Draft Wasteload Allocation Report For OG&E McClain Generating Station (OK0045250)

Contents

1. Problem Definition	1
2. Endpoint Identification	1
3. Source Analysis	2
3.1. Point Sources	2
3.2. Non-Point Sources	3
3.3. Background	3
4. Modeling	3
4.1. Previous Models	3
4.2. New Modeling	3
5. Margin of Safety	
6. Model Results	4
7. Final Recommendations	4
8. Public Participation	4
9. References	
Appendix A – WASP Model Setup	7
A.1. Overview	
A.2. WASP model segments	8
A.3. WASP model coefficients	
A.4. WASP model calibration	9
A.5. WASP model validation	11
Appendix B – Current 208 Plan for OG&E McClain Generating Station	13

List of Tables

Table 1. Point sources in WASP model	. 2
Table 2. Ambient concentrations	. 3
Appendix Table A-1. Lengths of streams and segments in WASP model	. 8
Appendix Table A- 2. WASP model coefficients	

List of Figures

Figure 1. Average DO profile in WASP model boundary	. 4
Figure 2. Point sources in WASP model	. 6
Appendix Figure A-1. Calibration flow against August measured flow in Canadian Rive WAS	Ρ
boundary	10
Appendix Figure A-2. Calibration CBODu against August measured CBODu in Canadian Riv	e
WASP boundary	10
Appendix Figure A- 3. Calibration DO against August measured DO in Canadian Rive WASP	
boundary	11

Appendix Figure A- 4. Validation flow against September measured flow in Canadian Rive	
WASP boundary	11
Appendix Figure A- 5. Validation CBODu against September measured CBODu in Canadian	
Rive WASP boundary	12
Appendix Figure A- 6. Validation DO against Sptember measured DO in Canadian Rive WA	SP
boundary	12

1. Problem Definition

In 2014, DO modeling of the Canadian River (OK520610020010_00, OK520610010010_20, OK520610010010_10, and OK520610010010_05) between Union City and Buckhead, OK was developed under the Canadian River Wasteload Allocation (WLA) Project by the Association of Central Oklahoma Governments (ACOG). Based on that project, seasonal WLA limits (see Appendix B) were given to OG&E McClain Generating Station (OK0045250) for the design flow of 0.189 MGD, which was different from Qe(30) in industrial permit (0.414 MGD).

To make consistent with current industrial permit, 2014 Canadian River Water Quality Analysis Simulation Program (WASP) was updated. This report addresses dissolved-oxygen demanding substances only and does not address any other pollutant on the State's 303(d) list of impaired waters. This report addresses instream organic enrichment and dissolved oxygen (DO) through the use of wasteload allocations of DO-demanding substances (CBOD and ammonia).

The Canadian River (OK520610010010_20), the receiving stream for OG&E McClain Generating Station, is listed in the Oklahoma Water Quality Standards (OAC 252:730) as having the following beneficial uses:

- Aesthetics
- Agriculture
- Fish and Wildlife Propagation-Warm Water Aquatic Community (WWAC)
- Fish Consumption
- Secondary Body Contact Recreation

Based on 2022 Integrated Report, the Canadian River (OK520610010010_20) was not assessed for its beneficial uses, so it is assumed to meet all water quality standards. This WLA has been developed to ensure that the limits assigned to the discharge are stringent enough to maintain DO standards under critical conditions. Controls for any necessary pollutants will be established in the permitting process.

2. Endpoint Identification

The Canadian River is a perennial stream. Therefore, seasonal 7Q2 is considered as the critical low-flow. Details of 7Q2 calculations are shown in Appendix N of 2014 Canadian River Wasteload Allocation Study.

The following numerical DO criteria for WWAC apply to the receiving stream:

At Critical Low-Flow Condition (7Q2) Summer (Jun–Oct): 5.0 mg/L Spring (Mar–May): 6.0 mg/L Winter (Nov–Feb): 5.0 mg/L Oklahoma's antidegradation policy (OAC 252:730-3) requires protecting all waters of the state from degradation of water quality. The allocated loadings/concentrations in this report were set with regard for all elements of the Oklahoma Water Quality Standards, which includes the antidegradation policy.

