar is filling with product.

SAFETY WARNING

Railcars will overfill if left unattended. Failure to comply with this warning may result in personal injury.

- 6.19 LOAD railcar to the correct outage gauge from the switch list.
- 6.20 START flow into the next railcar before closing loading valve on the railcar being loaded. (Continue until last railcar)

Procedure	Title: Asphalt Railcar Loading	Proc	cedure Number: SOP-3711-288.01
Zone: 4	Original Effective Date: 2/5/13		Revision No.: 1
Procedure v	alid for 24 hours from 11/6/2014 2:59 PM		Page 4 of 4

NOTE:

If the railcar calls to switch cars: make a walkthrough on the side you **ARE NOT** loading on. Walk down open derailer and remove signs for that side, open gates and return to loading rack. Once railroad has made their switch, return to the gate, set signs and derailer back in position, lock gate back and return to loading rack.

- 6.21 NOTIFY the asphalt blender at least 15 mins before the last car is finished loading. STAY in radio communication with the asphalt blender on Channel 4 during this time.
- 6.22 NOTIFY the Asphalt Blender that their pump can be shut down when your loading is complete.
- 6.23 VERIFY all loading and spill valves are closed.
- 6.24 OPEN the loading valve and circulating valve on the last spot loaded.
- 6.25 INFORM asphalt blender you are ready to circulate.
- 6.26 REPLACE all dome gaskets with new black gaskets.

NOTE:

BLACK gaskets are for Asphalt loading only. **WHITE** gaskets are for Solvent loading only.

6.27 CLOSE dome lids and tighten down.

- 6.28 VERIFY ball valves operate.
- 6.29 CAR SEAL the dome lid, belly valve and relief valve cover, if applicable.
- 6.30 REMOVE wheel chocks and grounding cables from each car.
- 6.31 WALKDOWN and visually inspect the following:
 - Car seals
 - Placards
 - Wheel chocks removed
 - Grounding cables removed
 - All spill valves are closed
 - Dispose of trash
- 6.32 NOTIFY asphalt blender that reports are ready to be picked up.

End of Procedure

Attachment 8 Solvent Railcar Loading

Procedure	Title: Solvent Railcar Loading	Procedure Num	ber: SOP-3711-289.01
Zone: 4	Original Effective Date: 2/5/13	Revision No.: 1	Rev Date: 4/23/13
Procedure v	valid for 24 hours from 11/6/2014 3:00 PM	Page 1 of 4	

1.0 PURPOSE:

This procedure provides safe and consistent instructions for Solvent Railcar Loading.

2.0 PREREQUISITES:

None

3.0 SPECIAL CONSIDERATIONS OR PRECAUTIONS:

- Standard Personal Protective Equipment (PPE) shall be donned before performance of this Procedure
- Any additional PPE as identified in SDS or in this procedure shall be donned before performing this procedure
- See Unit Operation Manual for the Safety Systems and their Functions
- Process or waste streams cannot bypass air emission control device. Bypassing to the flare is permissible as an emergency air emission control device, but flaring of streams containing H₂S or sulfides shall be minimized
- Chemicals in any process may cause severe burns to eyes, skin and all body tissue. Eye damage may be permanent. In case of contact, immediately flush skin or eyes with abundant amount of water for at least 15 to 20 minutes while removing contaminated clothing. After required flush of affected area seek immediate medical attention
- In the event of a spill to ground, to the refinery sewer, or the storm water ditch, and/or in the event of a release to the atmosphere above allowable limits, immediately notify your Zone Supervisor and the Environmental Department. Determine cause of the situation and take immediate steps to correct it

Written/Revised By: Brad Danker	Review Period: One Year
Approved by: Brad Danker	Title: Zone Supervisor
Signature: SOF	Current Date of Approval: 3/5/14

Procedure	Title: Solvent Railcar Loading	Proc	edure Number: SOP-3711-289.01
Zone: 4	Original Effective Date: 2/5/13		Revision No.: 1
Procedure v	alid for 24 hours from 11/6/2014 3:00 PM		Page 2 of 4

4.0 REQUIRED EQUIPMENT:

• N/A.

5.0 REFERENCES:

- P&ID
- Wynnewood Safety Policies
- Heavy Oils Operating Manual
- Tank Car Inspection Report
- Tank Car Daily Loading Report
- MSDS

6.0 **PROCEDURE:** Startup.

- 6.1 VERIFY cars spotted match cars on switch list for car number and product.
 - Notify Transportation Coordinator and Zone supervisor of any discrepancies.
- 6.2 ENSURE railroad gate is closed and signs and derailers are in correct position.
- 6.3 CHOCK wheels on railcar.
- 6.4 GROUND railcar.

NOTE:

It is very important that each section of the form be checked very carefully. Any railcars that are loaded and shipped, that failed any part of the inspection form, would be subject to a very large fine from the Federal Railroad Administration. Ensure that railcars leaving the plant are the correct railcar and they must meet all Federal Railroad law requirements.

- 6.5 INSPECT railcar and record information on the following reports:
 - Tank Car Inspection Report
 - Daily Loading Report

NOTE:

If a railcar fails inspection, **DO NOT** load and inform Zone supervision.

6.6 VERIFY placards are in place, in good condition and official placards.

6.7 REMOVE belly valve cap and VERIFY gasket is in place.

Procedure	Title: Solvent Railcar Loading	Procedure Number: SOP-3711-289.01		
Zone: 4	Original Effective Date: 2/5/13	R	evision No.: 1	
Procedure v	alid for 24 hours from 11/6/2014 3:00 PM	P	age 3 of 4	

- 6.8 TIGHTEN belly valve cap with a 36" pipe wrench.
- 6.9 ENSURE belly valves open and close. LEAVE in the closed position.
- 6.10 BEGIN opening dome lids and placing spills into cars. Spills must be chained.

NOTE:

DO NOT open spill valves at this time. Ensure spills are chained down. Failure to do so may result in loss of product and personal injury.

- 6.11 ENSURE all reports are complete and VERIFY information with Transportation Coordinator.
- 6.12 NOTIFY Light Oils you are ready to load one of the following products:
 - 100-W
 - KW-1
- 6.13 OPEN spill valve.
- 6.14 OPEN loading valve after Light Oils has informed you product had been lined up and ready to load.
- 6.15 START 250 or 251TK pump switch on the North side of the Shack.
- 6.16 VISUALLY watch as railcar is filling with product.

SAFETY WARNING

Railcars will overfill if left unattended. Failure to comply with this warning may result in personal injury.

6.17 CATCH sample of solvent product in a clear glass quart bottle. LABEL bottle with railcar #, date, time, product and initials of loader. PLACE in sample barrel at Crude unit.

NOTE:

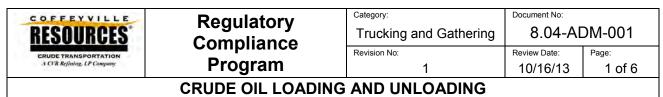
If the railroad calls to switch cars; make a walk through on the side you **ARE NOT** loading on. Walk down open derailer and remove signs for that side, open gates and return to loading rack. Once railroad has made their switch, return to the gate, set signs and derailer back in position, lock gate back and return to loading rack.

- 6.18 LOAD railcar to correct outage gauge from the switch list.
- 6.19 STOP loading pump at switch North of the Shack.
- 6.20 VERIFY all loading and spill valves are closed.

Procedure	Title: Solvent Railcar Loading	Procedure Number: SOP-3711-289.01		
Zone: 4	Original Effective Date: 2/5/13		Revision No.: 1	
Procedure v	alid for 24 hours from 11/6/2014 3:00 PM		Page 4 of 4	

6.21 REPLACE all dome gaskets with new white gaskets.

NOTE:


BLACK gaskets are for Asphalt loading only. **WHITE** gaskets are for Solvent loading only.

- 6.22 CLOSE dome lids and tighten down.
- 6.23 VERIFY ball valves operate.
- 6.24 CAR SEAL the dome lid, belly valve and relief cover, if applicable.
- 6.25 REMOVE wheel chocks and grounding cables from each car.
- 6.26 WALKDOWN and visually INSPECT the following:
 - Car seals
 - Placards
 - Wheel chocks removed
 - All spill valves are closed.
 - Dispose of trash.
- 6.27 VERIFY all walkways are raised and chained in the up position.
- 6.28 NOTIFY asphalt blender that reports are ready to be picked up.

End of Procedure

Attachment 9

LACT – Crude Oil Loading and Unloading

All Regulatory Compliance Program documents are the property of Coffeyville Resources Crude Transportation and are electronically controlled. Printed documents are considered to be uncontrolled and it is the users responsibility to ensure they have the current version.

1.0 PURPOSE:

This procedure defines the steps to safely load crude oil from lease sites and unload into a CRCT owned or operated facility while minimizing the possibility of adverse environmental impact and equipment damage.

2.0 PROCEDURE:

NOTE:

- All drivers MUST remain in attendance at all times when in the process of receiving or discharging product. Drivers SHALL NOT be in the cab of the truck. The driver MUST be out of the truck and on the ground with an unobstructed view of the process, within 25" of the trailer. It is permissible to complete the truck inspection (tires, placards, etc.) during the loading/unloading process.
- Always consider the vapor trail to prevent a truck engine runaway due to excessive vapors - <u>Do Not</u> breathe the vapors

2.1 Truck Loading Process:

- 2.1.1 When approaching lease site check surroundings to verify conditions are safe and obstruction free. Plan an exit strategy as entering the lease site.
- 2.1.2 Position the cargo tank adjacent to the unloading box and tail pump.
- 2.1.3 Verify lease name, producer and lease number match same information on the run ticket.
- 2.1.4 Don proper personal protective equipment (PPE) required for loading safety glasses, gloves, H₂S monitor, (Respirators may be required pending tank markings or H2S monitor alarm).
- 2.1.5 Set out the safety cones, positioning one at the front and one at the back of the tractor trailer unit on the receiving side. These cones serve as a reminder to the driver to perform his walk around inspection before starting the loading process and again at the completion of the loading process.

- 2.1.6 Verify stairs and catwalk are safe to access. (i.e., oil, ice, water, structural integrity, etc.)
- 2.1.7 Start "working oil" by taking samples from the middle and bottom tank levels. Use gauge line to determine top tank level.
- 2.1.8 Combine 100 ml of crude oil with 100 ml of solvent and heat to a minimum temperature of 140 degrees F.
- 2.1.9 After samples reach 140 degrees F place in centrifuge for 3-5 minutes to determine "Grind Out" (% BS&W).
- 2.1.10 Before beginning the loading process, the driver shall walk around his truck to ensure that all valves not intended for product receipt are closed and secure.
- 2.1.11 Once walk around is complete and while samples are in centrifuge, properly ground trailer with grounding cable and connect trailer hose to load line .

NOTE

If "Grind Out" determines crude oil is not to desired quality (greater than 1%), remove hose from header, clean oil testing equipment and leave rejection ticket for producer.

- 2.1.12 If "Grind Out" determines crude oil is of desired quality (less than 1% BS&W) then engage PTO and increase truck RPM to 1000.
- 2.1.13 Open fire valve and vent valve on trailer.
- 2.1.14 Remove seal on tank and open tank valve.
- 2.1.15 Double check all valves are properly lined up to the correct position and start trailer pump.
- 2.1.16 Place hand under trailer vent to verify correct rotation of pump. (Air should be blowing out while loading).
- 2.1.17 While loading, complete truck and trailer walk around noting anything needing repaired or replaced. This walk around shall include examining each tire, which is required every time the vehicle is parked. Document on pre-trip inspection form to be addressed later by truck maintenance, or when possible fix the problem after loading process is completed.

- 2.1.18 Pay attention to level gauge and sloping terrain on which the trailer is parked. (Rule of thumb to determine trailer weight is a full load = 130 bbl + gravity).
- 2.1.19 When loaded, close tank valve and header valve. Allow hose to drain then shut pump valve and turn off trailer pump then shut off trailer pump and disconnect hose.
- 2.1.20 Close belly valve and vent valve on trailer then disconnect hose and secure cap before placing in holder.
- 2.1.21 Remove grounding cable.
- 2.1.22 Get bottom measurement on tank and clean oil testing equipment.
- 2.1.23 Complete paperwork, then place new seal on tank and leave a copy of the run ticket at lease site.
- 2.1.24 Double check all valves are in the correct position prior to leaving the lease site.

2.2 Truck Unloading Process:

NOTE:

- Drivers are required to stay within 25' of trailer during the entire unloading process.
- Tail pumps and multiple trucks unloading produce a high flow of vapors from tank vents.
- There is always the potential for the tanks not to have an equal level when filling rapidly.
- Warmer oil and higher gravity condensate increases vapor production, and if mixed, vapor expansion is multiplied.
- When filling tanks at a high level, it may be necessary to slow down the filling process by not using the tail pump and only unloading one truck at a time.
- Do not unload unless there is room for the entire load.
- Inspect hose and coupling gaskets. Do not use a hose that is likely to seep, leak or split.
 - 2.2.1 Don proper personal protective equipment (PPE) required for unloading safety glasses, gloves, H₂S monitor.

- 2.2.2 Set out the safety cones, positioning one at the front and one at the back of the tractor trailer unit on the receiving side. These cones serve as a reminder to the driver to perform his walk around inspection before starting the unloading process and again at the completion of the unloading process.
- 2.2.3 Before beginning the unloading process, the driver shall walk around his truck to ensure that all valves not intended for product unloading are closed and secure. The driver shall also verify the tail pump valve and any associated bleeder valve(s) are in the correct position.
- 2.2.4 Ensure that adequate storage space is available in the tank.
- 2.2.5 Check the daily station log and complete required log information. (Date, name, time, tank gauge level, and barrels unloaded) Tank gauge levels may not be available at all stations.
- 2.2.6 Verify proper line up of the valves to ensure the crude oil will flow to all the crude oil tanks.
- 2.2.7 Connect grounding cable.
- 2.2.8 Connect hose from the truck pump to the unloading box header.
- 2.2.9 Connect hose from the tail pump to the truck belly valve.
- 2.2.10 Open the valve in the containment box.
- 2.2.11 Open the tail pump suction valve and verify the discharge valve is open.
- 2.2.12 Open the cargo tank belly valve.
- 2.2.13 Open the cargo tank vent (Control lever).
- 2.2.14 Open the cargo tank internal valve (Control lever).
- 2.2.15 Open the cargo tank unloading valve from the cargo tank manifold to tail pump.
- 2.2.16 Open the cargo tank unloading discharge valve from the truck pump.
- 2.2.17 Start the tail pump first then truck pump.
- 2.2.18 Ensure the cargo tank vent is sucking in air.
- 2.2.19 While unloading, perform frequent hose and equipment checks to ensure there are no leaks, seeps or spills during the unloading process. Monitor the tank(s) level during the filling process.

CRUDE OIL LOADING AND UNLOADING

- 2.2.20 While loading, complete truck and trailer walk around noting anything needing repaired or replaced. This walk around shall include examining each tire, which is required every time the vehicle is parked. Document on pre-trip inspection form to be addressed later by truck maintenance, or when possible fix the problem after loading process is completed.
- 2.2.21 When unloading is completed shut cargo tank valve to tail pump hose.
- 2.2.22 Crack ears on tail pump hose to suck hose clean but leave hose on cargo tank connection.
- 2.2.23 Close tail pump suction valve and turn off the tail pump.
- 2.2.24 Disconnect tail pump hose from cargo tank and hang hose on the tail pump hanger/cap. (Note: Break the connection carefully using a rag to prevent oil from spilling.)
- 2.2.25 Replace cap on cargo tank tail pump connection.
- 2.2.26 Reverse the truck pump.
- 2.2.27 Close the containment box valve.
- 2.2.28 Crack ears on hose at the containment box. (Note: Break the connection carefully using a rag to prevent oil from spilling.)
- 2.2.29 Close the cargo tank discharge valve.
- 2.2.30 Shut down truck pump.
- 2.2.31 Remove and plug hose and place cap on containment box connection and replace hose in hangers.
- 2.2.32 Close "belly valve".
- 2.2.33 Close the vent and internal valves by the control levers.
- 2.2.34 Close the containment box lid.
- 2.2.35 Record the amount pumped into the facility on the daily log.
- 2.2.36 Perform a walk around inspection on cargo tank and truck before departing.

2.3 **Training:**

2.3.1 New employees will be trained initially on this procedure prior to operating on their own in the field.

2.3.2 Employees will be required to review this procedure annually.

3.0 **REFERENCES**:

- 3.1 **Regulatory –** None.
- 3.2 **Related Policies/Procedures –** Spill Prevention Control and Counter Measure Plans (SPCC).
- 3.3 **Forms and Attachments –** 8.04-ADM-002, <u>Station Unloading Log Form</u>.

►►►End of Procedure

Appendix J Inspections, Tests and Evaluations

Table 21

Aboveground Storage Tanks – Inspection and Integrity Test Requirements

Tank	Fabrication	Fabrication Maximum		Size			Secondary	Continuous Release	Inspection and Integrity
Number	Туре	Capacity	Dia	meter	Lengt	h/Height	Containment	Detection Employed?	Test Standards
	- J F -	(Bbls)	Feet	Inches	Feet	Inches		- - - -	& Schedule
MSA-1									
6D-1	Shop-fabricated	564	10	10	27	4			(4)
6D-4	Shop-fabricated	564	10	10	27	4			(4)
D-170	Shop-fabricated	712	9	0	57	0			(4)
D-172	Shop-fabricated	712	9	0	57	0			(4)
D-174	Shop-fabricated	712	8	10	59	4			(4)
D-176	Shop-fabricated	712	8	10	59	4			(4)
D-178	Shop-fabricated	712	9	0	57	0			(4)
D-180	Shop-fabricated	712	9	0	57	0			(4)
D-190	Shop-fabricated	565	10	10	27	4			(4)
D-191	Shop-fabricated	1,164	10	10	63	9			(4)
D-1401	Shop-fabricated	1,581	12	0	70	6			(4)
D-1402	Shop-fabricated	1,581	12	0	70	6			(4)
D-1403	Shop-fabricated	1,581	12	0	70	6			(4)
D-1404	Shop-fabricated	1,581	12	0	70	6			(4)
D-1405	Shop-fabricated	1,581	12	0	70	6			(4)
D-1406	Shop-fabricated	2,143	11	0	122	5			(4)
D-1407	Shop-fabricated	2,143	11	0	122	5			(4)
D-1408	Shop-fabricated	2,143	11	0	122	5			(4)
MSA-2									
126	Field-erected	79,500	117	0	42	0	(5)	(6)	API 653
202	Field-erected	80,000	120	0	40	0	(5)	(6)	API 653
MSA-3									
1181	Field-erected	100,000	110	0	60	0			(1)
MSA-4									
951	Field-erected	10,000	42	6	40	0			Out-of-Service
953	Field-erected	10,000	42	6	40	0			Out-of-Service
2051	Field-erected	20,000	60	0	40	0	(5)	(6)	API 653
MSA-5									
2007	Field-erected	5,100	34	1	30	0	(5)	(6)	API 653

Table 21 (Cont'd)

Aboveground Storage Tanks – Inspection and Integrity Test Requirements

Terele	Fabrication	Maximum		S	ize		Casar dam.	Continuous Delegas Data dian	Inspection and Integrity Test
Tank Number	Fabrication	Capacity	Dia	meter	Lengt	h/Height	Secondary Containment	Continuous Release Detection	Standards
Inumber	Туре	(Bbls)	Feet	Inches	Feet	Inches	Containment	Employed?	& Schedule
MSA-6									
1470	Field-erected	79,600	120	0	40	0	(5)	(6)	API 653
1471	Field-erected	34,800	74	0	48	0	(5)	(6)	API 653
1472	Field-erected	34,700	80	0	40	0	(5)	(6)	API 653
1473	Field-erected	9,600	42	6	40	0	(5)	(6)	API 653
1475	Field-erected	34,700	80	0	40	0	(5)	(6)	API 653
1476	Shop-fabricated	170	10	0	12	0			Out-of-Service
MSA-7									
67	Field-erected	68,884	112	0	39	6	(5)	(6)	API 653
68	Field-erected	68,884	112	0	39	6	(5)	(6)	API 653
69	Field-erected	68,884	112	0	39	6	(5)	(6)	API 653
70	Field-erected	150,000	140	0	50	0	(5)	(6)	API 653
71	Field-erected	250,000	200	0	48	0	(5)	(6)	API 653
MSA-8									
D-182	Shop-fabricated	1,427	10	10	79	8			(4)
D-183	Shop-fabricated	1,427	10	10	79	8			(4)
D-184	Shop-fabricated	1,533	10	4	94	0			(4)
D-185	Shop-fabricated	1,533	10	4	94	0			(4)
D-186	Shop-fabricated	2,370	11	0	112	0			(4)
D-187	Shop-fabricated	2,400	12	0	112	0			(4)
MSA-9									
254	Field-erected	24,800	67	0	40	0	(5)	(6)	API 653
255	Field-erected	24,800	67	0	40	0	(5)	(6)	API 653
MSA-10									
150	Field-erected	24,800	67	0	40	0	(5)	(6)	API 653
152	Field-erected	24,800	67	0	40	0	(5)	(6)	API 653
154	Field-erected	24,800	67	0	40	0	(5)	(6)	API 653
155	Field-erected	40,000	80	0	50	0	(5)	(6)	API 653
156	Field-erected	2,500							Out-of-Service

Table 21 (Cont'd)

Aboveground Storage Tanks – Inspection and Integrity Test Requirements

Tank Number	Fabrication Type	Maximum Capacity (Bbls)	Size				G 1		Inspection and Integrity Test
			Diameter		Length/Height		Secondary Containment	Continuous Release Detection Employed?	Standards
			Feet	Inches	Feet	Inches	Containment	Employed:	& Schedule
MSA-11									
111	Field-erected	5,000	35	0	30	0	(5)	(6)	API 653
256	Field-erected	5,000	35	0	30	0	(5)	(6)	API 653
257	Field-erected	10,000	42	6	40	0	(5)	(6)	API 653
MSA-12									
108	Field-erected	13,800	56	9	30	6	(5)	(6)	API 653
110	Field-erected	15,000	52	0	40	0	(5)	(6)	API 653
250	Field-erected	10,000	42	6	40	0	(5)	(6)	API 653
251	Field-erected	10,000	42	6	40	0	(5)	(6)	API 653
MSA-13									
107	Field-erected	78,000	117	5	41	1			(3)
120	Field-erected	2,800	27	6	26	0			Out-of-Service
134	Field-erected	80,000	120	0	40	0	(5)	(6)	API 653
260	Field-erected	5,100	35	0	30	0	(5)	(6)	API 653
262	Field-erected	5,100	35	0	30	0	(5)	(6)	API 653
263 ⁷	Field-erected	5,100	35	0	30	0	(5)	(6)	API 653
264	Field-erected	5,100	35	0	30	0	(5)	(6)	API 653
265	Field-erected	5,100	35	0	30	0	(5)	(6)	API 653
269	Field-erected	5,100	35	0	30	0	(5)	(6)	API 653
601	Field-erected	5,000	35	0	35	0	(5)	(6)	API 653
1321	Field-erected	5,000	30	0	40	0			(3)
1323	Field-erected	4,512	34	3	27	5			(3)
1331	Field-erected	5,000	30	0	40	0			(3)
1332	Field-erected	5,000	30	0	40	0			(3)
1333	Field-erected	5,000	30	0	40	0			(3)
1337	Field-erected	2,000	18	6	32	0			Closed
1338	Field-erected	2,000	18	6	32	0			Closed
2002	Shop-fabricated	100	9	6	8	0			Out-of-Service
MSA-14									
136	Field-erected	75,470	120	0	40	0	(5)	(6)	API 653
138	Field-erected	80,456	120	0	40	0	(5)	(6)	API 653
140	Field-erected	80,000	120	0	40	0	(5)	(6)	API 653

Tank Number	Fabrication Type	Maximum Capacity (Bbls)			ize		8	y Test Requirements	Inspection and Integrity
			Diameter		Length/Height		Secondary	Continuous Release	Test Standards
			Feet	Inches	Feet	Inches	Containment	Detection Employed?	& Schedule
MSA-15									
101	Field-erected	64,000	106	0	40	10	(5)	(6)	API 653
1324	Field-erected	66,590	110	0	40	0	(5)	(6)	API 653
MSA-16									
252	Field-erected	26,800	73	5	35	8	(5)	(6)	API 653
253	Field-erected	25,000	67	0	40	0	(5)	(6)	API 653
MSA-17									
1449	Field-erected	76,425	119	0	39	0	(5)	(6)	API 653
MSA-18									
2003	Field-erected	86,000	130	0	40	0			(1)
MSA-19									
2004	Field-erected	54,356	90	0	48	0			(2)
2005	Field-erected	20,000	55	0	48	0			(2)
MSA-20									
142	Field-erected	55,000	100	0	40	0	(5)	(6)	API 653
143	Field-erected	55,000	100	0	40	0	(5)	(6)	API 653
144	Field-erected	55,000	100	0	40	0	(5)	(6)	API 653
146	Field-erected	80,000	120	0	40	0	(5)	(6)	API 653
164	Field-erected	10,000	42	0	42	0	(5)	(6)	API 653
MSA-21									
147	Field-erected	80,000	120	0	40	0	(5)	(6)	API 653
148	Field-erected	75,900	120	0	40	0	(5)	(6)	API 653
168	Field-erected	35,700	79	5	40	0	(5)	(6)	API 653
MSA-22									
501	Field-erected	25,700	62	6	48	0	(5)	(6)	API 653
1441	Field-erected	35,700	80	0	40	0	(5)	(6)	API 653
MSA-23									
203	Field-erected	80,000	120	0	40	0	(5)	(6)	API 653
MSA-24									
200	Field-erected	80,000	120	0	40	0	(5)	(6)	API 653
204	Field-erected	150,000	146	0	52	0	(5)	(6)	API 653
MSA-25									
303	Field-erected	250,000	200	0	48	0	(5)	(6)	API 653

 Table 21 (Cont'd)

 Aboveground Storage Tanks – Inspection and Integrity Test Requirements

- Exempt pursuant to 40 C.F.R. 112.1(b).

 2
 Exempt pursuant to 40 C.F.R. 112.1(d)(6).

 3
 Exempt pursuant to 40 C.F.R. 112.1(d)(8).

 4
 Exempt pursuant to 67 FR 47076 dated July 17, 2002.

 5
 Table 6 of Appendix F.

 6
 Periodic visual inspections by qualified WRC personnel. Any deficiencies identified are promptly corrected.

Aboveground storage tank inspections, schedules, and records are maintained by the Zone 4 operations department and refinery Inspection department.

Appendix K Oil Discharge History

Facility ID No. I-25000220

May 28, 2013

<u>CERTIFIED MAIL</u> <u>RETURN RECEIPT REQUESTED</u>

Cheryl Dirck Water Quality Division Oklahoma Department of Environmental Quality P.O. Box 1677 Oklahoma City, OK 73101-1677

Subject: Notification of Bypasses, Wynnewood Refining Company, LLC OPDES Permit # OK0000825

Dear Ms. Dirck:

Enclosed find completed wastewater bypass forms for two bypass events and a possible bypass event which occurred as a result of heavy rainfall events at our refinery on 5/21/13 and 5/23/13. This letter is to provide additional information regarding each of the events.

