FINAL

TURBIDITY TOTAL MAXIMUM DAILY LOADS FOR SULPHUR CREEK, OKLAHOMA (OK410600010030_00)

Prepared for:

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

Prepared by:

AUGUST 2010

FINAL

TURBIDITY TOTAL MAXIMUM DAILY LOADS FOR SULPHUR CREEK, OKLAHOMA (OK410600010030_00)

OKWBID

OK410600010030_00

Prepared for:

OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY

Prepared by:

8000 Centre Park Drive, Suite 200 Austin, TX 78754

AUGUST 2010

Oklahoma Department of Environmental Quality: FY07/08 106 Carryover Grant (I-006400-08)

Funding for the development of this TMDL Report was provided through a federal Clean Water Act grant to the Oklahoma Department of Environmental Quality from the U.S. Environmental Protection Agency.

TABLE OF CONTENTS

EXECU	TIVE SUMMARYES-1
SECTIO	DN 1 INTRODUCTION
1.1	TMDL Program Background1-1
1.2	Watershed Description1-4
1.3	Stream Flow Data1-7
SECTIO	DN 2 PROBLEM IDENTIFICATION AND WATER QUALITY TARGET 2-1
2.1	Oklahoma Water Quality Standards2-1
2.2	Problem Identification2-3
2.3	Water Quality Target2-4
SECTIO	DN 3 POLLUTANT SOURCE ASSESSMENT
3.1	NPDES-Permitted Facilities
	3.1.1 Continuous Point Source Discharges
	3.1.2 Concentrated Animal Feeding Operations
	3.1.3 Stormwater Permits for MA4 and Construction Activities
	3.1.4 Section 404 permits
3.2	Nonpoint Sources
SECTIO	DN 4 TECHNICAL APPROACH AND METHODS
4.1	Determining a Surrogate Target
4.2	Using Load Duration Curves to Develop TMDLs
4.3	Development of Flow Duration Curves
4.4	Development of TMDLs Using Load Duration Curves
SECTIO	DN 5 TMDL CALCULATIONS5-1
5.1	Estimated Loading and Critical Conditions
5.2	Wasteload Allocation
	5.2.1 Section 404 permits
5.3	Load Allocation
5.4	Seasonal Variability
5.5	Margin of Safety
5.6	TMDL Calculations
5.7	Reasonable Assurances
SECTIO	ON 6 PUBLIC PARTICIPATION6-1
SECTIO	ON 7 REFERENCES

APPENDICES

- Appendix A Ambient Water Quality Data 1991 2007
- Appendix B Projected Flow exceedance frequencies for Sulphur Creek Flow Duration Curve
- Appendix C State of Oklahoma Antidegradation Policy
- Appendix D Response to Public Comments

LIST OF FIGURES

Figure 1-1	Watersheds Not Supporting Fish and Wildlife Propagation Use	
	within the Study Area	.1-3
Figure 1-2	Land Use Map by Watershed	.1-6
Figure 3-1	Locations of Permitted Facilities in the Study Area	.3-4
Figure 4-1	Linear Regression for TSS-Turbidity under Base-flow Conditions for Sulphur Creek (OK 410600010030_00)	
Figure 4-2	Flow Duration Curve for Sulphur Creek (OK410600010030_00)	.4-6
Figure 5-1	Load Duration Curve for Total Suspended Solids in Sulphur Creek (OK410600010030_00)	.5-2

LIST OF TABLES

Table ES-1	Excerpt from the 2008 Integrated Report – Comprehensive Waterbody Assessment Category List
Table ES-2	Summary of Turbidity Samples Collected During Base Flow Conditions 1998 - 2007
Table ES-3	Summary of TSS Samples Collected During Base Flow Conditions 1998 - 2007
Table ES-4	Turbidity TMDLs based on Total Suspended Solids Calculations for Sulphur Creek (OK410600010030_00)ES-6
Table 1-1	Water Quality Monitoring Stations used for 2008 303(d) Listing Decision1-2
Table 1-2	County Population and Density1-4
Table 1-3	Average Annual Precipitation by Watershed1-4
Table 1-4	Land Use Summaries by Watershed1-5
Table 2-1	Excerpt from the 2008 Integrated Report – Comprehensive Waterbody Assessment Category List
Table 2-2	Summary of All Turbidity Samples 1991 - 20072-3
Table 2-3	Summary of Turbidity Samples Collected During Base Flow Conditions 1992 - 2007
Table 2-4	Summary of All TSS Samples 1991 - 20072-4
Table 2-5	Summary of TSS Samples Collected During Base Flow Conditions 1992 - 2007
Table 3-1	Stormwater Permits for Construction Activities
Table 5-1	Turbidity TMDL based on Total Suspended Solids Calculations for Sulphur Creek (OK410600010030_00)5-4
Table 5-2	Partial List of Oklahoma Water Quality Management Agencies5-5

ACRONYMS AND ABBREVIATIONS

- BMP best management practice
- CAFO Concentrated Animal Feeding Operation
- CFR Code of Federal Regulations
- cfs Cubic feet per second
- CPP Continuing planning process
- CWA Clean Water Act
- DMR Discharge monitoring report
- IQR interquartile range
- LA Load allocation
- LDC Load duration curve
- LOC line of organic correlation
- mg Million gallons
- mgd Million gallons per day
- mg/L microgram per liter
- MOS Margin of safety
- MS4 Municipal separate storm sewer system
- NPDES National Pollutant Discharge Elimination System
- NRCS National Resources Conservation Service
- NTU nephelometric turbidity unit
- OLS ordinary least square regression
- O.S. Oklahoma statutes
- ODAFF Oklahoma Department of Agriculture, Food and Forestry
- ODEQ Oklahoma Department of Environmental Quality
- OPDES Oklahoma Pollutant Discharge Elimination System
- OWRB Oklahoma Water Resources Board
- PRG Percent reduction goal
- TMDL Total maximum daily load
- TSS Total suspended solids
- USDA U.S. Department of Agriculture
- USEPA U.S. Environmental Protection Agency
- USGS U.S. Geological Survey
- WLA Wasteload allocation
- WQM Water quality monitoring
- WQS Water quality standard
- WWTP Wastewater treatment plant

EXECUTIVE SUMMARY

This report documents the data and assessment used to establish a TMDL for Sulphur Creek, a tributary of the Blue River. The 2008 Integrated Water Quality Assessment Report (Oklahoma Department of Environmental Quality [ODEQ] 2008) identified Sulphur Creek as impaired for turbidity. Data assessment and TMDL calculations are conducted in accordance with requirements of Section 303(d) of the CWA, Water Quality Planning and Management Regulations (40 CFR Part 130), USEPA guidance, and ODEQ guidance and procedures. ODEQ is required to submit all TMDLs to USEPA for review and approval. Once the USEPA approves a TMDL, the waterbody may be moved to Category 4a of a state's Integrated Water Quality Monitoring and Assessment Report, where it remains until compliance with water quality standards (WQS) is achieved (USEPA 2003).

The purpose of this TMDL report is to establish pollutant load allocations for turbidity in impaired waterbodies, which is the first step toward restoring water quality. TMDLs determine the pollutant loading a waterbody can assimilate without exceeding the WQS for that pollutant. TMDLs also establish the pollutant load allocation necessary to meet the WQS established for a waterbody based on the relationship between pollutant sources and in-stream water quality conditions. A TMDL consists of a wasteload allocation (WLA), load allocation (LA), and a margin of safety (MOS). The WLA is the fraction of the total pollutant load apportioned to point sources, and includes stormwater discharges regulated under the National Pollutant Discharge Elimination System (NPDES) as point sources. The LA is the fraction of the total pollutant load apportioned to nonpoint sources. The MOS is a percentage of the TMDL set aside to account for the lack of knowledge associated with natural process in aquatic systems, model assumptions, and data limitations.

This report does not stipulate specific control actions (regulatory controls) or management measures (voluntary best management practices) necessary to reduce turbidity loadings within each watershed. Watershed-specific control actions and management measures will be identified, selected, and implemented under a separate process involving stakeholders who live and work in the watershed; tribes; and local, state, and federal government agencies.

E.1 Problem Identification and Water Quality Target

The TMDL in this report address fish and wildlife propagation for the subcategory warm water aquatic community. Table ES-1, an excerpt from Appendix B of the 2008 Integrated Report (ODEQ 2008), summarizes the warm water aquatic community use attainment status and the scheduled date for TMDL development established by ODEQ for the impaired waterbody of the Study Area.

Table ES-1 Excerpt from the 2008 Integrated Report – Comprehensive Waterbody Assessment Category List

Waterbody ID	Waterbody Name	Stream Miles	Category	TMDL Date	Priority	Warm Water Aquatic Community
OK410600010030_00	Sulphur Creek	14.6	5a	2013	2	Ν

N = Not Supporting;

5*a* = TMDL is underway or will be scheduled Source: 2008 Integrated Report, ODEQ 2008

The data in Table ES-2 were used to support the decision to place Sulphur Creek on the ODEQ 2008 303(d) list (ODEQ 2008 for nonsupport of the Fish and Wildlife Propagation use based on turbidity levels observed in the waterbody. Turbidity is a measure of water clarity and is caused by suspended particles in the water column. Because turbidity cannot be expressed as a mass load, total suspended solids (TSS) are used as a surrogate in this TMDL. Therefore, both turbidity and TSS data are presented to support TMDL development.

The numeric criteria for turbidity to maintain and protect the use of "Fish and Wildlife Propagation" from Title 785:45-5-12 (f) (7) is as follows:

- (A) Turbidity from other than natural sources shall be restricted to not exceed the following numerical limits:
 - 1. Cool Water Aquatic Community/Trout Fisheries: 10 NTUs;
 - 2. Lakes: 25 NTU; and
 - 3. Other surface waters: 50 NTUs.
- (B) In waters where background turbidity exceeds these values, turbidity from point sources will be restricted to not exceed ambient levels.
- (C) Numerical criteria listed in (A) of this paragraph apply only to seasonal base flow conditions.
- (D) Elevated turbidity levels may be expected during, and for several days after, a runoff event.

Table ES-2Summary of Turbidity Samples Collected During Base Flow Conditions1998 - 2007

WQM Station	Number of Turbidity Samples Collected During Base Flow Conditions	Number of Samples Exceeding 50 NTU during Base Flow Conditions	Percentage of Samples Exceeding Criterion during Base Flow Conditions	Average Turbidity (NTU) Per WQM Station during Base Flow Conditions
OK410600010030G	19	2	11%	34

Table ES-3 presents a subset of total suspended solids data for samples collected during base flow conditions. Water quality data for turbidity and TSS are provided in Appendix A.

Table ES-3	Summary of TSS Samples Collected During Base Flow Conditions
	1998 -2007

WQM Station	Number of TSS Samples Collected During Base Flow Conditions	Average TSS (mg/L) Per WQM Station during Base Flow Conditions
OK410600010030G	18	19

The Code of Federal Regulations (40 CFR §130.7(c)(1)) states that, "TMDLs shall be established at levels necessary to attain and maintain the applicable narrative and numerical water quality standards." An individual water quality target established for turbidity must demonstrate compliance with the numeric criteria prescribed in the Oklahoma WQS (OWRB 2008). According to the Oklahoma WQS [785:45-5-12(f)(7)], the turbidity criterion for streams with warm water aquatic community (WWAC) beneficial use is 50 NTUs (OWRB 2008). The turbidity of 50 NTUs applies only to seasonal base flow conditions. Turbidity levels are expected to be elevated during, and for several days after, a storm event.

TMDLs for turbidity in streams designated as warm water aquatic community must take into account that no more than 10 percent of the samples may exceed the numeric criterion of 50 NTU. However, as described above, because turbidity cannot be expressed as a mass load, TSS is used as a surrogate in this TMDL. Since there is no numeric criterion in the Oklahoma WQS for TSS, a specific method must be developed to convert the turbidity criterion to TSS based on a relationship between turbidity and TSS. The method for deriving the relationship between turbidity and TSS, and for calculating a water body specific water quality target using TSS, is summarized in Section 4 of this report.

E.2 Pollutant Source Assessment

A pollutant source assessment characterizes known and suspected sources of pollutant loading to impaired waterbodies. Sources within a watershed are categorized and quantified to the extent that information is available. Turbidity may originate from NPDES-permitted facilities, fields, construction sites, quarries, stormwater runoff and eroding stream banks. The 2008 Integrated Water Quality Assessment Report (ODEQ 2008) listed potential sources of turbidity in Sulphur Creek (OK410600010030_00) as grazing in riparian corridors of streams and creeks, highway/road/bridge runoff (non-construction related), non-irrigated crop production, rangeland grazing, and other unknown sources.

There are no NPDES-permitted facilities and no municipal separate storm sewer systems or CAFOs in the Study Area.