3. Source Analysis

3.1. Point Sources

Discharger	Design flow (MGD)	Season	WLA (mg/L)
		Summer	No Discharge
Minco	0.215	Spring	12 CBOD ₅ , 30 TSS, 3.7 NH ₃ -N, 5 DO
		Winter	30 BOD ₅ , 90 TSS
Trattle (West		Summer	
Tuttle (West Creek)	0.51	Spring	30 BOD ₅ , 90 TSS
Cleek)		Winter	
Trattle (Werders		Summer	8 CBOD ₅ , 10 TSS, 2.3 NH ₃ -N, 6.5 DO
Tuttle (Worley	0.5	Spring	20 000 00 755
Creek)		Winter	30 BOD ₅ , 90 TSS
		Summer	7 CBOD ₅ , 10 TSS, 1.4 NH ₃ -N, 6.5 DO
Mustang	3.0	Spring	9 CBOD ₅ , 10 TSS, 3.75 NH ₃ -N, 5 DO
		Winter	13.5 CBOD ₅ , 22 TSS, 4.1 NH ₃ -N, 5 DO
Oblah and Citar		Summer	8 CBOD ₅ , 10 TSS, 0.5 NH ₃ -N, 7.5 DO
Oklahoma City- South Canadian	8.66	Spring	10 CBOD ₅ , 10 TSS, 1.0 NH ₃ -N, 7 DO
South Canadian		Winter	25 CBOD ₅ , 30 TSS, 4.1 NH ₃ -N, 5 DO
OG&E McClain		Summer	9 CBOD ₅ , 10 TSS, 3.2 NH ₃ -N, 4 DO
Generating	0.414*	Spring	20 000 20 755
Station		Winter	30 BOD ₅ , 30 TSS
		Summer	5 CBOD ₅ , 10 TSS, 1.4 NH ₃ -N, 6.5 DO
Moore	9.0	Spring	6 CBOD ₅ , 10 TSS, 1.4 NH ₃ -N, 7.4 DO
		Winter	15 CBOD ₅ , 20 TSS, 4.1 NH ₃ -N, 7.4 DO
		Summer	
Newcastle	1.5	Spring	18 CBOD ₅ , 30 TSS, 12 NH ₃ -N
		Winter	
		Summer	8 CBOD5, 10 TSS, 1.6 NH ₃ -N, 6.5 DO
Norman	16.0	Spring	13 CBOD5, 30 TSS, 4.1 NH ₃ -N, 5 DO
		Winter	25 CBOD5, 30 TSS, 4.1 NH ₃ -N, 5 DO
		Summer	30 BOD ₅ , 30 TSS, 5DO
Noble	0.76	Spring	20 000 20 755
		Winter	30 BOD ₅ , 30 TSS
		Summer	
Lexington	0.261	Spring	30 BOD ₅ , 30 TSS
Ŭ		Winter	

Table 1. Point sources in WASP model

		Summer	
Purcell	0.78	Spring	30 BOD ₅ , 90 TSS
		Winter	

*Qe(30) in 2019 industrial permit (the design flow in 208 Plan: 0.189 MGD)

3.2. Non-Point Sources

WASP is a dynamic model. However, all time variable inputs were specified as constants over the duration of the simulation except for water temperatures, which were specified with diurnal fluctuations that were repeated exactly the same every day. Therefore, low-flow conditions for this project assume little or no runoff.