5/21/13 Wastewater Treatment System Bypass

On 5/21/13, the Wynnewood Refining Company experienced very heavy rainfall during the morning, just prior to my 8:50 notification to you. There had been rainfall and hail the preceding night as well. Wynnewood residents reported over 5" of rainfall for 5/21. During the morning storm event, our stormwater flow meter registered an instantaneous flow of over 35,000 gpm. A discharge of oil sheen was reported to the National Response Center. Total flow for the 5/21 event shown by our stormwater flowmeter was over 8.1 million gallons.

Our combined process/stormwater storage already contained some previous inventory from rainfall of 5/15 and 5/16. Hence, with the onset of heavy rain, our stormwater diversion storage, along with all available normal wastewater treatment system tankage, quickly became filled to capacity. Our combined process/stormwater channel (just upstream of our API separator) overflowed into our stormwater ditch, causing the bypass. The amount of bypass is unknown.

The initial bypass stopped around 9:30 AM when rainfall subsided. The wastewater plant worked off stormwater inventory as quickly as possible and brought in additional portable pumps to speed up flow through our lagoons and discharge at our treatment plant outfall. Then it began raining again around noon, although at a somewhat slower rate than during the morning. The combined process/stormwater channel overflowed again intermittently beginning around 12:30 PM until around 2:45 PM. Our stormwater diversion sump is located along this channel. As we were able to "nurse off" and pump from this sump to storage as it became available, we were able to intermittently stop channel overflows until the flow surge subsided. Additional steps were taken to reduce upstream flow by cutting crude charge rate and temporarily stopping cooling tower blowdown.

Stormwater samples had been collected the preceding night around 2AM when rainfall began, and were routinely collected in the morning at 7AM. Samples were again collected immediately after the bypass began, at 9AM. Results for all samples are shown below.

Date, Time	pH	COD (mg/l)	Oil & Grease (mg/l)	TSS (mg/l)
5/21/13, 2AM	7.58	38.4	<1.4	322
5/21/13, 7AM	7.68	47.0	<1.4	393
5/21/13, 9AM (with bypass)	8.17	39.3	3.2	371
Outfall 002 limits:	6.5-9.0	120	15.0	Report

As shown by the above data, bulk discharge during the bypass did not exceed outfall 002 limits and was not substantially different than the discharge under non-bypass conditions.

We estimate that less than one barrel of free oil was associated with the 5/21 bypass events. Our stormwater ditch is equipped with an underflow weir and hay bales along its top; most oil was collected at the weir and did not reach outfall 002 shortly downstream. However, a thin oil film approximately 1 foot wide was present about a mile downstream of our facility, which was reported to the National Response Center. When the bypass occurred, vacuum trucks, sorbent materials and booms and additional outside response assistance were immediately deployed.

5/23/13 Wastewater Treatment System Bypass

On 5/23/13, the refinery experienced another very heavy and intense rainfall. Although the rainfall total was about one inch, this amount of rain occurred within a span of about 10 minutes, so all the rain essentially became runoff volume. Our stormwater flowment showed a total flow of over 5.9 million gallons for 5/23. In the wake of the 5/21 event, there was little available space for additional stormwater in our system. Bypass occurred intermittently during a fifteen-minute period between 10:00 and 10:15 AM on 5/23 as the combined process/stormwater channel overflowed into the stormwater ditch between pumping intervals of our stormwater diversion sump. Response and cleanup personnel with sorbents, booms and vacuum trucks were already on scene doing cleanup activities from the previous event. No free oil or sheen escaped refinery property. The additional wastewater treatment system pumping capacity was still in operation and continues to operate to reduce our wastewater inventory.

5/23/13 Surface Impoundment F04 Bypass

Following the two heavy deluge events on 5/21 and 5/23, one of our stormwater impoundments, F04 near the north end of our property, had overflowed on to the adjoining road. Due to construction activities in the area, this road was the only quick access to our firewater pumps in the event of an emergency. Water in the road was pickup truck grill high. The road flooding also prohibited operator access to one of our flares and some of its associated controls. Stormwater from this impoundment is normally pumped to our wastewater treatment system as stormwater inventory is worked off. A portable pump was used to pump the impoundment contents to an area of refinery property just west of the impoundment, beginning around 2:15 PM on 5/23. The surface drainage of the area is toward the west, eventually leaving the plant property along the western border of refinery property at our truck loading facility. The pump was left in operation until the flooded refinery road conditions had been alleviated, then shut off sometime during the night. The pump was not in operation at 7:30 AM on 5/24, and no discharge was observed at the west side of the refinery property at that time. It is unknown whether or not any discharge actually occurred, or if all the impoundment contents remained on refinery property.

If you have questions or need additional information, please call me at (405) 665-6601.

Sincerely yours,

in ab. Da ma 6

Sidney Carbbiness Wynnewood Refining Company, LLC

cc: Mark Manwell, Ada DEQ Office

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

SELF REPORTING WASTEWATER BYPASS FORM (TO BE SUBMITTED WITHIN 5 DAYS OF OCCURRENCE)

Date: 5/23/13

DEQ Facility ID # S# or I# - 25000220

Facility Name: Wynnewood Refining Company, LLC

	I Bypasses to the DEQ Within 24 hours to:	1-800-256-2365		
	Mail Written Report Within 5 Days To	 Department of Environmental Quality Water Quality Division P.O. Box 1677 Oklahoma City, OK 73101-1677 		
DEQ notif	ied within 24 hours of Bypass on: Date:	5/21/13		
Notified Type of	l Cheryl Dirck, ODEQ WQD ^{Time:}	8:50 AM		
Bypass:	□ Pipe □ Clarifier / Filter □ API Separator □ Head Works □ Lift Station □ Digester	 □ Lagoon / Basin □ Manhole □ Drying Beds □ Batch Reactor X Other (specify) Open channel just upstream of API separator 		
Period of Bypass~	From $\frac{5}{Month}$ $\frac{21}{Day}$ $\frac{20}{20}$ To $\frac{5}{Month}$ $\frac{21}{Day}$ $\frac{20}{20}$	Year A Ministration		
Strength of Bypass	X Raw □ Partially Treat	ed Amount of Bypass: unknown gallons		
C Vere fish or other	wildlife affected as a result of the bypass?			
Type of Samples T pH 8.17 COD Geographical Loca Sandy Creek, I Reason for Bypass:	aken: □ BOD X TSS X 0&G 39.3 mg/l 0&G 3.2 mg/l TSS 371 r ation of Bypass (including Outfall Number or receiving str Lat N 34 deg 37' 21.19" Long. W 97 d Heavy downpour following previo	X pH □ DO □ None X Other <u>COD</u> ng/l Team if appropriate) Outfall 002, to unnamed tributary of Turkey leg 11' 57.21", NW ¼ NE ¼ NE ¼ S28 T2N R1EIM Outs rainfall filled wastewater system to capacity. Open		
Type of Samples T pH 8.17 COD Geographical Loca Sandy Creek, I Reason for Bypass:	aken: □ BOD X TSS X 0&G 39.3 mg/l 0&G 3.2 mg/l TSS 371 r ation of Bypass (including Outfall Number or receiving str Lat N 34 deg 37' 21.19" Long. W 97 d Heavy downpour following previo	X pH □ DO □ None X Other <u>COD</u> ng/l ream if appropriate) Outfall 002, to unnamed tributary of Turkey leg 11' 57.21", NW ¼ NE ¼ NE ¼ S28 T2N R1EIM		
Type of Samples T pH 8.17 COD Geographical Loca Sandy Creek, I Reason for Bypass: channel of com Steps taken to prev limitations); de wastewater inv	aken: BOD X TSS X 0&G 39.3 mg/l O&G 3.2 mg/l TSS 371 r ation of Bypass (including Outfall Number or receiving sti- Lat N 34 deg 37' 21.19" Long. W 97 d Heavy downpour following previo bined process/storm sewer overflower went recurrence: Processing inventor: ployed additional pump capacity (port entory	X pH DO None X Other COD mg/l Outfall 002, to unnamed tributary of Turkey leg 11' 57.21", NW ¼ NE ¼ NE ¼ S28 T2N R1EIM ous rainfall filled wastewater system to capacity. Open d into stormwater ditch which conveys to outfall 002 y as quickly as treatment plant will allow (within discharge table pumps) at treatment system to help process surge in		
Type of Samples T pH 8.17 COD Geographical Loca Sandy Creek, I Reason for Bypass: channel of com Steps taken to prev limitations); de wastewater inv mpact to receiving	aken: BOD X TSS X 0&G 39.3 mg/l O&G 3.2 mg/l TSS 371 r ation of Bypass (including Outfall Number or receiving sti- Lat N 34 deg 37' 21.19" Long. W 97 d Heavy downpour following previa bined process/storm sewer overflower vent recurrence: Processing inventory ployed additional pump capacity (port entory stream and/or surrounding areas: No	X pH □ DO □ None X Other COD ng/l Outfall 002, to unnamed tributary of Turkey leg 11' 57.21", NW ¼ NE ¼ NE ¼ S28 T2N R1EIM ous rainfall filled wastewater system to capacity. Open Open d into stormwater ditch which conveys to outfall 002 y as quickly as treatment plant will allow (within discharge		
Type of Samples T pH 8.17 COD Geographical Loca Sandy Creek, I Reason for Bypass: channel of com Steps taken to prev limitations); de wastewater inv mpact to receiving downstream en Geps taken to clea contained most Creek, where a	aken: BOD X TSS X 0&G 39.3 mg/l O&G 3.2 mg/l TSS 371 r ation of Bypass (including Outfall Number or receiving str Lat N 34 deg 37' 21.19" Long. W 97 d Heavy downpour following previo bined process/storm sewer overflower rent recurrence: Processing inventory ployed additional pump capacity (port entory stream and/or surrounding areas: No d of plant property following incident n up or treat Bypass: <u>Underflow weir</u> oil. Deployed booms, sorbents, and y	X pH DO None X Other COD mg/l Outfall 002, to unnamed tributary of Turkey leg 11' 57.21", NW ¼ NE ¼ NE ¼ S28 T2N R1EIM ous rainfall filled wastewater system to capacity. Open d into stormwater ditch which conveys to outfall 002 y as quickly as treatment plant will allow (within discharge table pumps) at treatment system to help process surge in ne following event. No oily residues on vegetation at . Receiving stream is normally a dry channel. and hay bales present just upstream of outfall 002 vac trucks at outfall 002 and at mouth of Turkey Sandy went during bypass event. Following event,		
Type of Samples T pH 8.17 COD Geographical Loca Sandy Creek, I Reason for Bypass: channel of com Steps taken to prev limitations); de wastewater inv mpact to receiving downstream en Steps taken to clea contained most <u>Creek, where a</u> <u>collected/remo</u>	aken: BOD X TSS X 0&G 39.3 mg/l O&G 3.2 mg/l TSS 371 r ation of Bypass (including Outfall Number or receiving sti- Lat N 34 deg 37' 21.19" Long. W 97 d Heavy downpour following previo bined process/storm sewer overflower went recurrence: Processing inventor: ployed additional pump capacity (port entory stream and/or surrounding areas: No d of plant property following incident n up or treat Bypass: Underflow weir oil. Deployed booms, sorbents, and y thin oil film approx. 1' wide was pres	X pH DO None X Other COD mg/l Outfall 002, to unnamed tributary of Turkey leg 11' 57.21", NW ¼ NE ¼ NE ¼ S28 T2N RIEIM ous rainfall filled wastewater system to capacity. Open d into stormwater ditch which conveys to outfall 002 y as quickly as treatment plant will allow (within discharge table pumps) at treatment system to help process surge in ne following event. No oily residues on vegetation at . Receiving stream is normally a dry channel. and hay bales present just upstream of outfall 002 vac trucks at outfall 002 and at mouth of Turkey Sandy went during bypass event. Following event,		
Type of Samples T pH 8.17 COD Geographical Loca Sandy Creek, I Reason for Bypass: channel of com Steps taken to prev limitations); de wastewater inv mpact to receiving downstream en Gteps taken to clea contained most Creek, where a collected/remov	aken: □ BOD X TSS X O&G 39.3 mg/l O&G 3.2 mg/l TSS 371 r ation of Bypass (including Outfall Number or receiving stream Lat N 34 deg 37' 21.19" Long. W 97 d Heavy downpour following previous when the	X pH DO None X Other COD mg/l Outfall 002, to unnamed tributary of Turkey leg 11' 57.21", NW ¼ NE ¼ NE ¼ S28 T2N R1EIM ous rainfall filled wastewater system to capacity. Open d into stormwater ditch which conveys to outfall 002 y as quickly as treatment plant will allow (within discharge table pumps) at treatment system to help process surge in ne following event. No oily residues on vegetation at . Receiving stream is normally a dry channel. * and hay bales present just upstream of outfall 002 vac trucks at outfall 002 and at mouth of Turkey Sandy rent during bypass event. Following event, nd outfall 002 area.		

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

SELF REPORTING WASTEWATER BYPASS FORM (To be submitted within 5 days of occurrence)

Date: 5/24/13

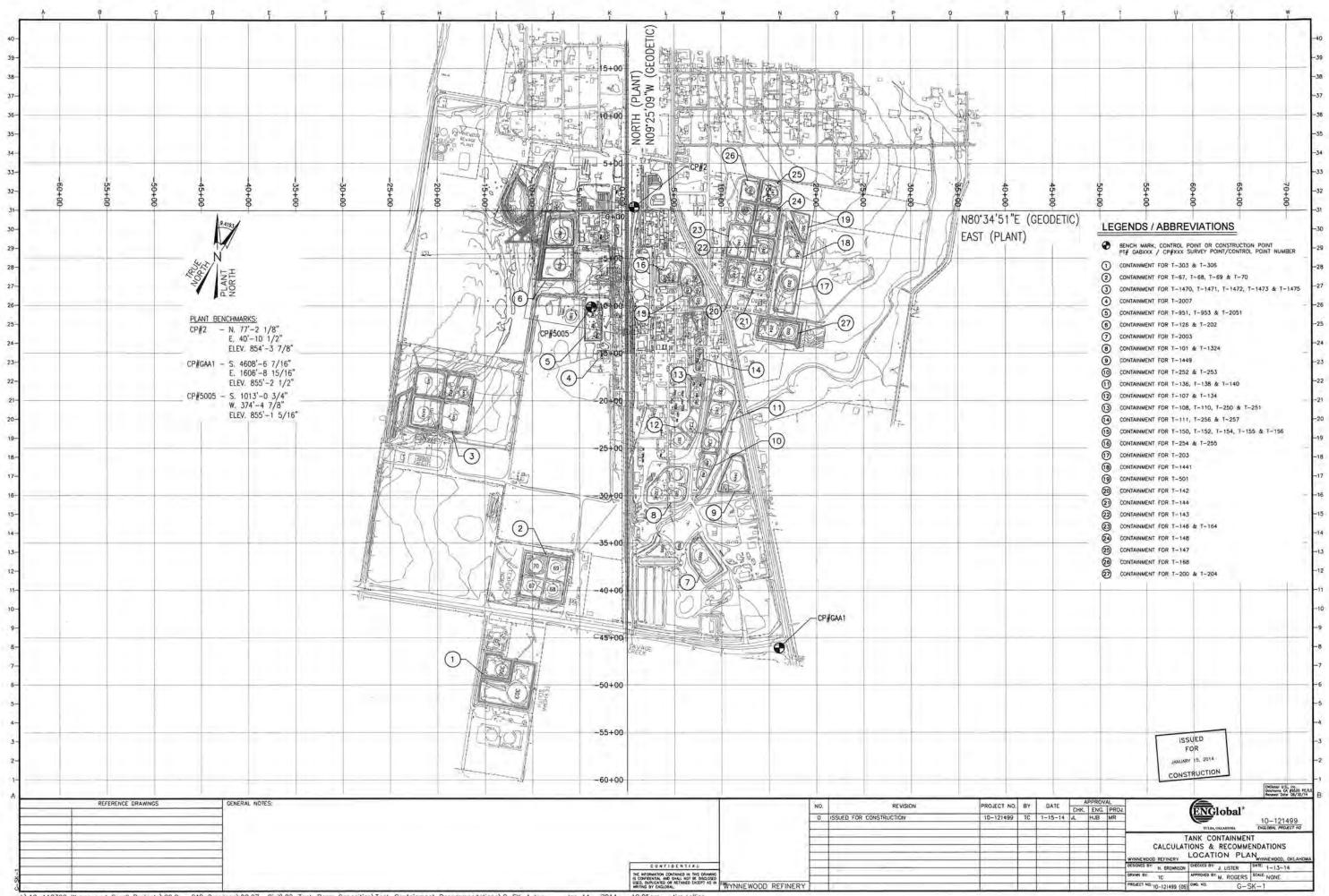
DEQ Facility ID # S# or I# - 25000220

Facility Name: Wynnewood Refining Company, LLC

Report All Bypasses to the DEQ Within 24 hours to:						1-800-2	256-236	5
Mail Written Report Within 5 Days To:			To: Department of Environmental Quality Water Quality Division P.O. Box 1677 Oklahoma City, OK 73101-1677			У		
DEQ notif	ied within 2	4 hours o	f Bypass on:	Date:	5/24/13			
				Time:	8:03 AM to Che	ryl Dirck vi	a email	
Type of Bypass:	□ Pipe □ API Sej □ Lift Stat		Clarifier / Fi Head Works D Digester		□ Lagoon / Basin □ Drying Beds Ⅹ Other (specify)	□ Manhol □ Batch F Open chann	Reactor	eam of API separator
Period of Bypass~	From		23	201		10:00	X AM	□ PM
	То	Month 5 Month	23 Day Day	201	3 Year	10:15	X AM	PM Intermittently
Strength of Bypass	; ,	K Raw	D Partially	Treate	ed Amo	unt of Bypass:	unknown	gallons
C Were fish or other	wildlife affe	1.25						COE 001)
		cted as a BOD		ass? X&G	□Yes XNo pH □DO		lete DEQ Form Other	1605-001)
Type of Samples Ta Geographical Loca	aken: ^[] ation of Byp	BOD BASS (includi	TSS C	X&G	pH □ DO	χ None fall 002, to ι	Other	butary of Turkey
Type of Samples Ta Geographical Loca Sandy Creek, L ——————————— Reason for Bypass:	aken: ^c ation of Byp Lat N 34 d Heavy	BOD Bass (includi beg 37° 2 y downp	TSS C ng Outfall Number or rec 1.19" Long. W our following	eiving stra 97 d	pH □ DO eamifappropriate) Out	X None fall 002, to t W ¼ NE ¼ N wastewater s	Other Innamed tri NE 1/4 S28 T	butary of Turkey 2N R1EIM apacity. Open
Type of Samples Ta Geographical Loca Sandy Creek, I Reason for Bypass: channel of com	aken: ation of Byp Lat N 34 d <u>Heav</u> bined pro vent recurre ployed ad	BOD Bass (includi eg 37' 2 y downp cess/stor	TSS C ng Outfall Number or rec 1.19" Long. W our following m sewer overf Processing invo	XG eiving stre ' 97 de previc Towec	pH □ DO eam if appropriate) Out eg 11' 57.21'', NV ous rainfall filled d into stormwater	X None fall 002, to t W ¼ NE ¼ N wastewater s ditch which atment plant	Other Innamed tri NE ¼ S28 T system to ca conveys to will allow	butary of Turkey 2N R1EIM apacity. Open outfall 002 (within discharge
Type of Samples Ta Geographical Loca Sandy Creek, L Reason for Bypass: channel of com Steps taken to prev limitations); de wastewater inv	aken: ation of Byp Lat N 34 d <u>Heav</u> bined pro vent recurre ployed ad entory stream an	BOD pass (includi eg 37° 2 y downp cess/stor ence:	TSS C ng Outfall Number or rec 1.19" Long. W our following p m sewer overf Processing invo pump capacity unding areas:	28G eiving strr ' 97 dr previc Towec entory (port Nor	pH □ DO eam it appropriate) Out eg 11' 57.21'', NV ous rainfall filled y d into stormwater	X None fall 002, to to W 1/4 NE 1/4 N wastewater s ditch which atment plant eatment syst t. No oily re	Other Innamed tri NE 1/4 S28 T System to ca conveys to will allow em to help p esidues on v	butary of Turkey 2N R1EIM pacity. Open outfall 002 (within discharge process surge in
Type of Samples Ta Geographical Loca Sandy Creek, L Reason for Bypass: channel of com Steps taken to prev limitations); de wastewater inv Impact to receiving downstream en Steps taken to clea contained most	aken: ation of Byp Lat N 34 d <u>Heav</u> bined pro bined pro vent recurre ployed ad entory stream an d of plant n up or trea oil. Depl	BOD pass (includi leg 37' 2 y downp cess/stor nce: 1 ditional d/or surro property at Bypass: loyed bo	TSS C ng Outfall Number or rec 1.19" Long. W our following p m sewer overf Processing invo pump capacity unding areas: / following inc <u>Underflow</u> oms, sorbents,	2&G eiving strr 7 97 dd previc lowed entory (port Nor ident. 7 weir and v	pH □ DO eam if appropriate) Out eg 11' 57.21", NV ous rainfall filled y d into stormwater / as quickly as trea able pumps) at trea	X None fall 002, to u W ¼ NE ¼ N wastewater s ditch which atment plant atment plant atment syst t. No oily ru n is normall esent just up ll 002. Follo	Other Innamed tri NE 1/4 S28 T system to ca conveys to will allow em to help p esidues on v y a dry chan	butary of Turkey 2N R1EIM apacity. Open outfall 002 (within discharge process surge in vegetation at mel.
Type of Samples Ta Geographical Loca Sandy Creek, L Reason for Bypass: channel of com Steps taken to prev limitations); de wastewater inv Impact to receiving downstream en Steps taken to clea contained most collected/remov	aken: ation of Byp Lat N 34 d <u>Heav</u> bined pro bined pro vent recurre ployed ad entory stream an d of plant n up or trea oil. Depl	BOD pass (includi leg 37' 2 y downp cess/stor cess/stor ditional d/or surro property at Bypass: loyed bo residues	TSS C ng Outfall Number or rec 1.19" Long. W our following p m sewer overf Processing invo pump capacity unding areas: / following inc <u>Underflow</u> oms, sorbents,	2&G eiving strr 7 97 dd previc lowed entory (port Nor ident. 7 weir and v	pH DO earn if appropriate) Out eg 11' 57.21", NV ous rainfall filled y d into stormwater / as quickly as trea able pumps) at trea ne following even Receiving strear and hay bales pre- rac trucks at outfa nd outfall 002 are	X None fall 002, to u W ¼ NE ¼ N wastewater s ditch which atment plant atment plant atment syst t. No oily ru n is normall esent just up ll 002. Follo	Other Innamed tri NE 1/4 S28 T system to ca conveys to will allow em to help p esidues on v y a dry chan stream of ou owing event	butary of Turkey 2N R1EIM apacity. Open outfall 002 (within discharge process surge in vegetation at mel.
Type of Samples Ta Geographical Loca Sandy Creek, L Reason for Bypass: channel of com Steps taken to prev limitations); de wastewater inv Impact to receiving downstream en Steps taken to clea contained most collected/remov	aken: ation of Byp Lat N 34 d <u>Heav</u> : bined pro vent recurre ployed ad entory stream an d of plant stream an d of plant n up or trea oil. Depl	BOD pass (includi leg 37' 2 y downp cess/stor cess/stor ditional d/or surro property at Bypass: loyed bo residues	TSS C ng Outfall Number or rec 1.19" Long. W our following p m sewer overf Processing invo pump capacity unding areas: / following inc <u>Underflow</u> oms, sorbents,	2&G eiving strr 7 97 dd previc lowed entory (port Nor ident. 7 weir and v	pH DO earn if appropriate) Out eg 11' 57.21", NV ous rainfall filled y d into stormwater / as quickly as trea able pumps) at trea ne following even Receiving strear and hay bales pre- rac trucks at outfa nd outfall 002 are	X None fall 002, to u W ¼ NE ¼ N wastewater s ditch which atment plant eatment syst t. No oily re n is normall esent just up 11 002. Folle a.	Other Innamed tri NE 1/4 S28 T system to ca conveys to will allow em to help p esidues on v y a dry chan stream of ou owing event	butary of Turkey 2N R1EIM apacity. Open outfall 002 (within discharge process surge in vegetation at mel.