The relative homogeneous land use/land cover categories within the Study Area are associated with agricultural and range management activities. This suggests that various nonpoint sources of TSS include sediments originating from grazing in riparian corridors of streams and creeks, highway/road/bridge runoff (non-construction related), non-irrigated crop production, rangeland grazing and other sources of sediment loading (ODEQ 2008). Elevated

turbidity measurements can be caused by stream bank erosion processes, stormwater runoff events and other channel disturbances. However, there is insufficient data available to quantify contributions of TSS from these processes. TSS or sediment loading can also occur under nonrunoff conditions as a result of anthropogenic activities in riparian corridors which cause erosive conditions. Sediment loading of streams can also originate from natural erosion processes, including the weathering of soil, rocks, and uncultivated land; geological abrasion; and other natural phenomena. Given the lack of data to establish the background conditions for TSS/turbidity, separating background loading from nonpoint sources is not feasible in this TMDL development.

E.3 Using Load Duration Curves to Develop TMDLs

Turbidity is a commonly measured indicator of the suspended solids load in streams. However, turbidity is an optical property of water, and measures scattering of light by suspended solids and colloidal matter. To develop TMDLs, a gravimetric (mass-based) measure of solids loading is required to express loads. There is often a strong relationship between the total suspended solids concentration and turbidity. Therefore, the TSS load, which is expressed as mass per time, is used as a surrogate for turbidity and represents the maximum one-day load the stream can assimilate while still attaining the WQS.

To determine the relationship between turbidity and TSS, a linear regression between TSS and turbidity was developed using data collected from 1998 to 2007 at one station within the Study Area. Prior to developing the regression the following steps were taken to refine the dataset:

- Assign values to censored data (i.e., measured concentrations lower than the analytical quantitation limit and, thus, reported as less than the quantitation limit). For example, using 9.99 to replace all samples reported as "<10";
- Remove data collected under high flow conditions exceeding the base-flow criterion. This means that measurements corresponding to flow exceedance frequencies lower than 25% were not used in the regression;
- Check rainfall data on the day when samples were collected and on the previous two days. If there was a significant rainfall event (>= 1.0 inch) in any of these days, the sample will be excluded from regression analysis with one exception. If the significant rainfall happened on the sampling day and the turbidity reading was less than 25 NTUs (half of turbidity standard for streams), the sample will not be excluded from analysis because most likely the rainfall occurred after the sample was taken; andLog-transform both turbidity and TSS data to minimize effects of their non-linear data distributions.

The TMDL calculations presented in this report are derived from load duration curves (LDC). LDCs facilitate rapid development of TMDLs, and as a TMDL development tool, are effective at identifying whether impairments are associated with point or nonpoint sources. The basic steps to generating an LDC involve:

• obtaining daily flow data for the site of interest from the USGS (or project flow using Oklahoma TMDL Toolbox if station is ungaged);

- sorting the flow data and calculating flow exceedance frequencies for the time period and season of interest;
- obtaining available turbidity and TSS water quality data;
- matching the water quality observations with the flow data from the same date;
- displaying a curve on a plot that represents the allowable load multiplying the actual or estimated flow by the WQ_{target} for TSS;
- multiplying the flow by the water quality parameter concentration to calculate daily loads (for sampling events with both TSS and turbidity data, the measured TSS value is used; if only turbidity was measured, the value was converted to TSS using the regression equation in Figure 4-1); then
- plotting the flow exceedance frequencies and daily load observations in a load duration plot.

The culmination of these steps is expressed in the following formula, which is displayed on the LDC as the TMDL curve:

$$TMDL (lb/day) = WQ_{target} * flow (cfs) * unit conversion factor$$

$$where: WQ_{target} = 31 mg/L (TSS)$$

$$unit \ conversion \ factor = 5.39377 \ L*s*lb / (ft^3*day*mg)$$

The flow exceedance frequency (x-value of each point) is obtained by looking up the historical exceedance frequency of the measured or estimated flow; in other words, the percent of historical observations that equal or exceed the measured or estimated flow. Historical observations of TSS and/or turbidity concentrations are paired with flow data and are plotted on the LDC. The TSS load (or the y-value of each point) is calculated by multiplying the TSS concentration (measured or converted from turbidity) (mg/L) by the instantaneous flow (cfs) at the same site and time, with appropriate volumetric and time unit conversions. TSS loads representing exceedance of water quality criteria fall above the water quality criterion line.

E.4 TMDL Calculations

The objective of a TMDL is to estimate allowable pollutant loads and to allocate these loads to the known pollutant sources in the watershed so appropriate control measures can be implemented and the WQS achieved. A TMDL is expressed as the sum of three elements as described in the following mathematical equation:

$TMDL = \Sigma WLA + \Sigma LA + MOS$

The WLA is the portion of the TMDL allocated to existing and future point sources. The LA is the portion of the TMDL allocated to nonpoint sources, including natural background sources. The MOS is intended to ensure that WQS will be met. Thus, the allowable pollutant load that can be allocated to point and nonpoint sources can then be defined as the TMDL minus the MOS.

The overall Percent Reduction Goal (PRG) is calculated as the reduction in load required so no more than 10 percent of the samples collected under base-flow conditions would exceed TMDL targets for TSS. The PRG for Sulphur Creek is calculated to be 11.7 percent.

The maximum assimilative capacity of a stream depends on the flow conditions of the stream. The higher the flow is, the more wasteload the stream can handle without violating water quality standards. Thus, the TMDL, WLA, LA, and MOS will vary with flow condition, and are calculated at every 5th flow interval percentile (Table ES-4).

Percentile	Flow (cfs)	TMDL (lb/day)	WWTP	WLA (Ib/da MS4	y) Growth	LA (Ib/day)	MOS (Ib/day)
0							
0	1,668	NA	0	0	NA	NA	NA
5	45	NA	0	0	NA	NA	NA
10	19	NA	0	0	NA	NA	NA
15	12	NA	0	0	NA	NA	NA
20	9.2	NA	0	0	NA	NA	NA
25	7.4	1,253	0	0	12.5	1,115	125
30	6	1,016	0	0	10.2	904	102
35	5	847	0	0	8.5	754	85
40	4.2	711	0	0	7.1	633	71
45	3.7	627	0	0	6.3	558	63
50	3.2	542	0	0	5.4	482	54
55	2.7	457	0	0	4.6	407	46
60	2.3	390	0	0	3.9	347	39
65	2.1	356	0	0	3.6	317	36
70	1.8	305	0	0	3.0	271	30
75	1.6	271	0	0	2.7	241	27
80	1.4	237	0	0	2.4	211	24
85	1.2	203	0	0	2.0	181	20
90	1	169	0	0	1.7	151	17
95	0.7	119	0	0	1.2	106	12
100	0	0	0	0	0	0	0

Table ES-4	Turbidity TMDLs based on Total Suspended Solids Calculations for
	Sulphur Creek (OK410600010030_00)

E.5 Reasonable Assurance

ODEQ will collaborate with a host of other state agencies and local governments working within the boundaries of state and local regulations to target available funding and technical assistance to support implementation of pollution controls and management measures. Various water quality management programs and funding sources provide a reasonable assurance that the pollutant reductions as required by this TMDL can be achieved and water quality can be restored to maintain designated uses. ODEQ's Continuing Planning Process (CPP), required by the CWA §303(e)(3) and 40 CFR 130.5, summarizes Oklahoma's commitments and programs aimed at restoring and protecting water quality throughout the state (ODEQ 2006). The CPP can be viewed from ODEQ's website at 2006 Continuing Planning Process. Table 5-2 provides a partial list of the state partner agencies ODEQ will collaborate with to address point and nonpoint source reduction goals established by TMDLs.

SECTION 1 INTRODUCTION

1.1 TMDL Program Background

Section 303(d) of the Clean Water Act (CWA) and U.S. Environmental Protection Agency (USEPA) Water Quality Planning and Management Regulations (40 Code of Federal Regulations [CFR] Part 130) require states to develop total maximum daily loads (TMDL) for waterbodies not meeting designated uses where technology-based controls are in place. TMDLs establish the allowable loadings of pollutants or other quantifiable parameters for a waterbody based on the relationship between pollution sources and in-stream water quality conditions, so states can implement water quality-based controls to reduce pollution from point and nonpoint sources and restore and maintain water quality (USEPA 1991).

This report documents the data and assessment used to establish a turbidity TMDL for Sulphur Creek, a tributary of the Blue River. The 2008 Integrated Water Quality Assessment Report (Oklahoma Department of Environmental Quality [ODEQ] 2008) identified Sulphur Creek as impaired for turbidity. Data assessment and TMDL calculations are conducted in accordance with requirements of Section 303(d) of the CWA, Water Quality Planning and Management Regulations (40 CFR Part 130), USEPA guidance, and ODEQ guidance and procedures. ODEQ is required to submit all TMDLs to USEPA for review and approval. Once the USEPA approves a TMDL, the waterbody may be moved to Category 4a of a state's Integrated Water Quality Monitoring and Assessment Report, where it remains until compliance with water quality standards (WQS) is achieved (USEPA 2003).

The purpose of this TMDL report is to establish pollutant load allocations for turbidity in impaired waterbodies, which is the first step toward restoring water quality. TMDLs determine the pollutant loading a waterbody can assimilate without exceeding the WQS for that pollutant. TMDLs also establish the pollutant load allocation necessary to meet the WQS established for a waterbody based on the relationship between pollutant sources and in-stream water quality conditions. A TMDL consists of a wasteload allocation (WLA), load allocation (LA), and a margin of safety (MOS). The WLA is the fraction of the total pollutant load apportioned to point sources, and includes stormwater discharges regulated under the National Pollutant Discharge Elimination System (NPDES) as point sources. The LA is the fraction of the total pollutant load apportioned to nonpoint sources. The MOS is a percentage of the TMDL set aside to account for the lack of knowledge associated with natural process in aquatic systems, model assumptions, and data limitations.

This report does not stipulate specific control actions (regulatory controls) or management measures (voluntary best management practices) necessary to reduce turbidity loadings within each watershed. Watershed-specific control actions and management measures will be identified, selected, and implemented under a separate process involving stakeholders who live and work in the watershed; tribe;, and local, state, and federal government agencies.

This TMDL report focuses on waterbodies that ODEQ placed in Category 5 [303(d) list] of the *Water Quality in Oklahoma, 2008 Integrated Report* (2008 Integrated Report) for the beneficial use category Fish and Wildlife Propagation for Sulphur Creek OK410600010030_00. Figure 1-1 is a location map showing the impaired segment of this

Oklahoma waterbody and its contributing watershed. This map also displays the locations of the water quality monitoring (WQM) stations used as the basis for placement of this waterbody on the Oklahoma 303(d) list. The waterbody and its surrounding watershed are hereinafter referred to as the Study Area.

The TMDL established in this report is a necessary step in the process to develop the turbidity controls needed to restore the fish and wildlife propagation designated for the waterbody. Table 1-1 provides a description of the locations of the WQM stations on the 303(d)-listed waterbody.

WQM Station	WQM Station Location Description	WQM Station Location Legal Descriptions	Latitude	Longitude
OK410600010030G	Sulphur Creek	SW¼ SW¼ NE¼ Section 16-7S-12E	33.94658	-96.049

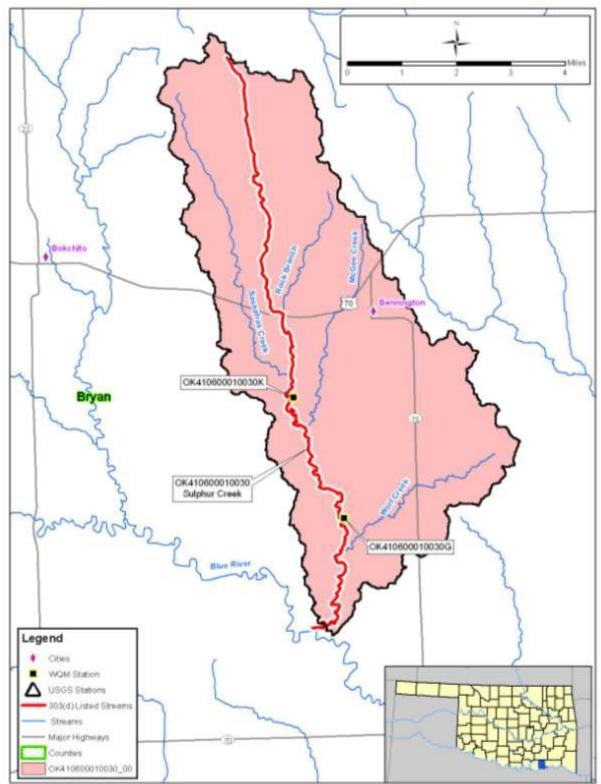


Figure 1-1 Watersheds Not Supporting Fish and Wildlife Propagation Use within the Study Area

1.2 Watershed Description

General. The Blue River Basin is located in the southern portion of Oklahoma. The waterbody addressed in this report is located in Bryan County. The Study Area is located in the South Central Plains ecoregion of Oklahoma.

