
# FINAL

# BACTERIA TOTAL MAXIMUM DAILY LOADS FOR THE CANADIAN RIVER AREA, OKLAHOMA (OK520600, OK520610, OK520800)



Prepared for:

# OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY



Prepared by:

PARSONS

AUGUST 2008

# FINAL

# BACTERIA TOTAL MAXIMUM DAILY LOADS FOR THE CANADIAN RIVER AREA, OKLAHOMA (OK520600, OK520610, OK520800)

## **OKWBID**

OK520600010010, OK520600010060, OK520600020170, OK520600030030, OK520610010010, OK520610010080, OK520610010180, OK520610020120, OK520610020150, OK520610030080, OK520800010010

Prepared for:

## OKLAHOMA DEPARTMENT OF ENVIRONMENTAL QUALITY



Prepared by:

#### PARSONS

8000 Centre Park Drive, Suite 200 Austin, TX 78754

#### AUGUST 2008

Oklahoma Department of Environmental Quality: FY07 106 Grant (CA# I-006400-05) Project 24 – Bacteria TMDL Development

# TABLE OF CONTENTS

| EXECU  | TIVE SUMMARY                                                            | vii    |
|--------|-------------------------------------------------------------------------|--------|
| SECTIO | ON 1 INTRODUCTION                                                       | 1-1    |
| 1.1    | TMDL Program Background                                                 | 1-1    |
| 1.2    | Watershed Description                                                   | 1-3    |
| SECTIO | ON 2 PROBLEM IDENTIFICATION AND WATER QUALITY TARG                      | ET 2-1 |
| 2.1    | Oklahoma Water Quality Standards                                        | 2-1    |
| 2.2    | Problem Identification                                                  | 2-4    |
| 2.3    | Water Quality Target                                                    | 2-5    |
| SECTIO | ON 3 POLLUTANT SOURCE ASSESSMENT                                        |        |
| 3.1    | NPDES-Permitted Facilities                                              | 3-1    |
|        | 3.1.1 Continuous Point Source Dischargers                               | 3-2    |
|        | 3.1.2 NPDES No-Discharge Facilities and Sanitary Sewer Overflows        |        |
|        | 3.1.3 NPDES Municipal Separate Storm Sewer Discharge                    |        |
|        | 3.1.4 Concentrated Animal Feeding Operations                            |        |
| 3.2    | Nonpoint Sources                                                        | 3-11   |
|        | 3.2.1 Wildlife                                                          |        |
|        | 3.2.2 Non-Permitted Agricultural Activities and Domesticated Animals    |        |
|        | 3.2.3 Failing Onsite Wastewater Disposal Systems and Illicit Discharges |        |
| 2.2    | 3.2.4 Domestic Pets                                                     |        |
| 3.3    | Summary of Bacteria Sources                                             |        |
|        | ON 4 TECHNICAL APPROACH AND METHODS                                     |        |
| 4.1    | Using Load Duration Curves to Develop TMDLs                             |        |
| 4.2    | Development of Flow Duration Curves                                     |        |
| 4.3    | Estimating Current Point and Nonpoint Loading                           |        |
| 4.4    | Development of TMDLs Using Load Duration Curves                         |        |
| SECTIO | ON 5 TMDL CALCULATIONS                                                  |        |
| 5.1    | Estimated Loading and Critical Conditions                               | 5-1    |
| 5.2    | Wasteload Allocation                                                    | 5-10   |
| 5.3    | Load Allocation                                                         | 5-12   |
| 5.4    | Seasonal Variability                                                    | 5-12   |
| 5.5    | Margin of Safety                                                        | 5-12   |
| 5.6    | TMDL Calculations                                                       | 5-12   |
| 5.7    | LDCs and TMDL Calculations for Additional Bacterial Indicators          | 5-25   |
| 5.8    | Reasonable Assurances                                                   | 5-29   |
| SECTIO | ON 6 PUBLIC PARTICIPATION                                               | 6-1    |

| SECTION 7 REFERENCES |
|----------------------|
|----------------------|

#### APPENDICES

| Appendix A | Ambient Water Quality Bacteria Data – 1999 to 2003                  |  |  |  |  |  |
|------------|---------------------------------------------------------------------|--|--|--|--|--|
| Appendix B | NPDES Permit Discharge Monitoring Report Data and Sanitary Sewer    |  |  |  |  |  |
|            | Overflow Data                                                       |  |  |  |  |  |
| Appendix C | Estimated Flow Exceedance Percentiles                               |  |  |  |  |  |
| Appendix D | State of Oklahoma Antidegradation Policy                            |  |  |  |  |  |
| Appendix E | Storm Water Permitting Requirements and Presumptive Best management |  |  |  |  |  |
|            | Practices (BMP) Approach                                            |  |  |  |  |  |
| Appendix F | Response to Comments                                                |  |  |  |  |  |

# **LIST OF FIGURES**

| Figure 1-1  | Watersheds Not Supporting Primary Body Contact Recreation Use    |    |
|-------------|------------------------------------------------------------------|----|
|             | within the Study Area1-                                          | .7 |
| Figure 1-2  | Land Use Map by Watershed1-                                      | .8 |
| Figure 3-1  | Locations of NPDES-Permitted Facilities and Livestock Operations |    |
|             | in the Study Area                                                | .4 |
| Figure 4-1  | Flow Duration Curve for Canadian River (OK520600010010_00)4-     | .4 |
| Figure 4-2  | Flow Duration Curve for Factory Creek (OK520600010060_00)4-      | -5 |
| Figure 4-3  | Flow Duration Curve for Julian Creek (OK520600020170_00)4-       | .5 |
| Figure 4-4  | Flow Duration Curve for Spring Brook (OK520600030030_00)4-       | -6 |
| Figure 4-5  | Flow Duration Curve for Canadian River (OK520610010010_05)4-     | 6  |
| Figure 4-6  | Flow Duration Curve for Willow Creek (OK520610010080_00)4-       | .7 |
| Figure 4-7  | Flow Duration Curve for Bishop Creek (OK520610010180_00)4-       | .7 |
| Figure 4-8  | Flow Duration Curve for Buggy Creek (OK520610020120_00)4-        | .8 |
| Figure 4-9  | Flow Duration Curve for Canadian River (OK520610020150_10)4-     | .8 |
| Figure 4-10 | Flow Duration Curve for Walnut Creek-North Fork                  |    |
|             | (OK520610030080_00)4-                                            | .9 |
| Figure 4-11 | Flow Duration Curve for Little River (OK520800010010_00)4-       | .9 |
| Figure 5-1  | Load Duration Curve for Enterococci in Canadian River            |    |
|             | (OK520600010010_00)                                              | 4  |
| Figure 5-2  | Load Duration Curve for Fecal Coliform in Factory Creek          |    |
|             | (OK520600010060_00)                                              | .5 |
| Figure 5-3  | Load Duration Curve for Fecal Coliform in Julian Creek           |    |