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

SELF REPORTING WASTEWATER BYPASS FORM (To be submitted within 5 days of occurrence)

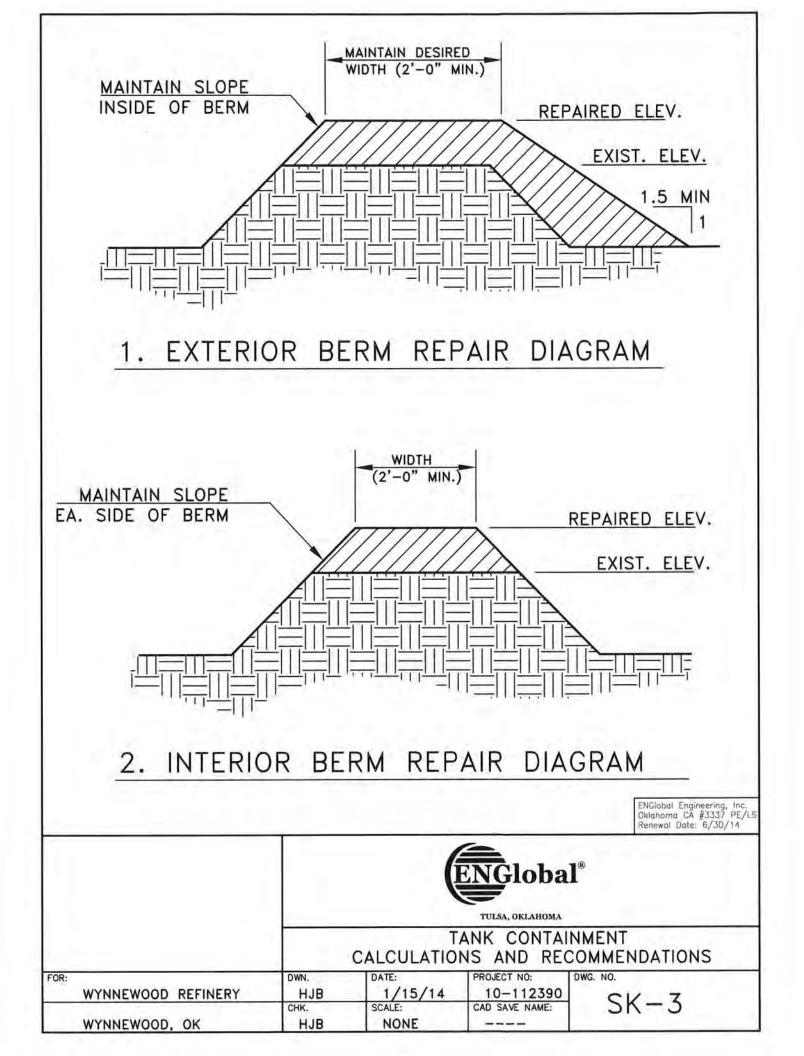

Date: 5/24/13

_ DEQ Facility ID # S# or I# - 25000220

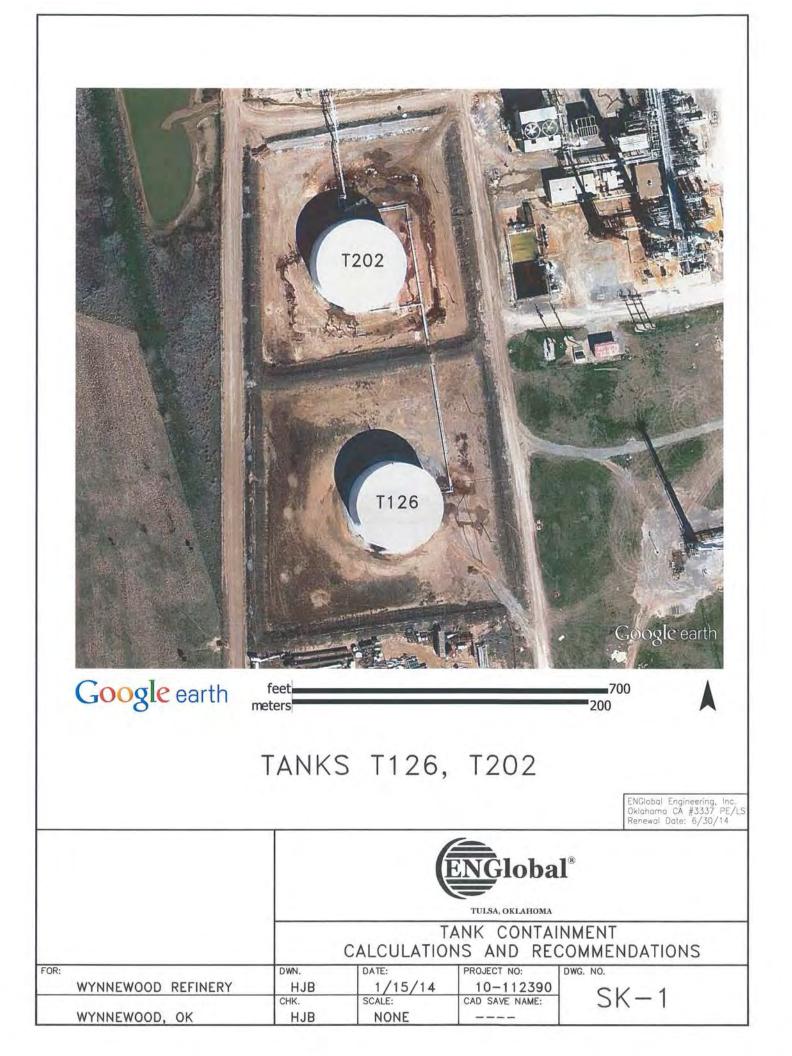
Facility Name: Wynnewood Refining Company, LLC

Report All Bypasses to the DEQ Within 24 hours to: Mail Written Report Within 5 Days To:			1-800-256-2365 o: Department of Environmental Quality Water Quality Division P.O. Box 1677 Oklahoma City, OK 73101-1677		
		Time:	10:42 AM to Cheryl Dirck via email		
ype of Bypass:	□ Pipe	Clarifier / Filter	Lagoon / Basin 🛛 Manhole		
sypaco.	□ API Separator	□ Head Works	Drying Beds Batch Reactor		
	□ Lift Station	Digester	x Other (specify) Permitted stormwater impoundment F04		
eriod of Bypass~	From 5	23 201			
oned of Dypass	To 5		Year		
	Month	Day	Year before 7:30AM		
Strength of Bypass	: 🗆 Raw	Partially Treat	ed Amount of Bypass: unknown gallons		
C Vere fish or other	wildlife affected as a	result of the bypass?	□ Yes X No (If Yes, complete DEQ Form 605-001)		
ype of Samples T	aken: 🗆 BOD	□ TSS □ O&G	□ pH □ DO X None □ Other		
ype of Samples T Geographical Loca impoundment i Geason for Bypass Pumped impou	aken: DBOD ation of Bypass (includ near west end of w <u>Impoundment</u> undment contents t	□ TSS □ O&G ing Outfall Number or receiving str varehouse/alky area, t flooded adjacent ro to refinery property	□ pH □ DO X None □ Other ream if appropriate) impoundment F04, stormwater runoff NE ¼ SW ¼ NW1/4 S23 T2N R1EIM read and blocked access to emergency firewater pumps.		
Type of Samples T Geographical Loca impoundment r Reason for Bypass Pumped impou discharged from	aken: DBOD ation of Bypass (includ near west end of w <u>Impoundment</u> andment contents t n there to west ed vent recurrence:	□ TSS □ O&G ing Outfall Number or receiving str varehouse/alky area, t flooded adjacent ro to refinery property of ge of refinery property impoundment was p	□ pH □ DO X None □ Other ream if appropriate) impoundment F04, stormwater runoff NE ¼ SW ¼ NW1/4 S23 T2N R1EIM read and blocked access to emergency firewater pumps. west of impoundment. The stormwater may or may not hav		
Type of Samples T Geographical Loca impoundment i Reason for Bypass Pumped impou discharged from Gteps taken to prev minimized; did	aken: DBOD ation of Bypass (includ near west end of w <u>Impoundment</u> andment contents t n there to west ed vent recurrence:	□ TSS □ O&G ing Outfall Number or receiving str varehouse/alky area, t flooded adjacent ro to refinery property of ge of refinery property impoundment was p ndment). Purpose o	□ pH □ D X None □ Other		
Type of Samples T Geographical Loca impoundment i Reason for Bypass Pumped impou discharged from Steps taken to prev minimized; did mpact to receiving	aken: DBOD ation of Bypass (includ near west end of w Impoundment indment contents t n there to west ed vent recurrence: I not empty impou	□ TSS □ O&G ing Outfall Number or receiving str varehouse/alky area, t flooded adjacent ro to refinery property of ge of refinery property impoundment was p ndment). Purpose o punding areas: <u>No</u>	□ pH □ D X None □ Other		
Type of Samples T Geographical Loca impoundment in Reason for Bypass Pumped impound discharged from Steps taken to previous minimized; did mpact to receiving Steps taken to clea	aken: □ BOD ation of Bypass (includ near west end of w <u>Impoundment</u> andment contents t n there to west ed yent recurrence: I not empty impou g stream and/or surro	□ TSS □ O&G ing Outfall Number or receiving str varehouse/alky area, t flooded adjacent ro to refinery property of ge of refinery property impoundment was p ndment). Purpose o punding areas: <u>No</u>	pH DO X None Other ream if appropriate) impoundment F04, stormwater runoff NE ¼ SW ¼ NW1/4 S23 T2N R1EIM oad and blocked access to emergency firewater pumps. west of impoundment. The stormwater may or may not have rty at product loading facility area oumped until flooded road had been cleared (discharge was f impoundment is to collect stormwater runoff. ne stormwater only		
Seported by: Signals	aken: □ BOD ation of Bypass (includ near west end of w indment contents t indment contents t in there to west ed vent recurrence: I not empty impou stream and/or surro	□ TSS □ O&G ing Outfall Number or receiving str varehouse/alky area, t flooded adjacent ro o refinery property of ge of refinery property impoundment was p ndment). Purpose o punding areas: <u>No</u> <u>Not applicable</u> ;	□ pH □ DO X None □ Other		
Type of Samples T Geographical Loca impoundment in Reason for Bypass Pumped impound discharged from Steps taken to previous minimized; did mpact to receiving Steps taken to clea	aken: □ BOD ation of Bypass (includ near west end of w indment contents t indment contents t in there to west ed vent recurrence: I not empty impou stream and/or surro	□ TSS □ O&G ing Outfall Number or receiving str varehouse/alky area, t flooded adjacent ro to refinery property of ge of refinery property impoundment was p ndment). Purpose o punding areas: <u>No</u>	pH DO X None Other ream if appropriate) impoundment F04, stormwater runoff NE ¼ SW ¼ NW1/4 S23 T2N R1EIM oad and blocked access to emergency firewater pumps. west of impoundment. The stormwater may or may not have rty at product loading facility area oumped until flooded road had been cleared (discharge was f impoundment is to collect stormwater runoff. ne stormwater only		

Appendix L Sufficient Freeboard Determination




J:\10-112390 Wynnewood Small Projects\08.0 CAD Drawings\08.07 Civil\82-Tank Berm Capacities\Tank Containment Recommendations\G-SK-1.dwg Jan 14. 2014 - 10:05am tim.collins


CONSTRUCTION NOTES FOR REPAIR OF EXISTING DIKES

- 1. LOW AREAS TO RECEIVE FILL SHALL BE DRAINED SO THAT THEY ARE FREE OF STANDING WATER.
- 2. THE EXISTING DIKE SURFACE SHALL BE TESTED FOR MOISTURE CONTENT AND, IF DEFICIENT, SCARIFIED TO A DEPTH OF FOUR INCHES AND MOISTURE CONDITIONED TO WITHIN -2 TO +4 PERCENTAGE POINTS OF OPTIMUM MOISTURE AS DETERMINED BY MODIFIED PROCTOR ASTM D1557, OR STANDARD PROCTOR ASTM D698.
- 3. PRIOR TO PLACEMENT OF FILL, THE EXISTING DIKE SURFACE SHALL BE COMPACTED TO AT LEAST 90% OF THE MAXIMUM MODIFIED PROCTOR DENSITY, OR 95% OF THE MAXIMUM STANDARD PROCTOR DENSITY. THE DENSITY OF THE TOP SIX INCHES IN AREAS OF FILL WHERE GRANULAR SOILS EXIST THAT DO NOT EXHIBIT WELL-DEFINED MOISTURE-DENSITY RELATIONSHIP, SHALL BE COMPACTED TO AT LEAST 80% RELATIVE DENSITY IN ACCORDANCE WITH ASTM D4253 AND ASTM D4254.
- 4. FILL MATERIAL SHALL BE INERT FROM ON-SITE EXCAVATION AND SHALL CONSIST OF CLAY, SILTY CLAY, OR SILTY SAND OR A MIXTURE OF THESE CONSTITUENTS. FILL MATERIAL SHALL HAVE A MAXIMUM LIQUID LIMIT OF 40, AND A PLASTICITY INDEX LESS THAN 17.
- 5. FILL SHALL BE PLACED IN LIFTS OF 8 INCHES (MAXIMUM) LOOSE DEPTH. FOR HAND-OPERATED COMPACTION EQUIPMENT, STRUCTURAL FILL MATERIALS SHALL BE PLACED IN LIFTS OF 4 INCHES (MAXIMUM) LOOSE DEPTH.
- FILL SHALL BE COMPACTED TO AT LEAST 90% OF THE MAXIMUM MODIFIED PROCTOR DENSITY OR 95% OF THE MAXIMUM STANDARD PROCTOR DENSITY.
- 7. MOISTURE CONTENT OF THE MATERIAL BEING COMPACTED SHALL BE WITHIN -2 TO +4 PERCENTAGE POINTS OF OPTIMUM MOISTURE AS DETERMINED BY MODIFIED PROCTOR ASTM D1557, OR STANDARD PROCTOR ASTM D698.
- 8. FIELD DENSITY TESTS SHALL BE PERFORMED USING THE NUCLEAR METHOD OR OTHER METHOD APPROVED BY THE OWNER, TO DETERMINE THE MOISTURE CONTENT AND PERCENT COMPACTION OF THE DIKE MATERIALS. IN-PLACE DENSITY TESTS SHALL BE TAKEN EVERY 100 FEET OR FRACTION THEREOF FOR EACH LIFT OF MATERIAL PLACED.
- 9. COMPACTED DIKE SURFACES SHALL BE LEVEL AND FINISH-GRADED AS SPECIFIED ON THE CONSTRUCTION DRAWINGS. COAT ALL SURFACES WITH EMULSIFIED ASPHALT TO PROTECT AGAINST EROSION. THE EMULSIFIED ASPHALT MAY BE SUBSTITUTED WITH COMPACTED GRAVEL FOR SURFACES INTENDED FOR VEHICULAR TRAFFIC.

				ENGlobal Engineering, Inc. Oklahoma CA #3337 PE/LS Renewal Date: 6/30/14
		(ENGloba TULSA, OKLAHOMA	1 ®
			ANK CONTA	INMENT COMMENDATIONS
FOR: WYNNEWOOD REFINERY	DWN. HJB	DATE: 1/15/14	PROJECT NO: 10-112390	DWG. NO.
WYNNEWOOD, OK	снк. НЈВ	SCALE: NONE	CAD SAVE NAME:	G-SK-2

CLIENT:	Wynnewood Refinery	JOB NO .:	10-112390 (82)	SHEET:	1
LOCATION:	Wynnewood Oklahoma	CALCS BY:	Zulfiquar Syed	DATE:	
SUBJECT:	Existing Tank Berm Capacities	CHECKED BY:	H.J. Brownson, P.E.	DATE:	12/9/2013

Design Criteria:

- Check primary containment of a single tank volume or the tank with the largest volume when in a group. The primary containment volume consists of the maximum capacity of the tank (supplied by WRC) plus the amount of precipitation that occurs during a 25 year/24 hour rainfall event (7.1 inches).
- Check secondary containment for each tank within a group of tanks that has lower dikes that subdivide the primary containment area. The secondary containment volume is equal to 10% of the tank maximum capacity to represent a minor spill.
- The containment volume (both primary and secondary) is calculated using the volumes taken from the topographic surveys provided by Gorrondona and Associates, Inc.

Tank Area - T126, T202

rimary Contai	nment:							
Tank	Tank Ca (bbl.)	apacity (cu. ft.)	Volume of Liquid (cu. ft.)	Existing Berm Capacity Low Point (ft.)	Existing Berm Capacity (cu. ft.)	Repaired Berm Elevation (ft.)	Repaired Berm Volume (cu. ft.)	Berm Increase (ft.)
126	79,557	446,681	510,858	850.00	307,502	852.33	515,759	2.33
202	80,603	452,554	500,798	850.00	315,218	852.33	505,201	2.33

Recommendations:

- 1. Raise primary berm (shown in orange) to required elevation = 852.33'.
- 2. Re-grade road entrance areas to access final berm elevations.

	REPAIR BERM LOW SPOT TO ELEV. 852.33' ROAD ACCESS	
	RAISE PRIMARY CONTAINMENT FROM 851' TO 852.33' REPAIR BERM LOW	
	SPOT TO ELEV. 852.33'	
	TANK 126	
	PRIMARY CONTAINMENT -RAISE FROM 851' TO 852.33' BERM LOW SPOT	
	TJ	
REFERENCE DRAWINGS GENERAL NOTES: PLOT PLAN CONSTRUCTION NOTES TANK BERM REPAIR DETAILS	NO. REVISION PROJECT NO. BY DATE APPROVAL CHK. ENG. PROJ. 0 ISSUE FOR CONSTRUCTION 10-112390 HJB 1/15/14 HJB HJB <td>ABOMA</td>	ABOMA

CLIENT:	Wynnewood Refinery	JOB NO .:	10-112390 (82)	SHEET:	t>
LOCATION:	Wynnewood Oklahoma	CALCS BY:	Zulfiquar Syed	DATE:	
SUBJECT:	Existing Tank Berm Capacities	CHECKED BY:	H.J. Brownson, P.E.	DATE:	12/14/2013

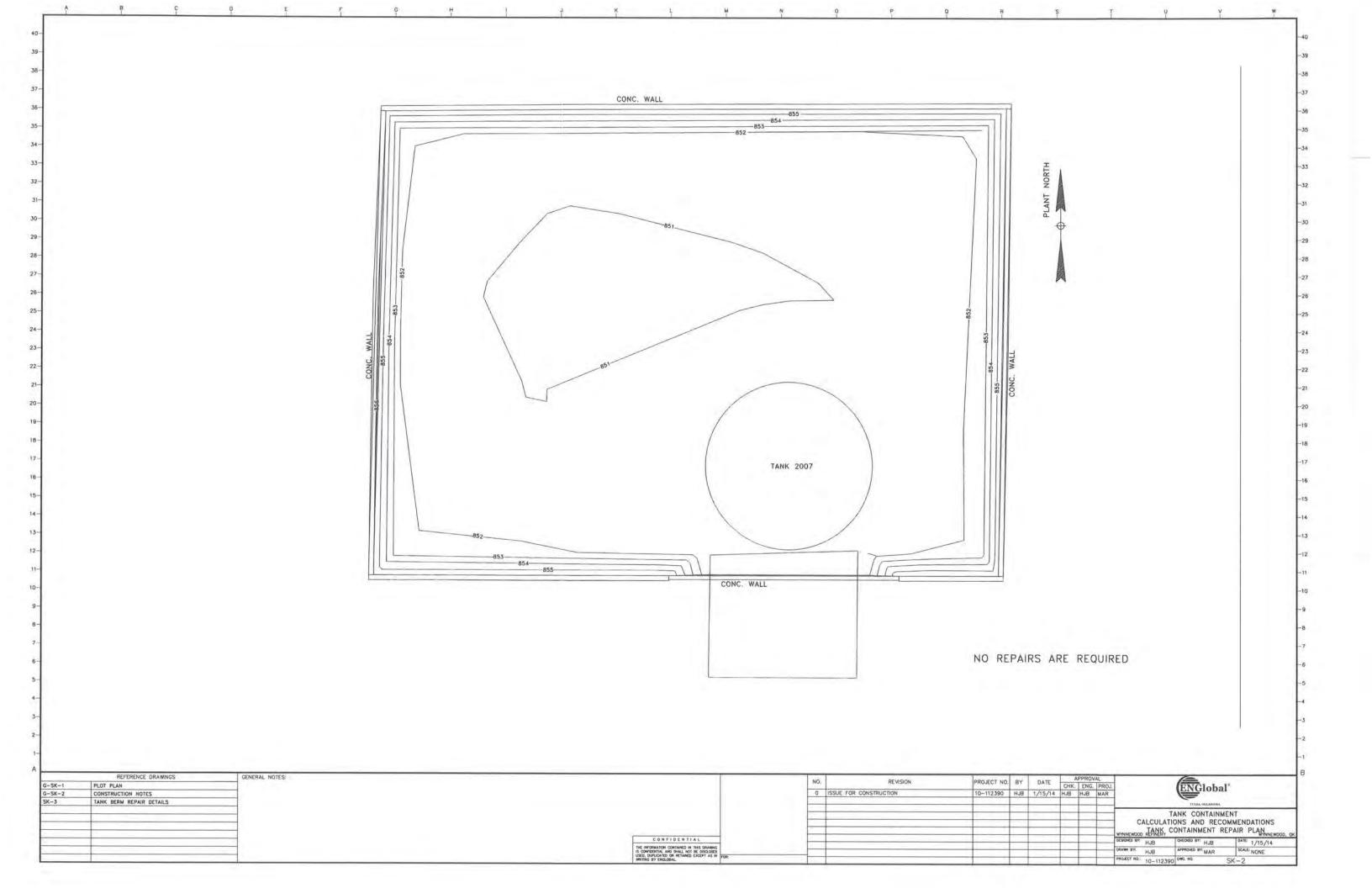
Design Criteria:

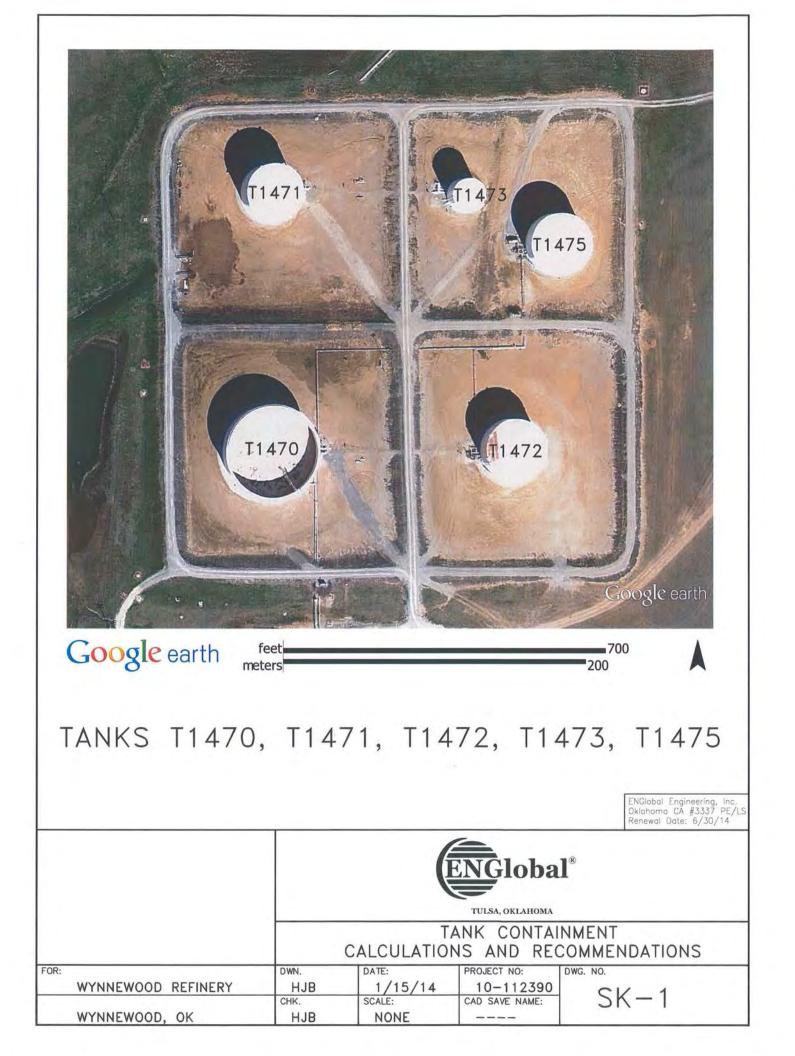
- Check primary containment of a single tank volume or the the tank with the largest volume when in a group. The primary containment volume consists of the maximum capacity of the tank (supplied by WRC) plus the amount of precipitation that occurs during a 25 year/24 hour rainfall event (7.1 inches).
- Check secondary containment for each tank within a group of tanks that has lower dikes that subdivide the primary containment area. The secondary containment volume is equal to 10% of the tank maximum capacity to represent a minor spill.
- The containment volume (both primary and secondary) is calculated using the volumes taken from the topographic surveys provided by Gorrondona and Associates, Inc.

Tank Area - T951, T953, T2051

Primary Containment:

Tank	Tank Ca	apacity	Volume of Liquid	Existing Berm Capacity	Existing Berm Capacity	Repaired Berm Elevation	Repaired Berm Volume	Berm Increase
	(bbl.)	(cu. ft.)	(cu. ft.)	Low Point (ft.)	(cu. ft.)	(ft.)	(cu. ft.)	(ft.)
2051	18,099	101,619	139,400	853.00	161,579	N/A	N/A	N/A


Recommendations:


1. No berm repairs are required

	A ROAD ACCESS TANK 955	PART NORTH
REFERENCE DRANNCS GENERAL NOTES: C=-SE-1 PLOT PLAN C=-SE-2 CONSTRUCTION NOTES SE-3 TANK BERM REFAIR DETAILS Image: Im		BERM LOW SPOT (NO REPAIRS ARE REQUIRED) PROJECT IN BY DATE APPROVAL CHK EVENTION APPROVAL ID-112380 H48 1/15/14 H48 H48 MAR ID-112380 H48 1/15/14 H48 H48 MAR ID-112380 H48 1/15/14 H48 H48 MAR ID-112380 H48 1/15/14 H48 H48 MAR

	REFERENCE DRAWINGS	GENERAL NOTES:		NO	REVISION	PROJECT NO.	ĩ
G-SK-1	PLOT PLAN					and the second se	£.
G-SK-2	CONSTRUCTION NOTES			0	ISSUE FOR CONSTRUCTION	10-112390	Ĺ
SK-3	TANK BERM REPAIR DETAILS			-			È
				-			Ċ
				1000			Ĺ
							Ĥ
			CONFIDENTIAL				é
			THE HICENAATOR CONTAINED W THE DRAWING IS CONFIDENTIAL AND PAULA NOT BE DRECORD USED, OUNCAATOR ON FRETAINED EXCEPT AS IN TORE				ė
			USED, OURUCATED OR RETAINED EXECUT AS IN TOR: WRITING BY ENGLOBAL				Ċ

CLIENT:	Wynnewood Refinery	JOB NO .:	10-112390 (82)	SHEET:	1
LOCATION:	Wynnewood, Oklahoma	CALCS BY:	Zulfiquar Syed	DATE:	
SUBJECT:	Existing Tank Berm Capacities	CHECKED BY:	H.J. Brownson, P.E.	DATE:	12/14/2013

Design Criteria:

- Check primary containment of a single tank volume or the tank with the largest volume when in a group. The primary containment volume consists of the maximum capacity of the tank (supplied by WRC) plus the amount of precipitation that occurs during a 25 year/24 hour rainfall event (7.1 inches).
- Check secondary containment for each tank within a group of tanks that has lower dikes that subdivide the primary containment area. The secondary containment volume is equal to 10% of the tank maximum capacity to represent a minor spill.
- 3. The containment volume (both primary and secondary) is calculated using the volumes taken from the topographic surveys provided by Gorrondona and Associates, Inc.

Tank Area - T1470, T1471, T1472, T1473, T1475

Secondary Containment:

Tank	Tank Ca	apacity	Volume of Liquid (10%)	Existing Berm Capacity	Existing Berm Capacity	Repaired Berm Elevation	Repaired Berm Volume	Berm Increase
	(bbl.)	(cu. ft.)	(cu. ft.)	Low Point (ft.)	(cu. ft.)	(ft.)	(cu. ft.)	(ft.)
1470	79,632	447,102	44,710	844.00	296,114	N/A	N/A	N/A
1471	34,848	195,658	19,566	839.00	147,998	N/A	N/A	N/A
1472	35,775	200,862	20,086	844.00	71,959	N/A	N/A	N/A
1473	9,614	53,979	5,398	841.00	28,512	N/A	N/A	N/A
1475	35,775	200,862	20,086	841.00	9,534	842.00	45,177	1.00

Primary Containment: Considering the containment areas for T1470 and 1471

Tank	Tank Ca	apacity	Volume of Liquid	Existing Berm Capacity	Existing Berm Capacity	Repaired Berm Elevation	Repaired Berm Volume	Berm Increase
	(bbl.)	(cu. ft.)	(cu. ft.)	Low Point (ft.)	(cu. ft.)	(ft.)	(cu. ft.)	(ft.)
1470	79,632	447,102	499,664	839.00	437,672	842.00	586,004	3.00

Primary Containment: Considering the containment area for T1471

Tank	Tank Ca	apacity	Volume of Liquid	Existing Berm Capacity	Existing Berm Capacity	Repaired Berm Elevation	Repaired Berm Volume	Berm Increase
	(bbl.)	(cu. ft.)	(cu. ft.)	Low Point (ft.)	(cu. ft.)	(ft.)	(cu. ft.)	(ft.)
1471	34,848	195,658	239,539	842.00	370,496	N/A	N/A	N/A


Tank T1472 - Primary containment is OK by inspection, comparing volumes to Tank T1470.

Tank T1473 - Primary containment is OK by inspection, comparing volumes to Tank T1471.

Tank T1475 - Primary containment is OK by inspection, using containment areas for T1473 and T1471.

