APPENDIX A. SYSTEM OPTIONS WITH MINIMUM VERTICAL SEPARATION DISTANCES AND MINIMUM LOT SIZE REQUIREMENTS [REVOKED]

Figure 1. Options and Vertical Separation Distances for Systems Designed Using a Soil Profile Description

PREVALENT SOIL GROUP IN SEPARATION RANGE	CONVENTIONAL AND SHALLOW EXTENDED SUBSURFACE ABSORPTION FIELD	LOW PRESSURE DOSING FIELD	ET/A FIELD	LAGOON	DRIP IRRIGATION FIELD PRECEDED BY AEROBIC TREATM ENT UNIT	SPRAY IRRIGATION FIELD PRECEDED BY AEROBIC TREATM ENT UNIT
1	NOT ALLOWED	ALLOWED If at least 24 " of separation between the trench bottom and the limiting layer	ALLOWED If installed in Group 5 soil with at least $6^{\prime \prime}$ of separation between the trench bottom a n d soil impervious to boringorw a te rsaturated soil. ET/A's are not allowed in Zone 1, see Appendix H, Figures 10 and 11. Requires lot size of at least 1 acre.	ALLOWED No applicable vertical s eparation range. Requires a lot size of at least $21 / 2$ acres. Lagoons are not allowed in Zone 1, see Appendix H, Figures 23 and 24. Lagoons are not acceptable in Zones 7-10 when the flow is less than 100 gpd .	ALLOWED If at least $18^{\prime \prime}$ of separation between the drip line and rock and/or water saturated soil	ALLOWED No applicable vertical separation range.
2	ALLOWED If at least 24" of separation between the trench bottom and the limiting layer	ALLOWED If at least $16^{\prime \prime}$ of separation between the trench bottom and the limiting layer			ALLOWED If at least 14" of separation between the drip line and rock and/or water saturated soil	
2 a	ALLOWED If at least 21" of separation between the trench bottom and the limiting layer	ALLOWED If at least 14 " of separation between the trench bottom and the limiting layer			ALLOWED If at least 12" of separation between the drip line and rock and/or water saturated soil	
3	ALLOWED If at least $18^{\prime \prime}$ of separation between the trench bottom and the limiting layer	ALLOWED If at least $12^{\prime \prime}$ of separation between the trench bottom and the limiting layer			ALLOWED If at least $10^{\prime \prime}$ of separation between the drip line and rock and/or water saturated soil	
3a	ALLOWED If at least 14" of separation between the trench bottom and the limiting layer	ALLOWED If at least $10^{\prime \prime}$ of separation between the trench bottom and the limiting layer			ALLOWED If at least 8 " of separation between the drip line and rock and/ or water saturated soil	
4	ALLOWED If at least 10" of separation between the trench bottom and the limiting layer	ALLOWED If at least 6" of separation between the trench bottom and the limiting layer			ALLOWED If at least $6^{\prime \prime}$ of separation between the drip line and rock and/ or water saturated soil	
5	NOT ALLOWED	NOT ALLOWED			ALLOWED If at least $6^{\prime \prime}$ of separation between the drip line and rock and/ or wa t er saturated soil	

Figure 2. Options and Vertical Separation Distances for Systems Designed Using a Percolation Test

Figure 3. Minimum Lot Size Requirements

TYPE OF TREATMENT/DISPERSAL FIELD	MINIMUM LOT SIZE †	
	With private well	With public water
Conventional or Shallow Extended Subsurface Absorption Field in Dispersal Site with: (a) Percolation rate of 30 minutes or less; or (b) Group 2, 2a or 3 soil classification	$3 / 4$ acre	$1 / 2$ acre
Conventional or Shallow Extended Subsurface Absorption Field in Dispersal Site with: (a) Percolation rate of more than 30 minutes; or (b) Group 3a or 4 soil classification	1 acre	1 acre
Low Pressure Dosing Field in Dispersal Site with Group 1 or 2 soil classification	$3 / 4$ acre	$1 / 2$ acre
Evapotranspiration/Absorption (ET/A) Field	1 acre	1 acre
Drip Irrigation Field	$3 / 4$ acre	$1 / 2$ acre
Spray Irrigation Field	$3 / 4$ acre	$1 / 2$ acre
Lagoon	$21 / 2$ acres	$21 / 2$ acres

[^0]
APPENDIX A. SYSTEM OPTIONS WITH MINIMUM VERTICAL SEPARATION DISTANCES AND MINIMUM LOT SIZE REQUIREMENTS [NEW]

Figure 1. Options and Vertical Separation Distances for Systems Designed Using a Soil Profile Description

Figure 2. Options and Vertical Separation Distances for Systems Designed Using a Percolation Test

PERCOLATION RATE	CONVENTIONAL SUBSURFACE ABSORPTION FIELD	SHALLOW EXTENDED SUBSURFACE ABSORPTION \& ET/A FIELD	LAGOON	DRIP IRRIGATION FIELD PRECEDED BY AEROBIC TREATMENT UNIT	SPRAY IRRIGATION FIELD PRECEDED BY AEROBIC TREATMENT UNIT
0-75 mpi	ALLOWED If at least $6^{\prime \prime}$ of separation between the bottom of the trench and the bottom of the percolation test hole	NOT ALLOWED Must be designed with a soil profile description	ALLOWED	NOT ALLOWED Must be designed with soil profile description	ALLOWED If sized using Group 5 sizing criteria
>75 mpi	NOT ALLOWED				

Figure 3. Minimum Lot Size Requirements

TYPE OF TREATMENT/DISPERSAL 	MINIMUM LOT SIZE ${ }^{\dagger}$	
	With private well	With public water
Conventional or Shallow Extended Subsurface Absorption Field in Dispersal Site with: (a) Percolation rate of 30 minutes or less; or (b) Group 2, 2a, or 3 soil classification	$3 / 4$ acre	
Conventional or Shallow Extended Subsurface Absorption Field in Dispersal Site with: (a) Percolation rate of more than 30 minutes; or (b) Group 3a or 4 soil classification	$1 / 2$ acre	
Evapotranspiration/Absorption (ET/A) Field		
Drip Irrigation Field	1 acre	1 acre
Spray Irrigation Field	$3 / 4$ acre	$1 / 2$ acre
Lagoon	$3 / 4$ acre	$1 / 2$ acre

[^1]
APPENDIX C. PIPE SPECIFICATIONS FOR ON-SITE SEWAGE TREATMENT SYSTEMS [REVOKED]

USE	PIPE SIZE	ACCEPTABLE MATERIALS
Solid pipe when used for single family residences or small public systems where the flow is 1,500 gpd or less	$3^{\prime \prime}$ to 4" diameter	Acrylonitrile Butadiene Styrene (ABS): ASTM D2661

\dagger All reclaimed, pressurized water piping shall be colored purple (Pantone 522) by the manufacturer.

APPENDIX C. PIPE SPECIFICATIONS FOR ON-SITE SEWAGE TREATMENT SYSTEMS [NEW]

USE	PIPE SIZE	ACCEPTABLE MATERIALS
Solid pipe when used for single family residences or small public systems where the flow is $1,500 \mathrm{gpd}$ or less	3" to 4" diameter	Acrylonitrile Butadiene Styrene (ABS): ASTM D2661 ASTM D2751 ASTM F628 Polyvinyl Chloride (PVC): ASTM D2665 ASTM D2949 ASTM D3033
Solid pipe when the average flow is greater than $1,500 \mathrm{gpd}$	Minimum 6" diameter	ASTM D3034 ASTM F789
Discharge line from lift stations or other pressurized effluent wastewater lines ${ }^{\dagger}$	Minimum 1" diameter	Polyvinyl Chloride (PVC): ASTM D2846 ASTM F441 ASTM F442 Schedule 40
Perforated pipe when used in a conventional subsurface absorption or an ET/A field	Minimum 3" diameter	Polyethylene (PE): ASTM F810 ASTM D3350 Polyvinyl Chloride (PVC): ASTM D2729 ASTM D3034 ASTM D3350

\dagger All reclaimed, pressurized water piping shall be colored purple (Pantone 522) by the manufacturer.