3.3. <u>Background</u>

The following background conditions for the Canadian River were used:

Headwater Inputs*	Season		
meauwater inputs	Spring	Summer	Winter
Flow (7Q2)	135.3 cfs	8.97 cfs	92.69 cfs
CBODu	14.5 mg/L	7.09 mg/L	14.5 mg/L
Ammonia	0.28 mg/L	0.1 mg/L	0.28 mg/L
DO	8.26 mg/L	5 mg/L	8.26 mg/L

 Table 2. Ambient concentrations

* From 2014 Canadian River Wasteload Allocation Study Appendix J and N

4. Modeling

4.1. Previous Models

In 2014, ACOG contracted Guernsey to develop WASP model and allocated WLAs to 12 facilities (Table 1) discharging to the Canadian River (OK520610020010_00, OK520610010010_20, OK520610010010_10, and OK520610010010_05). The original Guernsey report included detailed information about the field studies, WASP model setup, calibration, and validation. In the 2014 report, several projection scenarios were simulated and the dischargers collectively selected Scenario D.

In 2018, ACOG modified Scenario D in 2014 WASP model to move the discharge from the Oklahoma City South Canadian WWTF to the Canadian River from an unnamed tributary.

In 2019, ACOG revised WASP model to incorporate Newcastle's design flow increase and new discharge location. Discharge location was moved about 2miles upstream of the mouth of Pond Creek and design flow was increase to 1.5 MGD from 0.852 MGD.

4.2. New Modeling

The simulations presented in this report are the same as ACOG's simulation except the flow for OG&E McClain Generating Station. The effluent concentration used in the model for OG&E McClain Generating Station remained same as current 208 Plan.

5. Margin of Safety

An explicit margin of safety of 5% was applied to both the point and nonpoint source oxygen demand. A scale factor of 1.05263 (1.0 divided by 0.95) was applied to the sediment oxygen demand and all the inflow concentrations (ammonia and CBOD in ambient flow and point source effluent flow).

6. Model Results

WASP model results are shown in Figure 1. WASP plots of average DO indicated attaining DO water quality standards for all seasons.

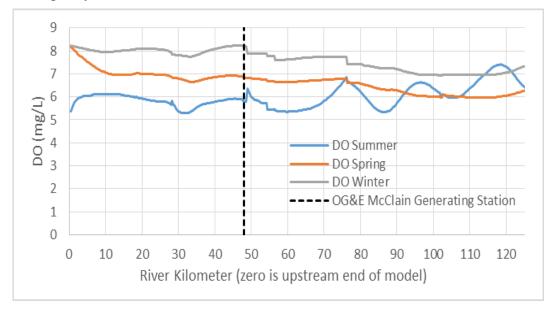


Figure 1. Average DO profile in WASP model boundary

7. Final Recommendations

The following changes are recommended for inclusion in the Oklahoma Water Quality Management Plan (208 Plan).

OG&E McClain Generating Station

Proposed Design Flow:	0.414 MGD
Summer (Jun–Oct):	9 mg/l CBOD ₅ ; 3.2 mg/l NH ₃ ; 4.0 mg/l DO; 10 mg/L TSS
Spring (Mar-May):	30.0 mg/l BOD ₅ ; 30 mg/L TSS
Winter (Nov-Feb):	30.0 mg/l BOD ₅ ; 30 mg/L TSS

8. Public Participation

This Draft WLA report will be submitted to EPA for technical review and acceptance. After EPA's review, the proposed WLA limits will be sent for public comments. Public comments received during this period will be responded to and become part of the WLA report.

9. References

- 1. Title 252, Oklahoma Administrative Code, Chapter 730 Oklahoma's Water Quality Standards, State Of Oklahoma, 2023.
- 2. Oklahoma Continuing Planning Process, 2012 edition, Oklahoma Department of Environmental Quality, State of Oklahoma, 2013.