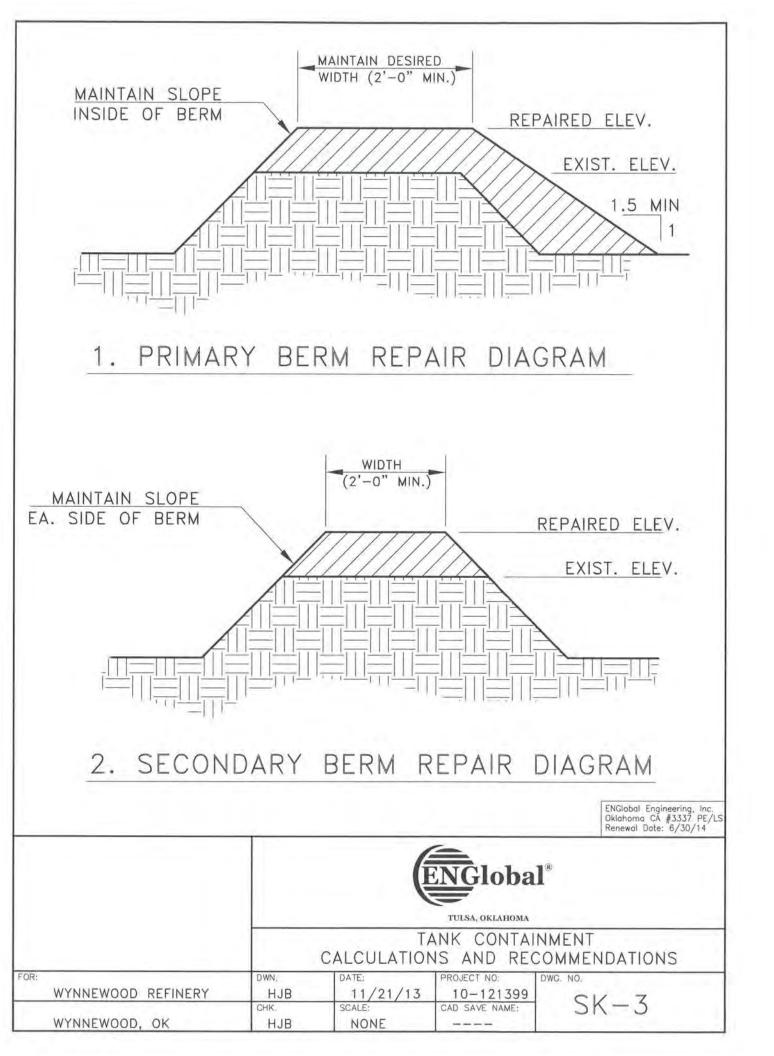
S	U L	Y	w
Ξ.			
NOR			
PLANT NORTH			
PL PL			
9			
CONTAINMENT TO ELEV. 843'			
RY CONTAINME TO ELEV. 842'			
RY CONTAINME			
TO ELEV. 844			
CONTAINMENT			
TO ELEV. 845'			
GRADE ROAD F 3' TO ELEV.			
	043		
W SPOT			
DATE APPROVAL		A	
1/15/14 HJB HJB MAR		Global*	
	TANK	CONTAINMENT	and and and
	TANK CONTA	AND RECOMMEND	PLAN WYNNEWOOD, O
	DESIGNED BY: HJB DIEDOG	D BY: HJB DATE:	1/15/14
	PROJECT NO.: 10-112390 DWG. N	a SK-2	

CLIENT:	Wynnewood Refinery	JOB NO.:	10-130450 (82)	SHEET:	1
LOCATION:	Wynnewood Oklahoma	CALCS BY:	Zulfiquar Syed	DATE:	
SUBJECT:	Existing Tank Berm Capacities	CHECKED BY:	H.J. Brownson, P.E.	DATE:	9/24/2013

Design Criteria:

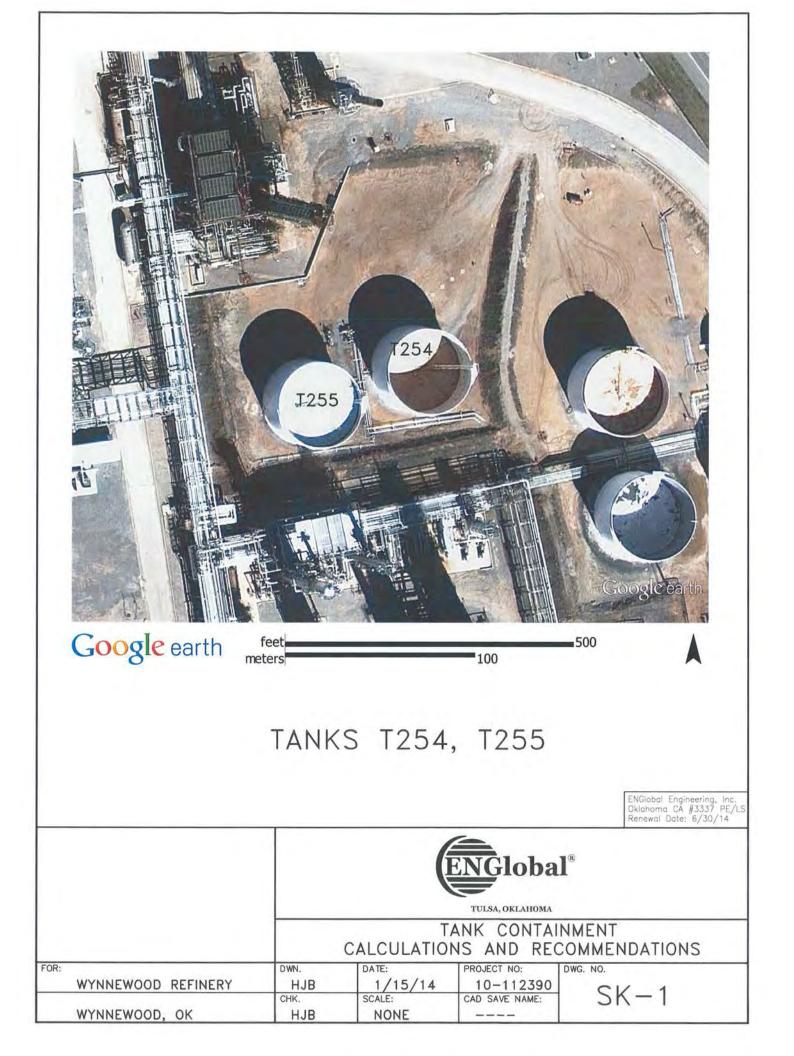
- 1. Check primary containment of a single tank volume or the the tank with the largest volume when in a group. The primary containment volume consists of the maximum capacity of the tank (supplied by WRC) plus the amount of precipitation that occurs during a 25 year/24 hour rainfall event (7.1 inches).
- 2. Check secondary containment for each tank within a group of tanks that has lower dikes that subdivide the primary containment area. The secondary containment volume is equal to 10% of the tank maximum capacity to represent a minor spill.
- 3. The containment volume (both primary and secondary) is calculated using the volumes taken from the topographic surveys provided by Gorrondona and Associates, Inc.

Tank Area - T67, T86, T96, T70


Secondary Co	ntainment:							
			Volume of	Existing	Existing	Repaired	Repaired	Berm
Tank	Tank Ca	apacity	Liquid	Berm Capacity	Berm Capacity	Berm Elevation	Berm Volume	Increase
	(bbl.)	(cu. ft.)	(cu. ft.)	Low Point (ft.)	(cu. ft.)	(ft.)	(cu. ft.)	(ft.)
67	68,901	386,852	38,685	847.00	35,976	848.00	53,514	1.00
68	68,853	386,582	38,658	847.00	32,622	848.00	64,399	1.00
69	68,897	386,829	38,683	847.00	39,392	848.00	77,840	1.00
70	137,078	769,638	76,964	848.00	35,103	848.75	85,530	0.75
rimary Conta	inment:							
-			Volume of	Existing	Existing	Repaired	Repaired	Berm
Tank	Tank Ca	apacity	Liquid	Berm Capacity	Berm Capacity	Berm Elevation	Berm Volume	Increase
	(bbl.)	(cu. ft.)	(cu. ft.)	Low Point (ft.)	(cu. ft.)	(ft.)	(cu. ft.)	(ft.)
70	137,078	769,638	892,721	849.00	395,019	851.42	898,444	2.42

Recommendations:

- 1. Repair low spots shown on secondary berms (shown in green) to required elevation = 848'.
- 2. Raise secondary berm (shown in blue) to required elevation = 848.75'.
- 3. Raise primary berm (shown in orange) to required elevation = 851.42'.
- 4. Re-grade road entrance areas to access final berm elevations.


	S	T	U	Y	w.
					-3
					-3
	PLANT NORTH				-3
	ON L				-3
	A IN				-3
	A				
	A				
					-
					4
					_
					-
	NISE PRIM				-
	19' TO 85				
					Ē
					-
					_
					-
					-
					-
					Ē
					-
Y CO	NTAINMEI	NT			+
	M 849'		42'		
ARY	CONTAIN	MENT			-
	M 848'		75'		-
DARY	CONTAIN	MENT			-
			ROM 847' T	0 848'	-
OW S	SPOT				H
					-
					_
	1	SZAL T		-	
A	ATE CHK. ENG 21/13 HJB HJB			lobal*	
_			CALCULATIONS AN		
		WYNNEWC DESIGNED B	TANK CONTAIN	HUB DATE	PLAN WINNEWOOD, OK 11/21/13
		DRAWN BY			NONE
		- none of the	10-112390	28-2	

CONSTRUCTION NOTES FOR REPAIR OF EXISTING DIKES

- 1. LOW AREAS TO RECEIVE FILL SHALL BE DRAINED SO THAT THEY ARE FREE OF STANDING WATER.
- 2. THE EXISTING DIKE SURFACE SHALL BE TESTED FOR MOISTURE CONTENT AND, IF DEFICIENT, SCARIFIED TO A DEPTH OF FOUR INCHES AND MOISTURE CONDITIONED TO WITHIN -2 TO +4 PERCENTAGE POINTS OF OPTIMUM MOISTURE AS DETERMINED BY MODIFIED PROCTOR ASTM D1557, OR STANDARD PROCTOR ASTM D698.
- 3. PRIOR TO PLACEMENT OF FILL, THE EXISTING DIKE SURFACE SHALL BE COMPACTED TO AT LEAST 90% OF THE MAXIMUM MODIFIED PROCTOR DENSITY, OR 95% OF THE MAXIMUM STANDARD PROCTOR DENSITY. THE DENSITY OF THE TOP SIX INCHES IN AREAS OF FILL WHERE GRANULAR SOILS EXIST THAT DO NOT EXHIBIT WELL-DEFINED MOISTURE-DENSITY RELATIONSHIP, SHALL BE COMPACTED TO AT LEAST 80% RELATIVE DENSITY IN ACCORDANCE WITH ASTM D4253 AND ASTM D4254.
- 4. FILL MATERIAL SHALL BE INERT FROM ON-SITE EXCAVATION AND SHALL CONSIST OF CLAY, SILTY CLAY, OR SILTY SAND OR A MIXTURE OF THESE CONSTITUENTS. FILL MATERIAL SHALL HAVE A MAXIMUM LIQUID LIMIT OF 40, AND A PLASTICITY INDEX LESS THAN 17.
- 5. FILL SHALL BE PLACED IN LIFTS OF 8 INCHES (MAXIMUM) LOOSE DEPTH. FOR HAND-OPERATED COMPACTION EQUIPMENT, STRUCTURAL FILL MATERIALS SHALL BE PLACED IN LIFTS OF 4 INCHES (MAXIMUM) LOOSE DEPTH.
- FILL SHALL BE COMPACTED TO AT LEAST 90% OF THE MAXIMUM MODIFIED PROCTOR DENSITY OR 95% OF THE MAXIMUM STANDARD PROCTOR DENSITY.
- 7. MOISTURE CONTENT OF THE MATERIAL BEING COMPACTED SHALL BE WITHIN -2 TO +4 PERCENTAGE POINTS OF OPTIMUM MOISTURE AS DETERMINED BY MODIFIED PROCTOR ASTM D1557, OR STANDARD PROCTOR ASTM D698.
- 8. FIELD DENSITY TESTS SHALL BE PERFORMED USING THE NUCLEAR METHOD OR OTHER METHOD APPROVED BY THE OWNER, TO DETERMINE THE MOISTURE CONTENT AND PERCENT COMPACTION OF THE DIKE MATERIALS. IN-PLACE DENSITY TESTS SHALL BE TAKEN EVERY 100 FEET OR FRACTION THEREOF FOR EACH LIFT OF MATERIAL PLACED.
- 9. COMPACTED DIKE SURFACES SHALL BE LEVEL AND FINISH-GRADED AS SPECIFIED ON THE CONSTRUCTION DRAWINGS. COAT ALL SURFACES WITH EMULSIFIED ASPHALT TO PROTECT AGAINST EROSION. THE EMULSIFIED ASPHALT MAY BE SUBSTITUTED WITH COMPACTED GRAVEL FOR SURFACES INTENDED FOR VEHICULAR TRAFFIC.

				ENGlabal Engineering, Inc. Oklahoma CA #3337 PE/LS Renewal Date: 6/30/14
		(ENGlobal®	
	-	т	ANK CONTAINM	
			NS AND RECOM	
FOR:	DWN.	DATE:	PROJECT NO: DWG.	NO.
WYNNEWOOD REFINERY	HJB	11/21/13	10-121399	CIZ A
	CHK.	SCALE:	CAD SAVE NAME:	3K-4
WYNNEWOOD, OK	HJB	NONE		11. V

CLIENT:	Wynnewood Refinery	JOB NO .:	10-112390 (82)	SHEET:	1
LOCATION:	Wynnewood, Oklahoma	CALCS BY:	Zulfiquar Syed	DATE:	
SUBJECT:	Existing Tank Berm Capacities	CHECKED BY:	H.J. Brownson, P.E.	DATE:	12/23/2013

Design Criteria:

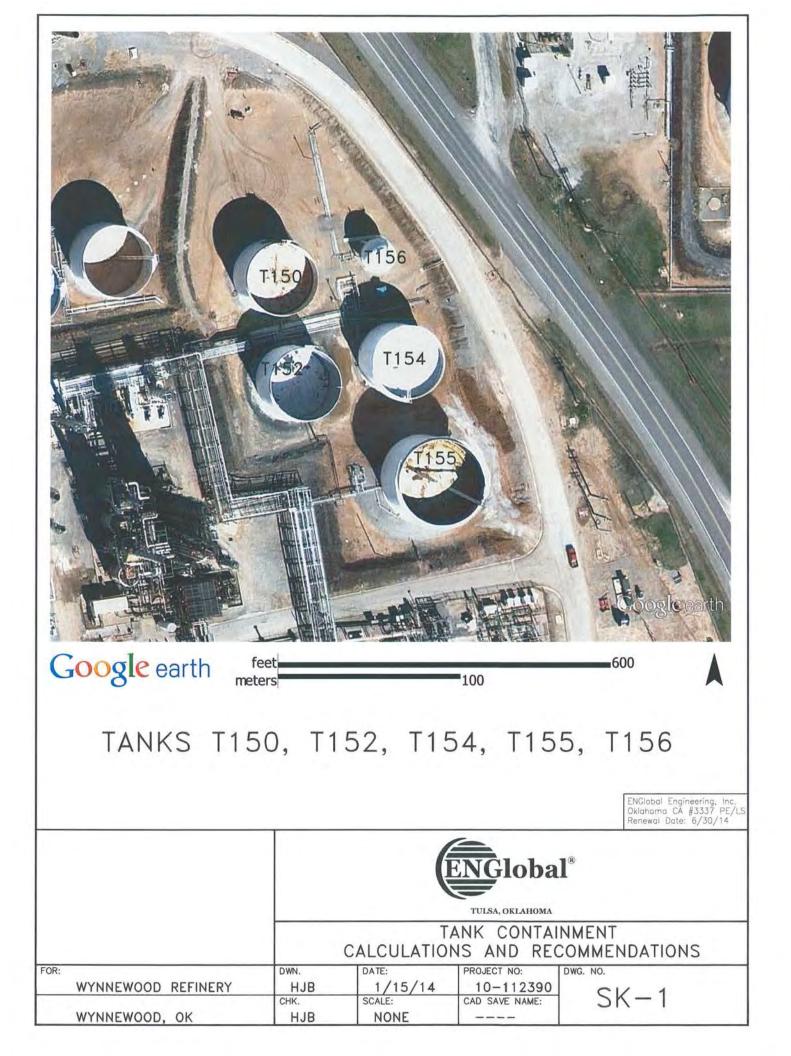
- Check primary containment of a single tank volume or the the tank with the largest volume when in a group. The primary containment volume consists of the maximum capacity of the tank (supplied by WRC) plus the amount of precipitation that occurs during a 25 year/24 hour rainfall event (7.1 inches).
- Check secondary containment for each tank within a group of tanks that has lower dikes that subdivide the primary containment area. The secondary containment volume is equal to 10% of the tank maximum capacity to represent a minor spill.
- The containment volume (both primary and secondary) is calculated using the volumes taken from the topographic surveys provided by Gorrondona and Associates, Inc.


Tank Areas - T254, T255

Primary Containment:

Tank	Tank Ca	apacity	Volume of Liquid	Existing Berm Capacity	Existing Berm Capacity	Repaired Berm Elevation	Repaired Berm Volume	Berm Increase
	(bbl.)	(cu. ft.)	(cu. ft.)	Low Point (ft.)	(cu. ft.)	(ft.)	(cu. ft.)	(ft.)
255	24,838	139,455	163,948	862.00	141,898	862.75	170,301	0.75

Recommendations:


1. Raise primary berm (shown in orange) to required elev. = 862.75 feet

THE INFORMATION CONTAINED IN THIS DRAWING IS CONFIDENTIAL AND SHALL NOT BE DISD, OSED USED, DUPLICATED ON RETAINED EXCEPT AS IN WRITING BY ENGLOBAL.

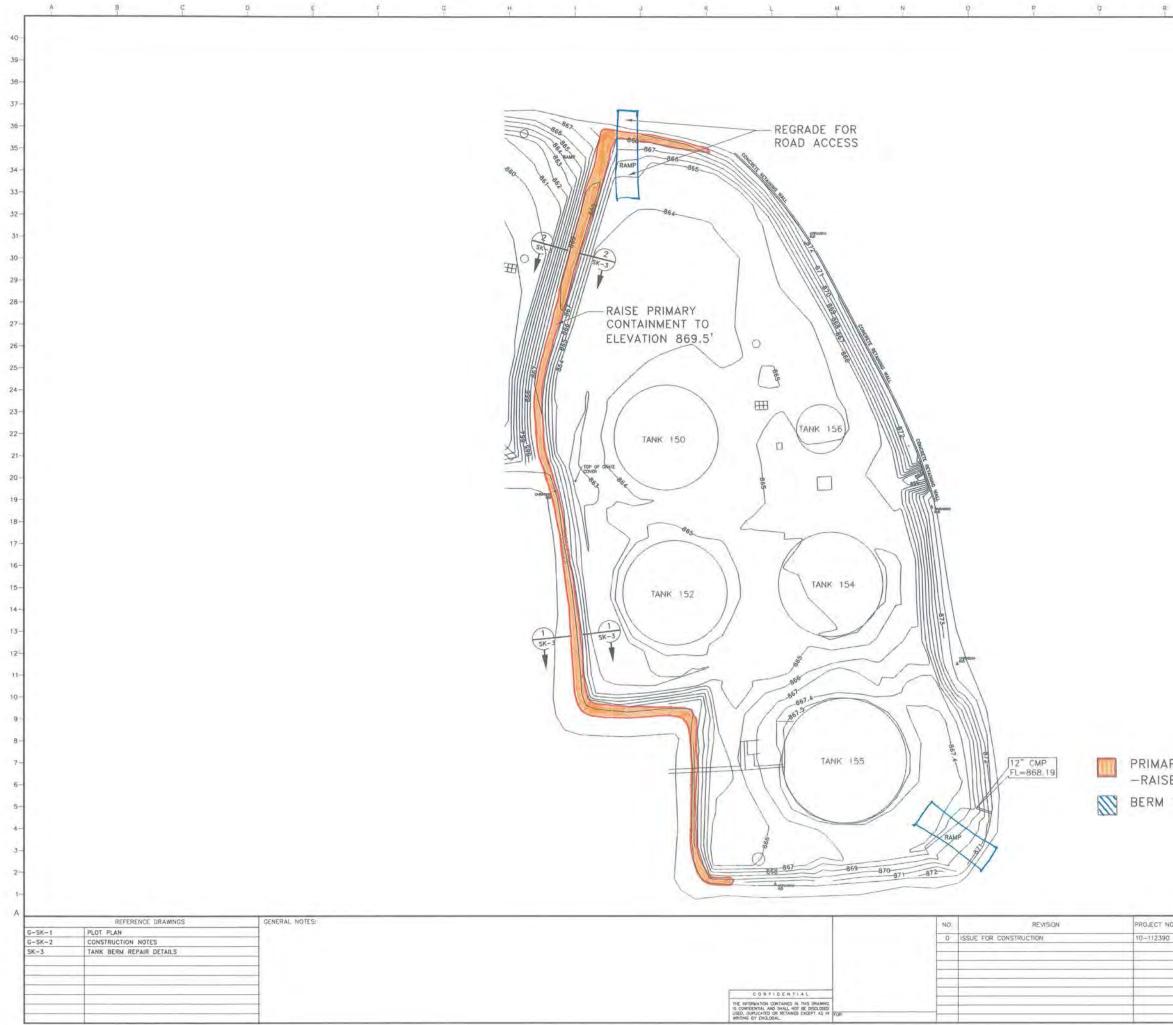
R	S		T		U 1	V.	W	
								1
I-F	REGRA	DE FO	R					-6
/ F	ROAD	ACCES	S					
17								
1	_							
-867-	-							
1	H.							
1	NOR							
	PLANT NORTH							
	E C)						
+	Ī							
	CONT							
EF	FROM	862'	TO	862.75'				
	CONT			1.1	12.2			
TA	NK A	REA T	155	FOR RE	APIR			
LO	W SP	OT						
O. BY HJB		APPRO CHK. ENG	PROJ.		ENGI	obal*		
BCH	1/15/14	HJB HJB	MAR	-	HISLIN	KLABOMA		
					TANK CON	RECOMME		
				WYNNEWOOD REFINER	CHECKED BY	HJB 0	R PLAN WYNNEWCK ATE: 1/15/14	<u>0. 0</u>
			1 1	RAWN BY: HJB	APPROVED BY:	MAR 9	CALE: NONE	

CLIENT:	Wynnewood Refinery	JOB NO .:	10-112390 (82)	SHEET:	1
LOCATION:	Wynnewood, Oklahoma	CALCS BY:	Zulfiquar Syed	DATE:	
SUBJECT:	Existing Tank Berm Capacities	CHECKED BY:	H.J. Brownson, P.E.	DATE:	12/18/2013

Design Criteria:

- Check primary containment of a single tank volume or the the tank with the largest volume when in a group. The primary containment volume consists of the maximum capacity of the tank (supplied by WRC) plus the amount of precipitation that occurs during a 25 year/24 hour rainfall event (7.1 inches).
- Check secondary containment for each tank within a group of tanks that has lower dikes that subdivide the primary containment area. The secondary containment volume is equal to 10% of the tank maximum capacity to represent a minor spill.
- The containment volume (both primary and secondary) is calculated using the volumes taken from the topographic surveys provided by Gorrondona and Associates, Inc.

Tank Areas - T150 T152 T154 T155


Primary Containment:

Tank	Tank Ca	pacity	Volume of Liquid	Existing Berm Capacity	Existing Berm Capacity	Repaired Berm Elevation	Repaired Berm Volume	Berm Increase
	(bbl.)	(cu. ft.)	(cu. ft.)	Low Point (ft.)	(cu. ft.)	(ft.)	(cu. ft.)	(ft.)
155	44,444	249,535	290,035	867.00	158,673	869.50	303,356	2.50


Recommendations:

1. Raise primary berm (shown in orange) to required elev. = 869.50 feet

2. Re-grade road entrance areas to access final berm elevations.

S	Ţ	ų	Y	w
				-40
				-39
				-38
				-37
				1.1
				-36
				-35
				-34
PLANT NORTH				-33
TNC				-32
PLAN				-31
÷ +				30
				-29
				-28
				-27
				-26
				-25
				-24
				~23
				-22
				-21
				-20
				-19
				1.5
				-18
				-17
				-16
				-15
				-14
				-13
				-12
				-11
				-10
				— g.
				8
ONTAINME	NT			-7
ELEV. 8	59.5'			-6
SPOT				-5
				-4
				-3
				-2
				B
DATE CHK, E	ROVAL NG. PROJ.	ENC	Global	D.
1/15/14 HJB H		1=	A OKAROWY	
	_	TANK CC	INTAINMENT	TIONS
	WYNNEWC DESKINED (DO REFINERY CONTAIN	MENT REPAIR PL	AN WYNNEWOOD, OK
	DRAWS BY	HJB APPROVED 5	MAR SCALE N	0NE
	PROJECT N	D= 10-112390 0%5. NO	SK-2	

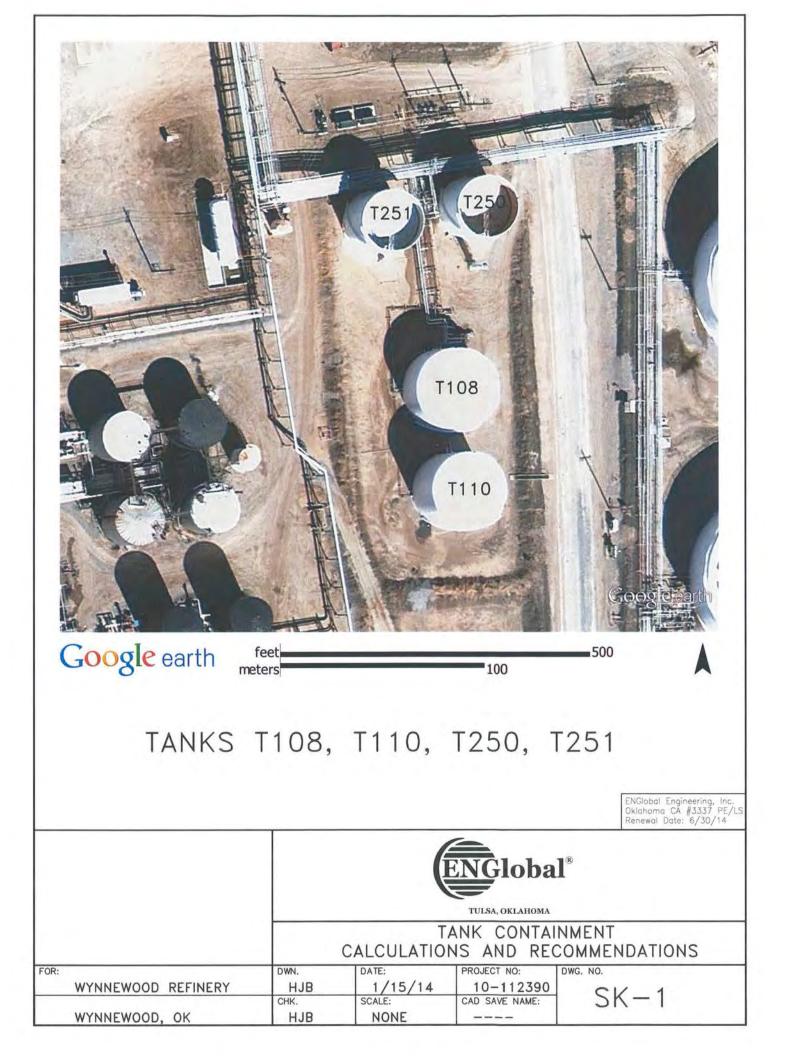
CLIENT;	Wynnewood Refinery	JOB NO .:	10-112390 (82)	SHEET:	3
LOCATION:	Wynnewood, Oklahoma	CALCS BY:	Zulfiquar Syed	DATE:	
SUBJECT:	Existing Tank Berm Capacities	CHECKED BY:	H.J. Brownson, P.E.	DATE:	12/18/2013

Design Criteria:

- Check primary containment of a single tank volume or the the tank with the largest volume when in a group. The primary containment volume consists of the maximum capacity of the tank (supplied by WRC) plus the amount of precipitation that occurs during a 25 year/24 hour rainfall event (7.1 inches).
- Check secondary containment for each tank within a group of tanks that has lower dikes that subdivide the primary containment area. The secondary containment volume is equal to 10% of the tank maximum capacity to represent a minor spill.
- The containment volume (both primary and secondary) is calculated using the volumes taken from the topographic surveys provided by Gorrondona and Associates, Inc.