APPENDIX E. HORIZONTAL SEPARATION DISTANCE REQUIREMENTS FOR ON-SITE SEWAGE TREATMENT SYSTEMS [REVOKED]

Required Horizontal Separation Distances in Feet

	Aerobic Treatment Unit, Flow Equalization Tank, Low Pressure Dosing Tank, Lift Station, Septic Trash Tank	Perforated Pipe, Chamber, or Drip Irrigation Line	Solid Pipe	Lagoons	Spray Irrigation Heads	Spray Irrigation Effluent
Private Well or Surface Water Supply	50^{1}	50^{1}	503	502,4	50^{1}	25
Public Water Supply Well	300	300	50	$300{ }^{4}$	300	300
Building	5	5	N/A	50 5, 6	N/A	N/A
Other Structure 7	N/A ${ }^{8}$	5	N/A ${ }^{9}$	N/A	N/A	N/A
Waterline	5	15	10^{10}	154	15	N/A
Property Line	5	5	5	105	10	10
Impoundment or Stream ${ }^{11}$	15	15	N/A	155	25	25
French Drain/ Curtain Drain	15	15	N/A	155	15	15

${ }^{1}$ Distances shall be one hundred feet (100') if the soil percolates one inch (1") in less than five (5) minutes or is classified as a Group 1 soil in the separation range.
${ }^{2}$ Distances shall be one hundred feet (100 ') if the ground slopes toward the water supply.
${ }^{3}$ Distances may be reduced up to ten feet $\left(10^{\prime}\right)$ if, at a minimum, Schedule 40 pipe is used.
${ }^{4}$ The distance shall be measured horizontally from the center line of the nearest dike.
${ }^{5}$ The distance shall be measured from the outside base of the nearest dike.
${ }^{6}$ This only applies to residences that are not located on the owner's property.
${ }^{7}$ "Other structures" include but are not limited to driveways, parking lots and paved areas.
${ }^{8}$ If septic tanks are located under paved areas, access to all manhole/cleanout openings shall be provided.
${ }^{9}$ If solid pipe is installed under a roadway or a driveway, the pipe under the roadway/driveway and the ten feet (10') of pipe extending out from under the roadway/driveway on both sides shall be, at a minimum Schedule 40 pipe or sleeved with Schedule 40 pipe.
${ }^{10}$ Ten feet (10^{\prime}) horizontal or two feet (2^{\prime}) vertical separation shall be maintained between any water line and solid pipe. When proper horizontal and vertical separation cannot be obtained then the solid pipe shall be constructed of, at a minimum, Schedule 40 pipe and shall be installed so the joints of both the water line and the solid pipe are as far apart as possible

APPENDIX E. HORIZONTAL SEPARATION DISTANCE REQUIREMENTS FOR ONSITE SEWAGE TREATMENT SYSTEMS [NEW]

Required Horizontal Separation Distances in Feet

	AEROBIC TREATMENT UNIT, FLOW EQUALIZATION TANK, LIFT STATION, SEPTIC \& TRASH TANK	PERFORATED PIPE, CHAMBER, OR DRIP IRRIGATION LINE	$\underset{\text { PIPE }}{\text { SOLID }}$	LAGOONS	SPRAY IRRIGATIONS HEADS	SPRAY IRRIGATION EFFLUENT
Private Well or Surface Water Supply	50^{1}	50^{1}	50^{3}	$50^{2,4}$	50^{1}	25
Public Water Supply Well	300	300	50	$300{ }^{4}$	300	300
Building	5	5	N/A	$50^{5,6}$	N/A	N/A
Other Structure ${ }^{7}$	N/A ${ }^{8}$	5	N/A ${ }^{9}$	N/A	N/A	N/A
Waterline	5	15	10^{10}	15^{4}	15	N/A
Property Line	5	5	5	10^{5}	10	10
Impoundment or Stream ${ }^{11}$	15	15	N/A	15^{5}	25	25
French/Curtain Drain	15	15	N/A	15^{5}	15	15

${ }^{1}$ Distances shall be one hundred feet (100^{\prime}) if the soil percolates one inch ($1^{\prime \prime}$) in less than five (5) minutes or is classified as a Group 1 soil in the separation range.
${ }^{2}$ Distances shall be one hundred feet (100^{\prime} ') if the ground slopes toward the water supply.
${ }^{3}$ Distances may be reduced up to ten feet (10') if, at a minimum, Schedule
40 pipe is used.
${ }^{4}$ The distance shall be measured horizontally from the center line of the nearest dike.
${ }^{5}$ The distance shall be measured from the outside base of the nearest dike.
${ }^{6}$ This only applies to residences that are not located on the owner's property.
${ }^{7}$ "Other structures" include but are not limited to driveways, parking lots, and paved areas.
${ }^{8}$ If septic tanks are located under paved areas, access to all manhole/cleanout openings shall be provided.
${ }^{9}$ If solid pipe is installed under a roadway or a driveway, the pipe under the roadway/driveway and the ten feet (10') of pipe extending out from under the roadway/driveway on both sides shall be, at a minimum Schedule 40 pipe or sleeved with Schedule 40 pipe.
${ }^{10}$ Ten feet (10^{\prime}) horizontal or two feet (2^{\prime}) vertical separation shall be maintained between any water line and solid pipe. When proper horizontal and vertical separation cannot be obtained then the solid pipe shall be constructed of, at a minimum, Schedule 40 pipe and shall be installed so the joints of both the water line and the solid pipe are as far apart as possible.

APPENDIX H. SIZE CHARTS FOR ON-SITE SEWAGE TREATMENT SYSTEMS [REVOKED]

Figure 1. Individual Conventional Subsurface Absorption Fields Designed Using a Percolation Test

Soil Percolation Rate min/inch	NUMBER OF BEDROOMS IN RESIDENCE							
	Two or Fewer		Three		Four		Each Add. Bedroom	
	Gravel	Manufactured Media						
0-15	200	160	270	215	340	270	70	55
16-30	310	250	410	330	510	410	100	80
31-45	420	340	560	450	700	560	140	110
46-60	590	470	790	630	990	790	200	160
61-75	770	620	1030	830	1290	1040	260	210
>75	Prohibited							

\dagger These figures are based on an average flow of 6,000 gallons per month for a two-bedroom residence with an additional 2,000 gallons per month added for each additional bedroom. The size of the system should be increased if the actual or anticipated water usage exceeds this average.

Figure 2. Individual Conventional Subsurface Absorption Fields Designed Using a Soil Profile Description

Soil Group	NUMBER OF BEDROOMS IN RESIDENCE							
	Two or Fewer		Three		Four		Each Add. Bedroom	
	Gravel	Manufactured Media						
1	Prohibited							
2	160	120	210	160	260	195	50	40
2a	250	190	330	250	410	310	80	60
3	340	255	450	340	550	415	100	75
3a	500	375	665	500	830	625	165	120
4	660	500	880	660	1,100	825	220	160
5	Prohibited							

[^2]Figure 3. Minimum Length Requirements Using a Soil Profile Description (Net Evaporation Zones 6-8) [See Figure 22 in this Appendix]

Soil Group	NUMBER OF BEDROOMS IN RESIDENCE							
	Two or Fewer		Three		Four		Each Add. Bedroom	
	Gravel	Manufactured Media						
1	Prohibited							
2	135	120	175	160	220	195	50	40
2a	215	190	280	250	350	310	80	60
3	290	255	380	340	465	415	100	75
3a	425	375	565	500	705	625	165	120
4	560	500	750	660	935	825	220	160
5	Prohibited							

\dagger These figures are based on an average flow of 6,000 gallons per month for a two-bedroom residence with an additional 2,000 gallons per month added for each additional bedroom. The size of the system should be increased if the actual or anticipated water usage exceeds this average. Abit S. 2019: Modeling Soil Treatment Area Requirements for Conventional Septic Systems across a Climate Gradient, Oklahoma State University.