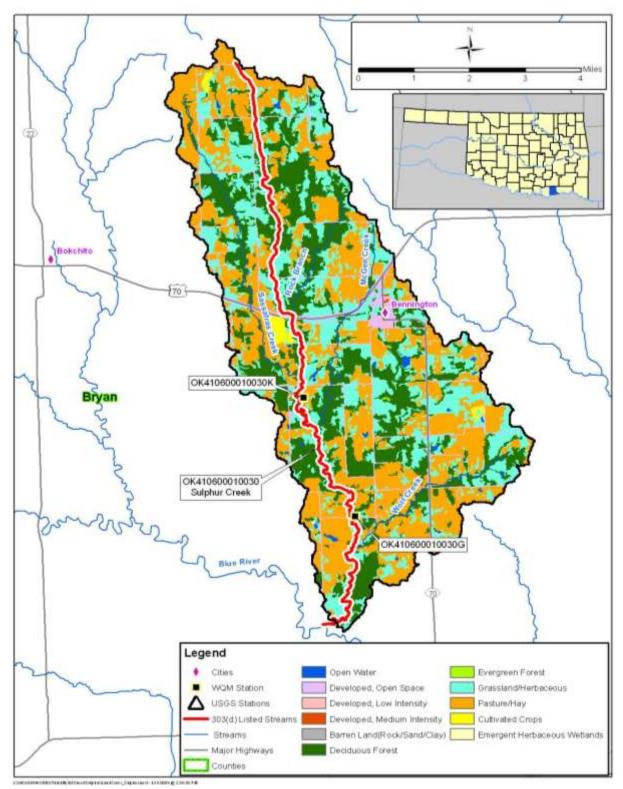
Table 1-2, derived from the 2000 U.S. Census, shows that Bryan County where this watershed is located is sparsely populated (U.S. Census Bureau 2000).

County Name	Population (2000 Census)	Population Density (per square mile)
Bryan	36,534	40

Table 1-2County Population and Density

Climate. Table 1-3 summarizes the average annual precipitation for the waterbody. Average annual precipitation for the waterbody between 1971 and 2000 was 46.4 inches (Oklahoma Climate Survey 2005).

Table 1-3Average Annual Precipitation by Watershed


Sulphur Creek Precipitation Summary			
Waterbody Name Waterbody ID Annua (inches			
Sulphur Creek	OK410600010030_00	46.4	

Land Use. Table 1-4 summarizes the acreages and the corresponding percentages of the land use categories for the contributing watershed associated with the Sulphur Creek watershed. The land use/land cover data were derived from the U.S. Geological Survey (USGS) 2001 National Land Cover Dataset (USGS 2007). The land use categories are displayed in Figure 1-2.

The primary land use category in the Study Area is pasture/hay, which makes up 38 percent of the watershed. The second most common land use within the Study Area is deciduous forest and grassland at 28 and 27 percent, respectively. Bennington, the only town within the Sulphur Creek watershed, has an estimated population of 289 (U.S. Census Bureau 2000).

Landuse Category	Sulphur Creek
Waterbody ID	OK410600010030_00
Percent Herbaceous Wetlands	0%
Percent Woody Wetlands	0%
Percent Cultivated	1%
Percent Pasture/Hay	38%
Percent Grassland	27%
Percent Shrubland	0%
Percent Mixed Forest	0%
Percent Evergreen Forest	0%
Percent Deciduous Forest	28%
Percent Barren	0%
Percent Developed - High Intensity	0%
Percent Developed - Medium Intensity	0%
Percent Developed - Low Intensity	0%
Percent Developed - Open	5%
Percent Water	1%
Acres Herbaceous Wetlands	5
Acres Woody Wetlands	0
Acres Cultivated	165
Acres Pasture/Hay	7,924
Acres Grassland	5,513
Acres Shrubland	0
Acres Mixed Forest	0
Acres Evergreen Forest	12
Acres Deciduous Forest	5,897
Acres Barren	2
Acres Developed - High Intensity	0
Acres Developed - Medium Intensity	9
Acres Developed - Low Intensity	43
Acres Developed - Open	1,011
Acres Water	112
Total (Acres)	20,693

 Table 1-4
 Land Use Summaries by Watershed

1.3 Stream Flow Data

Stream flow characteristics and data are key information when conducting water quality assessments such as TMDLs. While the USGS operates flow gages throughout Oklahoma, there is no flow gage located on Sulphur Creek. Some flow measurements were collected at the same time TSS and turbidity water quality samples were collected at various WQM stations. These data are included in Appendix A along with turbidity and TSS data.

SECTION 2 PROBLEM IDENTIFICATION AND WATER QUALITY TARGET

2.1 Oklahoma Water Quality Standards

Title 785 of the Oklahoma Administrative Code authorizes the Oklahoma Water Resources Board (OWRB) to promulgate Oklahoma's water quality standards and implementation procedures (OWRB 2008). The OWRB has statutory authority and responsibility concerning establishment of state water quality standards, as provided under 82 Oklahoma Statute [O.S.], This statute authorizes the OWRB to promulgate rules ... which establish **§1085.30**. classifications of uses of waters of the state, criteria to maintain and protect such classifications, and other standards or policies pertaining to the quality of such waters. [O.S. 82:1085:30(A)]. Beneficial uses are designated for all waters of the state. Such uses are protected through restrictions imposed by the antidegradation policy statement, narrative water quality criteria, and numerical criteria (OWRB 2008). The beneficial uses designated for Sulphur Creek (OK410600010030_00) include primary body contact recreation, warm water aquatic community, fish consumption, agriculture and aesthetics. The TMDL in this report addresses fish and wildlife propagation beneficial use for the subcategory warm water aquatic Table 2-1, an excerpt from Appendix B of the 2008 Integrated Report community. (ODEQ 2008), summarizes the warm water aquatic community use attainment status and the scheduled date for TMDL development established by ODEQ for the impaired waterbody of the Study Area. The 2008 Integrated Report (ODEQ 2008) identifies the Sulphur Creek as Priority 2 for TMDL development. Priority 2 waterbodies are targeted for TMDL development by 2013. The TMDL established in this report is a necessary step in the process to restore the fish and wildlife propagation designation for this waterbody.

The numeric criteria for turbidity to maintain and protect the use of "Fish and Wildlife Propagation" from Title 785:45-5-12 (f) (7) is as follows:

- (A) Turbidity from other than natural sources shall be restricted to not exceed the following numerical limits:
 - 4. Cool Water Aquatic Community/Trout Fisheries: 10 NTUs;
 - 5. Lakes: 25 NTU; and
 - 6. Other surface waters: 50 NTUs.
- (B) In waters where background turbidity exceeds these values, turbidity from point sources will be restricted to not exceed ambient levels.
- (C) Numerical criteria listed in (A) of this paragraph apply only to seasonal base flow conditions.
- (D) Elevated turbidity levels may be expected during, and for several days after, a runoff event.

Table 2-1 Excerpt from the 2008 Integrated Report – Comprehensive Waterbody Assessment Category List

Waterbody ID	Waterbody Name	Stream Miles	Category	TMDL Date	Priority	Warm Water Aquatic Community
OK410600010030_00	Sulphur Creek	14.6	5a	2013	2	Ν

N = Not Supporting;

5a = TMDL is underway or will be scheduled Source: 2008 Integrated Report, ODEQ 2008

To implement Oklahoma's WQS for Fish and Wildlife Propagation, OWRB promulgated Chapter 46, *Implementation of Oklahoma's Water Quality Standards* (OWRB 2008). The excerpt below from Chapter 46: 785:46-15-5, stipulates how water quality data will be assessed to determine support of fish and wildlife propagation as well as how the water quality target for TMDLs will be defined for turbidity.

Assessment of Fish and Wildlife Propagation support

(a) Scope. The provisions of this Section shall be used to determine whether the beneficial use of Fish and Wildlife Propagation or any subcategory thereof designated in OAC 785:45 for a waterbody is supported.

(e) Turbidity. The criteria for turbidity stated in 785:45-5-12(f)(7) shall constitute the screening levels for turbidity. The tests for use support shall follow the default protocol in 785:46-15-4(b).

785:46-15-4. Default protocols

(b) Short term average numerical parameters.

(1) Short term average numerical parameters are based upon exposure periods of less than seven days. Short term average parameters to which this Section applies include, but are not limited to, sample standards and turbidity.

(2) A beneficial use shall be deemed to be fully supported for a given parameter whose criterion is based upon a short term average if 10% or less of the samples for that parameter exceed the applicable screening level prescribed in this Subchapter.

(3) A beneficial use shall be deemed to be fully supported but threatened if the use is supported currently but the appropriate state environmental agency determines that available data indicate that during the next five years the use may become not supported due to anticipated sources or adverse trends of pollution not prevented or controlled. If data from the preceding two year period indicate a trend away from impairment, the appropriate agency shall remove the threatened status.

(4) A beneficial use shall be deemed to be not supported for a given parameter whose criterion is based upon a short term average if at least 10% of the samples for that parameter exceed the applicable screening level prescribed in this Subchapter.

2.2 **Problem Identification**

Turbidity is a measure of water clarity and is caused by suspended particles in the water column. Because turbidity cannot be expressed as a mass load, total suspended solids (TSS) are used as a surrogate in this TMDL. Therefore, both turbidity and TSS data are presented in this section.

Table 2-2 summarizes water quality data collected from the WQM stations between 1991 and 2007 for turbidity. However, as stipulated in Title 785:45-5-12 (f) (7) (C), numeric criteria for turbidity only apply under base flow conditions. While the base flow condition is not specifically defined in the Oklahoma Water Quality Standards, DEQ considers base flow conditions to be all flows less than the 25% flow exceedance frequency (i.e., the lower 75 percent of flows) which is consistent with the USGS Streamflow Conditions Index (USGS 2009). Therefore, Table 2-3 was prepared to represent the subset of these data for samples collected during base flow conditions. Water quality samples collected under flow conditions greater than the 25% flow exceedance frequency were therefore excluded from the data set used for TMDL analysis. The data in Table 2-3 were used to support the decision to place Sulphur Creek on the ODEQ 2008 303(d) list (ODEQ 2008) for nonsupport of the Fish and Wildlife Propagation use based on turbidity levels observed in the waterbody.

Table 2-2	Summary of All Turbidity Samples 1991 - 2007
	Summary of An Turblury Samples 1991 - 2007

WQM Station	Number of Turbidity Samples	Number of Samples Exceed 50 Nephelometric Turbidity Units (NTU)	Percentage of Samples Exceeding Criterion	Average Turbidity (NTU) Per WQM Station
OK410600010030G	22	5	23%	82

Table 2-3	Summary of Turbidity Samples Collected During Base Flow Conditions
	1992 - 2007

WQM Station	Number of Turbidity Samples Collected During Base Flow Conditions	Number of Samples Exceeding 50 NTU during Base Flow Conditions	Percentage of Samples Exceeding Criterion during Base Flow Conditions	Average Turbidity (NTU) Per WQM Station during Base Flow Conditions
OK410600010030G	19	2	11%	34

Table 2-4 summarizes water quality data collected from the WQM stations between 1991 and 2007 for TSS. Table 2-5 presents a subset of these data for samples collected during base flow conditions. Water quality data for turbidity and TSS are provided in Appendix A.

WQM Station	Number of TSS Samples	Average TSS (mg/L) Per WQM Station
OK410600010030G	21	76

Table 2-4Summary of All TSS Samples 1991 - 2007

Table 2-5Summary of TSS Samples Collected During Base Flow Conditions1992 -2007

WQM Station	Number of TSS Samples Collected During Base Flow Conditions	Average TSS (mg/L) Per WQM Station during Base Flow Conditions
OK410600010030G	18	19

2.3 Water Quality Target

The Code of Federal Regulations (40 CFR §130.7(c)(1)) states that, "TMDLs shall be established at levels necessary to attain and maintain the applicable narrative and numerical water quality standards." An individual water quality target established for turbidity must demonstrate compliance with the numeric criteria prescribed in the Oklahoma WQS (OWRB 2008). According to the Oklahoma WQS [785:45-5-12(f)(7)], the turbidity criterion for streams with warm water aquatic community (WWAC) beneficial use is 50 NTUs (OWRB 2008). The turbidity of 50 NTUs applies only to seasonal base flow conditions. Turbidity levels are expected to be elevated during, and for several days after, a storm event.

TMDLs for turbidity in streams designated as warm water aquatic community must take into account that no more than 10 percent of the samples may exceed the numeric criterion of 50 NTU. However, as described above, because turbidity cannot be expressed as a mass load, TSS is used as a surrogate in this TMDL. Since there is no numeric criterion in the Oklahoma WQS for TSS, a specific method must be developed to convert the turbidity criterion to TSS based on a relationship between turbidity and TSS. The method for deriving the relationship between turbidity and TSS and for calculating a water body specific water quality target using TSS is summarized in Section 4 of this report.