|             | (OK520600020170_00)                                                                      |
|-------------|------------------------------------------------------------------------------------------|
| Figure 5-4  | Load Duration Curve for Fecal Coliform in Spring Brook                                   |
|             | (OK520600030030_00)                                                                      |
| Figure 5-5  | Load Duration Curve for Enterococci in Canadian River                                    |
|             | (OK520610010010_05)5-6                                                                   |
| Figure 5-6  | Load Duration Curve for Fecal Coliform in Willow Creek                                   |
|             | (OK520610010080_00)5-7                                                                   |
| Figure 5-7  | Load Duration Curve for Fecal Coliform in Bishop Creek                                   |
|             | (OK520610010180_00)5-7                                                                   |
| Figure 5-8  | Load Duration Curve for Enterococci in Buggy Creek                                       |
|             | (OK520610020120_00)5-8                                                                   |
| Figure 5-9  | Load Duration Curve for Enterococci in Canadian River                                    |
|             | (OK520610020150_10)5-8                                                                   |
| Figure 5-10 | Load Duration Curve for Fecal Coliform in Walnut Creek-North Fork<br>(OK520610030080_00) |
| Figure 5-11 | Load Duration Curve for Enterococci in Little River                                      |
|             | (OK520800010010_00)                                                                      |
| Figure 5-12 | Load Duration Curve for Fecal Coliform in Buggy Creek                                    |
|             | (OK520610020120_00)5-26                                                                  |
| Figure 5-13 | Load Duration Curve for <i>E. Coli</i> in Buggy Creek (OK520610020120_00)5-27            |
| Figure 5-14 | Load Duration Curve for Fecal Coliform in Little River                                   |
|             | (OK520800010010_00)5-28                                                                  |

# LIST OF TABLES

| Table ES-1 | Excerpt from the 2004 Integrated Report – Comprehensive Waterbody<br>Assessment Category List                                         |
|------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Table ES-2 | Waterbodies Requiring TMDLs for Not Supporting PBCR or                                                                                |
|            | SBCR Beneficial Useix                                                                                                                 |
| Table ES-3 | TMDL Percent Reduction Goals Required to Meet Water Quality Standards for<br>Impaired Waterbodies in the Canadian River Study Areaxiv |
| Table ES-4 | TMDL Summaries Examplesxvi                                                                                                            |
| Table 1-1  | Water Quality Monitoring Stations used for 2004 303(d) Listing Decision1-2                                                            |
| Table 1-2  | County Population and Density1-3                                                                                                      |
| Table 1-3  | Average Annual Precipitation by Watershed1-3                                                                                          |
| Table 1-4  | Land Use Summaries by Watershed1-5                                                                                                    |

| Table 2-1  | Excerpt from the 2004 Integrated Report – Comprehensive Waterbody<br>Assessment Category List                                 |
|------------|-------------------------------------------------------------------------------------------------------------------------------|
| Table 2-2  | Summary of Indicator Bacteria Samples from Primary Contact Recreation                                                         |
|            | Season, 1997-20032-7                                                                                                          |
| Table 2-3  | Summary of Indicator Bacteria Samples from Secondary Contact Recreation<br>Season, 1997-20032-8                               |
| Table 2-4  | Waterbodies Requiring TMDLs for Not Supporting Primary or Secondary                                                           |
|            | Body Contact Recreation Use2-9                                                                                                |
| Table 3-1  | Point Source Discharges in the Study Area                                                                                     |
| Table 3-2  | NPDES No-Discharge Facilities in the Study Area                                                                               |
| Table 3-3  | Sanitary Sewer Overflow (SSO) Summary                                                                                         |
| Table 3-4  | NPDES-Permitted CAFOs in Study Area                                                                                           |
| Table 3-5  | Estimated Deer Populations                                                                                                    |
| Table 3-6  | Estimated Fecal Coliform Production for Deer                                                                                  |
| Table 3-7  | Commercially Raised Farm Animals and Manure Application Area                                                                  |
|            | Estimates by Watershed                                                                                                        |
| Table 3-8  | Fecal Coliform Production Estimates for Commercially Raised Fard Animals (x10 <sup>9</sup> number/day)                        |
| Table 3-9  | Estimated Number of Animals for Animal Feeding Operations Inventoried by ODAFF                                                |
| Table 3-10 | Estimates of Sewered and Unsewered Households                                                                                 |
| Table 3-11 | Estimated Fecal Coliform Load from OSWD Systems                                                                               |
| Table 3-12 | Estimated Number of Pets                                                                                                      |
| Table 3-13 | Estimated Fecal Coliform Daily Production by Pets (x109)                                                                      |
| Table 3-14 | Estimated Major Source of Bacteria Loading by Watershed                                                                       |
| Table 3-15 | Summary of Fecal Coliform Load Estimates from Nonpoint Sources to Land<br>Surfaces                                            |
| Table 4-1  | Hydrologic Classification Scheme                                                                                              |
| Table 5-1  | TMDL Percent Reductions Required to Meet Water Quality Standards for<br>Impaired Waterbodies in the Canadian River Study Area |
| Table 5-2  | Wasteload Allocations for NPDES-Permitted Facilities                                                                          |
| Table 5-3  | TMDL Summary Examples                                                                                                         |
| Table 5-4  | Enterococci TMDL Calculations for Canadian River (OK520600010010_00).5-15                                                     |
| Table 5-5  | Fecal Coliform TMDL Calculations for Factory Creek                                                                            |
|            | (OK520600010060_00)5-16                                                                                                       |
| Table 5-6  | Fecal Coliform TMDL Calculations for Julian Creek (OK520600020170_00) 5-17                                                    |

| Table 5-7  | Fecal Coliform TMDL Calculations for Spring Brook                                   |
|------------|-------------------------------------------------------------------------------------|
|            | (OK520600030030_00)5-18                                                             |
| Table 5-8  | Enterococci TMDL Calculations for Canadian River (OK520610010010_05).5-19           |
| Table 5-9  | Fecal Coliform TMDL Calculations for Willow Creek                                   |
|            | (OK520610010080_00)5-20                                                             |
| Table 5-10 | Fecal Coliform TMDL Calculations for Bishop Creek                                   |
|            | (OK520610010180_00)5-21                                                             |
| Table 5-11 | Enterococci TMDL Calculations for Buggy Creek (OK520610020120_00)5-22               |
| Table 5-12 | Enterococci TMDL Calculations for Canadian River (OK520610020150_10).5-23           |
| Table 5-13 | Fecal Coliform TMDL Calculations for Walnut Creek-North Fork<br>(OK520610030080_00) |
| Table 5-14 | Enterococci TMDL Calculations for Little River (OK520800010010_00)5-25              |
| Table 5-15 | Fecal Coliform TMDL Calculations for Buggy Creek                                    |
|            | (OK520610020120_00)                                                                 |
| Table 5-16 | E. Coli TMDL Calculations for Buggy Creek (OK520610020120_00)5-27                   |
| Table 5-17 | Fecal Coliform TMDL Calculations for Little River (OK520800010010_00)5-28           |
| Table 5-19 | Partial List of Oklahoma Water Quality Management Agencies                          |