Figure 4. Minimum Length Requirements Using a Soil Profile Description (Net Evaporation Zones 9-10) [See Figure 22 in this Appendix]

Soil Group	NUMBER OF BEDROOMS IN RESIDENCE							
	Two or Fewer		Three		Four		Each Add. Bedroom	
	Gravel	Manufactured Media						
1	Prohibited							
2	115	115	150	150	185	185	50	40
2a	175	175	230	230	290	290	80	60
3	240	240	315	315	385	385	100	75
3a	350	350	465	465	580	580	165	120
4	460	460	620	620	770	770	220	160
5	Prohibited							

\dagger These figures are based on an average flow of 6,000 gallons per month for a two-bedroom residence with an additional 2,000 gallons per month added for each additional bedroom. The size of the system should be increased if the actual or anticipated water usage exceeds this average. Abit S. 2019: Modeling Soil Treatment Area Requirements for Conventional Septic Systems across a Climate Gradient, Oklahoma State University.

Figure 5. Small Public Conventional Subsurface Absorption Fields Designed Using a Percolation Test

Minimum Linear Feet Per Gallon per Day

PERCOLATION RATE FOR DISPERSAL SITE	LINEAR FEET PER GALLON PER DAY
$0-15$ minutes per inch	1.2
$16-30$ minutes per inch	1.5
$31-45$ minutes per inch	2
$46-60$ minutes per inch	2.5
$61-75$ minutes per inch	3.85
>75 minutes per inch	Prohibited

Figure 6. Small Public Conventional Subsurface Absorption Fields Designed Using a Soil Profile Description

Minimum Linear Feet per Gallon per Day

SOIL GROUP	LINEAR FEET PER GALLON PER DAY
$\mathbf{1}$	Prohibited
$\mathbf{2}$	0.8
$\mathbf{2 a}$	1.3
$\mathbf{3}$	1.7
$\mathbf{3 a}$	2.5
$\mathbf{4}$	3.3
$\mathbf{5}$	Prohibited

Figure 7. Individual Shallow Extended Subsurface Absorption Fields Designed Using a Soil Profile Description

Minimum Trench Length in Feet

SOIL GROUP	NUMBER OF BEDROOMS IN RESIDENCE ${ }^{\dagger}$			
	Two or Fewer	Three	Four	Each Additional Bedroom
$\mathbf{1}$	Prohibited			
$\mathbf{2}$	260	340	420	80
$\mathbf{2 a}$	400	530	660	130
$\mathbf{3}$	540	720	900	180
$\mathbf{3 a}$	800	1,060	1,320	260
$\mathbf{4}$	1,060	1,410	1,760	350
$\mathbf{5}$	Prohibited			

\dagger These figures are based on an average flow of 6,000 gallons per month for a two-bedroom residence with an additional 2,000 gallons per month added for each additional bedroom. The size of the system should be increased if the actual or anticipated water usage exceeds this average.

Figure 8. Small Public Shallow Extended Subsurface Absorption Fields Designed Using a Soil Profile Description

Minimum Linear Feet per Gallon per Day

SOIL GROUP	LINEAR FEET PER GALLON PER DAY
$\mathbf{1}$	Prohibited
$\mathbf{2}$	1.3
$\mathbf{2 a}$	2.1
$\mathbf{3}$	2.7
$\mathbf{3 a}$	4.0
$\mathbf{4}$	5.3
$\mathbf{5}$	Prohibited

Figure 9. Individual Low Pressure Dosing Fields Designed Using a Soil Profile Description
Total Linear Trench Length in Feet

SOIL GROUP $^{\dagger} \dagger$	NUMBER OF BEDROOMS IN RESIDENCE †			
	Two or Fewer	Three	Four	Five
$\mathbf{2}$	120	160	200	240
2a, 3, 3a, 4, \& 5	160	200	240	280

\dagger These figures are based on an average flow of 6,000 gallons per month for a two-bedroom residence with an additional 2,000 gallons per month added for each additional bedroom. The size of the system should be increased if the actual or anticipated water usage exceeds this average.
$\dagger \dagger$ Low pressure dosing fields may be allowed in soil groups $2 \mathrm{a}, 3,3 \mathrm{a}$ and 4 when designed and approved as an alternative on-site sewage treatment system.

Figure 10. Small Public Low Pressure Dosing Fields Designed Using a Soil Profile Description

Total Linear Trench Length in Feet

SOIL GROUP †	$\mathbf{4}$ AV ERAGE DAILY FLOW IN GALLONS			
	$\mathbf{2 0 0}$	$\mathbf{2 7 5}$	$\mathbf{3 5 0}$	$\mathbf{4 0 0}^{\dagger+}$
$\mathbf{1}$	120	160	200	240
$\mathbf{2}$	160	200	240	280
$\mathbf{2 a}, \mathbf{3 , 3 a}, \mathbf{4}$ $\mathbf{\& 5}$	Prohibited			

\dagger Low pressure dosing fields may be allowed in soil groups $2 \mathrm{a}, 3,3 \mathrm{a}$ and 4 when designed and approved as an alternative on-site sewage treatment system.
$\dagger \dagger$ Low pressure dosing fields may be allowed for average daily flows over 400 gpd , but they will have to be designed and approved as an alternative on-site sewage treatment system.

Figure 11. Individual ET/A Fields Designed Using a Soil Profile Description - Soil Group 5 Only

Minimum Trench Length in Feet

ZONE ZSee Figure 25 in this Appendix (relating to net evaporation zones)]	NUMBER OF BEDROOMS IN RESIDENCE ${ }^{\dagger}$			
	Two or Fewer	Three	Four	Each Additional Bedroom
$\mathbf{1}$	2,059	2,745	3,432	686
$\mathbf{2}$	1,872	2,496	3,120	624
$\mathbf{3}$	1,647	2,196	2,745	549
$\mathbf{4}$	1,471	1,961	2,451	490
$\mathbf{5}$	1,373	1,830	2,288	457
$\mathbf{6}$	1,144	1,525	1,907	381
$\mathbf{7}$	958	1,277	1,596	319
$\mathbf{8}$	792	1,056	1,320	264
$\mathbf{9}$	675	900	1,125	225
$\mathbf{1 0}$	580	773	967	193

\dagger These figures are based on an average flow of 6,000 gallons per month for a two-bedroom residence with an additional 2,000 gallons per month added for each additional bedroom. The size of the system should be increased if the actual or anticipated water usage exceeds this average.

Figure 12. Small Public ET/A Fields Designed Using a Soil Profile Description - Soil Group 5 Only