SECTION 3 POLLUTANT SOURCE ASSESSMENT

A pollutant source assessment characterizes known and suspected sources of pollutant loading to impaired waterbodies. Sources within a watershed are categorized and quantified to the extent that information is available. Turbidity may originate from NPDES-permitted facilities, fields, construction sites, quarries, stormwater runoff and eroding stream banks.

Point sources are permitted through the NPDES program. NPDES-permitted facilities that discharge treated wastewater are required to monitor for TSS in accordance with their permit. Nonpoint sources are diffuse sources that typically cannot be identified as entering a waterbody through a discrete conveyance at a single location. These sources may involve land activities that contribute TSS to surface water as a result of rainfall runoff. For the TMDL in this report, all sources of pollutant loading not regulated by NPDES permits are considered nonpoint sources.

The 2008 Integrated Water Quality Assessment Report (ODEQ 2008) listed potential sources of turbidity in Sulphur Creek (OK410600010030_00) as grazing in riparian corridors of streams and creeks, highway/road/bridge runoff (non-construction related), non-irrigated crop production, rangeland grazing, and other unknown sources.

3.1 NPDES-Permitted Facilities

Under 40CFR, §122.2, a point source is described as a discernable, confined, and discrete conveyance from which pollutants are or may be discharged to surface waters. NPDES-permitted facilities can be characterized as continuous or stormwater related discharges. NPDES-permitted facilities classified as point sources include:

- NPDES municipal wastewater treatment plant (WWTP);
- NPDES Industrial WWTP Discharges;
- NPDES municipal separate storm sewer discharge (MS4);
- NPDES Concentrated Animal Feeding Operation (CAFO);
- NPDES multi-sector general permits; and
- NPDES construction stormwater discharges.

Continuous point source discharges from municipal and industrial WWTPs, could result in discharge of elevated concentrations of TSS if a facility is not properly maintained, is of poor design, or flow rates exceed capacity. However, in most cases suspended solids discharged by WWTPs consist primarily of organic solids rather than inorganic suspended solids (i.e., soil and sediment particles from erosion or sediment resuspension). Discharges of organic suspended solids from WWTPs are addressed by ODEQ through its permitting of point sources to maintain WQS for dissolved oxygen. and are not considered a potential source of turbidity in this TMDL report. Discharges of TSS will be considered to be organic suspended solid if the discharge permit includes a limit for BOD or CBOD. Only WWTP discharges of inorganic suspended solids will be considered and will receive wasteload allocations.

Stormwater runoff from MS4 areas, facilities under multi-sector general permits, and NPDES construction stormwater discharges, which are regulated under the USEPA NPDES Program, can contain TSS concentrations. 40 C.F.R. § 130.2(h) requires that NPDES-regulated storm water discharges must be addressed by the wasteload allocation component of a TMDL. However, any stormwater discharge by definition occurs during or immediately following periods of rainfall and elevated flow conditions when where Oklahoma Water Quality Standard for turbidity does not apply. Oklahoma Water Quality Standards specify that the criteria for turbidity "apply only to seasonal base flow conditions" and go on to say "Elevated turbidity levels may be expected during, and for several days after, a runoff event" [OAC 785:45-5-12(f)(7)]. In other words, the turbidity impairment status is limited to base flow conditions and stormwater discharges from MS4 areas or construction sites do not contribute to the violation of Oklahoma's turbidity standard. Therefore, WLA for NPDES-regulated storm water discharges is essentially considered unnecessary in this TMDL report and will not be included in the TMDL calculations.

3.1.1 Continuous Point Source Discharges

There are no municipal or industrial NPDES-permitted facilities within the Study Area.

3.1.2 Concentrated Animal Feeding Operations

There are no CAFOs within the Study Area.

3.1.3 Stormwater Permits for MA4 and Construction Activities

There are no urbanized areas designated as MS4s within this Study Area. A general stormwater permit is required for construction activities. Permittees are authorized to discharge pollutants in stormwater runoff associated with construction activities for construction sites. Stormwater discharges occur only during or immediately following periods of rainfall and elevated flow conditions when the turbidity criteria do not apply and are not considered potential contributors to turbidity impairment.

3.1.4 Section 404 permits

Section 404 of the Clean Water Act (CWA) establishes a program to regulate the discharge of dredged or fill material into waters of the United States, including wetlands. Activities in waters of the United States regulated under this program include fill for development, water resource projects (such as dams and levees), infrastructure development (such as highways and airports) and mining projects. Section 404 requires a permit before dredged or fill material may be discharged into waters of the United States, unless the activity is exempt from Section 404 regulation (e.g. certain farming and forestry activities).

Section 404 permits are administrated by the U.S. Army Corps of Engineers. EPA reviews and provides comments on each permit application to make sure it adequately protects water quality and complies with applicable guidelines. Both USACE and EPA can take enforcement actions for violations of Section 404.

Discharge of dredged or fill material in waters can be a significant source of turbidity/TSS. The federal Clean Water Act requires that a permit be issued for activities which discharge

dredged or fill materials into the waters of the United States, including wetlands. The state of Oklahoma will use its Section 401 certification authority to ensure Section 404 permits protect oklahoma water quality standards.

3.2 Nonpoint Sources

Nonpoint sources include those sources that cannot be identified as entering the waterbody at a specific location. The relatively homogeneous land use/land cover categories within the Study Area are associated with agricultural and range management activities. This suggests that potential nonpoint sources of TSS include sediments originating from grazing in riparian corridors of streams and creeks, highway/road/bridge runoff (non-construction related), nonirrigated crop production, rangeland grazing and other sources of sediment loading (ODEO 2008). Elevated turbidity measurements can be caused by stream bank erosion processes, stormwater runoff events and channel disturbances. However, there is insufficient data available to quantify contributions of TSS from these processes. TSS or sediment loading can also occur under non-runoff conditions as a result of anthropogenic activities in riparian corridors which cause erosive conditions. Sediment loading of streams can also originate from natural erosion processes, including the weathering of soil, rocks, and uncultivated land; geological abrasion; and other natural phenomena. Given the lack of data to establish the background conditions for TSS/turbidity, separating background loading from nonpoint sources is not feasible in this TMDL development.

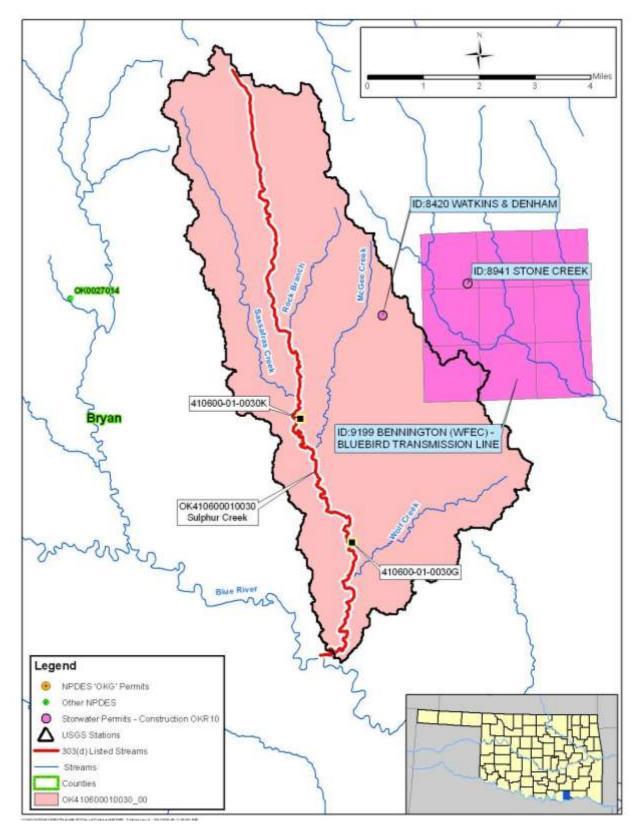


Figure 3-1 Locations of Permitted Facilities in the Study Area

SECTION 4 TECHNICAL APPROACH AND METHODS

The objective of a TMDL is to estimate allowable pollutant loads and to allocate these loads to the known pollutant sources in the watershed so appropriate control measures can be implemented and the WQS achieved. A TMDL is expressed as the sum of three elements as described in the following mathematical equation:

 $TMDL = \Sigma WLA + \Sigma LA + MOS$

The WLA is the portion of the TMDL allocated to existing and future point sources. The LA is the portion of the TMDL allocated to nonpoint sources, including natural background sources. The MOS is intended to ensure that WQS will be met. Thus, the allowable pollutant load that can be allocated to point and nonpoint sources can then be defined as the TMDL minus the MOS.

4.1 Determining a Surrogate Target

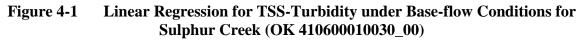
40 CFR, §130.2(1), states that TMDLs can be expressed in terms of mass per time, toxicity, or other appropriate measures. Turbidity is a commonly measured indicator of the suspended solids load in streams. However, turbidity is an optical property of water, and measures scattering of light by suspended solids and colloidal matter. To develop TMDLs, a gravimetric (mass-based) measure of solids loading is required to express loads. There is often a strong relationship between the total suspended solids concentration and turbidity. Therefore, the TSS load, which is expressed as mass per time, is used as a surrogate for turbidity and represents the maximum one-day load the stream can assimilate while still attaining the WQS.

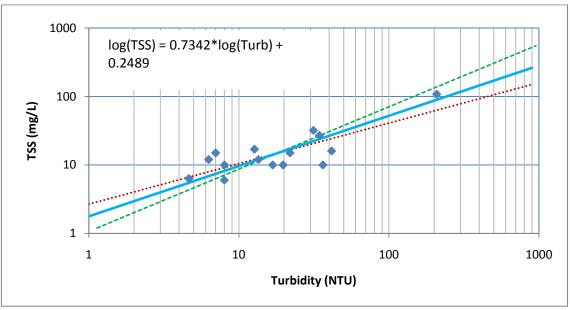
To determine the relationship between turbidity and TSS, a linear regression between TSS and turbidity was developed using data collected from 1991 to 2007 at one station within the Study Area. Prior to developing the regression the following steps were taken to refine the dataset:

- Assign values to censored data (i.e., measured concentrations lower than the analytical quantitation limit and, thus, reported as less than the quantitation limit). For example, using 9.99 to replace samples reported as "<10";
- Check rainfall data on the day when samples were collected and on the previous two days. If there was a significant rainfall event (>= 1.0 inch) in any of these days, the sample will be excluded from regression analysis with one exception. If the significant rainfall happened on the sampling day and the turbidity reading was less than 25 NTUs (half of turbidity standard for streams), the sample will not be excluded from analysis because most likely the rainfall occurred after the sample was taken;
- Remove data collected under high flow conditions exceeding the base-flow criterion. This means that measurements corresponding to flow exceedance frequencies lower than 25% were not used in the regression; and
- Log-transform both turbidity and TSS data to minimize effects of their non-linear data distributions.

When ordinary least squares regression (OLS) is applied to ascertain the best relationship between two variables (i.e., X and Y), one variable (Y) is considered "dependent" on the other variable (X), but X must be considered "independent" of the other, and known without measurement error. OLS minimizes the differences, or residuals, between measured Y values and Y values predicted based on the X variable.

For current purposes, a relationship is necessary to predict TSS concentrations from measured turbidity values, but also to translate the TSS-based TMDL back to in-stream turbidity values. For this purpose, an alternate regression fitting procedure known as the line of organic correlation (LOC) was applied. The LOC has three advantages over OLS (Helsel and Hirsch 2002):


- LOC minimizes fitted residuals in both the X and Y directions;
- It provides a unique best-fit line regardless of which parameter is used as the independent variable; and
- Regression-fitted values have the same variance as the original data.


The LOC minimizes the areas of the right triangles formed by horizontal and vertical lines drawn from observations to the fitted line. The slope of the LOC line equals the geometric mean of the Y on X (TSS on turbidity) and X on Y (turbidity on TSS) OLS slopes, and is calculated as:

$$m1 = \sqrt{m \cdot m'} = sign[r] \cdot \frac{s_y}{s_x}$$

where m1 is the slope of the LOC line, m is the TSS on turbidity OLS slope, m' is the turbidity on TSS OLS slope, r is the TSS-turbidity correlation coefficient, s_y is the standard deviation of the TSS measurements, and s_x is the standard deviation of the turbidity measurements.

The intercept of the LOC (b1) is subsequently found by fitting the line with the LOC slope through the point (mean turbidity, mean TSS). The correlation between TSS and turbidity, along with the LOC and the OLS lines are shown in Figure 4-1.

The normalized root mean square error (NRMSE) and R-square (R^2) were used as the primary measures of goodness-of-fit. As shown in Figure 4-1, the LOC yields a NRMSE value of 14.9 which means the root mean square error (RMSE) is 14.9% of the average of the measured TSS values. The R-square (R^2) value indicates the fraction of the total variance in TSS or turbidity observations that is explained by the LOC.