# ACRONYMS AND ABBREVIATIONS

- AEMS Agricultural Environmental Management Service
- ASAE American Society of Agricultural Engineers
- BMP best management practice
- CAFO Concentrated Animal Feeding Operation
  - CFR Code of Federal Regulations
  - cfs Cubic feet per second
  - cfu Colony-forming unit
  - CPP Continuing planning process
- CWA Clean Water Act
- DMR Discharge monitoring report
  - LA Load allocation
- LDC Load duration curve
- mg Million gallons
- mgd Million gallons per day
- mL Milliliter
- MOS Margin of safety
- MS4 Municipal separate storm sewer system
- NPDES National Pollutant Discharge Elimination System
  - O.S. Oklahoma statutes
- ODAFF Oklahoma Department of Agriculture, Food and Forestry
- ODEQ Oklahoma Department of Environmental Quality
- OPDES Oklahoma Pollutant Discharge Elimination System
- OSWD Onsite wastewater disposal
- OWRB Oklahoma Water Resources Board
- PBCR Primary body contact recreation
- PRG Percent reduction goal
- SBCR Secondary body contact recreation
- SSO Sanitary sewer overflow
- TMDL Total maximum daily load
- USDA U.S. Department of Agriculture
- USEPA U.S. Environmental Protection Agency
- USGS U.S. Geological Survey
- WLA Wasteload allocation
- WQM Water quality monitoring
- WQS Water quality standard
- WWTP Wastewater treatment plant

## **Executive Summary**

This report documents the data and assessment used to establish Total Maximum Daily Loads (TMDL) for the pathogen indicator bacteria fecal coliform, *Escherichia coli* (*E. coli*), or Enterococci for certain waterbodies in the Canadian River Basin. Elevated levels of pathogen indicator bacteria in aquatic environments indicate that a receiving water is contaminated with human or animal feces and that there is a potential health risk for individuals exposed to the water. Data assessment and TMDL calculations are conducted in accordance with requirements of Section 303(d) of the Clean Water Act (CWA), Water Quality Planning and Management Regulations (40 CFR Part 130), U.S. Environmental Protection Agency (USEPA) guidance, and Oklahoma Department of Environmental Quality (ODEQ) guidance and procedures. ODEQ is required to submit all TMDLs to USEPA for review and approval. Once the USEPA approves a TMDL, then the waterbody may be moved to Category 4a of a state's Integrated Water Quality Monitoring and Assessment Report, where it remains until compliance with water quality standards (WQS) is achieved (USEPA 2003).

The purpose of this report is to establish pollutant load allocations for indicator bacteria in impaired waterbodies, which is the first step toward restoring water quality and protecting public health. TMDLs determine the pollutant loading a waterbody can assimilate without exceeding the WQS for that pollutant. A TMDL consists of a wasteload allocation (WLA), load allocation (LA), and a margin of safety (MOS). The WLA is the fraction of the total pollutant load apportioned to point sources, and includes stormwater discharges regulated under the National Pollutant Discharge Elimination System (NPDES) as point sources. The LA is the fraction of the total pollutant load apportioned to nonpoint sources. The MOS is a percentage of the TMDL set aside to account for the uncertainty associated with natural process in aquatic systems, model assumptions, and data limitations.

This report does not stipulate specific control actions (regulatory controls) or management measures (voluntary best management practices) necessary to reduce bacteria loadings within each watershed. Watershed-specific control actions and management measures will be identified, selected, and implemented under a separate process.

#### E.1 Problem Identification and Water Quality Target

A decision was made to place specific waterbodies in this Study Area, listed in Table ES-1, on the ODEQ 2004 303(d) list because evidence of nonsupport of primary body contact recreation (PBCR) was observed.

Elevated levels of bacteria above the WQS for one or more of the bacterial indicators result in the requirement that a TMDL be developed. The TMDLs established in this report are a necessary step in the process to develop the bacteria loading controls needed to restore the primary body contact recreation use designated for each waterbody.

| Waterbody ID Waterbody Name |                         | Stream Miles | Category | TMDL Date | Primary Body<br>Contact<br>Recreation |
|-----------------------------|-------------------------|--------------|----------|-----------|---------------------------------------|
| OK520600010010_00           | Canadian River          | 38.81        | 5        | 2005      | Ν                                     |
| OK520600010060_00           | Factory Creek           | 6.11         | 5        | 2008      | Ν                                     |
| OK520600020170_00           | Julian Creek            | 6.21         | 5        | 2008      | Ν                                     |
| OK520600030030_00           | Spring Brook            | 26.78        | 5        | 2008      | Ν                                     |
| OK520610010010_05           | Canadian River          | 33           | 5        | 2005      | Ν                                     |
| OK520610010080_00           | Willow Creek            | 9.06         | 5        | 2008      | Ν                                     |
| OK520610010180_00           | Bishop Creek            | 7.82         | 5        | 2008      | Ν                                     |
| OK520610020120_00           | Buggy Creek             | 26.51        | 5        | 2008      | Ν                                     |
| OK520610020150_10           | Canadian River          | 36           | 5        | 2005      | Ν                                     |
| OK520610030080_00           | Walnut Creek-North Fork | 16.84        | 5        | 2008      | Ν                                     |
| OK520800010010_00           | Little River            | 24.8         | 5        | 2005      | Ν                                     |

# Table ES-1 Excerpt from the 2004 Integrated Report – Comprehensive Waterbody Assessment Category List

N = Not Supporting; Source: 2004 Integrated Report, ODEQ 2004

For the data collected between 1997 and 2005, evidence of nonsupport of the PBCR use based only on fecal coliform concentrations was observed in six waterbodies: Factory Creek (OK52060001006), Julian Creek (OK520600020170), Spring Brook (OK520600030030), Willow Creek (OK520610010080), Bishop Creek (OK520610010180) and Walnut Creek-North Fork (OK520610030080). Evidence of nonsupport of the PBCR use based only on Enterococci concentrations was observed in one waterbody on two separate segments: Canadian River (OK520600010010\_00 and OK520610020150\_10). Evidence of nonsupport of the SBCR use based only on Enterococci concentrations was observed in Canadian River (OK520610010010\_05). Evidence of nonsupport of the PBCR use based on both fecal coliform and Enterococci concentrations was observed in Little River (OK520800010010). Lastly, evidence of nonsupport for all three bacterial indicators was observed only in Buggy Creek (OK520610020120). Table ES-2 summarizes the waterbodies requiring TMDLs for not supporting PBCR or SBCR.

|                      |                   |                         | Indicator Bacteria |     |         |  |
|----------------------|-------------------|-------------------------|--------------------|-----|---------|--|
| Waterbody Station    | Waterbody ID      | Waterbody Name          | FC                 | ENT | E. coli |  |
| OK520600010010-001AT | OK520600010010_00 | Canadian River          |                    | Х   |         |  |
| OK520600010060P      | OK520600010060_00 | Factory Creek           | Х                  |     |         |  |
| OK520600020170B      | OK520600020170_00 | Julian Creek            | Х                  |     |         |  |
| OK520600030030E      | OK520600030030_00 | Spring Brook            | Х                  |     |         |  |
| OK520610010010-001AT | OK520610010010_05 | Canadian River          |                    | Х   |         |  |
| OK520610010080G      | OK520610010080_00 | Willow Creek            | Х                  |     |         |  |
| OK520610010180G      | OK520610010180_00 | Bishop Creek            | Х                  |     |         |  |
| OK520610020120G      | OK520610020120_00 | Buggy Creek             | Х                  | X   | Х       |  |
| OK520610020150-001AT | OK520610020150_10 | Canadian River          |                    | X   |         |  |
| OK520610030080G      | OK520610030080_00 | Walnut Creek-North Fork | Х                  |     |         |  |
| OK520800010010-001AT | OK520800010010_00 | Little River            | Х                  | X   |         |  |

# Table ES-2Waterbodies Requiring TMDLs for Not Supporting PBCR or SBCR<br/>Beneficial Use

ENT = enterococci; FC = fecal coliform

The definition of PBCR is summarized by the following excerpt from Chapter 45 of the Oklahoma WQSs.