Minimum Trench Length in Feet

AVERAGE DAILY	ZONE [See Figure 25 in this Appendix (relating to net evaporation zones)]									
FLOW In Gallons	1	2	3	4	5	6	7	8	9	10
25	261	238	209	187	174	145	122	100	86	70
50	522	475	418	373	348	290	243	200	171	141
75	783	712	626	560	522	435	364	300	257	212
100	1,044	949	835	746	696	580	485	401	342	282
200	2,088	1,898	1,670	1,491	1,392	1,160	971	803	684	564
300	3,131	2,847	2,505	2,237	2,088	1,740	1,456	1,204	1,027	846
400	4,175	3,796	3,340	2,982	2,784	2,320	1,942	1,606	1,369	1,128
500	5,219	4,745	4,175	3,728	3,479	2,899	2,427	2,007	1,711	1,411
600	6,263	5,694	5,010	4,473	4,175	3,479	2,913	2,409	2,053	1,693
700	7,307	6,642	5,845	5,219	4,871	4,059	3,398	2,810	2,396	1,975
800	8,351	7,591	6,680	5,965	5,567	4,639	3,884	3,112	2,738	2,257
900	9,394	8,540	7,515	6,710	6,263	5,219	4,369	3,613	3,080	2,539
1,000	10,438	9,489	8,351	7,456	6,959	5,799	4,855	4,015	3,422	2,821
1,100	11,482	10,438	9,186	8,201	7,655	6,379	5,340	4,416	3,765	3,105
1,200	12,526	11,387	10,021	8,947	8,351	6,959	5,826	4,818	4,107	3,385
1,300	13,570	12,336	10,856	9,693	9,046	7,539	6,311	5,219	4,449	3,667
1,400	14,613	13,285	11,691	10,438	9,742	8,119	6,797	5,621	4,791	3,950
1,500	15,657	14,234	12,526	11,184	10,438	8,698	7,282	6,022	5,134	4,232
1,600	16,701	15,183	13,361	11,929	11,134	9,278	7,768	6,423	5,476	4,514
1,700	17,745	16,132	14,196	12,675	11,830	9,858	8,253	6,825	5,818	4,796
1,800	18,789	17,081	15,031	13,420	12,526	10,438	8,739	7,226	6,160	5,078
1,900	19,832	18,030	15,866	14,166	13,222	11,018	9,224	7,628	6,502	5,360
2,000	20,876	18,978	16,701	14,912	13,918	11,598	9,710	8,029	6,845	5,642
2,500	26,095	23,718	20,876	18,640	17,397	14,498	12,138	10,037	8,556	7,053
3,000	31,314	28,458	25,052	22,367	20,876	17,397	14,565	12,044	10,267	8,463
3,500	36,533	33,212	29,227	26,096	24,356	20,296	16,993	14,052	11,978	9,874
4,000	41,753	37,957	33,402	29,823	27,835	23,196	19,420	16,059	13,689	11,284
4,500	46,972	42,702	37,578	33,551	31,314	26,096	21,848	18,066	15,401	12,695
5,000	52,191	47,446	41,573	37,279	34,794	28,995	24,275	20,073	17,112	14,106

Figure 13. Drip Irrigation Fields Designed Using a Soil Profile Description

SOIL GROUP	NUMBER OF BEDROOMS IN RESIDENCE †			Small Public Systems	
	Two or Fewer	Three	Four	Each Additional Bedroom	Feet per Gallon per Day
	125	165	205	40	0.70
$\mathbf{2}$	160	210	260	50	0.80
$\mathbf{2 a}$	250	330	410	80	1.3
$\mathbf{3}$	340	450	550	100	1.7
$\mathbf{3 a}$	500	665	830	165	2.5
$\mathbf{4}$	660	880	1,100	220	3.3
$\mathbf{5}$	1,000	1,330	1,660	330	5.0

\dagger These figures are based on an average flow of 6,000 gallons per month for a two-bedroom residence with an additional 2,000 gallons per month added for each additional bedroom. The size of the system should be increased if the actual or anticipated water usage exceeds this average.

Figure 14. Individual Spray Irrigation Fields Designed Using a Soil Profile Description Net Evaporation Zone 1 and 2 [See Figure 22 in this Appendix (relating to net evaporation zones)]

Minimum Spray Irrigation Area in Square Feet

SOIL GROUP	NUMBER OF BEDROOMS IN RESIDENCE †			
	Two or Fewer	Three	Four	Each Additional Bedroom $^{\mathbf{1}}$
$\mathbf{2}$	3,920	3,885	4,862	963
$\mathbf{2 a}$	3,504	4,662	5,835	1,084
$\mathbf{3}$	3,796	5,050	6,321	1,156
$\mathbf{3 a}$	4,088	5,439	6,807	1,252
$\mathbf{4}$	4,380	5,827	7,293	1,348
$\mathbf{5}$	5,840	7,770	9,725	1,445

\dagger These figures are based on an average flow of 6,000 gallons per month for a two-bedroom residence with an additional 2,000 gallons per month added for each additional bedroom. The size of the system should be increased if the actual or anticipated water usage exceeds this average.

Figure 15. Individual Spray Irrigation Fields Designed Using a Soil Profile DescriptionNet Evaporation Zone 3 [See Figure 22 in this Appendix (relating to net evaporation zones)]

Minimum Spray Irrigation Area in Square Feet

SOIL GROUP	NUMBER OF BEDROOMS IN RESIDENCE †			
	Two or Fewer	Three	Four	Each Additional Bedroom
$\mathbf{1}$	2,335	3,107	3,890	770
$\mathbf{2}$	2,568	3,418	4,279	847
$\mathbf{2 a}$	2,802	3,729	4,668	924
$\mathbf{3}$	3,035	4,039	5,057	1,001
$\mathbf{3 a}$	3,269	4,350	5,446	1,078
$\mathbf{4}$	3,502	4,661	5,835	1,156
$\mathbf{5}$	4,670	6,215	7,780	1,541

\dagger These figures are based on an average flow of 6,000 gallons per month for a two-bedroom residence with an additional 2,000 gallons per month added for each additional bedroom. The size of the system should be increased if the actual or anticipated water usage exceeds this average.

Figure 16. Individual Spray Irrigation Fields Designed Using a Soil Profile DescriptionNet Evaporation Zone 4 and 5 [See Figure 22 in this Appendix (relating to net evaporation zones)]
Minimum Spray Irrigation Area in Square Feet

SOIL GROUP	NUMBER OF BEDROOMS IN RESIDENCE †			
	Two or Fewer	Three	Four	Each Additional Bedroom
$\mathbf{1}$	1,821	2,428	3,034	607
$\mathbf{2}$	2,003	2,670	3,337	667
$\mathbf{2 a}$	2,185	2,913	3,641	728
$\mathbf{3}$	2,367	3,156	3,944	789
$\mathbf{3 a}$	2,549	3,399	4,248	850
$\mathbf{4}$	2,731	3,641	4,551	910
$\mathbf{5}$	3,641	4,855	6,068	1,214

[^3]Figure 17. Individual Spray Irrigation Fields Designed Using a Soil Profile DescriptionNet Evaporation Zone 6 and 7 [See Figure 22 in this Appendix (relating to net evaporation zones)]
Minimum Spray Irrigation Area in Square Feet

SOIL GROUP	NUMBER OF BEDROOMS IN RESIDENCE †			
	Two or Fewer	Three	Four	Each Additional Bedroom
$\mathbf{1}$	1,324	1,766	2,207	447
$\mathbf{2}$	1,456	1,942	2,427	486
$\mathbf{2 a}$	1,589	2,119	2,648	530
$\mathbf{3}$	1,721	2,295	2,868	574
$\mathbf{3 a}$	1,854	2,475	3,089	618
$\mathbf{4}$	1,986	2,648	3,310	662
$\mathbf{5}$	2,648	3,531	4,413	883

\dagger These figures are based on an average flow of 6,000 gallons per month for a two-bedroom residence with an additional 2,000 gallons per month added for each additional bedroom. The size of the system should be increased if the actual or anticipated water usage exceeds this average.