It was noted that there were a few outliers that exerted undue influence on the regression relationship. These outliers were identified by applying the Tukey's Boxplot method (Tukey 1977) to the dataset of the distances from observed points to the regression line. The Tukey Method is based on the interquartile range (IQR), the difference between the 75th percentile (Q₃) and 25th percentile (Q₁) of distances between observed points and the LOC. Using the Tukey method, any point with an error greater than $Q_3 + 1.5^*$ IQR or less than $Q_1 - 1.5^*$ IQR was identified as an outlier and removed from the regression dataset. The above regressions were calculated using the dataset with outliers removed.

The Tukey Method is equivalent to using three times the standard deviation to identify outliers if the residuals (observed - predicted) follow a normal distribution. The probability of sampling results being within three standard deviations of the mean is 99.73% while the probability for the Tukey Method is 99.65%. If three times the standard deviation is used to identify outliers, it is necessary to first confirm that the residuals are indeed normally distributed. This is difficult to do because of the size limitations of the existing turbidity & TSS dataset. Tukey's method does not rely on any assumption about the distribution of the residuals. It can be used regardless of the shape of distribution.

Using the regression equation shown in Figure 4-1, a turbidity value of 50 NTU (standard applicable to Sulphur Creek) corresponds to a TSS concentration of 31.4 mg/L.

4.2 Using Load Duration Curves to Develop TMDLs

The TMDL calculations presented in this report are derived from load duration curves (LDC). LDCs facilitate rapid development of TMDLs, and as a TMDL development tool, indicate whether impairments are associated with point or nonpoint sources. The technical approach for using LDCs for TMDL development includes the four following steps described in Subsections 4.3 through 4.4 below:

- Preparing flow duration curves for gaged and ungaged WQM stations;
- Estimating loading in the receiving water using measured TSS water quality data and turbidity-converted data;
- Determining the overall percent reduction goal (PRG) necessary to attain WQS; and

Historically, in developing WLAs for pollutants from point sources, it was customary to designate a critical low flow condition (e.g., 7Q2) at which the maximum permissible loading was calculated. As water quality management efforts expanded in scope to quantitatively address nonpoint sources of pollution and various types of pollutants, it became clear that this single critical low flow condition was inadequate to ensure adequate water quality across a range of flow conditions. Use of the LDC obviates the need to determine a design storm or selected flow recurrence interval with which to characterize the appropriate flow level for the assessment of critical conditions. For waterbodies impacted by both point and nonpoint sources, the "nonpoint source critical condition" would typically occur during high flows, when rainfall runoff would contribute the bulk of the pollutant load, while the "point source critical condition" would typically occur during low flows, when point source discharges would dominate the base flow of the impaired water. However, flow range is only a general indicator of the relative proportion of point/nonpoint contributions. It is not used in this report to quantify point source or nonpoint source contributions. Violations that occur during low flows may not be caused exclusively by point sources. Violations have been noted in some watersheds that contain no point sources.

LDCs display the maximum allowable load over the complete range of flow conditions by a line using the calculation of flow multiplied by the water quality criterion. The TMDL can be expressed as a continuous function of flow, equal to the line, or as a discrete value derived from a specific flow condition.

4.3 Development of Flow Duration Curves

Flow duration curves serve as the foundation of LDCs and are graphical representations of the flow characteristics of a stream at a given site. Flow duration curves utilize the historical hydrologic record from stream gages to forecast future recurrence frequencies. Many WQM stations throughout Oklahoma do not have long-term flow data; therefore, flow frequencies must be estimated. The most basic method to estimate flows at an ungaged site involves 1) identifying a downstream flow gage; 2) calculating the contributing drainage areas of the ungaged sites and the flow gage; and 3) calculating daily flows at the ungaged site by using the flow at the gaged site multiplied by the drainage area ratio. A more complex approach used to support this analysis also considers watershed differences in rainfall, land use, and the hydrologic properties of soil that govern runoff and retention. For the Sulphur Creek watershed, flows were projected using data from USGS 07332500, Blue River near Blue, OK.

A more detailed explanation of the methods for estimating flow at ungaged WQM stations is provided in Appendix B.

Flow duration curves are a type of cumulative distribution function. The flow duration curve represents the fraction of flow observations that equal or exceed a given flow at the site of interest. The observed flow values are first ranked from highest to lowest then, for each observation, the percentage of observations equal to or exceeding that flow is calculated. The flow value is read from the ordinate (y-axis), which is typically on a logarithmic scale since the high flows would otherwise overwhelm the low flows. The flow exceedance frequency is read from the abscissa (x-axis), which is numbered from 0 to 100 percent, and may or may not be logarithmic. The flow exceedance frequency is defined as percent of time a given flow was equaled or exceeded based on daily flow values. Therefore, the lowest measured flow occurs at an exceedance frequency of 100 percent indicating that flow has equaled or exceeded this value 100 percent. The median flow occurs at a flow exceedance frequency of 50 percent. The flow exceedance frequency of 50 percent. The flow exceedance frequency is a flow exceedance frequency of 50 percent. The flow exceedance frequencies of the USGS gage used to project flows for this report are provided in Appendix B.

While the number of observations required to develop a flow duration curve is not rigorously specified, a flow duration curve is usually based on more than 1 year of observations, and encompasses inter-annual and seasonal variation. Ideally, the drought of record and flood of record are included in the observations. For this purpose, the long-term flow gaging stations operated by the USGS are utilized (USGS 2007a).

A typical semi-log flow duration curve exhibits a sigmoidal shape, bending upward near a flow exceedance frequency value of 0 percent and downward at a frequency near 100 percent, often with a relatively constant slope in between. For sites that on occasion exhibit no flow, the curve will intersect the x-axis at a frequency less than 100 percent. As the number of observations at a site increases, the line of the LDC tends to appear smoother. However, at extreme low and high flow values, flow duration curves may exhibit a "stair step" effect due to the USGS flow data rounding conventions near the limits of quantitation.

Flow duration curves are generated using a DEQ automated application referred to as the Oklahoma TMDL toolbox. Figure 4-2 shows the flow duration curve generated from the Oklahoma TMDL toolbox for Sulphur Creek using flow data from 1984 to 2006. The USGS National Water Information System serves as the primary source of flow measurements for the application. All available daily average flow values for all gages in Oklahoma, as well as the nearest upstream and downstream gages in adjacent states, were retrieved for use in the application. The application includes a data update module that automatically downloads the most recent USGS data and appends it to the existing flow database.

Some instantaneous flow measurements were available from various agencies. These were not combined with the daily average flows or used in calculating flow percentiles, but were matched to TSS and/or turbidity grab measurements collected at the same site and time. When available, these instantaneous flow measurements were used in lieu of the daily average flow to calculate instantaneous TSS loads.

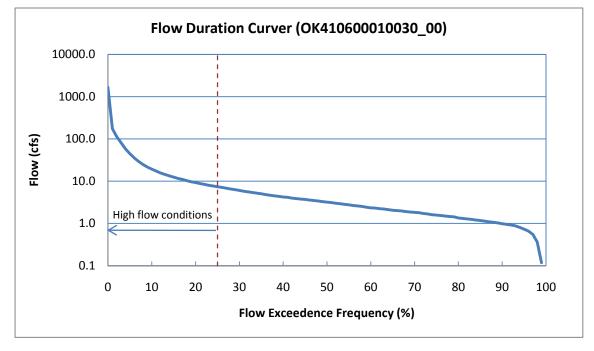


Figure 4-2Flow Duration Curve for Sulphur Creek (OK410600010030_00)

4.4 Development of TMDLs Using Load Duration Curves

The final step in the TMDL calculation process involves a group of additional computations derived from the preparation of LDCs. These computations are necessary to derive a PRG (which is one method of presenting how much TSS loading must be reduced to meet turbidity WQS in the impaired watershed).

Step 1: Generate LDCs. LDCs are similar in appearance to flow duration curves; however, the ordinate is expressed in terms of a load typically in lbs/day. The curve represents the water quality target for TSS (31 mg/L) expressed in terms of a load through multiplication by the continuum of flows historically observed at this site. The basic steps to generating an LDC involve:

- obtaining daily flow data for the site of interest from the USGS (or project flow using Oklahoma TMDL Toolbox if station is ungaged);
- sorting the flow data and calculating flow exceedance frequencies for the time period and season of interest;
- obtaining available turbidity and TSS water quality data;
- matching the water quality observations with the flow data from the same date;
- displaying a curve on a plot that represents the allowable load multiplying the actual or estimated flow by the WQ_{target} for TSS;
- multiplying the flow by the water quality parameter concentration to calculate daily loads (for sampling events with both TSS and turbidity data, the measured TSS value is used; if only turbidity was measured, the value was converted to TSS using the regression equation in Figure 4-1); then

• plotting the flow exceedance frequencies and daily load observations in a load duration plot.

The culmination of these steps is expressed in the following formula, which is displayed on the LDC as the TMDL curve:

 $TMDL (lb/day) = WQ_{target} * flow (cfs) * unit conversion factor$ $where: WQ_{target} = 31.4 mg/L (TSS)$ $unit \ conversion \ factor = 5.39377 \ L^*s^*lb \ /(ft^3*day^*mg)$

The flow exceedance frequency (x-value of each point) is obtained by looking up the historical exceedance frequency of the measured or estimated flow; in other words, the percent of historical observations that equal or exceed the measured or estimated flow. Historical observations of TSS and/or turbidity concentrations are paired with flow data and are plotted on the LDC. The TSS load (or the y-value of each point) is calculated by multiplying the TSS concentration (measured or converted from turbidity) (mg/L) by the instantaneous flow (cfs) at the same site and time, with appropriate volumetric and time unit conversions. TSS loads representing exceedance of water quality criteria fall above the TMDL line.

As noted earlier, runoff has a strong influence on loading of nonpoint source pollution yet flows do not always correspond directly to local runoff. High flows may occur in dry weather due to upstream precipitation events or releases form upstream dams. Runoff influence may be observed with low or moderate flows depending on antecedent conditions.

Step 2: Define MOS. The MOS may be defined explicitly or implicitly. A typical explicit approach would reserve some specific fraction of the TMDL as the MOS. In an implicit approach, conservative assumptions used in developing the TMDL are relied upon to provide an MOS to assure that WQSs are attained. For turbidity (TSS) TMDLs an explicit MOS is derived from the NRMSE established by the turbidity/TSS regression analysis conducted for each waterbody. This approach for setting an explicit MOS has been used in other approved turbidity TMDLs

For the TMDLs in this report, an explicit MOS of 10 percent was selected.

Step 3: Calculate WLA. As previously stated, the pollutant load allocation for point sources is defined by the WLA. For TMDL development purposes when addressing turbidity or TSS, a WLA will be established for wastewater (continuous) discharges in impaired watersheds that do not have a BOD or CBOD permit limit but do have a TSS limit. These point source discharges of inorganic suspended solids will be assigned a TSS WLA as part of turbidity TMDLs to ensure WQS can be maintained.

The LDC approach recognizes that the assimilative capacity of a waterbody depends on the flow, and that maximum allowable loading will vary with flow condition. TMDLs can be expressed in terms of maximum allowable concentrations, or as different maximum loads allowable under different flow conditions, rather than single maximum load values. A load-based approach meets the requirements of 40 CFR, 130.2(i) for expressing TMDLs "in terms of mass per time, toxicity, or other appropriate measures."

WLA for WWTP. WLAs may be set to zero for watersheds with no existing or planned continuous permitted point sources such as Sulphur Creek.

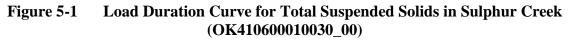
WLA for Permitted Stormwater. For turbidity TMDLs, WLAs for permitted stormwater such as MS4s, construction, and multi-sector general permits are not calculated since these discharges occur under high flow conditions when the turbidity criteria do not apply.

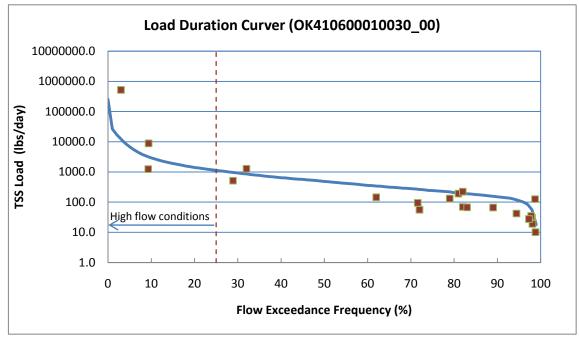
Step 4: Calculate LA. Given the lack of data and the variability of storm events, it is difficult to quantify discharges that accurately represent projected loadings from nonpoint sources. LAs can be calculated under different flow conditions as the water quality target load minus the WLA. The LA is represented by the area under the LDC but above the WLA. The LA at any particular flow exceedance is calculated as shown in the equation below.

LA = TMDL - WLA - MOS

Step 5: Estimate LA Load Reduction. After existing loading estimates are computed, nonpoint load reduction estimates are calculated by using the difference between estimated existing loading and the allowable load expressed by the LDC (TMDL-MOS). This difference is expressed as the overall PRG for the impaired waterbody. For turbidity, the PRG is the load reduction that ensures that no more than 10 percent of the samples under flow-base conditions exceed the TMDL.