Tank Areas - T111, T256, T257

Primary Containment:


Tank	Tank Ca	apacity	Volume of Liquid	Existing Berm Capacity	Existing Berm Capacity	Repaired Berm Elevation	Repaired Berm Volume	Berm Increase
	(bbl.)	(cu. ft.)	(cu. ft.)	Low Point (ft.)	(cu. ft.)	(ft.)	(cu. ft.)	(ft.)
257	10,113	56,780	67,964	864.00	48,137	865.25	69,358	1.25

Recommendations:

1. Raise primary berm (shown in orange) to required elevation = 865.25'

	TANK 25 TOP OF CONTAINMENT	
REFERENCE DRAWINGS GENERAL NOTES: G-SK-1 PLOT PLAN GOSKTRUCTION NOTES SK-3 TANK BERM REPAIR DETAILS	CONFIDENTIAL THE REQUENTION CONTANTD IN THE GRAMMO IS CONFORMAL AND BALL, NOT BE ORD, CODE USD, DEPLOYATION MICHARON CODEY AS IN FOR-	NO. REVISION PROJECT NO. BY DATE APPROVAL CHK. ENG. PROJACT 0 ISSUE FOR CONSTRUCTION 10-112390 HJB 1/15/14 HJB HJB MAR - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

-SK-1	PLOT PLAN				
	and the set of the set	-		0	ISSUE FOR CONSTRUCTION
-SK→2	CONSTRUCTION NOTES			-	
K-3	TANK BERM REPAIR DETAILS				
		1			
	and the second sec				
		A	+	<u> </u>	
		CONFIDENTIAL			
		THE HERINALATION CONTAINED IN THIS DRAWING			
		IS CONFIDENTIAL AND SHALL NOT BE DESCLOSED			
		USD_DUPLCATD OF RETAIND DODY AS H FOR			

CLIENT:	Wynnewood Refinery	JOB NO .:	10-112390 (82)	SHEET:	1
LOCATION:	Wynnewood, Oklahoma	CALCS BY:	Zulfiguar Syed	DATE:	
SUBJECT:	Existing Tank Berm Capacities	CHECKED BY:	H.J. Brownson, P.E.	DATE:	12/18/2013

Design Criteria:

- Check primary containment of a single tank volume or the the tank with the largest volume when in a group. The primary containment volume consists of the maximum capacity of the tank (supplied by WRC) plus the amount of precipitation that occurs during a 25 year/24 hour rainfall event (7.1 inches).
- Check secondary containment for each tank within a group of tanks that has lower dikes that subdivide the primary containment area. The secondary containment volume is equal to 10% of the tank maximum capacity to represent a minor spill.
- The containment volume (both primary and secondary) is calculated using the volumes taken from the topographic surveys provided by Gorrondona and Associates, Inc.

Tank Area - T108, T110, T250, T251

Primary Containment:

Tank	ank Tank Capacity		Volume of Existing Liquid Berm Capacity		Existing Repaired Berm Capacity Berm Elevation		Repaired Berm Volume	Berm Increase
	(bbl.)	(cu. ft.)	(cu. ft.)	Low Point (ft.)	(cu. ft.)	(ft.)	(cu. ft.)	(ft.)
110	15,018	84,320	106,964	860.00	79,670	861.00	112575	1.00

Recommendations:

1. Raise primary berm (shown in orange) to required elevation = 856'

	A K A A A A A A A A A A A A A A A A A A	
-SK-1 PLOT PLAN -SK-2 CONSTRUCTION HOTES -C-3 TANK BERM REPAIR OFTAILS	Image: Constraint from the second	PRIMARY CONTAINMENT -RAISE FROM 860' TO 861' PROJECT NO. BY DATE APPROVAL 10-112390 HuB 1/15/14 HuB MARE TAINE CONTAINMENT CALCULATIONS AND RECOMMENDATIONS TAINE CONTAINMENT PLAN TAINE CONTAINMENT PLAN TAINE CONTAINMENT CALCULATIONS AND RECOMMENDATIONS TAINE CONTAINMENT PLAN TAINE CONTAINMENT PLAN

	REFERENCE DRAWINGS	GENERAL NOTES.		NO	REVISION	PROJECT NO
SK-1	PLOT PLAN				ISSUE FOR CONSTRUCTION	10 110700
SK-2	CONSTRUCTION NOTES			0	ISSUE FOR CONSTRUCTION	10-112390
-3	TANK BERM REPAIR DETAILS					
			CONFIDENTIAL	-		
			THE INFORMATION CONTAINED IN THIS DRAWING			
			IS CONTRONTING, AND SHALE NOT BE DISCUSSED USED, DUPUCATED OR RETAINED EXCEPT AS IN 17108			
			WRITING BY ENGLOBAL			

27-25-24. 23-22-

CLIENT:	Wynnewood Refinery	JOB NO .:	10-112390 (82)	SHEET:	(1)
LOCATION:	Wynnewood, Oklahoma	CALCS BY:	Zulfiquar Syed	DATE:	
SUBJECT:	Existing Tank Berm Capacities	CHECKED BY:	H.J. Brownson, P.E.	DATE:	12/17/2013

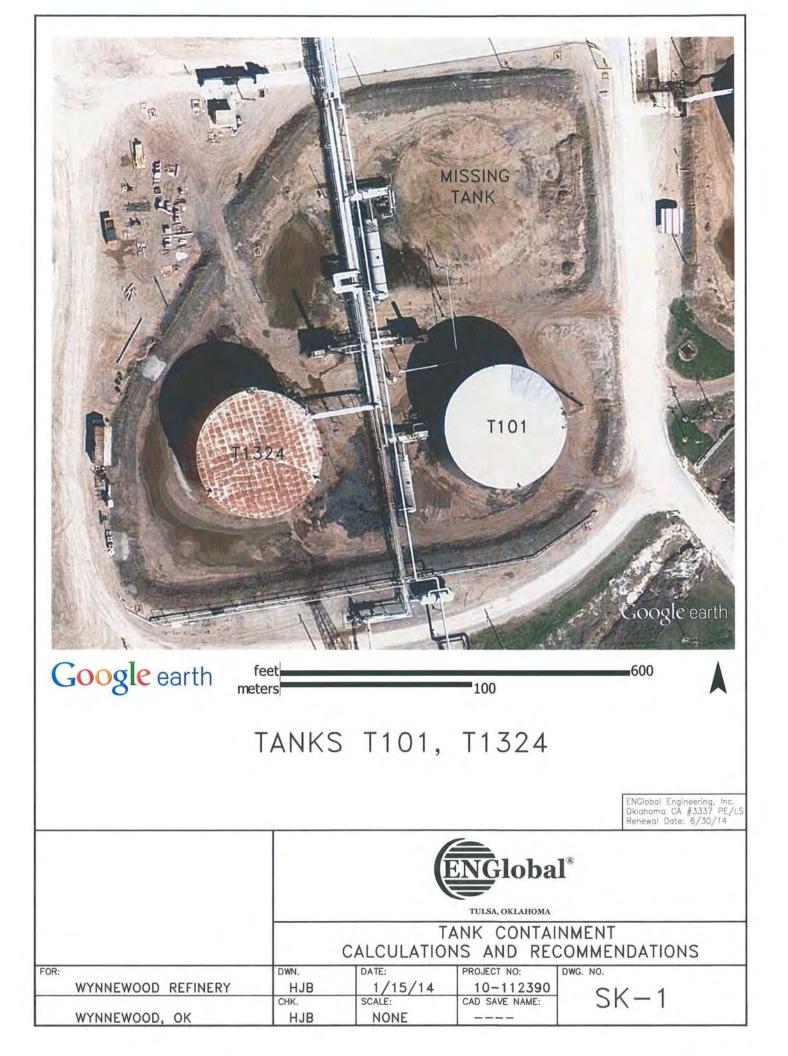
Design Criteria:

- Check primary containment of a single tank volume or the the tank with the largest volume when in a group. The primary containment volume consists of the maximum capacity of the tank (supplied by WRC) plus the amount of precipitation that occurs during a 25 year/24 hour rainfall event (7.1 inches).
- Check secondary containment for each tank within a group of tanks that has lower dikes that subdivide the primary containment area. The secondary containment volume is equal to 10% of the tank maximum capacity to represent a minor spill.
- The containment volume (both primary and secondary) is calculated using the volumes taken from the topographic surveys provided by Gorrondona and Associates, Inc.

Tank Area - T136 T138 T140

Secondary Containment:

Tank	Tank Ca	apacity	Volume of Liquid	Existing Berm Capacity	Existing Berm Capacity	Repaired Berm Elevation	Repaired Berm Volume	Berm Increase
	(bbl.)	(cu. ft.)	(cu. ft.)	Low Point (ft.)	(cu. ft.)	(ft.)	(cu. ft.)	(ft.)
136	80,458	451,739	45,174	858,50	116,615	N/A	N/A	N/A
138	80,456	451,728	45,173	858.50	12,301	859.25	46,422	0.75
140	80,422	451,537	45,154	858.50	104,658	N/A	N/A	N/A


Primary Containment:

Tank	Tank Tank Capacity		Volume of Liquid	Existing Berm Capacity	Existing Berm Capacity	Repaired Berm Elevation	Repaired Berm Volume	Berm Increase
	(bbl.)	(cu. ft.)	(cu. ft.)	Low Point (ft.)	(cu. ft.)	(ft.)	(cu. ft.)	(ft.)
136	80,458	451,739	550,774	859.00	298,501	860.50	898,444	1.50

Recommendations:

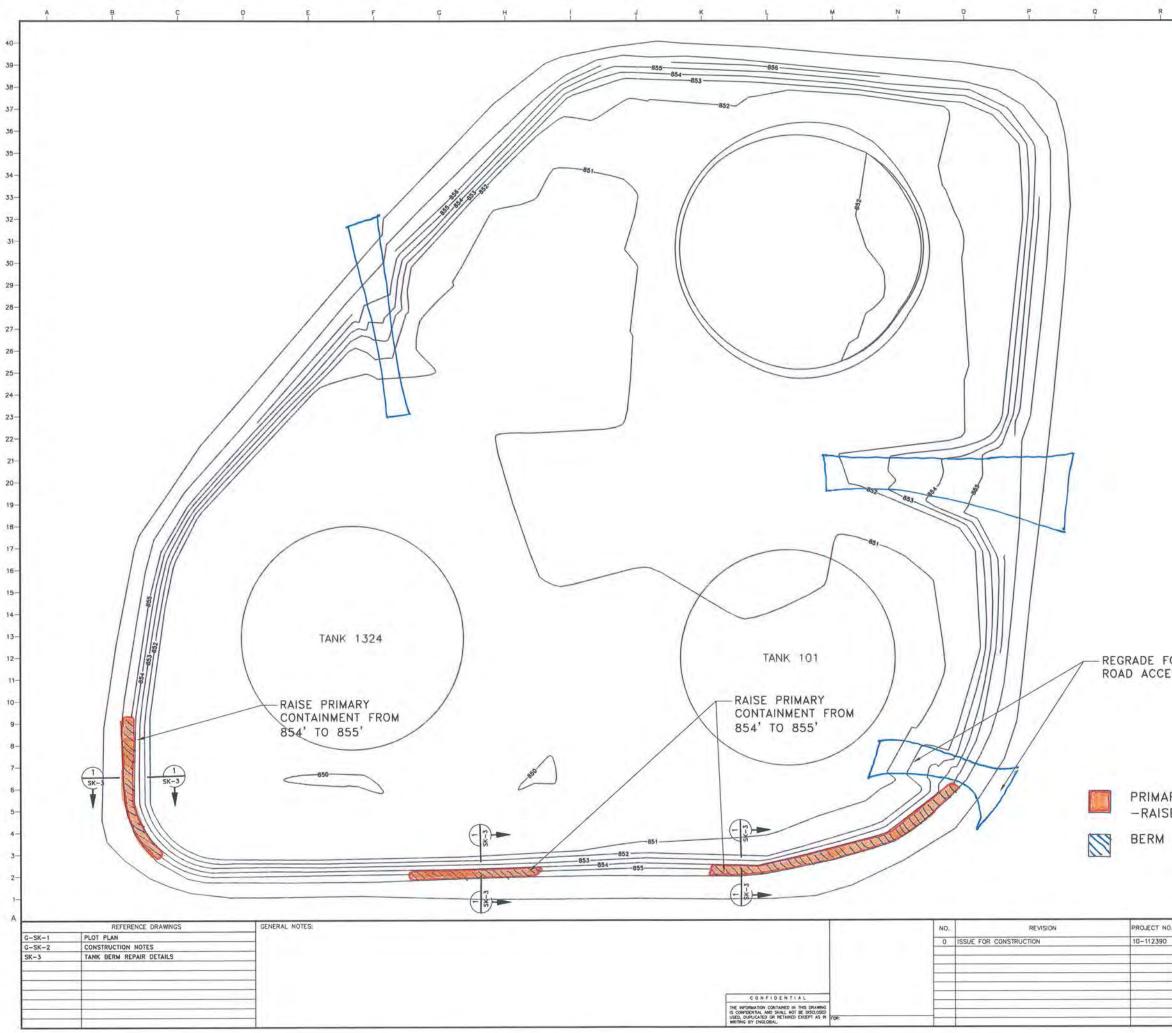
- 1. Raise primary berm (shown in orange) to required elevation = 860.5'.
- 2. Raise secondary berm (shown in blue) to required elevation = 859.25'.
- 3. Re-grade road entrance areas to access final berm elevations.

			NSE SECONDARY DNTAINMENT FROM 88.5' TO 859.25' RAISE PRIMA CONTAINMEN 859' TO 86	PRIMARY CONTAINMENT -RAISE FROM 859' TO SECONDARY CONTAINMEI -RAISE FROM 858.5' TO	NT.
REFERENCE DRAWINGS G-SK-1 PLOT PLAN G-SK-2 CONSTRUCTION NOTES SK-3 TANK BERM REPAIR DETAILS	GENERAL NOTES:	C Q N F 1 D E N T I A L THE RYDRATON COTTARED IN THE DRAWING G CONFORTAL AND SALL HOT BE DRACODD WITTING BY FORCE WITTING BY FORCED.	NO. REVISION O ISSUE FOR CONSTRUCTION	PROJECT NO. BY DATE APPROVAL CHK. ENG. PRO ID-112390 10-112390 HJB 1/15/14 HJB HJB MAR	TANK CONTAINMENT CALCULATIONS AND RECOMMENDATIONS TANK CONTAINMENT CALCULATIONS AND RECOMMENDATIONS TANKE CONTAINMENT REPAIR PLANNIEWCOO, ORSONG BT: HJB ORCOOD BT: HJB ORCOOD BT: HJB

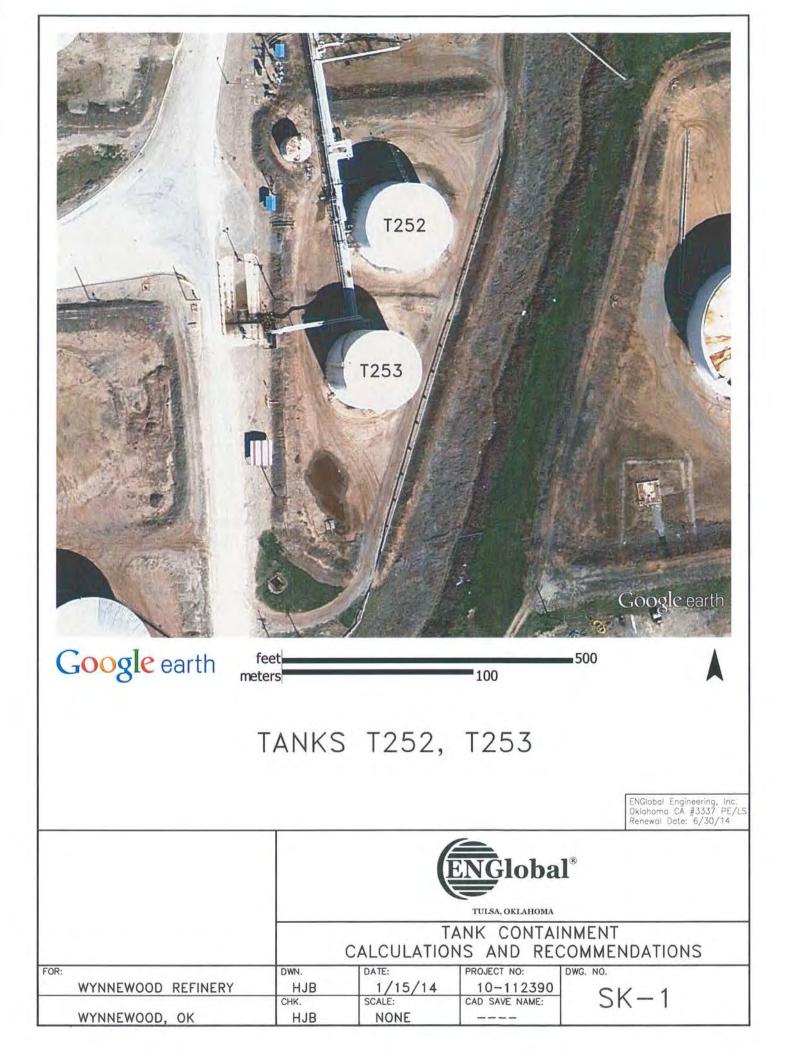
CLIENT:	Wynnewood Refinery	JOB NO .:	10-112390 (82)	SHEET:	1
LOCATION:	Wynnewood, Oklahoma	CALCS BY:	Zulfiquar Syed	DATE:	
SUBJECT:	Existing Tank Berm Capacities	CHECKED BY:	H.J. Brownson, P.E.	DATE:	12/15/2013

Design Criteria:

- Check primary containment of a single tank volume or the the tank with the largest volume when in a group. The primary containment volume consists of the maximum capacity of the tank (supplied by WRC) plus the amount of precipitation that occurs during a 25 year/24 hour rainfall event (7.1 inches).
- Check secondary containment for each tank within a group of tanks that has lower dikes that subdivide the primary containment area. The secondary containment volume is equal to 10% of the tank maximum capacity to represent a minor spill.
- The containment volume (both primary and secondary) is calculated using the volumes taken from the topographic surveys provided by Gorrondona and Associates, Inc.


Tank Area - T101, T1324

Primary Containment:


Та	nk	Tank Ca	apacity	Volume of Liquid	Existing Berm Capacity	Existing Berm Capacity	Repaired Berm Elevation	Repaired Berm Volume	Berm Increase
		(bbl.)	(cu. ft.)	(cu. ft.)	Low Point (ft.)	(cu. ft.)	(ft.)	(cu. ft.)	(ft.)
13	24	66,590	373,876	536,955	854.00	380,677	855.00	647,478	1.00

Recommendations:

1. Raise primary berm (shown in orange) to required elevation = 855'.

s	Ţ	ų	Y	W
				-4
				-3
				-3
				-3
				-3
				-3
				-3
т				-3
PLANT NORTH				-3
INT I				-3
				-3
				-2
				-2
				-2
PA				-2
				-2
				-2
				-2
				-2
				-2
				-1
				-1
				-
				-1
				1
				Ľ
				-1
				Ē
				-
				-
				-
				Ĩ
CONTAINM				Ī
ROM 854'	TO 855			
V SPOT				-
				1 D
				Ī.
	PROVAL ENG. PROJ.	(F	NGlobal	
	IJB MAR	G	TTERA OKLANKOSIA	
		CALCULATIONS	CONTAINMENT AND RECOMMEN	DATIONS
	WYNNE	WOOD REFINERY CONT.	AINMENT REPAIR	PLAN WYNNEWOOD, OK
	ORANN E PROJECT	HJB APPR	OVED BY: MAR SCA	NONE
1	PROJECT	NO: 10-112390 DWG.	ND. SK-2	

CLIENT:	Wynnewood Refinery	JOB NO .:	10-112390 (82)	SHEET:	Ť
LOCATION:	Wynnewood Oklahoma	CALCS BY:	Zulfiquar Syed	DATE:	
SUBJECT:	Existing Tank Berm Capacities	CHECKED BY:	H.J. Brownson, P E.	DATE:	12/16/2013

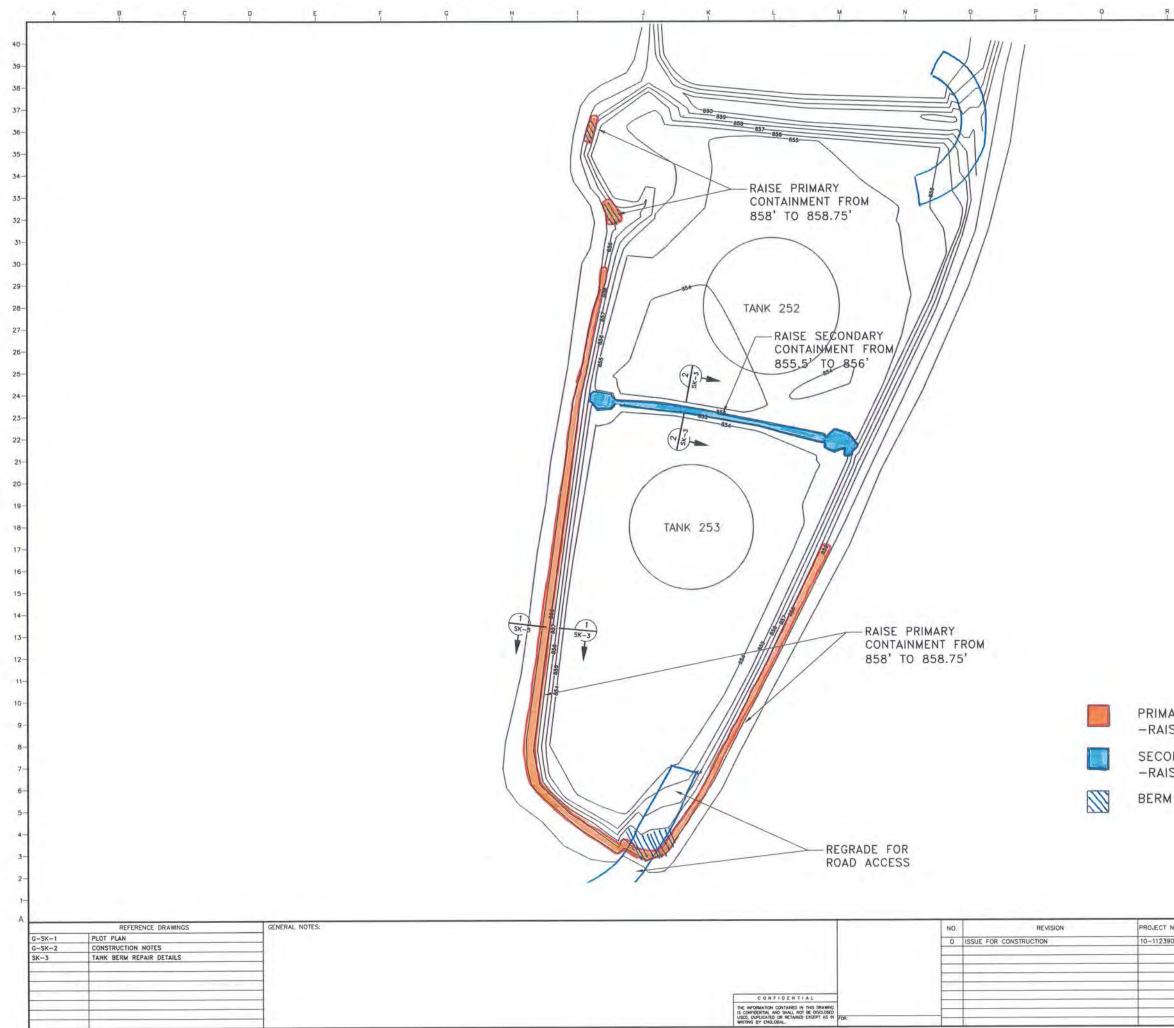
Design Criteria:

- Check primary containment of a single tank volume or the the tank with the largest volume when in a group. The primary containment volume consists of the maximum capacity of the tank (supplied by WRC) plus the amount of precipitation that occurs during a 25 year/24 hour rainfall event (7.1 inches).
- Check secondary containment for each tank within a group of tanks that has lower dikes that subdivide the primary containment area. The secondary containment volume is equal to 10% of the tank maximum capacity to represent a minor spill.
- The containment volume (both primary and secondary) is calculated using the volumes taken from the topographic surveys provided by Gorrondona and Associates, Inc.

Tank Area - T252, T253

Secondary Containment:

Tank	Tank Ca	apacity	Volume of Liquid (10%)	Existing Berm Capacity	Existing Berm Capacity	Repaired Berm Elevation	Repaired Berm Volume	Berm Increase
	(bbl.)	(cu. ft.)	(cu. ft.)	Low Point (ft.)	(cu. ft.)	(ft.)	(cu. ft.)	(ft.)
252	26,828	150,628	15,063	855.50	11,006	856.00	20,933	0.50
253	25,130	141,095	14,109	855.50	26,566	856.00	38,464	0.50


Primary Containment:

Tank	Tank Ca	apacity	Volume of Liquid	Existing Berm Capacity	Existing Berm Capacity	Repaired Berm Elevation	Repaired Berm Volume	Berm Increase
	(bbl.)	(cu. ft.)	(cu. ft.)	Low Point (ft.)	(cu. ft.)	(ft.)	(cu. ft.)	(ft.)
252	26,828	150,628	181,277	858.00	152,566	858.75	194666	0.75

Recommendations:

1. Raise primary berm (shown in orange) to required elevation = 856'

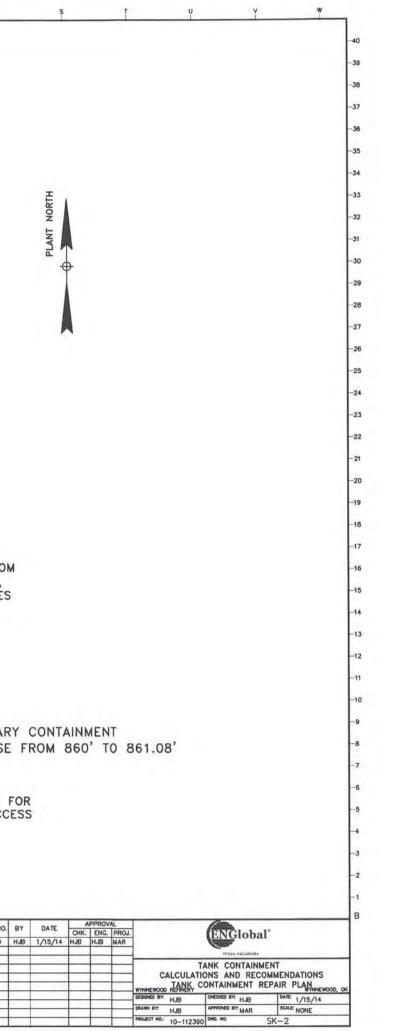
2. Raise secondary berm (shown in blue) to required elevation = 858.75'

ş	Ţ	ų	Y	W	1
					-40
					-39
					-38
					-37
					-36
					-35
					-34
T					
PLANT NORTH					-33
Z LZ					-32
PLAN					-31
0					-30
					-29
A					-28
					-27
					-26
					-25
					-24
					-23
					-22
					-21
					-20
					-19
					-18
					-17
					-16
					-15
					-14
					-13
					-12
					-11
					-10
ONTAINME		751			-9
OM 858'		5.75			-8
CONTAIL		5.01			-7
OM 855.5	0 10 8	56			-6
SPOT					-5
					-4
					-3
					-2
					-1
					в
	ROVAL NG. PROJ. 8 MAR	ENG	Global'		
-7 197 14 (NO) (HJ	- ment				
		CALCULATIONS AN	ONTAINMENT	DATIONS	
	DESIG	EWOOD REFINERY CONTAIN	HJB DAT	¹ 1/15/14	ж
	DRAW		BY MAR SK-2	IE: NONE	-
		10-112000	- JIN - Z		

CLIENT:	Wynnewood Refinery	JOB NO .:	10-112390 (82)	SHEET:	1
LOCATION:	Wynnewood Oklahoma	CALCS BY:	Zulfiquar Syed	DATE:	
SUBJECT:	Existing Tank Berm Capacities	CHECKED BY:	H.J. Brownson, P.E.	DATE:	12/11/2013

Design Criteria:

- Check primary containment of a single tank volume or the the tank with the largest volume when in a group. The primary containment volume consists of the maximum capacity of the tank (supplied by WRC) plus the amount of precipitation that occurs during a 25 year/24 hour rainfall event (7.1 inches).
- Check secondary containment for each tank within a group of tanks that has lower dikes that subdivide the primary containment area. The secondary containment volume is equal to 10% of the tank maximum capacity to represent a minor spill.
- The containment volume (both primary and secondary) is calculated using the volumes taken from the topographic surveys provided by Gorrondona and Associates, Inc.