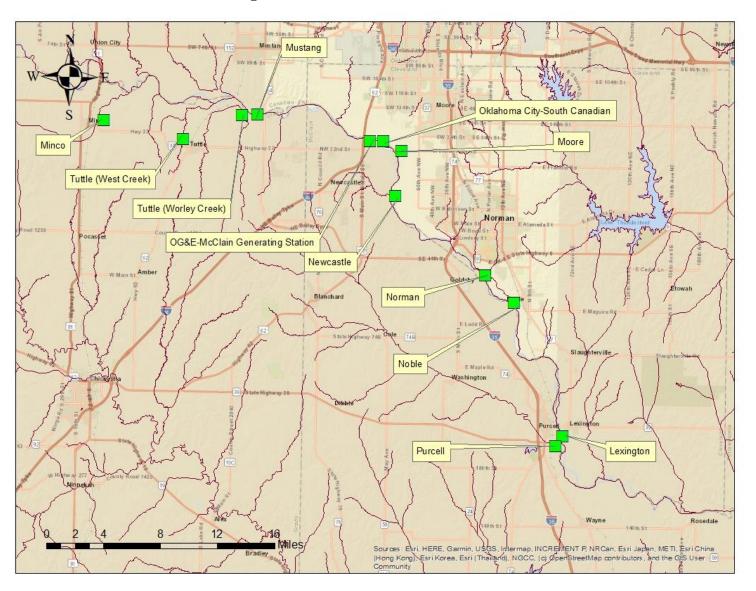


Figure 2. Point sources in WASP model

Appendix A – WASP Model Setup

A.1. Overview

The 2019 WASP model was revised to simulate increased flow of OG&E McClain Generating Station. Except the effluent flow for OG&E McClain Generating Station, all other inputs are remained same as the 2019 WASP model.

A.2. WASP model segments

The WASP model was applied to the Canadian River from the US Highway 81 Bridge near Union City and Minco to the confluence of Buckhead Creek near Rosedale. In addition to simulating the main stem of the Canadian River, the WASP model was extended into the four tributaries that are listed in Appendix Table A-1.

Stream	Stream Length (km)	Segment Numbers in Model	Segment Length (km)
Canadian River	125.5	1 - 410	0.5 or 0.2
UTM (Unnamed tributary below Moore Wastewater Treatment Plant [WWTP])	5.1	411 - 461	0.1
UTOC (Unnamed trib. below Oklahoma City WWTP)	3.7	462 - 498	0.1
Buggy Creek below Minco WWTP	6.3	499 - 561	0.1
Pond Creek / Tim's Creek below Newcastle WWTP	4.0	562 - 601	0.1

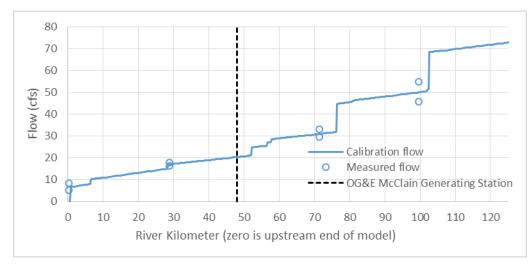
Appendix Table A-1. Lengths of streams and segments in WASP model

The WASP model simulates a stream as "a series of boxes" along the length of the stream. The WASP model refers to these boxes as segments. Segment length along the Canadian River was set to 0.5 km for most areas and 0.2 km immediately downstream of point source or tributary inflows. The purpose of the shorter segments is to provide greater spatial resolution to simulate any DO sags downstream of point sources. Segment length for all of the tributary segments was 0.1 km.

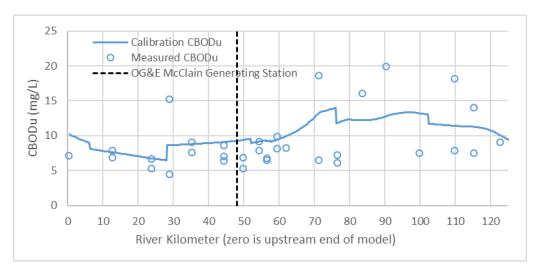
A.3. WASP model coefficients

The WASP model coefficients were established through model calibration based on comparisons of predicted and observed DO as well as visual observations during the field studies. These coefficients are listed in Appendix Table A-2.