SECTION 5 TMDL CALCULATIONS


5.1 Estimated Loading and Critical Conditions


USEPA regulations at 40 CFR 130.7(c) (1) require TMDLs to take into account critical conditions for stream flow, loading, and all applicable water quality standards. To accomplish this, available instream WQM data were evaluated with respect to flows and magnitude of water quality criteria exceedance using LDCs.

To calculate the TSS load at the WQ_{target}, the flow rate at each flow exceedance frequency is multiplied by a unit conversion factor (5.39377 $L^*s^*lb /ft^3/day/mg$) and the TSS target (31 mg/L). This calculation produces the maximum TSS load in the stream that will result in attainment of the 50 NTU standard for turbidity. The allowable TSS loads at the WQS establish the TMDL and are plotted versus flow exceedance frequency as a LDC. The x-axis indicates the flow exceedance frequency, while the y-axis is expressed in terms of a TSS load in pounds per day.

To estimate existing loading, TSS and turbidity observations from 1991 to 2007 are paired with the flows measured or estimated in that segment on the same date. For sampling events with both TSS and turbidity data, the measured TSS value is used; if only turbidity was measured, the value was converted to TSS using the regression equation in Figure 4-1. Pollutant loads are then calculated by multiplying the TSS concentration by the flow rate and the unit conversion factor. The associated flow exceedance frequency is then matched with the measured flow from the tables provided in Appendix B. The observed TSS or converted turbidity loads are then added to the LDC plot as points. These points represent individual ambient water quality samples of TSS. Points above the LDC indicate the TSS target was exceeded at the time of sampling. Conversely, points under the LDC indicate the sample did not exceed the WQ_{target}. Figure 5-1 shows the LDC developed for Sulphur Creek. It is noted that the LDC plot includes data under all flow conditions to show the overall condition of the stream. However, it is noted that the turbidity standard only applies for base-flow conditions. Thus, when assessing beneficial use assessment, only the portion of the graph corresponding to flows from the 25% to 100% flow exceedance frequency should be used.

The LDC approach recognizes that the assimilative capacity of a waterbody depends on the flow, and that maximum allowable loading varies with flow condition. Existing loading, and load reductions required to meet the TMDL water quality target can also be calculated under different flow conditions. The difference between existing loading and the water quality target is used to calculate the loading reductions required. The overall PRG is calculated for Sulphur Creek as the reduction in load required so no more than 10 percent of the samples collected under base-flow conditions would exceed 28.3 mg/L (90 percent of the TSS WQ_{target} to account for the explicit MOS). This is done through an iterative process of taking a series of percent reduction values applying each value uniformly between the concentrations of samples and verifying that no more than 10 percent of the samples exceed the water quality target concentration. The concentrations are derived from only those samples after high flow samples are excluded. The PRG for Sulphur Creek is estimated to be 11.7 percent.

As shown in Figure 5-1, TSS levels exceed the water quality target less than 20% of the time.

5.2 Wasteload Allocation

The WLA_WWTF for the Study Area is zero.

No wasteload allocations are needed for stormwater dischargers. By definition, any stormwater discharge occurs during periods of rainfall and elevated flow conditions. Oklahoma's Water Quality Standards specify that the criteria for turbidity "apply only to seasonal base flow conditions" and go on to say "Elevated turbidity levels may be expected during, and for several days after, a runoff event" [OAC 785:45-5-12(f)(7)]. Therefore, WLA for NPDES-regulated storm water discharges is essentially considered unnecessary in this TMDL report and will not be included in the TMDL calculations. Conditions in existing stormwater permits are sufficient to protect receiving waters.

To accommodate the potential for future growth in the watershed, 1% of TSS loading is reserved as part of the WLA.

5.2.1 Section 404 permits

No TSS wasteload allocations were set aside for Section 404 permits. The state will use its Section 401 certification authority to ensure Section 404 permits protect Oklahoma water quality standards and comply with TSS TMDLs in this report. Section 404 permits will be conditioned to meet one of the following two conditions to be certified by the state:

- Include TSS limits in the permit and establish a monitoring requirement to ensure compliance with turbidity standard and TSS TMDLs.
- Submit to the ODEQ a BMP turbidity reduction plan which should include all practicable turbidity control techniques. The turbidity reduction plan must be approved first before a Section 404 permit can be issued.

5.3 Load Allocation

As discussed in Section 3.2, pollutant loading to the receiving streams of each waterbody emanate from a number of different nonpoint sources. The data analysis and the LDCs demonstrate that exceedances of the turbidity WQS at the WQM stations are the result of a variety of nonpoint sources. The LA is calculated as the difference between the TMDL, MOS, and WLA as follows:

 $LA = TMDL - WLA_WWTP - WLA_growth - MOS$

5.4 Seasonal Variability

Federal regulations (40 CFR §130.7(c)(1)) require that TMDLs account for seasonal variation in watershed conditions and pollutant loading. The TMDL established in this report adhere to the seasonal application of the Oklahoma WQS for turbidity, which applies to seasonal base flow conditions only. Seasonal variation was also accounted for in this TMDL by using more than 5 years of water quality data and by using the longest period of USGS flow records possible when estimating flows to develop flow exceedance frequency.

5.5 Margin of Safety

Federal regulations (40 CFR §130.7(c)(1)) require that TMDLs include an MOS. The MOS is a conservative measure incorporated into the TMDL equation that accounts for the lack of knowledge associated with calculating the allowable pollutant loading to ensure WQSs are attained. USEPA guidance allows for use of implicit or explicit expressions of the MOS, or both. When conservative assumptions are used in development of the TMDL, or conservative factors are used in the calculations, the MOS is implicit. When a specific percentage of the TMDL is set aside to account for lack of knowledge, then the MOS is considered explicit.

An explicit Margin of Safety of 10% was selected in this TMDL report.

5.6 TMDL Calculations

This TMDL was derived using the LDC method. A TMDL is expressed as the sum of all WLAs (point source loads), LAs (nonpoint source loads), and an appropriate MOS, which attempts to account for lack of knowledge concerning the relationship between effluent limitations and water quality.

This definition can be expressed by the following equation:

$TMDL = \Sigma WLA + \Sigma LA + MOS$

The TMDL represents a continuum of desired load over all flow conditions, rather than fixed at a single value, because loading capacity varies as a function of the flow present in the stream. The higher the flow is, the more wasteload the stream can handle without violating water quality standards.

Regardless of the magnitude of the WLA calculated in these TMDLs, future new discharges or increased load from existing discharges will be considered consistent with the TMDL provided the NPDES permit requires instream criteria to be met.

TheTMDL, WLA, LA, and MOS are calculated at every 5th flow interval percentile (Table 5-1).

Percentile	Flow (cfs)	TMDL (lb/day)	WLA (Ib/day)			WLA (lb/day)		LA	MOS
			WWTP	MS4	Growth	(lb/day)	(lb/day)		
0	1,668	NA	0	0	NA	NA	NA		
5	45	NA	0	0	NA	NA	NA		
10	19	NA	0	0	NA	NA	NA		
15	12	NA	0	0	NA	NA	NA		
20	9.2	NA	0	0	NA	NA	NA		
25	7.4	1,253	0	0	12.5	1,115	125		
30	6	1,016	0	0	10.2	904	102		
35	5	847	0	0	8.5	754	85		
40	4.2	711	0	0	7.1	633	71		
45	3.7	627	0	0	6.3	558	63		
50	3.2	542	0	0	5.4	482	54		
55	2.7	457	0	0	4.6	407	46		
60	2.3	390	0	0	3.9	347	39		
65	2.1	356	0	0	3.6	317	36		
70	1.8	305	0	0	3.0	271	30		
75	1.6	271	0	0	2.7	241	27		
80	1.4	237	0	0	2.4	211	24		
85	1.2	203	0	0	2.0	181	20		
90	1	169	0	0	1.7	151	17		
95	0.7	119	0	0	1.2	106	12		
100	0	0	0	0	0	0	0		

Table 5-1Turbidity TMDL based on Total Suspended Solids Calculations forSulphur Creek (OK410600010030_00)

5.7 Reasonable Assurances

ODEQ will collaborate with a host of other state agencies and local governments working within the boundaries of state and local regulations to target available funding and technical assistance to support implementation of pollution controls and management measures. Various water quality management programs and funding sources provide a reasonable assurance that the pollutant reductions as required by this TMDL can be achieved and water quality can be restored to maintain designated uses. ODEQ's Continuing Planning Process (CPP), required by the CWA §303(e)(3) and 40 CFR 130.5, summarizes Oklahoma's commitments and programs aimed at restoring and protecting water quality throughout the state (ODEQ 2006). The CPP can be viewed from ODEQ's website at 2006 Continuing Planning Process. Table 5-2 provides

a partial list of the state partner agencies ODEQ will collaborate with to address point and nonpoint source reduction goals established by TMDLs.

Table 5-2	Partial List of Oklahoma Water Quality Management Agencies
-----------	--

Agency	Web Link		
Oklahoma Conservation Commission	www.conservation.ok.gov		
Oklahoma Department of Wildlife Conservation	http://www.wildlifedepartment.com/watchabl.htm		
Oklahoma Department of Agriculture, Food, and Forestry	http://www.oda.state.ok.us/aems.htm		
Oklahoma Water Resources Board	http://www.owrb.ok.gov		

Nonpoint source pollution in Oklahoma is managed by the Oklahoma Conservation Commission (OCC). The OCC works with state partners such as Oklahoma Department of Agriculture, Food, and Forestry (ODAFF) and federal partners such USEPA and the National Resources Conservation Service (NRCS), to address water quality problems similar to those seen in the Study Area. The primary mechanisms used for management of nonpoint source pollution are incentive-based programs that support the installation of BMPs and public education and outreach. Other programs include regulations and permits for CAFOs. The CAFO Act, as administered by the ODAFF, provides CAFO operators the necessary tools and information to deal with the manure and wastewater animals produce so streams, lakes, ponds, and groundwater sources are not polluted.

As authorized by Section 402 of the CWA, the ODEQ has delegation of the NPDES Program in Oklahoma, except for certain jurisdictional areas related to agriculture and the oil and gas industry retained by State Department of Agriculture and Oklahoma Corporation Commission, for which the USEPA has retained permitting authority. The NPDES Program in Oklahoma is implemented via Title 252, Chapter 606 of the Oklahoma Pollution Discharge Elimination System (OPDES) Act and in accordance with the agreement between ODEQ and USEPA relating to administration and enforcement of the delegated NPDES Program. Implementation of point source WLAs is done through permits issued under the OPDES program.

The reduction rate called for in this TMDL report is 11.7 percent.

SECTION 6 PUBLIC PARTICIPATION

This report was submitted to EPA for technical review and was technically accepted on July 01, 2010. A public notice was circulated on July 15, 2010 to local newspapers and/or other publications in the area affected by this TMDL and persons on the DEQ contact list. The public comment period ended on August 30, 2010. No requests for a public meeting were received. No comments were received.

SECTION 7 REFERENCES

- Helsel, D.R. and R.M. Hirsch 2002. Statistical Methods in Water Resources. U.S. Department of the Interior, U.S. Geological Survey, September 2002.
- ODEQ 2006. Continuing Planning Process. 2006 Edition.
- ODEQ 2008. Water Quality in Oklahoma, 2008 Integrated Report. 2008
- Oklahoma Climate Survey. 2005. Viewed March 6, 2009 in

http://climate.ocs.ou.edu/county_climate/Products/County_Climatologies/

OWRB. 2008. Oklahoma Water Resources Board. 2008 Water Quality Standards.

Tukey, J.W. 1977. Exploratory Data Analysis. Addison-Wesely.

U.S. Census Bureau 2000. http://www.census.gov/main/www/cen2000.html

- USEPA 1991. Guidance for Water Quality-Based Decisions: The TMDL Process. Office of Water, USEPA 440/4-91-001.
- USEPA 2003. Guidance for 2004 Assessment, Listing and Reporting Requirements Pursuant to Sections 303(d) and 305(b) of the Clean Water Act, TMDL -01-03 Diane Regas-- July 21, 2003.