- (a) Primary Body Contact Recreation involves direct body contact with the water where a possibility of ingestion exists. In these cases the water shall not contain chemical, physical or biological substances in concentrations that are irritating to skin or sense organs or are toxic or cause illness upon ingestion by human beings.
- (b) In waters designated for Primary Body Contact Recreation...limits...shall apply only during the recreation period of May 1 to September 30. The criteria for Secondary Body Contact Recreation will apply during the remainder of the year.

To implement Oklahoma's WQS for PBCR, the Oklahoma Water Resources Board (OWRB) promulgated Chapter 46, *Implementation of Oklahoma's Water Quality Standards* (OWRB 2007). The excerpt below from Chapter 46: 785:46-15-6, stipulates how water quality data will be assessed to determine support of the PBCR use as well as how the water quality target for TMDLs will be defined for each bacterial indicator.

(a) Scope. The provisions of this Section shall be used to determine whether the subcategory of Primary Body Contact of the beneficial use of Recreation designated in OAC 785:45 for a waterbody is supported during the recreation season from May 1 through September 30 each year. Where data exist for multiple bacterial indicators on the same waterbody or waterbody segment, the determination of use support shall be based upon the use and application of all applicable tests and data.

(b) Screening levels:

(1) The screening level for fecal coliform shall be a density of 400 colonies per 100ml.

(2) The screening level for Escherichia coli shall be a density of 235 colonies per 100 ml in streams designated in OAC 785:45 as Scenic Rivers and in lakes, and 406 colonies per 100 ml in all other waters of the state designated as Primary Body Contact Recreation.

(3) The screening level for enterococci shall be a density of 61 colonies per 100 ml in streams designated in OAC 785:45 as Scenic Rivers and in lakes, and 108 colonies per 100 ml in all other waters of the state designated as Primary Body Contact Recreation.

(c) Fecal coliform:

(1) The Primary Body Contact Recreation subcategory designated for a waterbody shall be deemed to be fully supported with respect to fecal coliform if the geometric mean of 400 colonies per 100 ml is met and no greater than 25% of the sample concentrations from that waterbody exceed the screening level prescribed in (b) of this Section.

(2) The parameter of fecal coliform is not susceptible to an assessment that Primary Body Contact Recreation is partially supported.

(3) The Primary Body Contact Recreation subcategory designated for a waterbody shall be deemed to be not supported with respect to fecal coliform if the geometric mean of 400 colonies per 100 ml is not met, or greater than 25% of the sample concentrations from that waterbody exceed the screening level prescribed in (b) of this Section, or both such conditions exist.

## (d) Escherichia coli (E. coli):

(1) The Primary Body Contact Recreation subcategory designated for a waterbody shall be deemed to be fully supported with respect to E. coli if the geometric mean of 126 colonies per 100 ml is met, or the sample concentrations from that waterbody taken during the recreation season do not exceed the screening level prescribed in (b) of this Section, or both such conditions exist.

(2) The parameter of E. coli is not susceptible to an assessment that Primary Body Contact Recreation is partially supported.

(3) The Primary Body Contact Recreation subcategory designated for a waterbody shall be deemed to be not supported with respect to E. coli if the geometric mean of 126 colonies per 100 ml is not met and any of the sample concentrations from that waterbody taken during the recreation season exceed a screening level prescribed in (b) of this Section.

## (e) Enterococci:

(1) The Primary Body Contact Recreation subcategory designated for a waterbody shall be deemed to be fully supported with respect to enterococci if the geometric mean of 33 colonies per 100 ml is met, or the sample concentrations from that waterbody taken during the recreation season do not exceed the screening level prescribed in (b) of this Section, or both such conditions exist. (2) The parameter of enterococci is not susceptible to an assessment that Primary Body Contact Recreation is partially supported.

(3) The Primary Body Contact Recreation subcategory designated for a waterbody shall be deemed to be not supported with respect to enterococci if the geometric mean of 33 colonies per 100 ml is not met and any of the sample concentrations from that waterbody taken during the recreation season exceed a screening level prescribed in (b) of this Section.

Compliance with the Oklahoma WQS is based on meeting requirements for all three bacterial indicators. Where concurrent data exist for multiple bacterial indicators on the same waterbody or waterbody segment, each indicator group must demonstrate compliance with the numeric criteria prescribed (OWRB 2006).

As stipulated in the WQS, utilization of the geometric mean to determine compliance for any of the three indicator bacteria depends on the collection of five samples within a 30-day period. For most water quality monitoring (WQM) stations in Oklahoma there are insufficient data available to calculate the 30-day geometric mean since most water quality samples are collected once a month. As a result, waterbodies placed on the 303(d) list for not supporting the PBCR are the result of individual samples exceeding the instantaneous criteria or the long-term geometric mean of individual samples exceeding the geometric mean criteria for each respective bacterial indicator. Targeting the instantaneous criterion established for the primary contact recreation season (May 1<sup>st</sup> to September 30<sup>th</sup>) as the water quality goal for TMDLs corresponds to the basis for 303(d) listing and may be protective of the geometric mean criteria for the secondary contact recreation season. However, both the instantaneous and geometric mean criteria for *E. coli* and Enterococci will be evaluated as water quality targets to ensure the most protective goal is established for each waterbody.

All TMDLs for fecal coliform must take into account that no more than 25 percent of the samples may exceed the instantaneous numeric criteria. For *E. coli* and Enterococci, no more than 10 percent of samples may exceed instantaneous criteria. Since the attainability of stream beneficial uses for *E. coli* and Enterococci is based on the compliance of either the instantaneous or a long-term geometric mean criterion, percent reductions goals will be calculated for both criteria. TMDLs will be based on the percent reduction required to meet either the instantaneous or the long-term geometric mean criterion, whichever is less.

Canadian River (OK520610010010\_05) is designated in Chapter 45 of the Oklahoma WQS for secondary body contact recreation (SBCR) use. The data assessment method used for SBCR streams is the same as with the PBCR, although the criteria are five times those of the PBCR streams. The single sample criterion for SBCR for fecal coliform, *E. coli*, and Enterococci are 2,000, 2,030, and 540 colonies per 100 mL, respectively; and the geometric mean criterion for fecal coliform, *E. coli*, and Enterococci are 2000, 630, and 165 colonies per 100 mL, respectively.

#### E.2 Pollutant Source Assessment

A source assessment characterizes known and suspected sources of pollutant loading to impaired waterbodies. Sources within a watershed are categorized and quantified to the extent that information is available. Bacteria originate from warm-blooded animals; some plant life and sources may be point or nonpoint in nature.