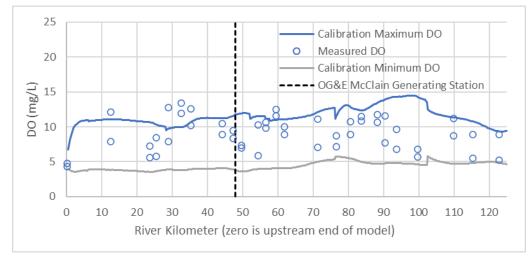
Model coefficient	Values
CBOD1 (ambient sources) decay rate at 20°C (1/day)	0.13
CBOD1 Decay Rate Temperature Correction Coefficient	1.047
CBOD2 (point sources) decay rate at 20oC (1/day)	0.16
CBOD2 Decay Rate Temperature Correction Coefficient	1.047
CBOD Half Saturation Oxygen Limit (mg O ₂ /L)	0.5
SOD at $20^{\circ}C$ (g/m ² /day)	0.3 – 4


Appendix Table A- 2. WASP model coefficients

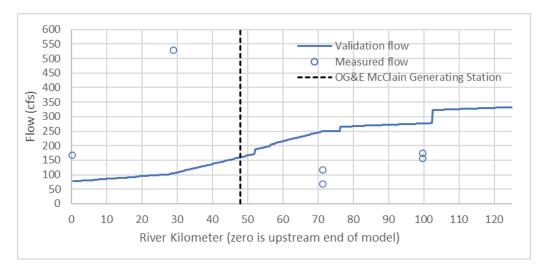
Model coefficient	Values
Nitrification Rate Constant at 20°C (1/day)	0.4
Nitrification Temperature Correction Coefficient	1.073
Half Saturation Constant for Nitrification Oxygen Limit (mg O ₂ /L)	2.5
Denitrification Rate Constant at 20°C (1/day)	0.75
Denitrification Temperature Correction Coefficient	1.045
Half Saturation Constant for Denitrification Oxygen Limit (mg O ₂ /L)	0.5
Dissolved Organic Nitrogen Mineralization Rate Constant at 20°C (1/day)	0.02
Dissolved Organic Nitrogen Mineralization Temperature Coefficient	1.02
Dissolved Organic Phosphorus Mineralization Rate Constant at 20°C (1/day)	0.05
Dissolved Organic Phosphorus Mineralization Temperature Coefficient	1.08
Algae Nitrogen to Carbon Ratio (mg N/mg C)	0.2
Algae Phosphorus to Carbon Ratio (mg P/mg C)	0.025
Carbon to Chlorophyll Ratio (mg C/mg Chl)	60
Maximum Growth Rate at 20°C (1/day)	0.53 - 4.25
Temperature Correction Coefficient for Growth	1.06
Respiration Rate at 20°C (1/day)	0.125 - 0.2
Temperature Correction Coefficient for Respiration	1.06
Death Rate from Non-Zooplankton Predation (1/day)	0.05
Half-Saturation Constant for Nitrogen Uptake (mg N/L)	0.3
Half-Saturation Constant for Phosphorus Uptake (mg P/L)	0.04
Optimal Light Saturation (Ly/day)	500
Fraction of Nitrogen from Algal Death and Respiration that is Recycled to Organic N	1
Fraction of Phos. from Algal Death and Respiration that is Recycled to Organic P	1


A.4. WASP model calibration

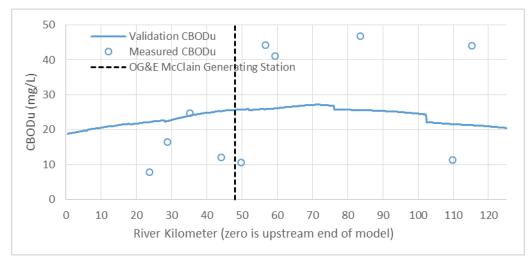
The headwater and tributary inflow rates for the calibration simulation were based entirely on field measurements from the August 8-13 field study. Detailed calibration results can be found in 2014 Canadian River Wasteload Allocation Study. Appendix Figure A-1 illustrates calibrated flow. Calibrated flows represented well for the Canadian River when they were compared with measured flows.