USGS 2007. Multi-Resolution Land Characteristics Consortium. http://www.mrlc.gov/index.asp

USGS 2007a. USGS Daily Streamflow Data. http://waterdata.usgs.gov/nwis/sw

USGS 2009. USGS National Water Information System Website. http://waterdata.usgs.gov/nwis/?percentile_help

APPENDIX A AMBIENT WATER QUALITY DATA 1991 - 2007

WQM Station	Date	Turbidity (NTU)	Total Suspended Solids (mg/L)	Flow (cfs)	Flow condition ¹
410600-01-0030G	9/24/1991	7	15		
410600-01-0030G	4/15/1992	5.29	42		
410600-01-0030G	10/15/1992	6.29	12		
410600-01-0030G	8/4/1993	8	6		
410600-01-0030G	6/21/2005	8.01	<10	0.188	
410600-01-0030G	7/20/2005	3.56		0.033	
410600-01-0030G	7/26/2005	12.7	17		
410600-01-0030G	10/11/2005	34.4	27		
410600-01-0030G	11/8/2005	31.4	32		
410600-01-0030G	12/13/2005	13.5	12		
410600-01-0030G	1/24/2006	13.5	<10		Rainfall event
410600-01-0030G	2/28/2006	208	108	0.216	
410600-01-0030G	4/4/2006	21.9	15	0.378	
410600-01-0030G	5/9/2006	36.3	<10	0.353	
410600-01-0030G	6/20/2006	150	<10		
410600-01-0030G	10/2/2006	41.5	16		
410600-01-0030G	11/6/2006	240	79	20.742	High flow
410600-01-0030G	12/12/2006	19.7	<10	0.511	
410600-01-0030G	1/22/2007	55.8	11	21	High flow
410600-01-0030G	2/20/2007	4.64	<10	1.754	
410600-01-0030G	3/26/2007	16.8	<10	0.779	
410600-01-0030G	5/7/2007	865	1163		High flow

Appendix A Ambient Water Quality Data 1991 - 2007

¹ High flow = Sample was not collected under base flow conditions (sample collected at flows greater that 25% flow exceedance frequency.

APPENDIX B PROJECTED FLOW EXCEEDANCE FREQUENCIES FOR SULPHUR CREEK FLOW DURATION CURVE

WBID Segment OK410600010030_00						
USG	S Gage Refe	rence	07332500			
Flow Exceedance Frequency (%)	Flow (cfs)	Flow Exceedance Frequency (%)	Flow (cfs)	Flow Exceedance Frequency (%)	Flow (cfs)	
0	1668.2	34	5.2	68	1.9	
1	174.5	35	5.0	69	1.9	
2	112.9	36	4.8	70	1.8	
3	80.3	37	4.7	71	1.8	
4	57.9	38	4.5	72	1.7	
5	44.7	39	4.4	73	1.7	
6	35.4	40	4.2	74	1.6	
7	29.2	41	4.1	75	1.6	
8	24.8	42	4.0	76	1.5	
9	21.7	43	3.9	77	1.5	
10	19.2	44	3.8	78	1.5	
11	17.3	45	3.7	79	1.4	
12	15.7	46	3.6	80	1.4	
13	14.5	47	3.5	81	1.3	
14	13.3	48	3.4	82	1.3	
15	12.5	49	3.3	83	1.2	
16	11.7	50	3.2	84	1.2	
17	11.0	51	3.1	85	1.2	
18	10.3	52	3.0	86	1.1	
19	9.7	53	2.9	87	1.1	
20	9.2	54	2.8	88	1.1	
21	8.8	55	2.7	89	1.0	
22	8.4	56	2.7	90	1.0	
23	8.0	57	2.6	91	1.0	
24	7.7	58	2.5	92	0.9	
25	7.4	59	2.4	93	0.9	
26	7.1	60	2.3	94	0.8	
27	6.8	61	2.3	95	0.7	
28	6.6	62	2.2	96	0.7	
29	6.3	63	2.2	97	0.5	
30	6.0	64	2.1	98	0.4	
31	5.8	65	2.1	99	0.12	
32	5.6	66	2.0	100	0	
33	5.4	67	2.0			

Appendix B Projected Flow exceedance frequencies for Sulphur Creek Flow Duration Curve

Appendix B General Method for Estimating Flow at WQM Stations

Flows duration curve will be developed using existing USGS measured flow where the data exist from a gage on the stream segment of interest, or by estimating flow for stream segments with no corresponding flow record. Flow data to support flow duration curves and load duration curves will be derived for each Oklahoma stream segment in the following priority:

- i) In cases where a USGS flow gage occurs on, or within one-half mile upstream or downstream of the Oklahoma stream segment.
 - a. If simultaneously collected flow data matching the water quality sample collection date are available, these flow measurements will be used.
 - b. If flow measurements at the coincident gage are missing for some dates on which water quality samples were collected, the gaps in the flow record will be filled, or the record will be extended, by estimating flow based on measured streamflows at a nearby gage. First, the most appropriate nearby stream gage is identified. All flow data are first log-transformed to linearize the data because flow data are highly skewed. Linear regressions are then developed between 1) daily streamflow at the gage to be filled/extended, and 2) streamflow at all gages within 95 miles that have at least 300 daily flow measurements on matching dates. The station with the best flow relationship, as indicated by the highest rsquared value, is selected as the index gage. R-squared indicates the fraction of the variance in flow explained by the regression. The regression is then used to estimate flow at the gage to be filled/extended from flow at the index station. Flows will not be estimated based on regressions with r-squared values less than 0.25, even if that is the best regression. In some cases, it will be necessary to fill/extend flow records from two or more index gages. The flow record will be filled/extended to the extent possible based on the best index gage (highest rsquared value), and remaining gaps will be filled from the next best index gage (second highest r-squared value), and so forth.
 - c. Flow duration curves will be based on both measured flows only and on the filled or extended flow time series calculated from other gages using regression.
 - d. On a stream impounded by dams to form reservoirs of sufficient size to impact stream flow, only flows measured after the date of the most recent impoundment will be used to develop the flow duration curve. This also applies to reservoirs on major tributaries to the stream.
- ii) In the case no coincident flow data are available for a stream segment, but flow gage(s) are present upstream and/or downstream without a major reservoir between, flows will be estimated for the stream segment from an upstream or downstream gage using a watershed area ratio method derived by delineating subwatersheds, and relying on the NRCS runoff curve numbers and antecedent rainfall condition. Drainage subbasins will first be delineated for all impaired 303(d)-listed WQM stations, along with all USGS flow stations located in the 8-digit HUCs with

FINALTurbidity TMDL Sulphur Creek.docx

impaired streams. Parsons will then identify all the USGS gage stations upstream and downstream of the subwatersheds with 303(d) listed WQM stations.

- a. Watershed delineations are performed using ESRI Arc Hydro with a 30 m resolution National Elevation Dataset (NED) digital elevation model, and National Hydrography Dataset (NHD) streams. The area of each watershed will be calculated following watershed delineation.
- b. The watershed average curve number is calculated from soil properties and land cover as described in the U.S. Department of Agriculture (USDA) Publication *TR-55: Urban Hydrology for Small Watersheds*. The soil hydrologic group is extracted from NRCS STATSGO soil data, and land use category from the 2001 National Land Cover Dataset (NLCD). Based on land use and the hydrologic soil group, SCS curve numbers are estimated at the 30-meter resolution of the NLCD grid as shown in Table 7. The average curve number is then calculated from all the grid cells within the delineated watershed.
- c. The average rainfall is calculated for each watershed from gridded average annual precipitation datasets for the period 1971-2000 (Spatial Climate Analysis Service, Oregon State University, http://www.ocs.oregonstate.edu/prism/, created 20 Feb 2004).

Curve number for hydrologic soil grou						
NLCD Land Use Category	A	B	C			
0 in case of zero	100	100	100	100		
11 Open Water	100	100	100	100		
12 Perennial Ice/Snow	100	100	100	100		
21 Developed, Open Space	39	61	74	80		
22 Developed, Low Intensity	57	72	81	86		
23 Developed, Medium Intensity	77	85	90	92		
24 Developed, High Intensity	89	92	94	95		
31 Barren Land (Rock/Sand/Clay)	77	86	91	94		
32 Unconsolidated Shore	77	86	91	94		
41 Deciduous Forest	37	48	57	63		
42 Evergreen Forest	45	58	73	80		
43 Mixed Forest	43	65	76	82		
51 Dwarf Scrub	40	51	63	70		
52 Shrub/Scrub	40	51	63	70		
71 Grasslands/Herbaceous	40	51	63	70		
72 Sedge/Herbaceous	40	51	63	70		
73 Lichens	40	51	63	70		
74 Moss	40	51	63	70		
81 Pasture/Hay	35	56	70	77		
82 Cultivated Crops	64	75	82	85		
90-99 Wetlands	100	100	100	100		

 Table B-1
 Runoff Curve Numbers for Various Land Use Categories and Hydrologic Soil

 Groups

d. The method used to project flow from a gaged location to an ungaged location was adapted by combining aspects of two other flow projection methodologies developed by Furness (Furness, 1959) and Wurbs (Wurbs, 2000).

Furness Method

The Furness method has been employed in Kansas by both the USGS and Kansas Department of Health and Environment to estimate flow-duration curves. The method typically uses maps, graphs, and computations to identify six unique factors of flow duration for ungaged sites. These factors include:

- the mean streamflow and percentage duration of mean streamflow;
- the ratio of 1-percent-duration streamflow to mean streamflow ;
- the ratio of 0.1-percent-duration streamflow to 1-percent-duration streamflow;
- the ratio of 50-percentduration streamflow to mean streamflow;
- the percentage duration of appreciable (0.10 ft/s) streamflow; and
- average slope of the flow-duration curve.

Furness defined appreciable flow as 0.10 ft/s. This value of streamflow was important because, for many years, this was the smallest non-zero streamflow value reported in most Kansas streamflow records. The average slope of the duration curve is a graphical approximation of the variability index, which is the standard deviation of the logarithms of the streamflows (Furness, 1959, p. 202-204, figs. 147 and 148). On a duration curve that fits the log-normal distribution exactly, the variability index is equal to the ratio of the streamflow at the 15.87-percent-duration point to the streamflow at the 50-percent-duration point. Because duration curves usually do not exactly fit the log-normal distribution, the average-slope line is drawn through an arbitrary point, and the slope is transferred to a position approximately defined by the previously estimated points.

The method provides a means of both describing shape of the flow duration curve and scaling the magnitude of the curve to another location, basically generating a new flow duration curve with a very similar shape but different magnitude at the ungaged location.

Wurbs Modified NRCS Method

As a part of the Texas water availability modeling (WAM) system developed by Texas Natural Resources Conservation Commission (TNRCC), now known as the Texas Commission on Environmental Quality (TCEQ), and partner agencies, various contractors developed models of all Texas rivers. As a part of developing the model code to be used, Dr. Ralph Wurbs of Texas A&M University researched methods to distribute flows from gaged locations to ungaged locations. (Wurbs, 2006) His results included the development of a modified Natural Resource Conservation Service (NRCS) curve-number (CN) method for distributing flows from gaged locations to ungaged locations.

$$Q = \frac{(P - I_a)^2}{(P - I_a) + S}$$
(1)

where:

Q = runoff depth (inches) P = rainfall (inches) S = potential maximum retention after runoff begins (inches) I_a = initial abstraction (inches)

If P < 0.2, Q = 0. Initial abstraction has been found to be empirically related to S by the equation

$$I_a = 0.2*S$$
 (2)

Thus, the runoff curve number equation can be rewritten:

$$Q = \frac{(P - 0.2S)^2}{P + 0.8S}$$
(3)

S is related to the curve number (CN) by:

$$S = \frac{1000}{CN} - 10$$
 (4)

P and Q in inches must be multiplied by the watershed area to obtain volumes. The potential maximum retention, S in inches, represents an upper limit on the amount of water that can be abstracted by the watershed through surface storage, infiltration, and other hydrologic abstractions. For convenience, S is expressed in terms of a curve number CN, which is a dimensionless watershed parameter ranging from 0 to 100. A CN of 100 represents a limiting condition of a perfectly impervious watershed with zero retention and thus all the rainfall becoming runoff. A CN of zero conceptually represents the other extreme with the watershed abstracting all rainfall with no runoff regardless of the rainfall amount.

First, S is calculated from the average curve number for the gaged watershed. Next, the daily historic flows at the gage are converted to depth basis (as used in equations 1 and 3) by dividing by its drainage area, then converted to inches. Equation 3 is then solved for daily precipitation depth of the gaged site, P_{gaged} . The daily precipitation depth for the ungaged site is then calculated as the precipitation depth of the gaged site multiplied by the ratio of the long-term average precipitation in the watersheds of the ungaged and gaged sites:

$$P_{ungaged} = P_{gaged} \left(\frac{M_{ungaged}}{M_{gaged}} \right)$$
(5)

where M is the mean annual precipitation of the watershed in inches. The daily precipitation depth for the ungaged watershed, along with the average curve number of the ungaged watershed, are then used to calculate the depth equivalent daily flow Q of the ungaged site. Finally, the volumetric flow rate at the ungaged site is calculated by multiplying by the area of the watershed of the ungaged site and converted to cubic feet.

In a subsequent study (Wurbs, 2006), Wurbs evaluated the predictive ability of various flow distribution methods including:

- Distribution of flows in proportion to drainage area;
- Flow distribution equation with ratios for various watershed parameters;
- Modified NRCS curve-number method;
- Regression equations relating flows to watershed characteristics;
- Use of recorded data at gaging stations to develop precipitation-runoff relationships; and
- Use of watershed (precipitation-runoff) computer models such as SWAT.