There are no NPDES-permitted facilities of any type in the contributing watersheds of Factory Creek (OK520600010060\_00), Julian Creek (OK520600020170\_00) and Willow Creek (OK520610010080\_00). Eight of the watersheds in the Study Area, Spring Brook (OK520600030030\_00), Walnut Creek-North Fork (OK520610030080\_00), Bishop Creek (OK520610010180\_00), Buggy Creek (OK520610020120\_00), Canadian River (OK520600010010\_00, OK520610020150\_10 and OK520610010010\_05), and Little River (OK520800010010\_00), have continuous point source discharges.

There are 12 no-discharge facilities in the Study Area; however, it is possible the wastewater collection systems associated with those WWTPs could be a source of bacteria loading. While not all sewer overflows are reported, ODEQ has some data on sanitary sewer overflows (SSO) available. There were 1,647 SSO occurrences, ranging from 0 to 7 million gallons, reported from six different waterbodies in the Study Area between July 1989 and April 2007. Given the significant number of occurrences and the size of the overflows reported, SSOs have been a significant source of bacteria loading in the past in the Canadian River (OK520610010010\_05, and OK520600010010\_00), Little River (OK520800010010\_00), and Bishop Creek (OK520610010180\_00) watersheds.

The MS4 permit for small communities in Oklahoma became effective on February 8, 2005. The City of Norman and University of Oklahoma in Bishop Creek (OK520610010180\_00) have a permitted MS4. There are no other permitted MS4s in study area of this report.

There are 13 CAFOs located in the Canadian River (OK520610010010\_05, OK520610020150\_10, and OK520600010010\_00), Little River (OK520800010010\_00), and Buggy Creek (OK520610020120\_00). Factory Creek, Julian Creek, Spring Brook, Willow Creek, Bishop Creek, and Walnut Creek-North Fork have no CAFOs within their contributing watershed.

Since there are no NPDES-permitted facilities in Factory Creek, Julian Creek and Willow Creek watersheds, nonsupport of PBCR use is caused by nonpoint sources of bacteria only. In watersheds with both point and nonpoint sources of bacteria, the available data suggests that the proportion of bacteria from point sources ranges from minor to moderate. Those waterbodies in which point sources are a minor contributor of bacteria include Canadian River (OK520610020150\_10), Walnut Creek-North Fork (OK520610030080\_00), and Spring Brook remaining (OK520600030030 00). five In the watersheds. Canadian River (OK520600010010 00), **Bishop** Creek (OK520610010180 00), Buggy Creek (OK520610020120 00), Canadian River (OK520610010010 05), and Little River (OK520800010010 00), point sources such as WWTP, SSOs, and CAFOs, contribute moderate bacteria loads in propotion to nonpoint sources. The urban areas designated as Phase II MS4s in the city of Norman and University of Oklahoma further increase the proportion of bacteria loading from point sources in Bishop Creek (OK520610010180\_00). However, overall nonpoint sources are considered to be the major source of bacteria loading in each watershed.

Nonpoint source bacteria loading to the receiving streams of each waterbody emanate from a number of different sources including wildlife, various agricultural activities and domesticated animals, land application fields, urban runoff, failing onsite wastewater disposal systems, and domestic pets. The data analysis and the load duration curves (LDC) demonstrate that exceedances at the WQM stations are the result of a variety of nonpoint source loading occurring during a range of flow conditions. Low flow exceednaces are likely due to a combination of non-point sources, uncontrolled point sources and permit noncompliance.

#### E.3 Using Load Duration Curves to Develop TMDLs

The TMDL calculations presented in this report are derived from LDCs. LDCs facilitate rapid development of TMDLs and as a TMDL development tool, are effective in identifying whether impairments are associated with point or nonpoint sources.

Use of the LDC obviates the need to determine a design storm or selected flow recurrence interval with which to characterize the appropriate flow level for the assessment of critical conditions. For waterbodies impacted by both point and nonpoint sources, the "nonpoint source critical condition" would typically occur during high flows, when rainfall runoff would contribute the bulk of the pollutant load, while the "point source critical condition" would typically occur during low flows, when treatment plant effluents would dominate the base flow of the impaired water. However, flow range is only a general indicator of the relative proportion of point/nonpoint contributions. It is not used in this report to quantify point source or nonpoint sources. Violations have been noted in some watersheds that contain no point sources. Research has show that bacteria loading in streams during low flow conditions may be due to direct deposit of cattle manure into streams and faulty septic tank/lateral field systems.

The basic steps to generating an LDC involve:

- obtaining daily flow data for the site of interest from the U.S. Geological Survey ;
- sorting the flow data and calculating flow exceedance percentiles for the time period and season of interest;
- obtaining the water quality data from the primary contact recreation season (May 1 through September 30);
- obtaining water quality data from the entire calendar year for waterbodies not supporting the SBCR use;
- matching the water quality observations with the flow data from the same date;
- display a curve on a plot that represents the allowable load multiply the actual or estimated flow by the WQS for each respective indicator;
- multiplying the flow by the water quality parameter concentration to calculate daily loads; then
- plotting the flow exceedance percentiles and daily load observations in a load duration plot.

LDCs display the maximum allowable load over the complete range of flow conditions by a line using the calculation of flow multiplied by the water quality criterion. The TMDL can be expressed as a continuous function of flow, equal to the line, or as a discrete value derived from a specific flow condition.

#### E.4 TMDL Calculations

As indicated above, the bacteria TMDLs for the 303(d)-listed WQM stations covered in this report were derived using LDCs. A TMDL is expressed as the sum of all WLAs (point

source loads), LAs (nonpoint source loads), and an appropriate MOS, which attempts to account for uncertainty concerning the relationship between effluent limitations and water quality.

This definition can be expressed by the following equation:

#### $TMDL = \Sigma WLA + \Sigma LA + MOS$

For each waterbody the TMDLs presented in this report are expressed as a percent reduction across the full range of flow conditions (See Table ES-3). The difference between existing loading and the water quality target is used to calculate the loading reductions required. Percent reduction goals (PRG) are calculated for each WQM site and bacterial indicator species as the reductions in load required so that no more than 25 percent of the existing instantaneous fecal coliform observations and no more than 10 percent of the existing instantaneous *E. coli* or Enterococci observations would exceed the water quality target.

Table ES-3 presents the percent reductions necessary for each bacterial indicator causing nonsupport of the PBCR use in each waterbody of the Study Area. Attainment of WQS in response to TMDL implementation will be based on results measured at each of these WQM stations. Selection of the appropriate PRG for each waterbody in Table ES-3 is denoted by bold text. The TMDL PRG will be the lesser of that required to meet the geometric mean or instantaneous criteria for *E. coli* and Enterococci because WQSs are considered to be met if, 1) either the geometric mean of all data is less than the geometric mean criteria, or 2) no more than 10 percent of samples exceed the instantaneous criteria. Based on this table, the TMDL PRGs for Canadian River (OK520600010010\_00), Canadian River (OK520610010010\_05), Buggy Creek, Canadian River (OK520610020150\_10) and Little River will be based on Enterococci; the TMDL PRGs for Factory Creek, Julian Creek, Spring Brook, Willow Creek, Bishop Creek, and Walnut Creek-North Fork will be based on fecal coliform. The PRGs range from 40 to 96 percent.