Tank Area - T1449

Primary	Contain	nment:		The second second	and the Mar				
	Tank	Tank Ca (bbl.)	apacity (cu. ft.)	Volume of Liquid (cu. ft.)	Existing Berm Capacity Low Point (ft.)	Existing Berm Capacity (cu. ft.)	Repaired Berm Elevation (ft.)	Repaired Berm Volume (cu. ft.)	Berm Increase (ft.)
	1449	76,425	429,096	484,781	860.00	387,713	861.08	489,357	1.08

Recommendations:

- 1. Raise primary berm (shown in orange) to required elevation = 861.08'.
- 2. Re-grade road entrance areas to access final berm elevations.

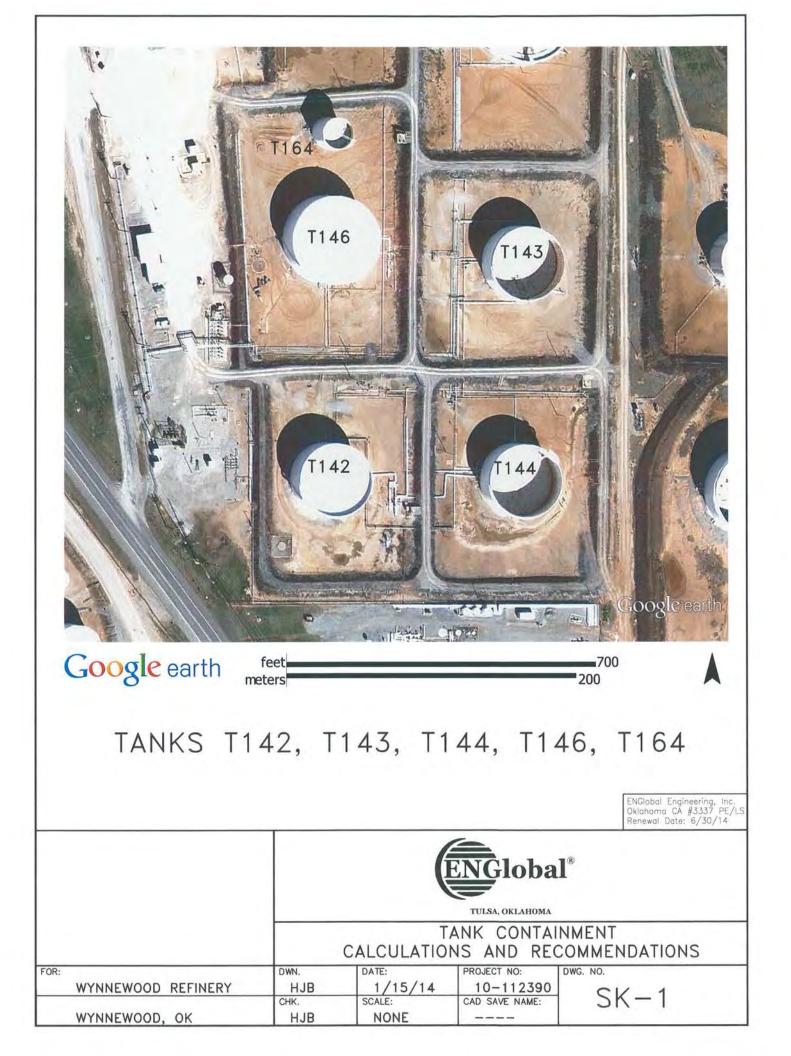
A B	ç o	E F	G H	Í	J K	Ļ	M	N	Ŷ	P	9	R
0-												
19 —												
68-						The later	No.					
17— 16—				/	1	858-859-857-857-857-857-857-857-857-857-857-857						
5-						856	-m					
14												
13-					$\parallel \mid \land \land$							
2-					1/ /	853	111					
31-					/ /							
10- 19-					/							
8-					/		/ //					
7-			/				//					
6-			/									
5-												
4-												
2-												
21-				///	/							
10-				/					- SK-3			
9—				0				SN-3				
8-					TAT	NK 1449						
7- 6-							/ L	$\neg \parallel \parallel$		-	RAISE PRIMAI CONTAINMEN 860' TO 861 TYPICAL ALL	RY FRO
5-		/		N			/	/ ///			860' TO 861	.08',
4-				\wedge		/		/ ///				SIDE
3-								/ //		1		
2-								\rangle		1		
11-					854			/ \		1		
9-)		/				
8-								/			P -	RIMAR
7-			/// ५				/		AIII			
6-						/		4	AL			RADE
5-						55			$\langle \rangle$		ROA	RADE D ACC
4 3					859 858 857 856				A	Y		
2-									T			
1-										1		
A REFEREN G-SK-1 PLOT PLAN	ICE DRAWINGS	GENERAL NOTES:						NO		REVISION		ROJECT NO.
G-SK-2 CONSTRUCTION N SK-3 TANK BERM REP	NOTES AIR DETAILS							0	ISSUE FOR CONST	RUCTION	10	-112390
						C O N F I D E N T I A THE HEFORMATION CONTAINED IN T IS CONFIDENTIAL AND SHALL NOT E USED, DUPLICATED OR RETAINED E WITTING BY ENGLISHAL.	A L BAS DEAMING E DECLOSED ROEPT AS M					
						WRITING BY ENGLOBAL						

CLIENT:	Wynnewood Refinery	JOB NO .:	10-112390 (82)	SHEET:	4
LOCATION:	Wynnewood Oklahoma	CALCS BY:	Zulfiquar Syed	DATE:	
SUBJECT:	Existing Tank Berm Capacities	CHECKED BY:	H.J. Brownson, P.E.	DATE:	12/16/2013

Design Criteria:

- Check primary containment of a single tank volume or the the tank with the largest volume when in a group. The primary containment volume consists of the maximum capacity of the tank (supplied by WRC) plus the amount of precipitation that occurs during a 25 year/24 hour rainfall event (7.1 inches).
- Check secondary containment for each tank within a group of tanks that has lower dikes that subdivide the primary containment area. The secondary containment volume is equal to 10% of the tank maximum capacity to represent a minor spill.
- The containment volume (both primary and secondary) is calculated using the volumes taken from the topographic surveys provided by Gorrondona and Associates, Inc.

Tank Area - T2003


Primary Containment:

Tank	Tank Ca	apacity	Volume of Liquid	Existing Berm Capacity	Existing Berm Capacity	Repaired Berm Elevation	Repaired Berm Volume	Berm Increase
	(bbl.)	(cu. ft.)	(cu. ft.)	Low Point (ft.)	(cu. ft.)	(ft.)	(cu. ft.)	(ft.)
2003	94,500	530,580	584,592	852.00	339,073	854.67	596,135	2.67

Recommendations:

1. Raise primary berm (shown in orange) to elevation = 854.67'.

	REGRADE FOR ROAD ACCESS	- 39 - 38 - 37 - 36
	ROAD ACCESS	HINN IND -35 -36 -33 -31 -30 -29 -28 -26 -27 -26 -25
		-24 -23 -22 -21 -21 -20 CONTAINMENT TO ELEV. 854.67' (TYP. ALL SIDES) -15 -15
		PRIMARY CONTAINMENT -RAISE FROM TO ELEV. 854.67' BERM LOW SPOT
REFERENCE DRAWINGS - 1 PLOT PLAN -2 CONSTRUCTION NOTES TANK BERM REPAIR DETAILS		NO. REVISION PROJECT NO. BY DATE APPROVAL O ISSUE FOR CONSTRUCTION 10-112390 HJB 1/15/14 HJB HJB MAR HJB 1/15/14 HJB HJB MAR TANK CONTAINMENT

CLIENT:	Wynnewood Refinery	JOB NO .:	10-112390 (82)	SHEET:	- 1
LOCATION:	Wynnewood, Oklahoma	CALCS BY:	Zulfiquar Syed	DATE:	
SUBJECT:	Existing Tank Berm Capacities	CHECKED BY:	H.J. Brownson, P.E.	DATE:	1/8/2014

Design Criteria:

- Check primary containment of a single tank volume or the the tank with the largest volume when in a group. The primary containment volume consists of the maximum capacity of the tank (supplied by WRC) plus the amount of precipitation that occurs during a 25 year/24 hour rainfall event (7.1 inches).
- Check secondary containment for each tank within a group of tanks that has lower dikes that subdivide the primary containment area. The secondary containment volume is equal to 10% of the tank maximum capacity to represent a minor spill.
- The containment volume (both primary and secondary) is calculated using the volumes taken from the topographic surveys provided by Gorrondona and Associates, Inc.

Tank Areas - T146

Primary Containment:

Tank	Tank Ca	apacity	Volume of Liquid	Existing Berm Capacity	Existing Berm Capacity	Repaired Berm Elevation	Repaired Berm Volume	Berm Increase
	(bbl.)	(cu. ft.)	(cu. ft.)	Low Point (ft.)	(cu. ft.)	(ft.)	(cu. ft.)	(ft.)
146	80,662	452,885	500,009	879.00	343,753	881.00	500,276	2.00

Recommendations:

1. Raise primary berm (shown in green) to required elev. = 881.00 feet

2. Regrade for road access.

CLIENT:	Wynnewood Refinery	JOB NO .:	10-112390 (82)	SHEET:	1
LOCATION:	Wynnewood, Oklahoma	CALCS BY:	Zulfiquar Syed	DATE:	
SUBJECT:	Existing Tank Berm Capacities	CHECKED BY:	H.J. Brownson, P.E.	DATE:	1/8/2014

Design Criteria:

- Check primary containment of a single tank volume or the the tank with the largest volume when in a group. The primary containment volume consists of the maximum capacity of the tank (supplied by WRC) plus the amount of precipitation that occurs during a 25 year/24 hour rainfall event (7.1 inches).
- Check secondary containment for each tank within a group of tanks that has lower dikes that subdivide the primary containment area. The secondary containment volume is equal to 10% of the tank maximum capacity to represent a minor spill.
- The containment volume (both primary and secondary) is calculated using the volumes taken from the topographic surveys provided by Gorrondona and Associates, Inc.

Tank Areas - T142

Primary Containment:

Tank Tank C	Tank Ca	apacity	Volume of Liquid	Existing Berm Capacity	Existing Berm Capacity	Repaired Berm Elevation	Repaired Berm Volume	Berm Increase
	(bbl.)	(cu. ft.)	(cu. ft.)	Low Point (ft.)	(cu. ft.)	(ft.)	(cu. ft.)	(ft.)
142	55,904	313,879	350,391	879.00	307,249	880.00	368,960	1.00

Recommendations:

1. Raise primary berm (shown in orange) to required elev. = 880.00 feet

2. Regrade for road access.

CLIENT:	Wynnewood Refinery	JOB NO .:	10-112390 (82)	SHEET:	1
LOCATION:	Wynnewood, Oklahoma	CALCS BY:	Zulfiquar Syed	DATE:	
SUBJECT:	Existing Tank Berm Capacities	CHECKED BY:	H.J. Brownson, P.E.	DATE:	1/8/2014

Design Criteria:

- Check primary containment of a single tank volume or the the tank with the largest volume when in a group. The primary containment volume consists of the maximum capacity of the tank (supplied by WRC) plus the amount of precipitation that occurs during a 25 year/24 hour rainfall event (7.1 inches).
- Check secondary containment for each tank within a group of tanks that has lower dikes that subdivide the primary containment area. The secondary containment volume is equal to 10% of the tank maximum capacity to represent a minor spill.
- The containment volume (both primary and secondary) is calculated using the volumes taken from the topographic surveys provided by Gorrondona and Associates, Inc.

Tank Areas - T143

Primary Containment:

Tank	Tank Capacity		Volume of Liquid	Existing Berm Capacity	Existing Berm Capacity	Repaired Berm Elevation	Repaired Berm Volume	Berm Increase
	(bbl.)	(cu. ft.)	(cu. ft.)	Low Point (ft.)	(cu. ft.)	(ft.)	(cu. ft.)	(ft.)
143	55,990	314,361	350,649	881.00	239,117	883.00	361,779	2.00

Recommendations:

1. Raise primary berm (shown in pink) to required elev. = 883.00 feet

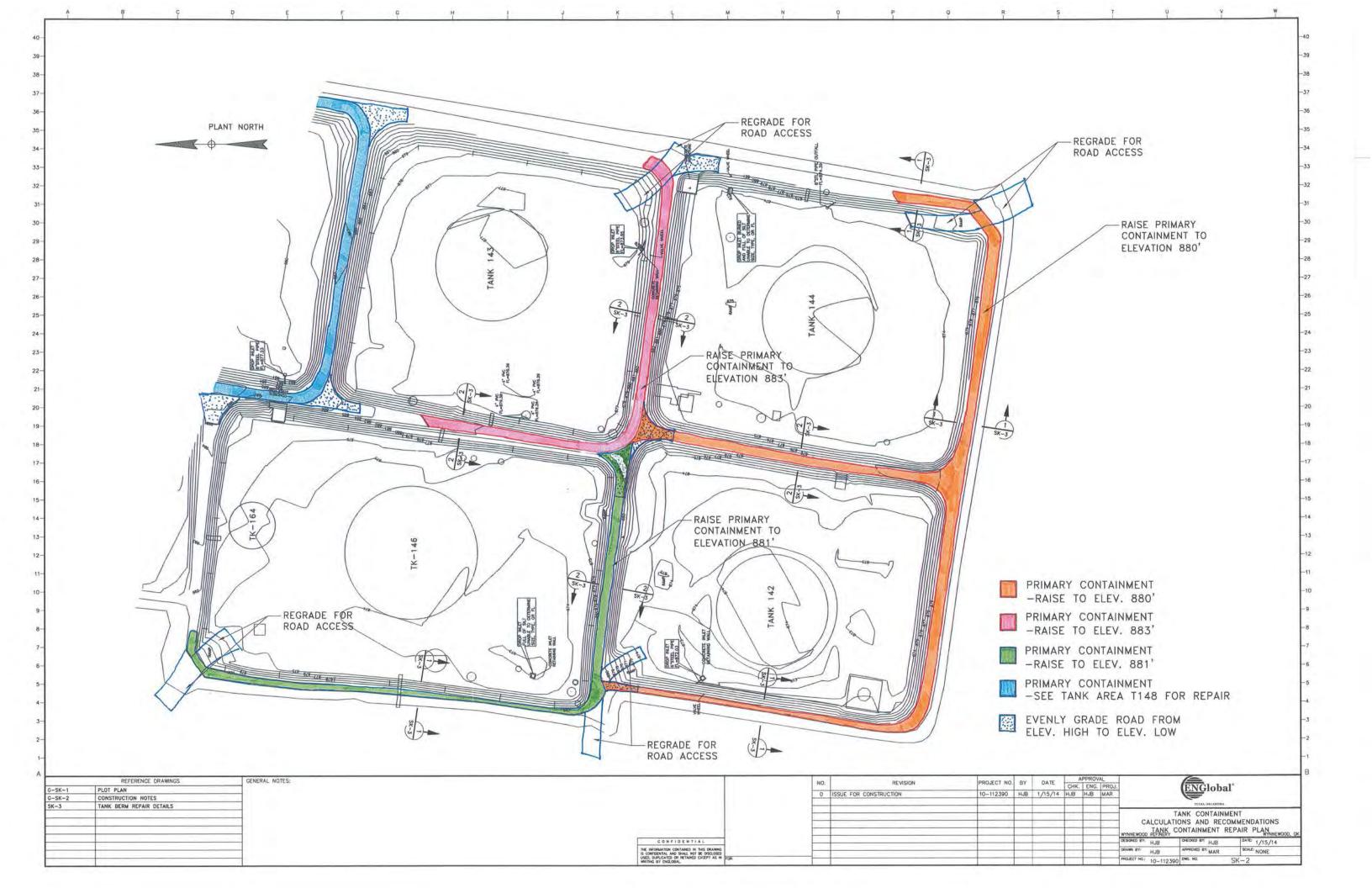
2. Regrade for road access

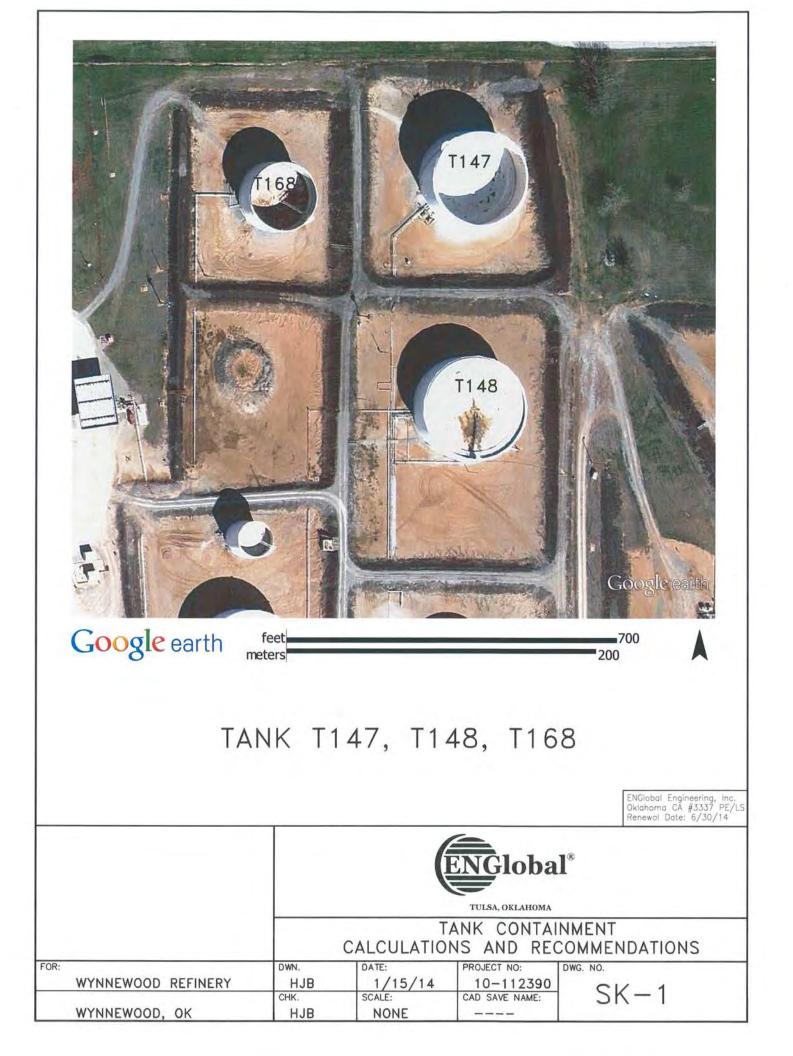
CLIENT:	Wynnewood Refinery	JOB NO .:	10-112390 (82)	SHEET:	4
LOCATION:	Wynnewood, Oklahoma	CALCS BY:	Zulfiquar Syed	DATE:	
SUBJECT:	Existing Tank Berm Capacities	CHECKED BY:	H.J. Brownson, P.E.	DATE:	1/8/2014

Design Criteria:

- Check primary containment of a single tank volume or the the tank with the largest volume when in a group. The primary containment volume consists of the maximum capacity of the tank (supplied by WRC) plus the amount of precipitation that occurs during a 25 year/24 hour rainfall event (7.1 inches).
- Check secondary containment for each tank within a group of tanks that has lower dikes that subdivide the primary containment area. The secondary containment volume is equal to 10% of the tank maximum capacity to represent a minor spill.
- The containment volume (both primary and secondary) is calculated using the volumes taken from the topographic surveys provided by Gorrondona and Associates, Inc.

Tank Areas - T144


Primary Containment:


Tank	Tank Capacity		Volume of Liquid	Existing Berm Capacity	Existing Berm Capacity	Repaired Berm Elevation	Repaired Berm Volume	Berm Increase
	(bbl.)	(cu. ft.)	(cu. ft.)	Low Point (ft.)	(cu. ft.)	(ft.)	(cu. ft.)	(ft.)
144	55,899	313,851	350,745	878.00	236,233	880.00	360,947	2.00

Recommendations:

1. Raise primary berm (shown in orange) to required elev. = 880.00 feet

2. Regrade for road access

CLIENT:	Wynnewood Refinery	JOB NO .:	10-112390 (82)	SHEET:	1
LOCATION:	Wynnewood, Oklahoma	CALCS BY:	Zulfiquar Syed	DATE:	
SUBJECT:	Existing Tank Berm Capacities	CHECKED BY:	H.J. Brownson, P.E.	DATE:	1/8/2014

Design Criteria:

- Check primary containment of a single tank volume or the the tank with the largest volume when in a group. The primary containment volume consists of the maximum capacity of the tank (supplied by WRC) plus the amount of precipitation that occurs during a 25 year/24 hour rainfall event (7.1 inches).
- Check secondary containment for each tank within a group of tanks that has lower dikes that subdivide the primary containment area. The secondary containment volume is equal to 10% of the tank maximum capacity to represent a minor spill.
- 3. The containment volume (both primary and secondary) is calculated using the volumes taken from the topographic surveys provided by Gorrondona and Associates, Inc.

Tank Areas - T147

Primary Containment:

Tank	Tank Ca	apacity	Volume of Liquid	Existing Berm Capacity	Existing Berm Capacity	Repaired Berm Elevation	Repaired Berm Volume	Berm Increase
	(bbl.)	(cu. ft.)	(cu. ft.)	Low Point (ft.)	(cu. ft.)	(ft.)	(cu. ft.)	(ft.)
147	81,024	454,917	487,306	895.00	374,665	897.33	502,212	2.33

Recommendations:

1. Raise primary berm (shown in orange) to required elev. = 897.33 feet

CLIENT:	Wynnewood Refinery	JOB NO .:	10-112390 (82)	SHEET:	1
LOCATION:	Wynnewood, Oklahoma	CALCS BY:	Zulfiquar Syed	DATE:	
SUBJECT:	Existing Tank Berm Capacities	CHECKED BY:	H.J. Brownson, P.E.	DATE:	1/8/2014

Design Criteria:

- Check primary containment of a single tank volume or the the tank with the largest volume when in a group. The primary containment volume consists of the maximum capacity of the tank (supplied by WRC) plus the amount of precipitation that occurs during a 25 year/24 hour rainfall event (7.1 inches).
- Check secondary containment for each tank within a group of tanks that has lower dikes that subdivide the primary containment area. The secondary containment volume is equal to 10% of the tank maximum capacity to represent a minor spill.
- The containment volume (both primary and secondary) is calculated using the volumes taken from the topographic surveys provided by Gorrondona and Associates, Inc.

Tank Areas - T148

Primary Containment:

Tank	Tank Capacity		Volume of Liquid	Existing Berm Capacity	Existing Berm Capacity	Repaired Berm Elevation	Repaired Berm Volume	Berm Increase
	(bbl.)	(cu. ft.)	(cu. ft.)	Low Point (ft.)	(cu. ft.)	(ft.)	(cu. ft.)	(ft.)
148	80,016	449,258	494,160	886.00	388,989	887.50	502,825	1.50

Recommendations:

1. Raise primary berm (shown in orange) to required elev. = 887.50 feet

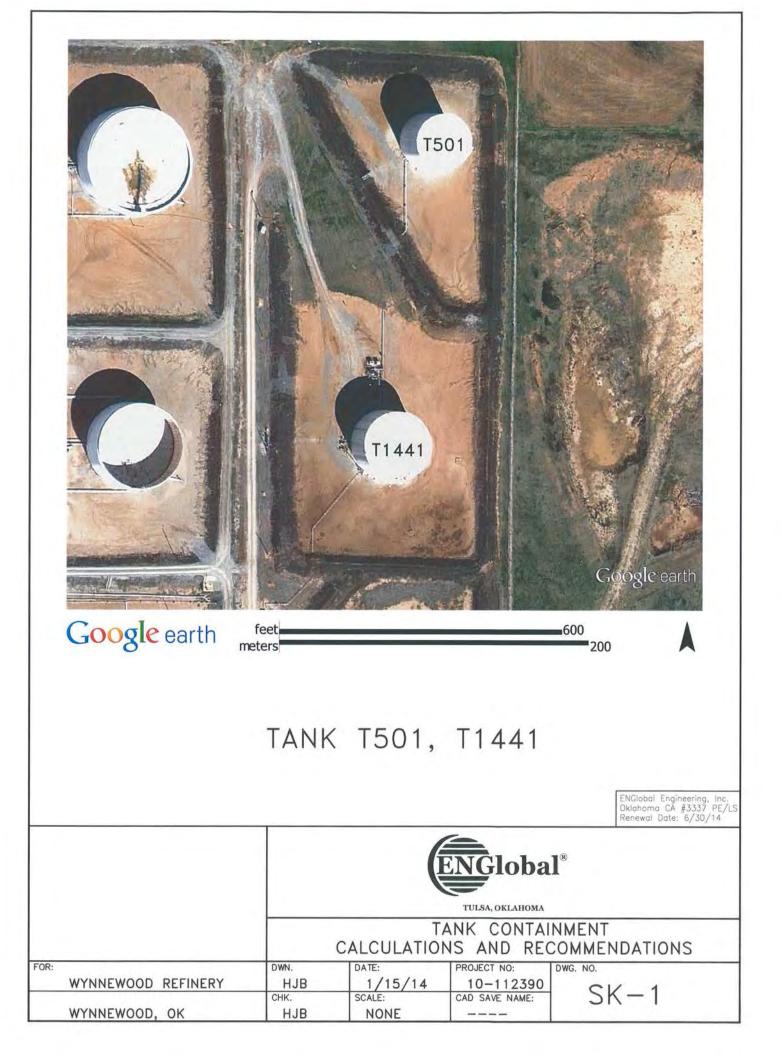
CLIENT:	Wynnewood Refinery	JOB NO .:	10-112390 (82)	SHEET:	- T
LOCATION:	Wynnewood, Oklahoma	CALCS BY:	Zulfiquar Syed	DATE:	
SUBJECT:	Existing Tank Berm Capacities	CHECKED BY:	H.J. Brownson, P.E.	DATE:	1/8/2014

Design Criteria:

- Check primary containment of a single tank volume or the the tank with the largest volume when in a group. The primary containment volume consists of the maximum capacity of the tank (supplied by WRC) plus the amount of precipitation that occurs during a 25 year/24 hour rainfall event (7.1 inches).
- Check secondary containment for each tank within a group of tanks that has lower dikes that subdivide the primary containment area. The secondary containment volume is equal to 10% of the tank maximum capacity to represent a minor spill.
- The containment volume (both primary and secondary) is calculated using the volumes taken from the topographic surveys provided by Gorrondona and Associates, Inc.