Calibrated CBODu were estimated similar to measured CBODu or somewhat overestimated, whereas calibrated DO were similar to measured DO or underestimated. These calibration results were considered for the conservative purpose.

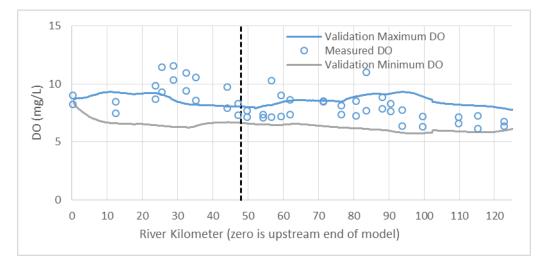
Appendix Figure A- 1. Calibration flow against August measured flow in Canadian River WASP boundary


Appendix Figure A- 2. Calibration CBODu against August measured CBODu in Canadian River WASP boundary

Appendix Figure A- 3. Calibration DO against August measured DO in Canadian River WASP boundary


A.5. WASP model validation

All the calibration parameters were kept the same as in the final calibration run and conditions from the September 12-17 field study were simulated for the model validation. During the field study, there was a raining event and instant measured flows didn't represent the average flows in the Canadian River. However, WASP simulation showed good average flows between before and after the raining event (Appendix Figure A-4).



Appendix Figure A- 4. Validation flow against September measured flow in Canadian River WASP boundary

Validation CBODu and DO showed similar results with calibrations. Detailed validation results were presented in Appendix M of 2014 Canadian River Wasteload Allocation Study.

Appendix Figure A- 5. Validation CBODu against September measured CBODu in Canadian River WASP boundary

Appendix Figure A- 6. Validation DO against September measured DO in Canadian River WASP boundary

Appendix B – Current 208 Plan for OG&E McClain Generating Station

FACILITY 208:	OG & E McClain		Newcastle
	Generating Station*	station*	
FACILITY LEGAL LOCATION:	S35 T10N R04W N/S	COUNTY:	McClain
NPDES #:	OK0045250	SIC CODE:	4911
STATE FACILITY NUMBER:	47000140	OPERATIONS DESCRIPTION:	Power Plant
OUTFALL NUMBER:	001		
WASTE WATER DESCRIPTION:	Wastewater from cooling towe recovery steam generator, and		aste, heat
TREATMENT PROCESS:	IMPOUNDMENT		
EVALUATION TYPE:	Wasteload allocation study		
RECEIVING STREAM:	Canadian River (OK Waterbody	/ ID: OK520610010010_20)	
7 DAY 2 YEAR LOW FLOW (MGD):	14.5		
STREAM CLASS:	PERENNIAL	SEGMENT:	520610
CRITICAL EFFLUENT FLOW(MGD):	0.189	PROJECTED MAXIMUM FLOW (MGD):	
POINT OF DISCHARGE:	S35 T10N R04W NE/SW/NW		
LATITUDE:	35° 18' 01" N	LONGITUDE:	97° 35' 28" W
WASTELOAD ALLOCATION*: For Dissolved Oxygen Demanding Substances (Final Discharge only, no internal monitoring points)	Spring & Winter Limits (Nov- May): 30 mg/L BOD₅ and 30 mg/l TSS Summer Limits (Jun- Oct): 9 mg/L CBOD₅, 10 mg/l TSS, 3.2 mg/L NH₃-N,and 4 mg/L DO Year-Round PH: 6.5 - 9.0 s.u Monthly Average Limits Free Available Chlorine: 0.2 mg/L Daily Maximum Limits Free Available Chlorine: 0.5 mg/L Free Available Oxidant: Non-detect		
EPA TECHNICAL APPROVAL DATE: 2/10/2015			
		A FINAL APPROVAL DATE:	6/30/2015
RECORD LAST UPDATED: 3/12/2015			
*Updated WLA based on Wasteload Allocation Study (Oct. 2014) of Canadian River (Union City to Wayne, OK)			