|                      |                   |                             | Pe                 | Percent Reduction Required |              |                    |              |  |
|----------------------|-------------------|-----------------------------|--------------------|----------------------------|--------------|--------------------|--------------|--|
| Waterbody Station    | Waterbody ID      | Waterbody                   | FC                 | EC                         |              | ENT                |              |  |
| Waterbody Station    | Waterbody ib      | Name                        | Instant-<br>aneous | Instant-<br>aneous         | Geo-<br>mean | Instant-<br>aneous | Geo-<br>mean |  |
| OK520600010010-001AT | OK520600010010_00 | Canadian River              |                    |                            |              | 56%                | 57%          |  |
| OK520600010060P      | OK520600010060_00 | Factory Creek               | 64%                |                            |              |                    |              |  |
| OK520600020170B      | OK520600020170_00 | Julian Creek                | 78%                |                            |              |                    |              |  |
| OK520600030030E      | OK520600030030_00 | Spring Brook                | 88%                |                            |              |                    |              |  |
| OK520610010010-001AT | OK520610010010_05 | Canadian River              |                    |                            |              | 94%                | 29%          |  |
| OK520610010080G      | OK520610010080_00 | Willow Creek                | 96%                |                            |              |                    |              |  |
| OK520610010180G      | OK520610010180_00 | Bishop Creek                | 67%                |                            |              |                    |              |  |
| OK520610020120G      | OK520610020120_00 | Buggy Creek                 | 40%                | 54%                        | 47%          | 71%                | 74%          |  |
| OK520610020150-001AT | OK520610020150_10 | Canadian River              |                    |                            |              | 89%                | 73%          |  |
| OK520610030080G      | OK520610030080_00 | Walnut Creek-<br>North Fork | 40%                |                            |              |                    |              |  |
| OK520800010010-001AT | OK520800010010_00 | Little River                | 29%                |                            |              | 86%                | 61%          |  |

Table ES-3TMDL Percent Reduction Goals Required to Meet Water Quality<br/>Standards for Impaired Waterbodies in the Canadian River Study Area

The TMDL, WLA, LA, and MOS vary with flow condition, and are calculated at every 5<sup>th</sup> flow interval percentile. For illustrative purposes, the TMDL, WLA, LA, and MOS are calculated for the median flow at each site in Table ES-4. The WLA component of each TMDL is the sum of all WLAs within the contributing watershed of each WQM station. The sum of the WLAs can be represented as a single line below the LDC. The WLA for MS4s is estimated according to the percentage of watershed which falls under the MS4 coverage. The LDC and the simple equation of:

#### Average LA = average TMDL - MOS - WLA\_WWTP - WLA\_MS4

can provide an individual value for the LA in counts per day, which represents the area under the TMDL target line and above the WLA line. For MS4s the load reduction will be the same as the PRG established for the overall watershed (nonpoint sources). Where there are no continuous point sources the WLA\_WWTP is zero.

Federal regulations (40 CFR §130.7(c)(1)) require that TMDLs include an MOS. The MOS is a conservative measure incorporated into the TMDL equation that accounts for the uncertainty associated with calculating the allowable pollutant loading to ensure WQSs are attained. USEPA guidance allows for use of implicit or explicit expressions of the MOS, or both. When conservative assumptions are used in development of the TMDL, or conservative factors are used in the calculations, the MOS is implicit. When a specific percentage of the TMDL is set aside to account for uncertainty, then the MOS is considered explicit.

For the explicit MOS the water quality target was set at 10 percent lower than the water quality criterion for each pathogen. For PBCR this equates to 360 colony-forming units per 100 milliliter (cfu/100 mL), 365.4 cfu/100 mL, and 97.2/100 mL for fecal coliform, *E. coli*, and Enterococci, respectively. For SBCR, this equates to 1,800 colony-forming units per 100 milliliter (cfu/100 mL), 1,827 cfu/100 mL, and 486/100 mL for fecal coliform, *E. coli*, and Enterococci, respectively. The net effect of the TMDL with MOS is that the assimilative capacity or allowable pollutant loading of each waterbody is slightly reduced. These TMDLs incorporate an explicit MOS by using a curve representing 90 percent of the TMDL as the average MOS. The MOS at any given percent flow exceedance, therefore, can be defined as the difference in loading between the TMDL and the TMDL with MOS. The use of instream bacteria concentrations to estimate existing loading is another conservative element utilized in these TMDLs that can be recognized as an implicit MOS. This conservative approach to establishing the MOS will ensure that both the 30-day geometric mean and instantaneous bacteria standards can be achieved and maintained.

#### E.5 Reasonable Assurance

As authorized by Section 402 of the CWA, ODEQ has delegation of the NPDES in Oklahoma, except for certain jurisdictional areas related to agriculture and the oil and gas industry retained by the Oklahoma Department of Agriculture and Oklahoma Corporation Commission, for which the USEPA has retained permitting authority. The NPDES program in Oklahoma is implemented via Title 252, Chapter 606 of the Oklahoma Pollution Discharge Elimination System (OPDES) Act, and in accordance with the agreement between ODEQ and USEPA relating to administration and enforcement of the delegated NPDES program. Implementation of WLAs for point sources is done through permits issued under the OPDES program.

| Waterbody ID      | WQM Station          | Waterbody<br>Name           | Bacteria<br>Indicator | TMDL*<br>(cfu/day) | WLA_WWTP<br>(cfu/day) | WLA_MS4*<br>(cfu/day) | LA*<br>(cfu/day) | MOS*<br>(cfu/day) |
|-------------------|----------------------|-----------------------------|-----------------------|--------------------|-----------------------|-----------------------|------------------|-------------------|
| OK520600010010_00 | OK520600010010-001AT | Canadian River              | ENT                   | 7.50E+11           | 4.56E+08              | 0                     | 6.75E+11         | 7.50E+10          |
| OK520600010060_00 | OK520600010060P      | Factory Creek               | FC                    | 9.64E+09           | 0                     | 0                     | 8.67E+09         | 9.64E+08          |
| OK520600020170_00 | OK520600020170B      | Julian Creek                | FC                    | 2.09E+10           | 0                     | 0                     | 1.88E+10         | 2.09E+09          |
| OK520600030030_00 | OK520600030030E      | Spring Brook                | FC                    | 9.85E+09           | 1.21E+09              | 0                     | 7.66E+09         | 9.85E+08          |
| OK520610010010_05 | OK520610010010-001AT | Canadian River              | ENT                   | 7.16E+11           | 1.61E+10              | 0                     | 6.28E+11         | 7.16E+10          |
| OK520610010080_00 | OK520610010080G      | Willow Creek                | FC                    | 3.03E+10           | 0                     | 0                     | 2.73E+10         | 3.03E+09          |
| OK520610010180_00 | OK520610010180G      | Bishop Creek                | FC                    | 1.73E+10           | 5.75E+09              | 5.38E+09              | 4.40E+09         | 1.73E+09          |
| OK520610020120_00 | OK520610020120G      | Buggy Creek                 | ENT                   | 2.22E+10           | 2.69E+08              | 0                     | 1.97E+10         | 2.22E+09          |
| OK520610020150_10 | OK520610020150-001AT | Canadian River              | ENT                   | 1.61E+11           | 2.5E+08               | 0                     | 1.45E+11         | 1.61E+10          |
| OK520610030080_00 | OK520610030080G      | Walnut Creek-<br>North Fork | FC                    | 5.22E+10           | 2.27E+08              | 0                     | 4.67E+10         | 5.22E+09          |
| OK520800010010_00 | OK520800010010-001AT | Little River                | ENT                   | 1.15E+11           | 9.99E+08              | 0                     | 1.02E+11         | 1.15E+10          |