Tank Areas - T168

Primary Containment:


Tank	Tank Capacity		Volume of Liquid	Existing Berm Capacity	Existing Berm Capacity	Repaired Berm Elevation	Repaired Berm Volume	Berm Increase
	(bbl.)	(cu. ft.)	(cu. ft.)	Low Point (ft.)	(cu. ft.)	(ft.)	(cu. ft.)	(ft.)
168	35,801	201,008	224,387	886.00	175,279	887.50	234,548	1.50

Recommendations:

1. Raise primary berm (shown in orange) to required elev. = 887.50 feet

2. Regrade for road access

100 001 001 001 001 001 001 001 001 001			PLANT NORTH	
A Decision of the second	RAISE PRIMARY CONTAINMENT ELEVATION 897		RAISE PRIMARY CONTAINMENT TO ELEVATION 887.5'	
DE E CONT	PRIMARY AINMENT TO ATION 887.5'			
REGRADE FOR ROAD ACCESS			PRIMARY CONTAINMENT -RAISE TO ELEV. 887.5' PRIMARY CONTAINMENT -RAISE TO ELEV. 897.33' PRIMARY CONTAINMENT -SEE TANK AREA T146 FOR REPAIR	
			-SEE TANK AREA T146 FOR REPAIR EVENLY GRADE ROAD FROM ELEV. HIGH TO ELEV. LOW	
REFERENCE DRAWINGS GENERAL NOTES: -1 PLOT PLAN -2 CONSTRUCTION NOTES TANK BERM REPAIR DETAILS		NO. REVISION O ISSUE FOR CONSTRUCTION	PROJECT NO. BY DATE APPROVAL 10-112390 HJB 1/15/14 HJB HJB MAR CHK. ENG. [PROJ. TANK CONTAINMENT CALCULATIONS AND RECOM WYNNEWOOD REINER, CONTAINMENT REF VYNNEWOOD REINER, CONTAINMENT REF	ENT MMENDATIONS

CLIENT:	Wynnewood Refinery	JOB NO .:	10-112390 (82)	SHEET:	1
LOCATION:	Wynnewood, Oklahoma	CALCS BY:	Zulfiquar Syed	DATE:	
SUBJECT:	Existing Tank Berm Capacities	CHECKED BY:	H.J. Brownson, P.E.	DATE:	1/4/2014

Design Criteria:

- Check primary containment of a single tank volume or the the tank with the largest volume when in a group. The primary containment volume consists of the maximum capacity of the tank (supplied by WRC) plus the amount of precipitation that occurs during a 25 year/24 hour rainfall event (7.1 inches).
- Check secondary containment for each tank within a group of tanks that has lower dikes that subdivide the primary containment area. The secondary containment volume is equal to 10% of the tank maximum capacity to represent a minor spill.
- The containment volume (both primary and secondary) is calculated using the volumes taken from the topographic surveys provided by Gorrondona and Associates, Inc.

Tank Areas - T501

Primary Containment:

Tank	Tank Capacity		Volume of Existing Liquid Berm Capacity	Existing Berm Capacity	Repaired Berm Elevation	Repaired Berm Volume	Berm Increase	
	(bbl.)	(cu. ft.)	(cu. ft.)	Low Point (ft.)	(cu. ft.)	(ft.)	(cu. ft.)	(ft.)
501	25,750	144,576	165,723	890.00	116,997	892.00	170,610	2.00

Recommendations:

1. Raise primary berm (shown in orange) to required elev. = 892.00 feet

CLIENT:	Wynnewood Refinery	JOB NO .:	10-112390 (82)	SHEET:	1
LOCATION:	Wynnewood, Oklahoma	CALCS BY:	Zulfiquar Syed	DATE:	
SUBJECT:	Existing Tank Berm Capacities	CHECKED BY:	H.J. Brownson, P.E.	DATE:	1/4/2014

Design Criteria:

- Check primary containment of a single tank volume or the the tank with the largest volume when in a group. The primary containment volume consists of the maximum capacity of the tank (supplied by WRC) plus the amount of precipitation that occurs during a 25 year/24 hour rainfall event (7.1 inches).
- Check secondary containment for each tank within a group of tanks that has lower dikes that subdivide the primary containment area. The secondary containment volume is equal to 10% of the tank maximum capacity to represent a minor spill.
- The containment volume (both primary and secondary) is calculated using the volumes taken from the topographic surveys provided by Gorrondona and Associates, Inc.

Tank Areas - T1441

Primary Containment:

Tank	Tank Capacity		Volume of Existing Liquid Berm Capacit	Existing Berm Capacity	Existing Berm Capacity	Repaired Berm Elevation	Repaired Berm Volume	Berm Increase
	(bbl.)	(cu. ft.)	(cu. ft.)	Low Point (ft.)	(cu. ft.)	(ft.)	(cu. ft.)	(ft.)
1441	35,716	200,531	240,891	882.00	135,219	883,67	249,136	1.67

Recommendations:

1. Raise primary berm (shown in green) to required elev. = 883.67 feet

PLANT NORTH	 PRIMARY CONTAINMENT -RAISE TO ELEV. 892' PRIMARY CONTAINMENT -RAISE TO ELEV. 883.67' PRIMARY CONTAINMENT
SIGN ZER ALL STATUS 892' SIGN ZER ALL STATU	PRIMARY CONTAINMENT -SEE TANK AREA T203 FOR REPAIR BERM LOW SPOT 1999 1997 1977
	TANK 1441
	And the second s
3- 2- 1- A <u>REFERENCE DRAWINGS</u> G-SK-1 PLOT PLAN G-SK-2 CONSTRUCTION MOTES SK-3 TANK BERM REPAIR DETAILS	NO. REVISION PROJECT 0 ISSUE FOR CONSTRUCTION 10-11239

CLIENT:	Wynnewood Refinery	JOB NO .:	10-112390 (82)	SHEET:	t
LOCATION:	Wynnewood, Oklahoma	CALCS BY:	Zulfiguar Syed	DATE:	
SUBJECT;	Existing Tank Berm Capacities	CHECKED BY:	H.J. Brownson, P.E.	DATE:	12/28/2013

Design Criteria:

- Check primary containment of a single tank volume or the the tank with the largest volume when in a group. The primary containment volume consists of the maximum capacity of the tank (supplied by WRC) plus the amount of precipitation that occurs during a 25 year/24 hour rainfall event (7.1 inches).
- Check secondary containment for each tank within a group of tanks that has lower dikes that subdivide the primary containment area. The secondary containment volume is equal to 10% of the tank maximum capacity to represent a minor spill.
- The containment volume (both primary and secondary) is calculated using the volumes taken from the topographic surveys provided by Gorrondona and Associates, Inc.

Tank Areas - T203

Primary Containment:

Tank	Tank Capacity		Volume of Liquid	Existing Berm Capacity	Existing Berm Capacity	Repaired Berm Elevation	Repaired Berm Volume	Berm Increase
	(bbl.)	(cu. ft.)	(cu. ft.)	Low Point (ft.)	(cu. ft.)	(ft.)	(cu. ft.)	(ft.)
203	80,233	450,476	513,843	882.00	451,740	882.75	532,064	0.75

Recommendations:

1. Raise primary berm (shown in orange) to required elev. = 882.75 feet

		BLANT NORTH
	TANK 203	RAISE PRIMARY CONTAINMENT TO ELEVATION 882.75'
	DUNCRETTE PL-072537 WALL BX-13	
	REGRADE FOR ROAD ACCESS	PRIMARY CONTAINMENT -RAISE FROM 882' TO 882.75' PRIMARY CONTAINMENT -SEE TANK AREA T1441 FOR REPAIR
REFERENCE DRAWINGS GENERAL NOTES; PLOT PLAN CONSTRUCTION NOTES	079-500 800 - 601 - 605 - 705 - 70	NO. REVISION PROJECT NO. BY DATE APPROVAL O ISSUE FOR CONSTRUCTION 10-112390 HJB 1/15/14 HJB HJB MAR

CLIENT:	Wynnewood Refinery	JOB NO .:	10-112390 (82)	SHEET:	1
LOCATION:	Wynnewood Oklahoma	CALCS BY:	Zulfiquar Syed	DATE:	
SUBJECT:	Existing Tank Berm Capacities	CHECKED BY:	H.J. Brownson, P.E.	DATE:	12/9/2013

Tank Berm Capacity Calculations and Recommendations

Design Criteria:

- Check primary containment of a single tank volume or the the tank with the largest volume when in a group. The primary containment volume consists of the maximum capacity of the tank (supplied by WRC) plus the amount of precipitation that occurs during a 25 year/24 hour rainfall event (7.1 inches).
- Check secondary containment for each tank within a group of tanks that has lower dikes that subdivide the primary containment area. The secondary containment volume is equal to 10% of the tank maximum capacity to represent a minor spill.
- The containment volume (both primary and secondary) is calculated using the volumes taken from the topographic surveys provided by Gorrondona and Associates, Inc.

Tank Area - T303, T306

Tank Tank Capacity		apacity	Volume of Existing Liquid Berm Capacity		Existing Berm Capacity	Repaired Berm Elevation	Repaired Berm Volume	Berm Increase
	(bbl.)	(cu. ft.)	(cu. ft.)	Low Point (ft.)	(cu. ft.)	(ft.)	(cu. ft.)	(ft.)
303	255,053	1,432,021	1,548,297	852.00	1,274,103	853.42	1,553,167	1.42

Recommendations:

- 1. Raise primary berm (shown in orange) to required elevation = 853.42'.
- 2. Raise primary berm (shown in blue) to required elevation = 853.00'.
- 3. Re-grade road entrance areas to access final berm elevations.

T	REGRADE FOR ROAD ACCESS Tank 306 is not owned by WRC and is shown for information purpos	ses only.
	Tank 306 is not owned by WRC and is shown for information purpose Tank 306 is not owned by WRC and is shown for information purpose RAISE PRIMARY RONTAINMENT FROM B52' TO 853.42' RAISE PRIMARY CONTAINMENT FROM B52' TO 853.42' RAISE PRIMARY CONTAINMENT FROM B52' TO 853.42'	MARY ENT FROM
	PRIMARY CONTAINME -RAISE FROM 852' PRIMARY CONTAINME -RAISE FROM 852' Derm LOW SPOT	TO 853.42'
REFERENCE DRAWINGS GENERAL NOTES: PLOT PLAN CONSTRUCTION NOTES TANK BERM REPAIR DETAILS	NO. REVISION PROJECT NO. BY DATE APPRIA 0' ISSUE FOR CONSTRUCTION 10-112390 HJB 1/15/14 HJB HJC 0' ISSUE FOR CONSTRUCTION 10-112390 HJB 1/15/14 HJB HJC 0' ISSUE FOR CONSTRUCTION 0-112390 HJB 1/15/14 HJB HJC 0' ISSUE FOR CONSTRUCTION 0-112390 HJB 1/15/14 HJB HJC 0' ISSUE FOR CONSTRUCTION 0-112390 HJB 1/15/14 HJB HJC 0' ISSUE FOR CONSTRUCTION 0-112390 HJB 1/15/14 HJB HJC 0' 0 <t< td=""><td>TROVAL ING. [PROJ.] JB MAR TANK CONTAINMENT CALCULATIONS AND RECOMMENDATIONS TANK CONTAINMENT REPAIR PLAN WYNNEWOOD PETHERY DREMED BY: HJB DECKED BY: HJB DATE: 1/14/15</td></t<>	TROVAL ING. [PROJ.] JB MAR TANK CONTAINMENT CALCULATIONS AND RECOMMENDATIONS TANK CONTAINMENT REPAIR PLAN WYNNEWOOD PETHERY DREMED BY: HJB DECKED BY: HJB DATE: 1/14/15

Table 22

Taul Noushan	Contorto	Tank Maximum	Tanks Within The Same Secondary	Berm C	Capacity, ft ³	Darma In anno an fé
Tank Number	Contents	Capacity (Bbls)	Containment Area	Actual ¹	Required	Berm Increase, ft
MSA-1						
6D-1	Alky Treat Charge	564	(4)			
6D-4	Alky Treat Charge	564	(4)			
D-170	Normal Butane	712	(4)			
D-172	Normal Butane	712	(4)			
D-174	Propane	712	(4)			
D-176	Propane	712	(4)			
D-178	Normal Butane	712	(4)			
D-180	Iso-Butane	712	(4)			
D-190	Alky Treat Charge	565	(4)			
D-191	Alky Treat Charge	1,164	(4)			
D-1401	Normal Butane	1,581	(4)			
D-1402	Normal Butane	1,581	(4)			
D-1403	Normal Butane	1,581	(4)			
D-1404	Normal Butane	1,581	(4)			
D-1405	Normal Butane	1,581	(4)			
D-1406	Propylene	2,143	(4)			
D-1407	Propylene	2,143	(4)			
D-1408	Propylene	2,143	(4)			
MSA-2						
126	Gas Oil/LCO	79,500	126	307,502	510,858	2.33
202	Gas Oil	80,000	202	315,218	500,798	2.33
MSA-3						
1181	Arbuckle Water	100,000	(2)			
MSA-4						
951	Out-of-Service	10,000	951, 953, 2051	161,579	139,400	0
953	Out-of-Service	10,000	951, 953, 2051	161,579	139,400	0
2051	Sour Water	20,000	951, 953, 2051	161,579	139,400	0
MSA-5						
2007	API Separator Sludge	5,100	2007	78,000	35,660	0

Tank	Contents	Maximum	Tanks Within The Same Secondary	Berm Capacity, ft ³		– Berm Increase, ft
Number	Number		Capacity (Bbls) Containment Area		Required	berm merease, it
MSA-6						
1470	Regular Unleaded	79,600	1470,1471, 1473, 1475	437,672	499,664	0-3
1471	Unleaded Premium	34,800	1471, 1473, 1475	147,998	239,539	0-3
1472	Ultra Low Sulfur Diesel	34,700	1472, 1471, 1473, 1475	110,005	239,539	0-3
1473	Unleaded Premium	9,600	1473, 1471, 1475	28,512	239,539	0-3
1475	Ultra Low Sulfur Diesel	34,700	1473, 1471, 1475	9,534	239,539	0-3
1476	Out-of-Service	170				
MSA-7						
67	Crude Oil	68,884	67, 68, 69, 70	395,019	898,444	2.42
68	Crude Oil	68,884	67, 68, 69, 70	395,019	898,444	2.42
69	Crude Oil	68,884	67, 68, 69, 70	395,019	898,444	2.42
70	Crude Oil	150,000	67, 68, 69, 70	395,019	898,444	2.42
71	Crude Oil	250,000	71	built to new design 2014	N/A	0
MSA-8						
182	Mixed Butane	1,427	(4)			
183	Mixed Butane	1,427	(4)			
184	Mixed Butane	1,533	(4)			
185	Iso-Butane	1,533	(4)			
186	Iso-Butane	2,370	(4)			
187	Iso-Butane	2,400	(4)			
MSA-9						
254	Cat Gasoline	24,800	254, 255	141,898	163,948	0.75
255	Straight Run Gasoline	24,800	254, 255	141,898	163,948	0.75
MSA-10						
150	Platformate	24,800	150, 152, 154, 155	158,673	290,035	2.50
152	Platformate	24,800	150, 152, 154, 155	158,673	290,035	2.50
154	Gasoline	24,800	150, 152, 154, 155	158,673	290,035	2.50
155	Sour Naptha	40,000	150, 152, 154, 155	158,673	290,035	2.50
156	Out-of-Service	2,500				

Tank Number	ok Number Contents		Tanks Within The Same Secondary Containment Area	Berm Capacity, ft ³		Berm Increase, ft	
		Capacity (Bbls)	Containment Area	Actual	Required		
MSA-11						-	
111	JP-8	5,000	111, 256, 257	48,137	67,964	1.25	
256	JP-5	5,000	111, 256, 257	48,137	67,964	1.25	
257	Unified Naphtha	10,000	111, 256, 257	48,137	67,964	1.25	
MSA-12							
108	JP-8	13,800	108, 110, 250, 251	79,670	106,964	1.0	
110	Light Cycle Oil/DSL	15,000	108, 110, 250, 251	79,670	106,964	1.0	
250	KW1-1/100W	10,000	108, 110, 250, 251	79,670	106,964	1.0	
251	100W	10,000	108, 110, 250, 251	79,670	106,964	1.0	
MSA-13							
107	Asphalt (64-22)	78,000	(3)				
120	Out-of-Service	2,800					
134	Asphalt VTB/64-22	80,000	(3)				
260	Light Distillate	5,100	(5)				
262	Dirty VAS Gas Oil	5,100	(5)				
263	Slop Oil	5,100	(5)				
264	Asphalt	5,100	(3)				
265	PMA Base Stock	5,100	(3)				
269	MC Base Asphalt	5,100	(3)				
601	Asphalt Resins	5,000	(3)				
1321	Roofing Asphalt	5,000	(3)				
1323	Coating Asphalt	4,512	(3)				
1331	PMA Asphalt	5,000	(3)				
1332	PMA Asphalt	5,000	(3)				
1333	PMA Asphalt	5,000	(3)				
1337	Closed	2,000					
1338	Closed	2,000					
2002	Out-of-Service	100					

Tank Number	Contents	Maximum	Tanks Within The Same Secondary	Berm Ca	pacity, ft ³	Berm Increase, ft
Tank Number	Capacity (Bbls)		Containment Area	Actual	Required	berni increase, it
MSA-14						
136	Asphalt VTB	75,470	136, 138, 140	298,501	550,774	0-1.5
138	Light Distillate	80,456	136, 138, 140	298,501	550,774	0-1.5
140	Heavy Distillate	80,000	136, 138, 140	298,501	550,774	0-1.5
MSA-15						
101	Asphalt VTB	64,000	(3), 101, 1324	380,677	536,955	1.0
1324	Asphalt VTB/64-22	66,590	(3), 101, 1324	380,677	536,955	1.0
MSA-16						
252	Slurry Oil	26,800	252, 253	152,566	194,666	0-0.75
253	Ultra Low Sulfur Diesel	25,000	252, 253	152,566	194,666	0-0.75
MSA-17						
1449	Raw Crude	76,425	1449	489,357	484,781	Completed 2014
MSA-18						
2003	Storm Water	86,000	2003	339,073	584,592	2.67
MSA-19						
2004	Waste Water	54,356	(2)			
2005	Waste Water	20,000	(2)			
MSA-20						
142	Unleaded Gasoline	55,000	142	307,249	350,391	1.00
143	Unleaded Gasoline	55,000	143	239,117	350,649	2.00
144	Unleaded Gasoline	55,000	144	236,233	350,745	2.00
146	Unleaded Gasoline	80,000	146, 164	343,753	500,009	2.00
164	LUK	10,000	164, 146	343,753	500,009	2.00
MSA-21						
147	Cat Gasoline	80,000	147	374,665	487,306	2.33
148	Unleaded Gasoline	75,900	148	388,989	494,160	1.50
168	Alkylate Gasoline	35,700	168	175,279	224,387	1.50
MSA-22	•					
501	JP-8	25,700	501	116,997	165,723	2.00
1441	JP-8	35,700	1441	135,219	240,891	1.67

Tank Number	Contents	Maximum	Tanks Within The Same Secondary	Berm Capacity, ft ³		Down Increase ft			
Tank Number	Contents	Capacity (Bbls)	Containment Area	Actual	Required	Berm Increase, ft			
MSA-23									
203	Ultra Low Sulfur Diesel	80,000	203	451,740	513,843	0.75			
MSA-24									
200	Low Sulfur Diesel	80,000	200, 204	411,045	501,795	1.5			
204	Diesel or Jet Fuel	150,000	200, 204	Built to new design 2014	N/A	0			
MSA-25									
303	Raw Crude	250,000	303	1,274,103	1,548,297	1.42			
 ² Exempt pursua ³ Exempt pursua ⁴ Exempt pursua 	303Raw Crude250,0003031,274,1031,548,2971.421Exempt pursuant to 40 C.F.R. 112.1(b).2Exempt pursuant to 40 C.F.R. 112.1(d)(6).3Exempt pursuant to 40 C.F.R. 112.1(d)(8), product will rapidly solidify4Exempt pursuant to 67 FR 47076 dated July 17, 2002.5Information not available at the time of Plan drafting.								

Table 22A: Tank Dike Update Implementation Schedule

<u>Year</u>	Tank Dikes
2015	303, 501, 1441
2016	142, 143, 144, 146, 164
2017	70, 69, 68, 67, 147, 148, 168
2018	138, 140, 136, 1470, 1471, 1472, 1473, 1475, 252, 253
2019	2003, 150, 152, 154, 155, 156, 108, 110, 250, 251
2020	202, 126, 255, 254, 257, 256, 111, 101, 1324

Appendix M Facility Inspection Checklists

Table 23

Equipment Inspection and Testing Program

Facility Component	Action	Frequency/Circumstances		
Aboveground container	Test container integrity. Combine visual inspection with another testing technique (non- destructive shell testing). Inspect outside of container for signs of deterioration and discharges, or accumulation of oil inside diked areas.	Following a regular schedule (monthly, annual, and during scheduled inspections) and whenever material repairs are made. API 653 for petroleum storage tanks		
Container supports and foundation	Inspection container's supports and foundations.	Following a regular schedule (monthly, annual, and during scheduled inspections) and whenever material repairs are made. API 653 for petroleum storage tanks		
Liquid level sensing devices (overfill)	Test for proper operation.	Monthly		
Diked area	Inspect for signs of deterioration, discharges, or accumulation of oil inside diked areas.	Monthly		
Lowermost drain and all outlets of tank truck	Visually inspect.	Prior to filling and departure.		
Effluent treatment facilities	Detect possible system upsets that could cause a discharge.	As per OPDES Permit OK000825		
All aboveground valves, piping, and appurtenances	Access general condition of items, such as flange joints, expansion joints, valve glands and bodies, catch pans, pipeline supports, locking of valves, and metal surfaces.	Monthly		
Puriod piping	Inspect for deterioration	Whenever a section of buried line is exposed for any reason.		
Buried piping	Integrity and leak testing.	At the time of installation, modification, construction, relocation, or replacement.		

Table 24

Monthly Aboveground Tank Inspection Checklist

TANK #:	
SERVICE:	

YEAR:

INSTRUCTIONS:

The following checklist is to be completed once per month by operations personnel. If any of the items listed below are not satisfactory - Contact (1st) Chief Inspector (Ext. 6612), (2nd) Safety Dept. (Ext. 6669) or (3rd) Environmental Dept. (Ext. 6601) at once. This checklist is to be located in the control room; return completed form to Chief Inspector each January. **USE: OK - NO ADVERSE CONDITIONS FOUND, NS - NOT SATISFACTORY, NA - NOT APPLICABLE**

AREA:

DATE/ OPERATOR	ATTACHED PIPING	PAINT	FOUNDATION	GROUND SETTLEMENT	PIPING/TANK INSULATION	LEAKS	SAFETY DEVICES	SHELL DISTORTION	SECONDARY CONTAINMENT

COMMENTS:	

ATTACHED PIPING - CHECK ATTACHED PIPING AND PIPING COMPONENTS FOR LEAKS, DAMAGE, EXTERNAL

CORROSION, AND STABILITY.

PAINT - CHECK TO INSURE THE PAINT COATING IS IN GOOD CONDITION.

FOUNDATION - CHECK TO INSURE THAT THE FOUNDATION IS NOT CRACKED OR OTHERWISE DAMAGED.

GROUND SETTLEMENT - CHECK TO SEE IF ANY NOTICEABLE SETTLEMENT HAS OCCURRED AROUND THE TANK BOTTOM.

INSULATION - CHECK TO MAKE SURE THE INSULATION IS IN GOOD CONDITION AND INTACT.

LEAKS - CHECK FOR SIGNS OF LEAKING AROUND THE TANK BOTTOM, PIPING, NOZZLES, AND OTHER ATTACHMENTS.

SAFETY DEVICES - CHECK TO MAKE SURE THE SAFETY DEVICES ARE CURRENT AND APPEAR TO BE IN WORKING ORDER.

SHELL DISTORTION - CHECK THE SHELL OF THE TANK FOR ANY VISIBLE SIGNS OF DISTORTION OR CORROSION SECONDARY CONTAINMENT - CHECK/PREVENT OPEN CONTAINMENT VALVE, FREE PRODUCT ACCUMULATION, EXCESSIVE STORM WATER ACCUMULATION THAT NEEDS TO BE REMOVED (NEED CONTAINMENT FOR CONTENTS OF LARGEST TANK, PLUS ROOM FOR PRECIPITATION)

Operations Signature and Turnover Date:

Appendix N Example SPCC Personnel Training Program Outline

SPCC Training Program Outline

A. Program Intent

- Federal program for the on-site management and handling of oil, prevention of spills, and proper spill response if a spill should occur. The EPA could inspect the facility for compliance with this SPCC Plan.
- "Oil" includes petroleum-based materials (gasoline, diesel fuel, kerosene, fuel oil, motor oil, hydraulic fluid, used oil, transformer oil, etc.), as well as vegetable oil.
- A "bulk storage container" is a container used to store oil that has a capacity of 55 gallons or more. The definition excludes "oil-filled electrical, operating, or manufacturing equipment."

B. SPCC Plan

- Developed for implementation by facility personnel.
- A copy must be maintained/updated by facility's SPCC Coordinator.
- A copy is available for review by any employees at any time during normal working hours.

C. Training – Who, When, What

- Who: All employees involved in handling and management of any new or used oil.
- When: Minimum initial and annual refresher for all employees involved in oil handling.
 - Within two weeks of hire for new employees involved in oil handling.
 - If/when facility oil handling changes (so the SPCC Plan must be updated).
- What: Initial: Entire SPCC Plan.
 - o Annual Update: Known spill events or failures, malfunctioning components.
 - o Ongoing: Facility changes, recently developed precautionary measures.

D. SPCC Coordinator

• Responsible for SPCC Plan implementation and oil spill prevention at the facility; see the SPCC Coordinator if there is ever any question or concern.

E. General Facility Layout, Site Plan and Drainage Systems

- Provide an understanding of general facility operations, the overall facility layout, surface drainage discharge locations and directions, sensitive receiving water bodies, etc.
- Explain figure(s) showing the locations in which oil is kept in bulk storage containers having individual capacities of 55 gallons or more.

F. Facility's Specific Oil Handling Inventory

Also applies to:

- Gauges, alarms, and leak detection systems.
- Piping systems.
- Oil-filled electrical, operating, and manufacturing equipment.
- Oil unloading/loading areas.
- Additional oil storage or handling activities.

G. Containment and/or Diversionary Structures or Equipment to Prevent a Discharge

- Specific facility measures provided, as per the SPCC Plan.
- Important because spilled oil will flow in accordance with drainage paths.
- Intent of program is to keep oil out of surface water, storm water and drainage features.
- Review operation and maintenance of all equipment intended to prevent discharges.