Figure 18. Individual Spray Irrigation Fields Designed Using a Soil Profile DescriptionNet Evaporation Zone 8, 9, and 10 [See Figure 22 in this Appendix (relating to net evaporation zones)]

Minimum Spray Irrigation Area in Square Feet

SOIL GROUP	NUMBER OF BEDROOMS IN RESIDENCE †			
	Two or Fewer	Three	Four	Each Additional Bedroom
$\mathbf{1}$	940	1,253	1,566	313
$\mathbf{2}$	1,033	1,378	1,723	345
$\mathbf{2 a}$	1,127	1,504	1,879	377
$\mathbf{3}$	1,221	1,629	2,036	408
$\mathbf{3 a}$	1,315	1,754	2,192	430
$\mathbf{4}$	1,409	1,880	2,349	471
$\mathbf{5}$	1,879	2,506	3,132	627

[^4]Figure 19. Small Public Spray Irrigation Fields Designed Using a Soil Profile Description[See Figure 22 in this Appendix (relating to net evaporation zones)]

Minimum Spray Irrigation Area in Square Feet per Gallon per day

SOIL GROUP	NET EVAPORATION ZONES				
	$\mathbf{1}$ and 2	$\mathbf{3}$	$\mathbf{4}$ and 5	$\mathbf{6}$ and 7	$\mathbf{8 , 9 ,}$ and 10
$\mathbf{1}$	15	12	9	7	5
$\mathbf{2}$	16	13	10	7	5
$\mathbf{2 a}$	18	14	11	8	6
$\mathbf{3}$	19	15	12	9	6
$\mathbf{3 a}$	21	16	13	9	7
$\mathbf{4}$	22	18	14	10	7
$\mathbf{5}$	29	23	18	13	9

Figure 20. Individual Lagoons
Length in Feet of Each Side of the Bottom of a Square Individual Lagoon

ZONE [See Figure 25 in this	NUMBER OF BEDROOMS IN RESIDENCE ${ }^{\dagger}$			
Appendix (relating to net evaporation zones)]	Two or Fewer	Three	Four	Five
1	Contact your local DEQ office for assistance with sizing lagoons in Zones 1 and 2			
2				
3	40	50	60	65
4	35	45	55	60
5	30	40	50	55
6	25	35	45	50
7	20	30	35	45
8	20	25	30	35
9	15	20	25	30
10	10	15	20	25

Diameter in Feet of the Bottom of a Round Individual Lagoon

ZONE	NUMBER OF BEDROOMS IN RESIDENCE ${ }^{\dagger}$			
Appendix (relating to net evaporation zones)]	Two or Fewer	Three	Four	Five
1	Contact your local DEQ office for assistance with sizing lagoons in Zones 1 and 2			
2				
3	50	60	70	80
4	45	55	65	75
5	40	50	60	70
6	35	45	50	60
7	30	40	45	55
8	25	30	40	45
9	20	30	35	40
10	15	25	30	35

\dagger These figures are based on an average flow of 6,000 gallons per month for a two-bedroom residence with an additional 2,000 gallons per month added for each additional bedroom. The size of the system should be increased if the actual or anticipated water usage exceeds this average.

Figure 21. Small Public Lagoons

Length in Feet of Each Side of the Bottom of a Square Small Public Lagoon

AVERAGE DAILY	ZONE [See Figure 25 of this Appendix (relating to net evaporation zones)]								
FLOW In Gallons	11 2	3	4	5	6	7	8	9	10
100	Contact your local DEQ office for assistance with sizing lagoons in Zones 1 and 2	18	16	14	10	Prohibited			
200		38	35	32	27	22	17	14	11
300		54	49	46	40	34	28	24	20
400		67	61	58	51	44	37	32	27
500		78	72	69	60	52	45	39	34
600		88	82	78	69	60	52	46	40
700		98	91	87	77	68	59	52	46
800		107	99	95	84	74	65	58	51
900		115	107	102	91	81	71	63	56
1,000		123	114	110	97	87	76	68	61
1,100		130	122	116	104	92	81	73	65
1,200		138	128	123	110	98	86	77	69
1,300		144	135	129	115	103	91	82	73
1,400		151	141	135	121	108	95	86	77
1,500		157	147	141	126	113	100	90	81
1,600		163	153	147	131	117	104	94	85
1,700		169	158	152	136	122	108	98	88
1,800		175	164	157	141	126	112	101	92
1,900		181	169	162	146	131	116	105	95
2,000		186	174	167	150	135	120	108	98
2,500		212	198	190	171	154	137	125	114
3,000		235	220	212	191	172	154	140	127
3,500		256	240	231	209	188	168	153	140
4,000		276	259	249	225	203	182	166	151

| $\mathbf{4 , 5 0 0}$ | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{5 , 0 0 0}$ | 295 276 266 240 218
 195 178 163
 312 293 282 255 231 | 207 | 189 | 173 |

Diameter in Feet of the Bottom of a Round Small Public Lagoon

AVERAGE DAILY	ZONE [See Figure 25 of this Appendix (relating to net evaporation zones)]								
FLOW In Gallons	1 1 2	3	4	5	6	7	8	9	10
100	Contact your local DEQ office for assistance with sizing lagoons in Zones 1 and 2	25	22	20	15	Prohibited			
200		47	43	40	34	29	23	20	16
300		65	59	56	49	42	35	31	26
400		79	73	70	61	53	45	40	35
500		92	85	81	72	63	54	49	43
600		104	96	92	81	72	62	56	50
700		114	106	102	90	80	69	63	56
800		124	116	111	99	88	76	70	62
900		134	125	119	106	95	82	76	68
1,000		143	133	128	114	102	89	81	73
1,100		151	141	135	121	108	94	87	78
1,200		159	149	143	128	114	100	92	83
1,300		167	156	150	134	120	105	97	88
1,400		174	163	156	140	126	110	102	92
1,500		181	170	163	146	131	115	106	96
1,600		188	176	169	152	136	120	111	100
1,700		195	183	175	158	142	125	115	104
1,800		202	189	181	163	147	129	119	108
1,900		208	195	187	168	151	133	124	112
2,000		214	201	193	173	156	138	128	116
2,500		243	228	219	197	178	157	146	133
3,000		269	252	243	219	198	175	163	149
3,500		293	275	265	239	216	192	178	163

| $\mathbf{4 , 0 0 0}$ | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{4 , 5 0 0}$ | | | | |
| $\mathbf{5 , 0 0 0}$ | 315 296 285 258 233
 207 193 176
 336 316 304 275 249
 221 206 189
 356 335 322 292 264 | 235 | 219 | 201 |

Figure 22. Net Evaporation Zones

COUNTY	ZONE	COUNTY	ZONE	COUNTY	ZONE
Adair	1	Grant	9	Nowata	5
Alfalfa	9	Greer	9	Okfuskee	7
Atoka	6	Harmon	9	Oklahoma	8
Beaver	10	Harper	9	Okmulgee	6
Beckham	9	Haskell	4	Osage	7
Blaine	9	Hughes	6	Ottawa	2
Bryan	6	Jackson	9	Pawnee	7
Caddo	9	Jefferson	9	Payne	7
Canadian	9	Johnston	7	Pittsburg	5
Carter	7	Kay	8	Pontotoc	7
Cherokee	3	Kingfisher	9	Pottawatomie	7
Choctaw	4	Kiowa	9	Pushmataha	3
Cimarron	10	Latimer	3	Roger Mills	9
Cleveland	8	LeFlore	1	Rogers	5
Coal	6	Lincoln	7	Seminole	7
Comanche	9	Logan	8	Sequoyah	3
Cotton	9	Love	7	Stephens	8
Craig	4	McClain	8	Texas	10
Creek	7	McCurtain	1	Tillman	9
Custer	9	McIntosh	5	Tulsa	6
Delaware	1	Major	9	Wagoner	5
Dewey	9	Marshall	7	Washington	6

Ellis	9	Mayes	5	Washita	9
Garfield	9	Murray	7	Woods	9
Garvin	8	Muskogee	5	Woodward	9
Grady	9	Noble	8		

APPENDIX H. SIZE CHARTS FOR ON-SITE SEWAGE TREATMENT SYSTEMS [NEW]

Figure 1. Individual Conventional Subsurface Absorption Fields Designed Using a Percolation Test

Minimum Trench Length in Feet

Soil Percolation Rate (min/inch)	NUMBER OF BEDROOMS IN RESIDENCE \dagger								
	Gravel	Manufactured Media							
$\mathbf{0 - 1 5}$	200	160	270	215	340	270	70	55	
$\mathbf{1 6 - 3 0}$	310	250	410	330	510	410	100	80	
$\mathbf{3 1 - 4 5}$	420	340	560	450	700	560	140	110	
$\mathbf{4 6 - 6 0}$	590	470	790	630	990	790	200	160	
$\mathbf{6 1 - 7 5}$	770	620	1030	830	1290	1040	260	210	
$\mathbf{7 5}$	Prohibited								

\dagger These figures are based on an average flow of 6,000 gallons per month for a two-bedroom residence with an additional 2,000 gallons per month added for each additional bedroom. The size of the system should be increased if the actual or anticipated water usage exceeds this average.