As a part of the analysis, the methods were used to predict flows at one gaged station to another gage station so that fit statistics could be calculated to evaluate the efficacy of each of the methods. Based upon similar analyses performed for many gaged sites which reinforced the tests performed as part of the study, Wurbs observed that temporal variations in flows are dramatic, ranging from zero flows to major floods. Mean flows are reproduced reasonably well with the all flow distribution methods and the NRCS CN method reproduces the mean closest. Accuracy in predicting mean flows is much better than the accuracy of predicting the flow-frequency relationship. Performance in reproducing flow-frequency relationships is better than for reproducing flows for individual flows.

Wurbs concluded that the NRCS CN method, the drainage area ratio method, and drainage area - CN - mean annual precipitation depth (MP) ratio methods all yield similar levels of accuracy. If the CN and MP are the same for the gaged and ungaged watersheds, the three alternative methods yield identical results. Drainage area is the most important watershed parameter. However, the NRCS method adaptation is preferable in those situations in which differences in CN (land use and soil type) and

long-term MP are significantly different between the gaged and ungaged watersheds. The CN and MP are usually similar but not identical.

Generalized Flow Projection Methodology

In the first several versions of the TMDL toolbox, all flows at ungaged sites that required projection from a gaged site were performed with the Modified NRCS CN method. This led a number of problems with flow projections in the early versions. As described previously, the NRCS method, in common with all others, reproduces the mean or central tendency best but the accuracy of the fit degrades towards the extremes of the frequency spectrum. Part of the degradation in accuracy is due to the quite non-linear nature of the NRCS equations. On the low flow end of the frequency spectrum, Equation 2 above constitutes a low flow limit below which the NRCS equations are not applicable at all. Given the flashy nature of most streams in locations for which the toolbox was developed, high and low flows are relatively more common and spurious results from the limits of the equations abounded.

In an effort to increase the flow prediction efficacy and remedy the failure of the NRCS CN method at the extremes of the flow spectrum, we developed what is effectively a hybrid of the NRCS CN method and the Furness method. Noting the facts that all tested projection methods, and particularly the NRCS CN method, perform best near the central tendency or mean and that none of the methods predict the entire flow frequency spectrum well, we decided to adopt an assumption that is implicit in the Furness method. The Furness method implicitly assumes that the shape of the flow frequency curve at an upstream site is related to and similar to the shape of the flow frequency curve at site downstream. As described previously, the Furness method employs several relationships derived between the mean flows and flows at differing frequencies to replicate the shape of the flow frequency curve at a 1% interval is calculated for every USGS gage utilizing very long periods of record, we decided to use this vector in association with the mean flow to project the flow frequency curve.

In the ideal situation flows are projected from an ungaged location from a downstream gaged location. The toolbox also has the capability to project flows from and upstream gaged location if there is no useable downstream gage.

iii) In the rare case where no coincident flow data are available for a WQM station <u>and</u> no gages are present upstream or downstream, flows will be estimated for the WQM station from a gage on an adjacent watershed of similar size and properties, via the same procedure described above for upstream or downstream gages.

APPENDIX C STATE OF OKLAHOMA ANTIDEGRADATION POLICY

Appendix C State of Oklahoma Antidegradation Policy

785:45-3-1. Purpose; Antidegradation policy statement

- (a) Waters of the state constitute a valuable resource and shall be protected, maintained and improved for the benefit of all the citizens.
- (b) It is the policy of the State of Oklahoma to protect all waters of the state from degradation of water quality, as provided in OAC 785:45-3-2 and Subchapter 13 of OAC 785:46.

785:45-3-2. Applications of antidegradation policy

- (a) Application to outstanding resource waters (ORW). Certain waters of the state constitute an outstanding resource or have exceptional recreational and/or ecological significance. These waters include streams designated "Scenic River" or "ORW" in Appendix A of this Chapter, and waters of the State located within watersheds of Scenic Rivers. Additionally, these may include waters located within National and State parks, forests, wilderness areas, wildlife management areas, and wildlife refuges, and waters which contain species listed pursuant to the federal Endangered Species Act as described in 785:45-5-25(c)(2)(A) and 785:46-13-6(c). No degradation of water quality shall be allowed in these waters.
- (b) Application to high quality waters (HQW). It is recognized that certain waters of the state possess existing water quality which exceeds those levels necessary to support propagation of fishes, shellfishes, wildlife, and recreation in and on the water. These high quality waters shall be maintained and protected.
- (c) Application to beneficial uses. No water quality degradation which will interfere with the attainment or maintenance of an existing or designated beneficial use shall be allowed.
- (d) Application to improved waters. As the quality of any waters of the state improve, no degradation of such improved waters shall be allowed.

785:46-13-1. Applicability and scope

- (a) The rules in this Subchapter provide a framework for implementing the antidegradation policy stated in OAC 785:45-3-2 for all waters of the state. This policy and framework includes three tiers, or levels, of protection.
- (b) The three tiers of protection are as follows:
 - (1) Tier 1. Attainment or maintenance of an existing or designated beneficial use.
 - (2) Tier 2. Maintenance or protection of High Quality Waters and Sensitive Public and Private Water Supply waters.
 - (3) Tier 3. No degradation of water quality allowed in Outstanding Resource Waters.

FINALTurbidity TMDL Sulphur Creek.docx

- (c) In addition to the three tiers of protection, this Subchapter provides rules to implement the protection of waters in areas listed in Appendix B of OAC 785:45. Although Appendix B areas are not mentioned in OAC 785:45-3-2, the framework for protection of Appendix B areas is similar to the implementation framework for the antidegradation policy.
- (d) In circumstances where more than one beneficial use limitation exists for a waterbody, the most protective limitation shall apply. For example, all antidegradation policy implementation rules applicable to Tier 1 waterbodies shall be applicable also to Tier 2 and Tier 3 waterbodies or areas, and implementation rules applicable to Tier 2 waterbodies shall be applicable also to Tier 3 waterbodies.
- (e) Publicly owned treatment works may use design flow, mass loadings or concentration, as appropriate, to calculate compliance with the increased loading requirements of this section if those flows, loadings or concentrations were approved by the Oklahoma Department of Environmental Quality as a portion of Oklahoma's Water Quality Management Plan prior to the application of the ORW, HQW or SWS limitation.

785:46-13-2. Definitions

The following words and terms, when used in this Subchapter, shall have the following meaning, unless the context clearly indicates otherwise:

"Specified pollutants" means

- (A) Oxygen demanding substances, measured as Carbonaceous Biochemical Oxygen Demand (CBOD) and/or Biochemical Oxygen Demand (BOD);
- (B) Ammonia Nitrogen and/or Total Organic Nitrogen;
- (C) Phosphorus;
- (D) Total Suspended Solids (TSS); and
- (E) Such other substances as may be determined by the Oklahoma Water Resources Board or the permitting authority.

785:46-13-3. Tier 1 protection; attainment or maintenance of an existing or designated beneficial use

(a) General.

- (1) Beneficial uses which are existing or designated shall be maintained and protected.
- (2) The process of issuing permits for discharges to waters of the state is one of several means employed by governmental agencies and affected persons which are designed to attain or maintain beneficial uses which have been designated for those waters. For example, Subchapters 3, 5, 7, 9 and 11 of this Chapter are rules for the permitting process. As such, the latter Subchapters not only implement numerical and narrative criteria, but also implement Tier 1 of the antidegradation policy.

- (b) Thermal pollution. Thermal pollution shall be prohibited in all waters of the state. Temperatures greater than 52 degrees Centigrade shall constitute thermal pollution and shall be prohibited in all waters of the state.
- (c) Prohibition against degradation of improved waters. As the quality of any waters of the state improves, no degradation of such improved waters shall be allowed.

785:46-13-4. Tier 2 protection; maintenance and protection of High Quality Waters and Sensitive Water Supplies

- (a) General rules for High Quality Waters. New point source discharges of any pollutant after June 11, 1989, and increased load or concentration of any specified pollutant from any point source discharge existing as of June 11, 1989, shall be prohibited in any waterbody or watershed designated in Appendix A of OAC 785:45 with the limitation "HQW". Any discharge of any pollutant to a waterbody designated "HQW" which would, if it occurred, lower existing water quality shall be prohibited. Provided however, new point source discharge sor increased load or concentration of any specified pollutant from a discharge existing as of June 11, 1989, may be approved by the permitting authority in circumstances where the discharge or increased load or concentration of the permitting authority that such new discharge or increased load or concentration would result in maintaining or improving the level of water quality which exceeds that necessary to support recreation and propagation of fishes, shellfishes, and wildlife in the receiving water.
- (b) General rules for Sensitive Public and Private Water Supplies. New point source discharges of any pollutant after June 11, 1989, and increased load of any specified pollutant from any point source discharge existing as of June 11, 1989, shall be prohibited in any waterbody or watershed designated in Appendix A of OAC 785:45 with the limitation "SWS". Any discharge of any pollutant to a waterbody designated "SWS" which would, if it occurred, lower existing water quality shall be prohibited. Provided however, new point source discharges or increased load of any specified pollutant from a discharge existing as of June 11, 1989, may be approved by the permitting authority in circumstances where the discharger demonstrates to the satisfaction of the permitting authority that such new discharge or increased load will result in maintaining or improving the water quality in both the direct receiving water, if designated SWS, and any downstream waterbodies designated SWS.
- (c) Stormwater discharges. Regardless of subsections (a) and (b) of this Section, point source discharges of stormwater to waterbodies and watersheds designated "HQW" and "SWS" may be approved by the permitting authority.
- (d) Nonpoint source discharges or runoff. Best management practices for control of nonpoint source discharges or runoff should be implemented in watersheds of waterbodies designated "HQW" or "SWS" in Appendix A of OAC 785:45.

785:46-13-5. Tier 3 protection; prohibition against degradation of water quality in outstanding resource waters

(a) General. New point source discharges of any pollutant after June 11, 1989, and increased load of any pollutant from any point source discharge existing as of June 11,

1989, shall be prohibited in any waterbody or watershed designated in Appendix A of OAC 785:45 with the limitation "ORW" and/or "Scenic River", and in any waterbody located within the watershed of any waterbody designated with the limitation "Scenic River". Any discharge of any pollutant to a waterbody designated "ORW" or "Scenic River" which would, if it occurred, lower existing water quality shall be prohibited.

- (b) Stormwater discharges. Regardless of 785:46-13-5(a), point source discharges of stormwater from temporary construction activities to waterbodies and watersheds designated "ORW" and/or "Scenic River" may be permitted by the permitting authority. Regardless of 785:46-13-5(a), discharges of stormwater to waterbodies and watersheds designated "ORW" and/or "Scenic River" from point sources existing as of June 25, 1992, whether or not such stormwater discharges were permitted as point sources prior to June 25, 1992, may be permitted by the permitting authority; provided, however, increased load of any pollutant from such stormwater discharge shall be prohibited.
- (c) Nonpoint source discharges or runoff. Best management practices for control of nonpoint source discharges or runoff should be implemented in watersheds of waterbodies designated "ORW" in Appendix A of OAC 785:45, provided, however, that development of conservation plans shall be required in sub-watersheds where discharges or runoff from nonpoint sources are identified as causing or significantly contributing to degradation in a waterbody designated "ORW".
- (d) LMFO's. No licensed managed feeding operation (LMFO) established after June 10, 1998 which applies for a new or expanding license from the State Department of Agriculture after March 9, 1998 shall be located...[w]ithin three (3) miles of any designated scenic river area as specified by the Scenic Rivers Act in 82 O.S. Section 1451 and following, or [w]ithin one (1) mile of a waterbody [2:9-210.3(D)] designated in Appendix A of OAC 785:45 as "ORW".

785:46-13-6. Protection for Appendix B areas

- (a) General. Appendix B of OAC 785:45 identifies areas in Oklahoma with waters of recreational and/or ecological significance. These areas are divided into Table 1, which includes national and state parks, national forests, wildlife areas, wildlife management areas and wildlife refuges; and Table 2, which includes areas which contain threatened or endangered species listed as such by the federal government pursuant to the federal Endangered Species Act as amended.
- (b) Protection for Table 1 areas. New discharges of pollutants after June 11, 1989, or increased loading of pollutants from discharges existing as of June 11, 1989, to waters within the boundaries of areas listed in Table 1 of Appendix B of OAC 785:45 may be approved by the permitting authority under such conditions as ensure that the recreational and ecological significance of these waters will be maintained.
- (c) Protection for Table 2 areas. Discharges or other activities associated with those waters within the boundaries listed in Table 2 of Appendix B of OAC 785:45 may be restricted through agreements between appropriate regulatory agencies and the United States Fish and Wildlife Service. Discharges or other activities in such areas shall not

substantially disrupt the threatened or endangered species inhabiting the receiving water.

(d) Nonpoint source discharges or runoff. Best management practices for control of nonpoint source discharges or runoff should be implemented in watersheds located within areas listed in Appendix B of OAC 785:45.

FINALTurbidity TMDL Sulphur Creek.docx