H. Facility Drainage

- Management of drainage from diked areas.
- Drainage from undiked areas.
- Potential impact on surface waters.

I. Facility Transfer Operations, Pumping and In-Plant Processes

• Operation and maintenance measures to prevent discharges.

J. Bulk Unloading/Loading Areas

- Spills from inbound/outbound transfers, including direction of flow.
- Transfers must be visually monitored at all times.
- Immediate response must be made to any spill, per the Plan's spill response procedures.

K. Inspection and Tests

- Comprehensive monthly visual inspection of each AST, with documentation.
- As a best practice, preferably also monthly visual inspections of drums and larger portable containers, hydraulic system reservoirs, oil-filled transformers, and spill cleanup supplies.
- Prompt completion of required repairs, with documentation.
- Periodic integrity testing of tanks.

L. Security

• General facility security measures and localized measures for individual oil handling areas.

M. Spill Response Procedures

- Need to watch for, report, and clean up spills.
- Spill response equipment, inventory, minimum amount to be maintained, replenishment of used materials, etc.
- Review understanding of spill equipment, intent and how to use/deploy it; supplemented with construction equipment if necessary, etc.
- Spill reporting requirement to Federal and State agencies.

N. Additional State Requirements

- Petroleum Bulk Storage Program
- Used oil requirements

O. Miscellaneous

- Describe and review past discharges, reasons or causes, procedures to prevent recurrence, etc.
- Describe and review any other equipment failures, malfunctioning components and any recently developed precautionary measures relative to oil handling and spill control.

P. General Rules

- Do not wait for problems or spills to occur.
- Keep eyes open, anticipate problems and take precautionary measures to prevent incidents.
- Report all identified or suspected concerns.

Q. Questions

Appendix O Emergency Contacts

A list of contacts is maintained in the refinery's Integrated Contingency Plan. That list is reproduced here.

III.2.a <u>Internal Notif</u> V.P. REFINING: MIKE		MOBILE: 620-870-8393	WORK: 405-665	5-6619
SAFETY:	DAVID MUNSEY	MOBILE: 405-207-1562	WORK. 405 665	6670
SAFETT	SHANE STEHR	MOBILE: 405-268-2712		
E.R.T. CAPTAINS:	ROBERT BOLDING	MOBILE: 403-208-2712 MOBILE: 580-369-8941	WORK: 403-003	00084
E.K.I. CAPTAINS:	WOODY HOBBS	MOBILE: 580-369-8941 MOBILE: 580-369-8111		
	COLT PRUITT	MOBILE: 580-309-8111 MOBILE: 580-491-9950		
	ERICK RACHEL	MOBILE: 380-491-9930 MOBILE: 405-207-8217		
	TOBY MAY	MOBILE: 405-207-8217 MOBILE: 405-207-1126		
	IODI MAI	MOBILE. 403-207-1120		
OPERATIONS:	JEFF DANIELSON	MOBILE: 405-313-9726	WORK: 405-665	5-6691
	BILL MCANGUS	MOBILE: 405-207-7869	WORK EXT:	6551
	JEFF DANIELSON	MOBILE: 405-313-9726	WORK EXT:	6691
	CHRIS GREEN	MOBILE: 405-207-3844	WORK EXT:	6628
	KYLE MCCURTAIN	MOBILE: 580-247-5002	WORK EXT:	6751
	MITCH UNDERWOOD	MOBILE:	WORK EXT:	6552
	TROY STEPHENSON	MOBILE: 405-207-1679	WORK EXT:	6579
	TONY GRAVES	MOBILE:	WORK EXT:	6558
		MODUE 405 269 2526	WODK EVT	6600
MAINTENANCE:	RAY HANKINS	MOBILE: 405-268-2526		6608
	MARK DAVIS	MOBILE: 405-207-3226		6789
	JIM HARDY	MOBILE: 405-207-3961		6761
	DAN FLAKE	MOBILE: 620-870-9511		6790
	DAVID MOSHER	MOBILE: 405-795-3429		6614
	ERIK AMPARANO	MOBILE:	WORK EXT:	6595
	COLBY WHEELER	MOBILE: 901-277-4818		6660
	CHRIS WINTERS	MOBILE:	WORK EXT:	6569
	ROBERT DELAPLAIN	MOBILE:	WORK EXT:	6581
	LARRY CRADDOCK	MOBILE: 405-207-6289		6633
	KENNEY LOWERY	MOBILE: 405-207-0331		6616
	STEVE COBBERLY	MOBILE:	WORK EXT:	6617
TECH. SERVICES:	STEVE GEORGE	MOBILE: 405-830-1976	WODV EVT.	6624
TECH. SERVICES.				
	RICK SAGER	MOBILE: 405-317-4039	WORK EAT:	6623
ENVIRONMENTAL:	SIDNEY CABBINESS	MOBILE: 918 636-6265	WORK EXT:	6601
	EVAN HILBURN	MOBILE:	WORK EXT:	6515
PERSONNEL:	SUSAN HURLEY	MOBILE: 405-343-9132	WORK EXT:	6652
SUN OIL PIPE LINE	24 HOUR 800 722	2-2606		
TOTAL PIPE LINE	24 HOUR 800 722 24 HOUR 800 437			
WILLIAMS PIPELINE	24 HOUR 800 437 24 HOUR 918 573			
WILLIAWS FIFELINE	24 NUUK 918 3/3	-2000		

TRANSOK (Enogex)	24 HOUR	800 324-2044			
PEC	24 HOUR	580 332-3031			
OG&E	24 HOUR	800 522-6870			
BNSF RAILROAD EMERGENCY	24 HOUR	800 832-5452			
ARBUCKLE WATER CONSERVANCY	24 HOUR	580 369-3121			
CALL OKIE	24 HOUR	800 522-6543			
NATIONAL WEATHER SERVICE	24 HOUR	405 573-8800			
REGIONAL WEATHER	24 HOUR	405 478-3377			
Community Notification					
GARVIN COUNTY SHERIFFS DEPT			405 238	3-7591	
Sheriff: Larry Rhodes			FAX	405 238-3224	
201 W. Grant Street					
Pauls Valley, Ok 73075					
MURRAY COUNTY SHERIFFS DEPT			580 622	2-5106	
Sheriff: Darin Rogers			FAX 58	80 622-3804	
700 w. 10th Street					
Sulphur, Ok 73086					
CITY OF WYNNEWOOD POLICE DEPT	1				911
CITY OF WYNNEWOOD FIRE DEPT					911
PAULS VALLEY AMBULANCE					911
LEPC COORDINATOR GARVIN CO.) Ramming P.O. Box 237	OFFIC	E 405 238-1148	
		Pauls Valley, OK 73075			
LEPC COORDINATOR MURRAY CO.	Norman S	•	OFFICI	E 580 369-3333	
		$308 \text{ S} 6^{\text{th}} \text{ St.}$			
		Davis, OK 73030			
III.2.c Federal and State Agency Notifi					
NATIONAL RESPONSE CENTER				800 424-8802	
U. S. EPA REGION VI AREA ON-SCE	NE COOR	DINATOR		214-665-2222	
U.S. EPA REGION VI OKLA	НОМА СІТ	Y AREA OFFICE		405 231-5351	
IF NO ANSWER				800 321-6742	
STATE EMERGENCY RESPONSE CENT	ΓER			405-521-2481	
OKLA HIGHWAY PATROL (ARDMORE)(F Troop)				405 223-8800	
OKLA. CORP. COMMISSION PIPELINE SAFETY FIELD OPERATIONS				405-5212258	
WYNNEWOOD RESPONSE ZONE, DIS					
DISTRICT MANAGER,	(Gayland Darity		580 255-0103	
				Cell: 405 66	0-1989
OCC SAFETY SPECIALIST, EAST GAR	VIN CO. I	Don Frazier		580 255-0103	
				Cell: 580 656	5-0143
OCC SAFETY SPECIALIST, WEST GAR	VIN CO. I	Bobby Ramirez		580 255-0103	
				Cell: 580 28	1-0807

III.2.d <u>Oil Spill Notification</u> For any oil spill, anywhere on WRC property				
III.2.d.i Internal Notification and Call Out WRC PERSONNEL RECEIVING SPILL REPORT Upon discovery of, or when a report is made of a spill notify the following people:				
SHIFT SUPERVISOR: OR ASK GATE GUARD TO CO	NTACT SHIFT SUPERVISOR BY	24 HOUR RADIO	405 665-6556	
QUALIFIED INDIVIDUAL/INCIDEN VICE PRESIDENT,	T COMMANDER NOTIFIES THE FOI	LOWING PEOPLE		
REFINING:	MIKE SWANSON	WORK MOBILE	405-665-6619 620-870-8393	
OR MANAGER, OPERATIONS:	JEFF DANIELSON	WORK MOBILE	405-665-6691 405-313-9726	
Or MANAGER,		MODILL	+05-515-5720	
TECHNICAL SERVICES:	STEVE GEORGE	WORK	405-665-6624	
AS NEEDED: ZONE 4:	BILL MCANGUS	WORK	405-665-6551	
MANAGER, MAINT:	RAY HANKINS	MOBILE	405-207-7869 405-665-6608	
MANAGER,		MOBILE	405-268-2526	
ENVIRONMENTAL:	SIDNEY CABBINESS	WORK	405-665-6601	
MANAGER,				
SAFETY AND SECURITY	DAVID MUNSEY	WORK MOBILE	405-665-6670 405-207-1562	

III.2.d.iiAS NEEDED: Community Notification LOCAL OIL SPILL RESPONSE CONTRACTORS:

DIXON CONSTRUCTION		DAYTIME SHOP	405 665-5515 405 665-5410
HYDROCHEM Brock Bagby		24 HOUR MOBILE	405-268-1400 316-746-8142
ACTION ENVIRONMENTAL, WILSON, OK		24 HOURS	888-890-2597
LOCAL MUNICIPAL AGENCIES			
GARVIN COUNTY SHERIFFS DEPT	Larry Rhodes		405 238-7591
MURRAY COUNTY SHERIFFS DEPT	Darin Rogers		580 622-5114
LEPC COORDINATOR GARVIN COUNTY	H.D, (Bud) Ramming		405 238-1148
LEPC COORDINATOR MURRAY COUNTY	Norman Shiplett		580 369-3333
III.2.d.iii AS NEEDED: Federal and Stat	e Notification		
NATIONAL RESPONSE CENTER		24 HOURS	800 424-8802
OKLAHOMA DEPARTMENT OF ENVIRONME	NTAL QUALITY	24 HOUR	800 522-0206
OKLAHOMA CORPORATION COMMISSION FIELD OPERATIONS, WYNNEWOOD RESPONSE ZONE, DISTRICT I	Π		
DISTRICT MANAGER	Gayland Darity	DAYTIME	405 255-0103
III.2.d.iv AS NEEDED: Other Oil Spill R	esponse Notification		
III.2.d.iv AS NEEDED: Other Oil Spill R Government	esponse Notification		
•	esponse Notification	DAYTIME	405 238-7346
Government	esponse Notification	DAYTIME DAYTIME	405 238-7346 405 622-3716
Government GARVIN COUNTY HEALTH DEPARTMENT	-		
Government GARVIN COUNTY HEALTH DEPARTMENT MURRAY COUNTY HEALTH DEPARTMENT	-	DAYTIME	405 622-3716
Government GARVIN COUNTY HEALTH DEPARTMENT MURRAY COUNTY HEALTH DEPARTMENT OKLAHOMA DEPARTMENT OF WILDLIFE MA	- ANAGEMENT CONTRACTORS AND GEI	DAYTIME DAYTIME NERAL CONTRA	405 622-3716 405 521-3719
Government GARVIN COUNTY HEALTH DEPARTMENT MURRAY COUNTY HEALTH DEPARTMENT OKLAHOMA DEPARTMENT OF WILDLIFE MA Qualified Spill Contractors FOLLOWING IS A LIST OF SPILL RESPONSE OF	- ANAGEMENT CONTRACTORS AND GEI	DAYTIME DAYTIME NERAL CONTRA	405 622-3716 405 521-3719
Government GARVIN COUNTY HEALTH DEPARTMENT MURRAY COUNTY HEALTH DEPARTMENT OKLAHOMA DEPARTMENT OF WILDLIFE MA Qualified Spill Contractors FOLLOWING IS A LIST OF SPILL RESPONSE OF ARE QUALIFIED AND WHO HAVE AGREED T ACME PRODUCTS COMPANY, INC. P.O. BOX 582015 2666 NORTH DARLINGTON	- ANAGEMENT CONTRACTORS AND GEI	DAYTIME DAYTIME NERAL CONTRA OIL SPILL.	405 622-3716 405 521-3719 ACTORS THAT
Government GARVIN COUNTY HEALTH DEPARTMENT MURRAY COUNTY HEALTH DEPARTMENT OKLAHOMA DEPARTMENT OF WILDLIFE MA Qualified Spill Contractors FOLLOWING IS A LIST OF SPILL RESPONSE OF ARE QUALIFIED AND WHO HAVE AGREED T ACME PRODUCTS COMPANY, INC. P.O. BOX 582015 2666 NORTH DARLINGTON TULSA, OK 74158 SOONER EMERGENCY SERVICE 2244 N. 32ND MUSKOGEE, OK 74401 GARNER ENVIRONMENTAL, HOUSTON, TX	- ANAGEMENT CONTRACTORS AND GEI	DAYTIME DAYTIME NERAL CONTRA OIL SPILL. 24 HOUR 24 HOUR	405 622-3716 405 521-3719 ACTORS THAT 918 836-7184 918 683-2936
Government GARVIN COUNTY HEALTH DEPARTMENT MURRAY COUNTY HEALTH DEPARTMENT OKLAHOMA DEPARTMENT OF WILDLIFE MA Qualified Spill Contractors FOLLOWING IS A LIST OF SPILL RESPONSE OF ARE QUALIFIED AND WHO HAVE AGREED T ACME PRODUCTS COMPANY, INC. P.O. BOX 582015 2666 NORTH DARLINGTON TULSA, OK 74158 SOONER EMERGENCY SERVICE 2244 N. 32ND MUSKOGEE, OK 74401 GARNER ENVIRONMENTAL, HOUSTON, TX	- ANAGEMENT CONTRACTORS AND GEI	DAYTIME DAYTIME NERAL CONTRA OIL SPILL. 24 HOUR 24 HOUR 24 HOUR	405 622-3716 405 521-3719 ACTORS THAT 918 836-7184 918 683-2936 713 930-1200
Government GARVIN COUNTY HEALTH DEPARTMENT MURRAY COUNTY HEALTH DEPARTMENT OKLAHOMA DEPARTMENT OF WILDLIFE MA Qualified Spill Contractors FOLLOWING IS A LIST OF SPILL RESPONSE OF ARE QUALIFIED AND WHO HAVE AGREED T ACME PRODUCTS COMPANY, INC. P.O. BOX 582015 2666 NORTH DARLINGTON TULSA, OK 74158 SOONER EMERGENCY SERVICE 2244 N. 32ND MUSKOGEE, OK 74401 GARNER ENVIRONMENTAL, HOUSTON, TX	- ANAGEMENT CONTRACTORS AND GEI	DAYTIME DAYTIME NERAL CONTRA OIL SPILL. 24 HOUR 24 HOUR	405 622-3716 405 521-3719 ACTORS THAT 918 836-7184 918 683-2936

III.2.e <u>Hazardous Substance/Materials Incident Notification</u> For any Hazardous Substance/Materials Incident, anywhere on WRC property				
III.2.e.i Internal Notification an WRC PERSONNEL RECEIVING SI Upon discovery of, or when a report detailed instructions.	PILL REPORT	azardous Substanc	e/Materials incide	ent, see Section II for
SHIFT SUPERVISOR: OR ASK GATE GUARD TO CO	NTACT SHIFT S	UPERVISOR BY	24 HOUR RADIO	405 665-6556
Qualified Individual/Inciden VICE PRESIDENT,	T COMMANDER			
REFINING:	MIKE SWANS	ON	WORK MOBILE	405-665-6619 620-870-8393
IF UNABLE TO REACH THE ABOV MANAGER,	E INDIVIDUAL TH	EN NOTIFY		
OPERATIONS:	JEFF DANIELS	SON	WORK MOBILE	405-665-6691 405-313-9726
-OR -MANAGER,				
TECHNICAL SERVICES: Also	STEVE GEORO	3E	WORK	405-665-6624
MANAGER, SAFETY AND SECURITY:	DAVID MUNS	EY	MOBILE	405-207-1562
E. R. TEAM CAPTAINS E. R. TEAM				"Red Alert TM " system "Red Alert TM " system
III.2.e.ii IF NEEDED: Commun CITY OF WYNNEWOOD	ity Notification a	nd Call Out		
FIRE DEPARTMENT POLICE DEPARTMENT				911 911
LEPC COORDINATOR, GARVI	N COUNTY	H.D.(Bud) Rami	ming	405 238-1148
III.2.e.iii IF NEEDED: Feder		ification and Call		000 404 0000
NATIONAL RESPONSE CENTR OKLAHOMA DEPARTMENT C		NTAL QUALITY	24 HOURS 24 HOUR	800 424-8802 800 522-0206
LEPC COORDINATOR, MURRA	AY COUNTY	Norman Shiplett		580 369-3333

III.2.f Fire and/or Explosion Notification

For any Fire and/or Explosion, anywhere on WRC property SEE SECT II THE CORE PLAN

III.2.f.i Internal Notification and Call Out24 HOUR6666FOR ALL FIRES/EXPLOSIONS24 HOUR6666				
SHIFT SUPERVISOR: 24 HOUR By refinery radio channel 1 or by phone: 405 665 6556				
QUALIFIED INDIVIDUAL/INCIDEN	T COMMANDER			
VICE PRESIDENT,				
REFINING:	MIKE SWANS	ON	WORK EXT	6619
			MOBILE	620-870-8393
AFTER REACHING THE ABOVE IN	DIVIDUAL OR UN	ABLE TO REACH THE ABOV	VE INDIVIDUAL	
THEN NOTIFY				
MANAGER,				
OPERATIONS:	JEFF DANIELS	SON	WORK EXT	6691
			MOBILE	405-313-9726
AND				
MANAGER,				
TECHNICAL SERVICES:	STEVE GEOR	GE	WORK EXT	6624
ALSO				
MANAGER,				
SAFETY AND SECURITY:	DAVID MUNS	EY	MOBILE	405-207-1562
E. R. TEAM CAPTAINS			"Red A	Alert TM " system
E. R. TEAM			"Red A	lert [™] ' system
III.2.f.ii IF NEEDED: Comm	unity Notificatio	n and Call Out		
CITY OF WYNNEWOOD				
FIRE DEPARTMENT				911
POLICE DEPARTMENT				911
LEPC COORDINATOR, GARVIN COUNTYH.D.(Bud) Ramming405 238-1148				

Appendix P
Discharge Response Equipment Inventory

Facility Response Equipment List

All of the following equipment is inspected and maintained on a regular monthly schedule.

Description		Quantity	Stored Location
Apparatus			
= =	Mack/Pierce Rescue Pump		Fire Station #1
0	1500 gpm Pierce onboard fire water	pump	
0	750 gallon tank w/ 1% by 3% Thund		n
0	2 pre-connect crosslays 3"x2 ¹ / ₂ " con		
	with 100' of 2 ¹ / ₂ " hose, 2.5"	gated wye to	
	200' of 1 ¹ / ₂ " fire hose w/ Qu	adracup TM nozzles	
0	3 "x2 $\frac{1}{2}$ " fire hose	300'	
0	5" w/Storz LDH fire hose	500'	
0	Task Force Tip "Hurricane [™] " remo	te deck cannon w/ 125	50 gpm nozzle
0	On board tool boxes:		
	 Blitzfire XXC-33 Oscillating 		2
	■ 5" Storz x 5" Storz x 4 2 ½"		1
	 Assorted nozzles, fittings and 	-	
• 1990	Chubb-National GMC foam pumpe	r	Fire Station #1
0			1
0	1000 gal foam tank w/ 1% by 3% Th	nunderstorm Foam	1
0	1500' of 2 ¹ / ₂ " and 1 ¹ / ₂ " fire hose		
0			
	 Blitzfire XXC-33 Oscillating 		1
	 5" Storz X 5" Storz x 4 2 ½" 	MNST Water Thief	1
Fire Appara	tus Appliances & Hose		
• 5" Sto	orz x 6" FNST Rigid Rocker lug adapt	or 2	Firewater
Pump	House		
• 5" Sto	orz x 5" Storz x 4/2 ¹ /2" MNST Water T	Thief 2	Firewater
Pump	House		
• 50° 5°	'hose with Storz TM fittings	4	Firewater
Pump	House		
• 25' 5'	'hose w/ Storz TM fittings	4	Firewater
Pump	House		
Foam System	ns (Fast Attack ¾ ton Pickups)		
-	mounted Daspit [™] Mount 1500 gpm se	elf-educating nozzle	
	allon foam tank	8	
2008			
Foam trailer	$(2 \ 15/16^{\text{th}})$ ball)	2	
	" waterway, Daspit Mount 1500 gpm	self-educating nozzle	
	s 265 gallons 1/3% Thunderstorm fire	-	Fire Station #1
	-		

 Unit Initial Response Team Fire Equipment (Fa Duraworx Deluxe Garden Dart 3"x 2 ½"High-Tech[™] 500 rubber fire hose TFT AC5ANJ-NJ Hydrant Valve 2 ½" gate TFT XX-32 Blitzfire Monitor 2 Wheel Monitors 350 gpm nozzle 2 Wheeled Monitor w/ 350 gpm nozzle 	;	ck Trail	12 Fire 36 Fire 12 Fire 12 Fire 3 Safe	e Houses 1-6 e Houses 1-7 e Houses 1-8 e Houses 1-9 ety Building KY Operator Shelter
Fire Hose & Appliances				
 LDH trailer 5" soft suction Storz connector 100 5" soft suction Storz connector 50 for the sector of the sector store of the sector sect	ft section alve	ns	1 30 joir 10 joir 4 4 4 4	
Rescue/Medical				
 Cardiac Science Automatic AED PLS 1014 Blood Borne Pathogen/ Personal 	Protecti	ion Kit	8 6	Fire Station #1
HazMat PPE				
14" Wells Cargo Trailer Fire Station #1 o Tychem TK Level A suits 2-L &2-XL			Fire Station #1	
Respiratory Protection				Fire Station #1
 14" Cargo Trailer 1 hour SCOTT Air-Pak 50 units 1 hour SCOTT Air-Pak 50 spare box 	ottles		16 16	Fire Station #1
 Absorbent Boom 402 8"x 20' 2 boom per bag MAT 405-01 50'x17" PIG403 Mops on 50' rope RNG202 Absorbent Wringer 100'x 6"x 12" floating skirted boom Tow Bridle for floating skirt boom 	25 20 20 1 4 8	Spill R Spill R Spill R Spill R	lespons lespons lespons lespons	e Building e Building e Building e Building e Building e Building
Spill Response Heavy Equipment (Available	on-site)			
 Vacuum Truck Backhoe Winch Trucks Compressors (Mobile air compressors) 	1 1 2 2	South Old Zo Pipefit		-

• Hand Tools

- 3 shovels
- 6 squeegees
- Chicken wire

• Hand Tools

Storage location: Warehouse/Tool Room

• The refinery tool room, warehouse, and machine shop maintain inventories of air hose, fire hose, chemical hose, hand tools, power tools, and shop tools.

• Personal Protective Equipment

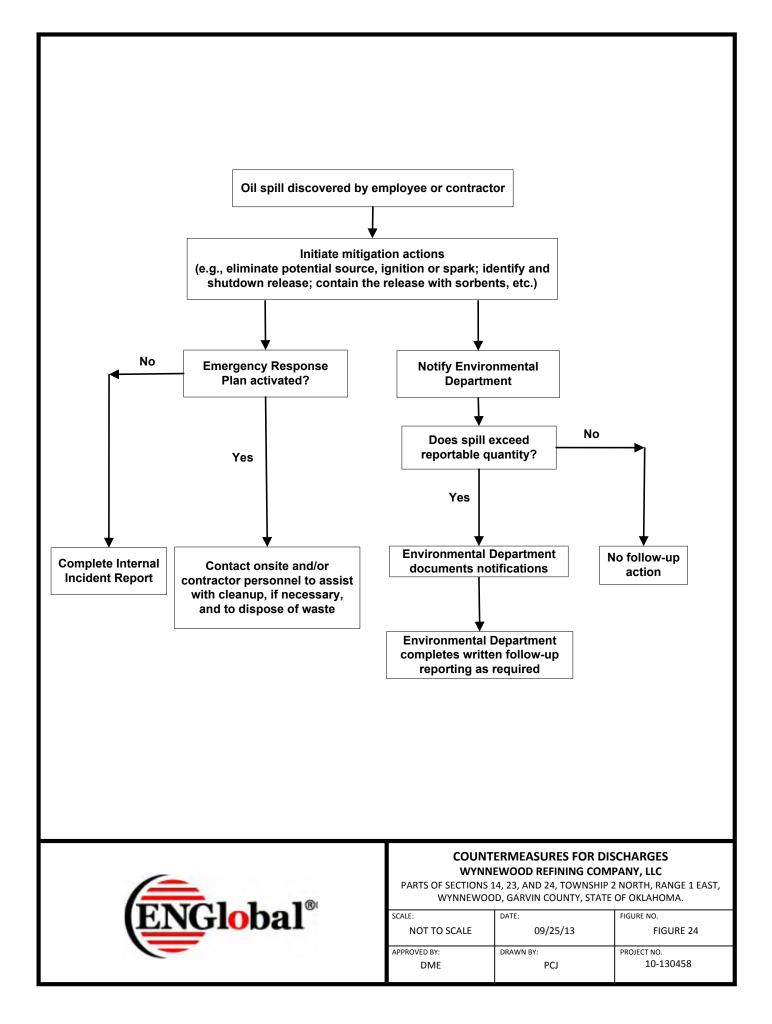
Storage location: SPCC Building

- Rubber boots
- Chest-high waders
- Gauntlet gloves
- Face shields

• Personnel Protective Equipment

Storage location: Warehouse/Tool room

- Rubber boots
- Chest-high waders
- Gauntlet gloves
- Face shields
- Chemical splash suits
- Goggles


Communication Equipment

- Refinery Emergency Alert Notification System
- Refinery telephone system, phones located in all local control rooms and the pipeline office
- UHF & VHF two-way radios³; 6 repeaters
- Cellular telephones

Storage location: SPCC Building

Appendix Q

Discharge Notification Procedures & Forms

RQ RELEASE NOTIFICATION FORM

Release Date	Time began, duration (or ongoing)
Material(s) released & <u>estimated</u> qty (or pot $(H_2S, SO_2, HF are listed by EPA as Extreme$	entially >RQ) or release rate: ely Hazardous Substances)
Responsible for release: Wynnewood Refining Company 906 S. Powell, Wynnewood, OK Garvin County	
Source/location of release (e.g., flare):	
Medium released to (air, land, water):	
Event Description/Cause (e.g., planned/unpl	anned maintenance, non-emergency situation):
	, sulfur shedding/minimization, reduced charge/production rate):
Any medical attention necessary or acute/ch	ronic nearth risks associated with release?
LEPC Contact: Bud Ramming, 405 331-92 Time notified:	22
SERC Contact/DEQ Hotline: 800 522-0206	5 (405 627-3527) Name of DEQ Contact:
Time notified:	
NRC: 800 424-8802 Name of NRC Conta	act: NRC report No:
Time notified:	Weather conditions:
Notifications made by:	Phone No