Figure 2. Individual Conventional Subsurface Absorption Fields Designed Using a Soil Profile Description

Minimum Trench Length in Feet

Soil Group	NUMBER OF BEDROOMS IN RESIDENCE \dagger							
	Two or Fewer		Three		Four		Each Add. Bedroom	
	Gravel	Manufactured Media						
1	Prohibited							
2	160	120	210	160	260	195	50	40
2a	250	190	330	250	410	310	80	60
3	340	255	450	340	550	415	100	75
3a	500	375	665	500	830	625	165	120
4	660	500	880	660	1,100	825	220	160
5	Prohibited							

\dagger These figures are based on an average flow of 6,000 gallons per month for a two-bedroom residence with an additional 2,000 gallons per month added for each additional bedroom. The size of the system should be increased if the actual or anticipated water usage exceeds this average.

Figure 3. Minimum Length Requirements Using a Soil Profile Description (Net Evaporation Zones 6-8) [See Figure 20 in this Appendix]

Soil Group	NUMBER OF BEDROOMS IN RESIDENCE \dagger							
	Two or Fewer		Three		Four		Each Add. Bedroom	
	Gravel	Manufactured Media						
1	Prohibited							
2	135	120	175	160	220	195	50	40
2 a	215	190	280	250	350	310	80	60
3	290	255	380	340	465	415	100	75
3a	425	375	565	500	705	625	165	120
4	560	500	750	660	935	825	220	160
5	Prohibited							

\dagger These figures are based on an average flow of 6,000 gallons per month for a two-bedroom residence with an additional 2,000 gallons per month added for each additional bedroom. The size of the system should be increased if the actual or anticipated water usage exceeds this average. Abit S. 2019: Modeling Soil Treatment Area Requirements for Conventional Septic Systems across a Climate Gradient, Oklahoma State University.

Figure 4. Minimum Length Requirements Using a Soil Profile Description (Net Evaporation Zones 9-10) [See Figure 20 in this Appendix]

Soil Group	NUMBER OF BEDROOMS IN RESIDENCE \dagger							
	Two or Fewer		Three		Four		Each Add. Bedroom	
	Gravel	Manufactured Media						
1	Prohibited							
2	115	115	150	150	185	185	50	40
2a	175	175	230	230	290	290	80	60
3	240	240	315	315	385	385	100	75
3a	350	350	465	465	580	580	165	120
4	460	460	620	620	770	770	220	160
5	Prohibited							

\dagger These figures are based on an average flow of 6,000 gallons per month for a two-bedroom residence with an additional 2,000 gallons per month added for each additional bedroom. The size of the system should be increased if the actual or anticipated water usage exceeds this average. Abit S. 2019: Modeling Soil Treatment Area Requirements for Conventional Septic Systems across a Climate Gradient, Oklahoma State University.

Figure 5. Small Public Conventional Subsurface Absorption Fields Designed Using a Percolation Test

Minimum Linear Feet per Gallon per Day

PERCOLATION RATE FOR DISPERSAL SITE	LINEAR FEET PER GALLON PER DAY
$0-15$ minutes per inch	1.2
$16-30$ minutes per inch	1.5
$31-45$ minutes per inch	2
$46-60$ minutes per inch	2.5
$61-75$ minutes per inch	3.85
>75 minutes per inch	Prohibited

Figure 6. Small Public Conventional Subsurface Absorption Fields Designed Using a Soil Profile Description

Minimum Linear Feet per Gallon per Day	
SOIL GROUP	LINEAR FEET PER GALLON PER DAY
$\mathbf{1}$	Prohibited
$\mathbf{2}$	0.8
$\mathbf{2 a}$	1.3
$\mathbf{3}$	1.7
$\mathbf{3 a}$	2.5
$\mathbf{4}$	3.3
$\mathbf{5}$	Prohibited

Figure 7. Individual Shallow Extended Subsurface Absorption Fields Designed Using a Soil Profile Description

Minimum Trench Length in Feet

SOIL GROUP	NUMBER OF BEDROOMS IN RESIDENCE †			
	Two or Fewer	Three	Four	Each Additional Bedroom
	Prohibited			
$\mathbf{2}$	260	340	420	80
$\mathbf{2 a}$	400	530	660	130
$\mathbf{3}$	540	720	900	180
$\mathbf{3 a}$	800	1,060	1,320	260
$\mathbf{4}$	1,060	1,410	1,760	350
$\mathbf{5}$	Prohibited			

\dagger These figures are based on an average flow of 6,000 gallons per month for a two-bedroom residence with an additional 2,000 gallons per month added for each additional bedroom. The size of the system should be increased if the actual or anticipated water usage exceeds this average.

Figure 8. Small Public Shallow Extended Subsurface Absorption Fields Designed Using a Soil Profile Description

Minimum Linear Feet per Gallon per Day

SOIL GROUP	LINEAR FEET PER GALLON PER DAY
$\mathbf{1}$	Prohibited
$\mathbf{2}$	1.3
$\mathbf{2 a}$	2.1
$\mathbf{3}$	2.7
$\mathbf{3 a}$	4.0
$\mathbf{4}$	5.3
$\mathbf{5}$	Prohibited

Figure 9. Individual ET/A Fields Designed Using a Soil Profile Description - Soil Group 5 Only

Minimum Trench Length in Feet

ZONE ZSee Figure 25 in this Appendix (relating to net evaporation zones)]	NUMBER OF BEDROOMS IN RESIDENCE ${ }^{\dagger}$			
	Two or Fewer	Three	Four	Each Additional Bedroom
$\mathbf{1}$	2,059	2,745	3,432	686
$\mathbf{2}$	1,872	2,496	3,120	624
$\mathbf{3}$	1,647	2,196	2,745	549
$\mathbf{4}$	1,471	1,961	2,451	490
$\mathbf{5}$	1,373	1,830	2,288	457
$\mathbf{6}$	1,144	1,525	1,907	381
$\mathbf{7}$	958	1,277	1,596	319
$\mathbf{8}$	792	1,056	1,320	264
$\mathbf{9}$	675	900	1,125	225
$\mathbf{1 0}$	580	773	967	193

\dagger These figures are based on an average flow of 6,000 gallons per month for a two-bedroom residence with an additional 2,000 gallons per month added for each additional bedroom. The size of the system should be increased if the actual or anticipated water usage exceeds this average.

Figure 10. Small Public ET/A Fields Designed Using a Soil Profile Description - Soil Group 5 Only