 Table ES-4
 TMDL Summaries Examples

\* Derived for illustrative purposes at the median flow value

J:\planning\TMDL\Bacteria TMDLs\Parsons\2007\4 Canadian River(15)\Canadian\_FINAL\_081508.doc

## SECTION 1 INTRODUCTION

#### 1.1 TMDL Program Background

Section 303(d) of the Clean Water Act (CWA) and U.S. Environmental Protection Agency (USEPA) Water Quality Planning and Management Regulations (40 Code of Federal Regulations [CFR] Part 130) require states to develop total maximum daily loads (TMDL) for waterbodies not meeting designated uses where technology-based controls are in place. TMDLs establish the allowable loadings of pollutants or other quantifiable parameters for a waterbody based on the relationship between pollution sources and in-stream water quality conditions, so states can implement water quality-based controls to reduce pollution from point and nonpoint sources and restore and maintain water quality (USEPA 1991).

This report documents the data and assessment used to establish TMDLs for the pathogen indicator bacteria fecal coliform, *Escherichia coli* (*E. coli*), or Enterococci for certain waterbodies in the Canadian River Basin. Elevated levels of pathogen indicator bacteria in aquatic environments indicate that a receiving water is contaminated with human or animal feces and that there is a potential health risk for individuals exposed to the water. Data assessment and TMDL calculations are conducted in accordance with requirements of Section 303(d) of the CWA, Water Quality Planning and Management Regulations (40 CFR Part 130), USEPA guidance, and Oklahoma Department of Environmental Quality (ODEQ) guidance and procedures. ODEQ is required to submit all TMDLs to USEPA for review and approval. Once the USEPA approves a TMDL, then the waterbody may be moved to Category 4a of a state's Integrated Water Quality Monitoring and Assessment Report, where it remains until compliance with water quality standards (WQS) is achieved (USEPA 2003).

The purpose of this TMDL report is to establish pollutant load allocations for indicator bacteria in impaired waterbodies, which is the first step toward restoring water quality and protecting public health. TMDLs determine the pollutant loading a waterbody can assimilate without exceeding the WQS for that pollutant. TMDLs also establish the pollutant load allocation necessary to meet the WQS established for a waterbody based on the relationship between pollutant sources and in-stream water quality conditions. A TMDL consists of a wasteload allocation (WLA), load allocation (LA), and a margin of safety (MOS). The WLA is the fraction of the total pollutant load apportioned to point sources, and includes stormwater discharges regulated under the National Pollutant Discharge Elimination System (NPDES) as point sources. The LA is the fraction of the total pollutant load apportioned to account for the uncertainty associated with natural process in aquatic systems, model assumptions, and data limitations.

This report does not stipulate specific control actions (regulatory controls) or management measures (voluntary best management practices) necessary to reduce bacteria loadings within each watershed. Watershed-specific control actions and management measures will be identified, selected, and implemented under a separate process involving stakeholders who live and work in the watersheds, tribes, and local, state, and federal government agencies.

This TMDL report focuses on waterbodies that ODEQ placed in Category 5 of the 2004 Integrated Report [303(d) list] for nonsupport of primary or secondary body contact recreation (PBCR):

- Canadian River (OK520600010010\_00),
- Factory Creek (OK520600010060\_00),
- Julian Creek (OK520600020170\_00),
- Spring Brook (OK5206000300030\_00),
- Canadian River (OK520610010010\_05),
- Willow Creek (OK520610010080\_00),
- Bishop Creek (OK520610010180\_00),
- Buggy Creek (OK520610020120\_00),
- Canadian River (OK520610020150\_10),
- Walnut Creek-North Fork, (OK520610030080\_00), and
- Little River (OK520800010010\_00).

Figure 1-1 is a location map showing the impaired segments of these Oklahoma waterbodies and their contributing watersheds. This map also displays the locations of the water quality monitoring (WQM) stations used as the basis for placement of these waterbodies on the Oklahoma 303(d) list. These waterbodies and their surrounding watersheds are hereinafter referred to as the Study Area.

Elevated levels of bacteria above the WQS result in the requirement that a TMDL be developed. The TMDLs established in this report are a necessary step in the process to develop the bacteria loading controls needed to restore the contact recreation use designated for each waterbody. Table 1-1 provides a description of the locations of the WQM stations on the 303(d)-listed waterbodies.

| Waterbody Name             | Waterbody ID      | WQM Station          | WQM Station Location<br>Descriptions |
|----------------------------|-------------------|----------------------|--------------------------------------|
| Canadian River             | OK520600010010_00 | OK520600010010-001AT | Canadian River, US 377,<br>Konawa    |
| Factory Creek              | OK520600010060_00 | OK520600010060P      | Factory Creek                        |
| Julian Creek               | OK520600020170_00 | OK520600020170B      | Julian Creek                         |
| Spring Brook               | OK520600030030_00 | OK520600030030E      | Spring Brook Creek                   |
| Canadian River             | OK520610010010_05 | OK520610010010-001AT | Canadian River, US 77,<br>Purcell    |
| Willow Creek               | OK520610010080_00 | OK520610010080G      | Willow Creek                         |
| Bishop Creek               | OK520610010180_00 | OK520610010180G      | Bishop Creek, near Jenkins<br>Street |
| Buggy Creek                | OK520610020120_00 | OK520610020120G      | Buggy Creek                          |
| Canadian River             | OK520610020150_10 | OK520610020150-001AT | Canadian River, US 66,<br>Bridgeport |
| Walnut Creek-North<br>Fork | OK520610030080_00 | OK520610030080G      | Walnut Creek-North Fork              |
| Little River               | OK520800010010_00 | OK520800010010-001AT | Little River, SH 56,<br>Sasakwa      |

 Table 1-1
 Water Quality Monitoring Stations used for 2004 303(d) Listing Decision

#### 1.2 Watershed Description

**General.** The watersheds in the Canadian River Study Area are located in central Oklahoma. The majority of the 11 waterbodies included in this report are located in Caddo, Grady, McClain, Pontotoc, Hughes, Seminole, Cleveland, and Pottawatomie Counties. A small portion of Spring Brook (OK520600030030) is located in Garvin County, and a small portion of the northern part of the Canadian River (OK520610020150) is located in Canadian County.