Minimum Trench Length in Feet

AVERAGE DAILY	ZONE [See Figure 25 in this Appendix (relating to net evaporation zones)]									
FLOW (In Gallons)	1	2	3	4	5	6	7	8	9	10
25	261	238	209	187	174	145	122	100	86	70
50	522	475	418	373	348	290	243	200	171	141
75	783	712	626	560	522	435	364	300	257	212
100	1,044	949	835	746	696	580	485	401	342	282
200	2,088	1,898	1,670	1,491	1,392	1,160	971	803	684	564
300	3,131	2,847	2,505	2,237	2,088	1,740	1,456	1,204	1,027	846
400	4,175	3,796	3,340	2,982	2,784	2,320	1,942	1,606	1,369	1,128
500	5,219	4,745	4,175	3,728	3,479	2,899	2,427	2,007	1,711	1,411
600	6,263	5,694	5,010	4,473	4,175	3,479	2,913	2,409	2,053	1,693
700	7,307	6,642	5,845	5,219	4,871	4,059	3,398	2,810	2,396	1,975
800	8,351	7,591	6,680	5,965	5,567	4,639	3,884	3,112	2,738	2,257
900	9,394	8,540	7,515	6,710	6,263	5,219	4,369	3,613	3,080	2,539
1,000	10,438	9,489	8,351	7,456	6,959	5,799	4,855	4,015	3,422	2,821
1,100	11,482	10,438	9,186	8,201	7,655	6,379	5,340	4,416	3,765	3,105
1,200	12,526	11,387	10,021	8,947	8,351	6,959	5,826	4,818	4,107	3,385
1,300	13,570	12,336	10,856	9,693	9,046	7,539	6,311	5,219	4,449	3,667
1,400	14,613	13,285	11,691	10,438	9,742	8,119	6,797	5,621	4,791	3,950
1,500	15,657	14,234	12,526	11,184	10,438	8,698	7,282	6,022	5,134	4,232
1,600	16,701	15,183	13,361	11,929	11,134	9,278	7,768	6,423	5,476	4,514
1,700	17,745	16,132	14,196	12,675	11,830	9,858	8,253	6,825	5,818	4,796
1,800	18,789	17,081	15,031	13,420	12,526	10,438	8,739	7,226	6,160	5,078
1,900	19,832	18,030	15,866	14,166	13,222	11,018	9,224	7,628	6,502	5,360
2,000	20,876	18,978	16,701	14,912	13,918	11,598	9,710	8,029	6,845	5,642
2,500	26,095	23,718	20,876	18,640	17,397	14,498	12,138	10,037	8,556	7,053
3,000	31,314	28,458	25,052	22,367	20,876	17,397	14,565	12,044	10,267	8,463
3,500	36,533	33,212	29,227	26,096	24,356	20,296	16,993	14,052	11,978	9,874
4,000	41,753	37,957	33,402	29,823	27,835	23,196	19,420	16,059	13,689	11,284
4,500	46,972	42,702	37,578	33,551	31,314	26,096	21,848	18,066	15,401	12,695
5,000	52,191	47,446	41,573	37,279	34,794	28,995	24,275	20,073	17,112	14,106

Figure 11. Drip Irrigation Fields Designed Using a Soil Profile Description

SOIL GROUP	NUMBER OF BEDROOMS IN RESIDENCE				
	Two or Fewer	Three	Four	Small Public Systems	
	Additional Bedroom	Feet per Gallon per Day			
$\mathbf{1}$	125	165	205	40	0.70
$\mathbf{2}$	160	210	260	50	0.80
$\mathbf{2 a}$	250	330	410	80	1.3
$\mathbf{3}$	340	450	550	100	1.7
$\mathbf{3 a}$	500	665	830	165	2.5
$\mathbf{4}$	660	880	1,100	220	3.3
$\mathbf{5}$	1,000	1,330	1,660	330	5.0

\dagger These figures are based on an average flow of 6,000 gallons per month for a two-bedroom residence with an additional 2,000 gallons per month added for each additional bedroom. The size of the system should be increased if the actual or anticipated water usage exceeds this average.

Figure 12. Individual Spray Irrigation Fields Designed Using a Soil Profile Description Net Evaporation Zone 1 and 2
[See Figure 20 in this Appendix (relating to net evaporation zones)]

Minimum Spray Irrigation Area in Square Feet

SOIL GROUP	NUMBER OF BEDROOMS IN RESIDENCE †			
	Two or Fewer	Three	Four	Each Additional Bedroom
$\mathbf{1}$	2,920	3,885	4,862	963
$\mathbf{2}$	3,212	4,273	5,348	1,084
$\mathbf{2 a}$	3,504	4,662	5,835	1,156
$\mathbf{3}$	3,796	5,050	6,321	1,252
$\mathbf{3 a}$	4,088	5,439	6,807	1,348
$\mathbf{4}$	4,380	5,827	7,293	1,445
$\mathbf{5}$	5,840	7,770	9,725	1,927

\dagger These figures are based on an average flow of 6,000 gallons per month for a two-bedroom residence with an additional 2,000 gallons per month added for each additional bedroom. The size of the system should be increased if the actual or anticipated water usage exceeds this average.

Figure 13. Individual Spray Irrigation Fields Designed Using a Soil Profile DescriptionNet Evaporation Zone 3
[See Figure 20 in this Appendix (relating to net evaporation zones)]
Minimum Spray Irrigation Area in Square Feet

SOIL GROUP	NUMBER OF BEDROOMS IN RESIDENCE †			
	Two or Fewer	Three	Four	Each Additional Bedroom
$\mathbf{1}$	2,335	3,107	3,890	770
$\mathbf{2}$	2,568	3,418	4,279	847
$\mathbf{2 a}$	2,802	3,729	4,668	924
$\mathbf{3}$	3,035	4,039	5,057	1,001
$\mathbf{3 a}$	3,269	4,350	5,446	1,078
$\mathbf{4}$	3,502	4,661	5,835	1,156
$\mathbf{5}$	4,670	6,215	7,780	1,541

${ }^{\dagger}$ These figures are based on an average flow of 6,000 gallons per month for a two-bedroom residence with an additional 2,000 gallons per month added for each additional bedroom. The size of the system should be increased if the actual or anticipated water usage exceeds this average.

Figure 14. Individual Spray Irrigation Fields Designed Using a Soil Profile DescriptionNet Evaporation Zone 4 and 5
[See Figure 20 in this Appendix (relating to net evaporation zones)]
Minimum Spray Irrigation Area in Square Feet

SOIL GROUP	NUMBER OF BEDROOMS IN RESIDENCE †			
	Two or Fewer	Three	Four	Each Additional Bedroom
$\mathbf{1}$	1,821	2,428	3,034	607
$\mathbf{2}$	2,003	2,670	3,337	667
$\mathbf{2 a}$	2,185	2,913	3,641	728
$\mathbf{3}$	2,367	3,156	3,944	789
$\mathbf{3 a}$	2,549	3,399	4,248	850
$\mathbf{4}$	2,731	3,641	4,551	910
$\mathbf{5}$	3,641	4,855	6,068	1,214

[^5]Figure 15. Individual Spray Irrigation Fields Designed Using a Soil Profile DescriptionNet Evaporation Zone 6 and 7
[See Figure 20 in this Appendix (relating to net evaporation zones)]
Minimum Spray Irrigation Area in Square Feet

SOIL GROUP	NUMBER OF BEDROOMS IN RESIDENCE †			
	Two or Fewer	Three	Four	Each Additional Bedroom
$\mathbf{1}$	1,324	1,766	2,207	447
$\mathbf{2}$	1,456	1,942	2,427	486
$\mathbf{2 a}$	1,589	2,119	2,648	530
$\mathbf{3}$	1,721	2,295	2,868	574
$\mathbf{3 a}$	1,854	2,475	3,089	618
$\mathbf{4}$	1,986	2,648	3,310	662
$\mathbf{5}$	2,648	3,531	4,413	883

These figures are based on an average flow of 6,000 gallons per month for a two-bedroom residence with an additional 2,000 gallons per month added for each additional bedroom. The size of the system should be increased if the actual or anticipated water usage exceeds this average.

Figure 16. Individual Spray Irrigation Fields Designed Using a Soil Profile DescriptionNet Evaporation Zone 8, 9, and 10
[See Figure 20 in this Appendix (relating to net evaporation zones)]
Minimum Spray Irrigation Area in Square Feet

SOIL GROUP	NUMBER OF BEDROOMS IN RESIDENCE †			
	Two or Fewer	Three	Four	Each Additional Bedroom
$\mathbf{1}$	940	1,253	1,566	313
$\mathbf{2}$	1,033	1,378	1,723	345
$\mathbf{2 a}$	1,127	1,504	1,879	377
$\mathbf{3}$	1,221	1,629	2,036	408
$\mathbf{3 a}$	1,315	1,754	2,192	430
$\mathbf{4}$	1,409	1,880	2,349	471
$\mathbf{5}$	1,879	2,506	3,132	627

${ }^{\dagger}$ These figures are based on an average flow of 6,000 gallons per month for a two-bedroom residence with an additional 2,000 gallons per month added for each additional bedroom. The size of the system should be increased if the actual or anticipated water usage exceeds this average.

Figure 17. Small Public Spray Irrigation Fields Designed Using a Soil Profile Description-
[See Figure 20 in this Appendix (relating to net evaporation zones)]
Minimum Spray Irrigation Area in Square Feet per Gallon per day

SOIL GROUP	NET EVAPORATION ZONES				
	$\mathbf{1}$ and 2	$\mathbf{3}$	$\mathbf{4}$ and 5	$\mathbf{6}$ and 7	$\mathbf{8 , 9 ,}$ and 10
$\mathbf{1}$	15	12	9	7	5
$\mathbf{2}$	16	13	10	7	5
$\mathbf{2 a}$	18	14	11	8	6
$\mathbf{3}$	19	15	12	9	6
$\mathbf{3 a}$	21	16	13	9	7
$\mathbf{4}$	22	18	14	10	7
$\mathbf{5}$	29	23	18	13	9

Figure 18. Individual Lagoons
Length in Feet of Each Side of the Bottom of a Square Individual Lagoon

ZONE [See Figure 25 in this	NUMBER OF BEDROOMS IN RESIDENCE ${ }^{\dagger}$			
Appendix (relating to net evaporation zones)]	Two or Fewer	Three	Four	Five
1	Contact your local DEQ office for assistance with sizing lagoons in Zones 1 and 2			
2				
3	40	50	60	65
4	35	45	55	60
5	30	40	50	55
6	25	35	45	50
7	20	30	35	45
8	20	25	30	35
9	15	20	25	30
10	10	15	20	25

\dagger These figures are based on an average flow of 6,000 gallons per month for a two-bedroom residence with an additional 2,000 gallons per month added for each additional bedroom. The size of the system should be increased if the actual or anticipated water usage exceeds this average.

Diameter in Feet of the Bottom of a Round Individual Lagoon

ZONE [See Figure 25 in this	NUMBER OF BEDROOMS IN RESIDENCE ${ }^{\dagger}$			
Appendix (relating to net evaporation zones)]	Two or Fewer	Three	Four	Five
1	Contact your local DEQ office for assistance with sizing lagoons in Zones 1 and 2			
2				
3	50	60	70	80
4	45	55	65	75
5	40	50	60	70
6	35	45	50	60
7	30	40	45	55
8	25	30	40	45
9	20	30	35	40
10	15	25	30	35

\dagger These figures are based on an average flow of 6,000 gallons per month for a two-bedroom residence with an additional 2,000 gallons per month added for each additional bedroom. The size of the system should be increased if the actual or anticipated water usage exceeds this average.

Figure 19. Small Public Lagoons
Length in Feet of Each Side of the Bottom of a Square Small Public Lagoon

AVERAGE DAILY FLOW (gallons)	ZONE [See Figure 25 of this Appendix (relating to net evaporation zones)]								
	1	3	4	5	6	7	8	9	10
100	Contact your local DEQ office for assistance with sizing lagoons in Zones 1 and 2	18	16	14	10	Prohibited			
200		38	35	32	27	22	17	14	11
300		54	49	46	40	34	28	24	20
400		67	61	58	51	44	37	32	27
500		78	72	69	60	52	45	39	34
600		88	82	78	69	60	52	46	40
700		98	91	87	77	68	59	52	46
800		107	99	95	84	74	65	58	51
900		115	107	102	91	81	71	63	56
1,000		123	114	110	97	87	76	68	61
1,100		130	122	116	104	92	81	73	65
1,200		138	128	123	110	98	86	77	69
1,300		144	135	129	115	103	91	82	73
1,400		151	141	135	121	108	95	86	77
1,500		157	147	141	126	113	100	90	81
1,600		163	153	147	131	117	104	94	85
1,700		169	158	152	136	122	108	98	88
1,800		175	164	157	141	126	112	101	92
1,900		181	169	162	146	131	116	105	95
2,000		186	174	167	150	135	120	108	98
2,500		212	198	190	171	154	137	125	114
3,000		235	220	212	191	172	154	140	127
3,500		256	240	231	209	188	168	153	140
4,000		276	259	249	225	203	182	166	151
4,500		295	276	266	240	218	195	178	163
5,000		312	293	282	255	231	207	189	173

Diameter in Feet of the Bottom of a Round Small Public Lagoon

Figure 20. Net Evaporation Zones

COUNTY	ZONE	COUNTY	ZONE	COUNTY	ZONE
Adair	1	Grant	9	Nowata	5
Alfalfa	9	Greer	9	Okfuskee	7
Atoka	6	Harmon	9	Oklahoma	8
Beaver	10	Harper	9	Okmulgee	6
Beckham	9	Haskell	4	Osage	7
Blaine	9	Hughes	6	Ottawa	2
Bryan	6	Jackson	9	Pawnee	7
Caddo	9	Jefferson	9	Payne	7
Canadian	9	Johnston	7	Pittsburg	5
Carter	7	Kay	8	Pontotoc	7
Cherokee	3	Kingfisher	9	Pottawatomie	7
Choctaw	4	Kiowa	9	Pushmataha	3
Cimarron	10	Latimer	3	Roger Mills	9
Cleveland	8	LeFlore	1	Rogers	5
Coal	6	Lincoln	7	Seminole	7
Comanche	9	Logan	8	Sequoyah	3
Cotton	9	Love	7	Stephens	8
Craig	4	McClain	8	Texas	10
Creek	7	McCurtain	1	Tillman	9
Custer	9	McIntosh	5	Tulsa	6
Delaware	1	Major	9	Wagoner	5
Dewey	9	Marshall	7	Washington	6
Ellis	9	Mayes	5	Washita	9
Garfield	9	Murray	7	Woods	9
Garvin	8	Muskogee	5	Woodward	9
Grady	9	Noble	8		

APPENDIX I. EXAMPLE OF THE REQUIREMENTS FOR A SEPTIC TANK [REVOKED]

Figure 1. Level Systems (Top View)

Figure 2. Level Systems (Side View)

Figure 3. Low Pressure Dosing

APPENDIX I. EXAMPLE OF THE REQUIREMENTS FOR A SEPTIC TANK [NEW]

Figure 1. Level Systems (Top View)

Figure 2. Level Systems (Side View)

Figure 3. Low Pressure Dosing

APPENDIX K. EXAMPLE LAYOUTS OF CONVENTIONAL SUBSURFACE ABSORPTION SYSTEMS, LOW PRESSURE DOSING SYSTEMS AND ET/A SYSTEMS [REVOKED]

Figure 4. Retention Systems (Top View)
House/Building

Figure 5. Retention Systems (Side View)

APPENDIX K. EXAMPLE LAYOUTS OF CONVENTIONAL SUBSURFACE

 ABSORPTION SYSTEMS AND ET/A SYSTEMS [NEW]Figure 4. Retention Systems (Top View)
House/Building

[^0]: \dagger The minimum lot size excludes road easements.

[^1]: \dagger The minimum lot size excludes road easements and surface impoundments.

[^2]: \dagger These figures are based on an average flow of 6,000 gallons per month for a two-bedroom residence with an additional 2,000 gallons per month added for each additional bedroom. The size of the system should be increased if the actual or anticipated water usage exceeds this average.

[^3]: t These figures are based on an average flow of 6,000 gallons per month for a two-bedroom residence with an additional 2,000 gallons per month added for each additional bedroom. The size of the system should be increased if the actual or anticipated water usage exceeds this average.

[^4]: + These figures are based on an average flow of 6,000 gallons per month for a two-bedroom residence with an additional 2,000 gallons per month added for each additional bedroom. The size of the system should be increased if the actual or anticipated water usage exceeds this average.

[^5]: These figures are based on an average flow of 6,000 gallons per month for a two-bedroom residence with an additional 2,000 gallons per month added for each additional bedroom. The size of the system should be increased if the actual or anticipated water usage exceeds this average.