The majority of the waterbodies in the Canadian River Study Area are located in the Central Oklahoma/Texas Plains ecoregion. Buggy Creek (OK520610020120), Walnut Creek (OK520610030080) and the northern part of the Canadian River (OK502610020150) are part of the Anadarko Basin geologic province. Little River (OK520800010010), Factory Creek (OK520600010060), and the southern portion of the Canadian River (OK520600010010) are part of the Arkoma Basin geologic province. All other waterbodies are part of the Northern Shelf Areas geological province. Table 1-2, derived from the 2000 U.S. Census, demonstrates that most of the counties in which these watersheds are located are sparsely populated (U.S. Census Bureau 2000), with the exception of Cleveland County. Cleveland County is part of the Oklahoma City Metropolitan Statistical Area.

| County Name  | Population<br>(2000 Census) | Population Density (per square mile) |
|--------------|-----------------------------|--------------------------------------|
| Caddo        | 30,150                      | 24                                   |
| Grady        | 45,516                      | 41                                   |
| McClain      | 27,740                      | 49                                   |
| Cleveland    | 208,016                     | 388                                  |
| Pottawatomie | 65,521                      | 83                                   |
| Seminole     | 24,894                      | 39                                   |
| Pontotoc     | 35,143                      | 49                                   |
| Hughes       | 14,154                      | 18                                   |

Table 1-2County Population and Density

**Climate.** Table 1-3 summarizes the average annual precipitation for each WQM station. Average annual precipitation values among the WQM stations in this portion of Oklahoma range between 33.1 and 41.7 inches (Oklahoma Climate Survey 2005).

Table 1-3Average Annual Precipitation by Watershed

| Canadian River Precipitation Summary |                                         |      |  |  |  |  |  |
|--------------------------------------|-----------------------------------------|------|--|--|--|--|--|
| Waterbody Name                       | Waterbody Name Waterbody ID Average (In |      |  |  |  |  |  |
| Canadian River                       | OK520600010010_00                       | 41.5 |  |  |  |  |  |
| Factory Creek                        | OK520600010060_00                       | 41.4 |  |  |  |  |  |
| Julian Creek                         | OK520600020170_00                       | 39.4 |  |  |  |  |  |
| Spring Brook                         | OK520600030030_00                       | 40.5 |  |  |  |  |  |
| Canadian River                       | OK520610010010_05                       | 38.2 |  |  |  |  |  |
| Willow Creek                         | OK520610010080_00                       | 39.9 |  |  |  |  |  |
| Bishop Creek                         | OK520610010180_00                       | 37.8 |  |  |  |  |  |
| Buggy Creek                          | OK520610020120_00                       | 33.9 |  |  |  |  |  |
| Canadian River                       | OK520610020150_10                       | 33.1 |  |  |  |  |  |

| Canadian River Precipitation Summary                          |                   |      |  |  |  |  |
|---------------------------------------------------------------|-------------------|------|--|--|--|--|
| Waterbody Name         Waterbody ID         Average<br>(Inch) |                   |      |  |  |  |  |
| Walnut Creek-North Fork                                       | OK520610030080_00 | 35.4 |  |  |  |  |
| Little River                                                  | OK520800010010_00 | 41.7 |  |  |  |  |

Land Use. Table 1-4 summarizes the acreages and the corresponding percentages of the land use categories for the contributing watershed associated with each respective Oklahoma waterbody. The land use/land cover data were derived from the U.S. Geological Survey (USGS) 2001 National Land Cover Dataset (USGS 2007). The land use categories are displayed in Figure 1-2.

Deciduous forest and grassland/herbaceous are the first and second most dominant land use categories in the Canadian River (OK520600010010), Factory Creek, and Little River watersheds. Grassland/herbaceous and primarily deciduous forest are the first and second most dominant land use categories in Julian Creek and Walnut Creek-North Fork. Grassland/herbaceous and cultivated crops are the first and second most dominant land use categories in Buggy Creek, and two segments of Canadian River (OK520610010010 and OK520610020150). Spring Brook watershed is primarily grasslands/herbaceous and pasture/hay is the second most dominant land use category. The combination of low, medium, and high intensity developed land account for 39.1 percent of Bishop Creek watershed. The second largest land use category for the Bishop Creek watershed is grassland/herbaceous.

The watershed with the most cities is Canadian River (OK520610010010\_05) with the following 10 cities: Blanchard, Cole, Dibble, Washington, Purcell, Wayne, Goldsby, Rosedale, Lexington, and Noble. Another segment of the Canadian River watershed contains four cities: Konawa, Byng, Francis, and Allen. Little River watershed has three cities within its boundaries: Sasakwa, Spaulding, and Holdenville. The City of Minco is located within the Buggy Creek watershed; Hinton is located in the Canadian River watershed (OK520610020150\_10), Slaughterville is in Willow Creek watershed, Stratford is in the Spring Brook watershed, and Norman is in the Bishop Creek watershed. The final three watersheds, Factory Creek, Julian Creek, and Walnut Creek-North Fork do not contain any urban areas. With the exception of the Bishop Creek watershed, all other urban land use categories account for less than 2.1 percent of the land use in each watershed.

|                                                |                   |                   |                   |                   | ١                 | NQM Statio        | n                 |                   |                   |                                   |                   |
|------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------------------------|-------------------|
| Landuse Category                               | Canadian<br>River | Factory<br>Creek  | Julian<br>Creek   | Spring<br>Brook   | Canadian<br>River | Willow<br>Creek   | Bishop<br>Creek   | Buggy<br>Creek    | Canadian<br>River | Walnut<br>Creek-<br>North<br>Fork | Little<br>River   |
| Waterbody ID                                   | OK52060001000_00  | OK520600010060_00 | OK520600020170_00 | OK520600030030_00 | OK520610010010_05 | OK520610010080_00 | OK520610010180_00 | OK520610020120_00 | OK520610020150_10 | OK520610030080_00                 | OK520800010010_00 |
| Percent of Open Water                          | 3.8               | 0.4               | 0.3               | 0.6               | 1.6               | 0.7               | 0.6               | 0.4               | 1.7               | 0.7                               | 1.1               |
| Percent of Developed,<br>Open Space            | 5.8               | 4.9               | 3.8               | 5.8               | 5.4               | 4.1               | 14.7              | 4.2               | 3.5               | 5.0                               | 4.9               |
| Percent of Developed,<br>Low Intensity         | 0.6               | 0.3               | 0.1               | 1.5               | 1.5               | 0.8               | 27.6              | 0.7               | 0.5               | 1.0                               | 0.6               |
| Percent of Developed,<br>Medium Intensity      | 0.1               | 0.0               | 0.0               | 0.2               | 0.4               | 0.1               | 8.5               | 0.1               | 0.2               | 0.5                               | 0.1               |
| Percent of Developed,<br>High Intensity        | 0.0               | 0.0               | 0.0               | 0.1               | 0.2               | 0.0               | 3.0               | 0.1               | 0.1               | 0.1                               | 0.0               |
| Percent of Barren<br>Land (Rock/Sand/<br>Clay) | 2.3               | 0.0               | 0.1               | 0.1               | 0.9               | 0.0               | 0.5               | 0.0               | 0.3               | 0.0                               | 0.0               |
| Percent of Deciduous<br>Forest                 | 47.6              | 49.1              | 32.8              | 20.1              | 16.3              | 8.6               | 11.0              | 4.8               | 6.2               | 15.4                              | 49.3              |
| Percent of Evergreen<br>Forest                 | 2.1               | 0.9               | 0.3               | 0.0               | 0.2               | 0.0               | 1.6               | 7.5               | 7.8               | 0.1                               | 0.2               |
| Percent of Mixed<br>Forest                     | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0                               | 0.0               |
| Percent of<br>Shrub/Scrub                      | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0                               | 0.0               |
| Percent of<br>Grassland/Herbaceous             | 28.5              | 35.7              | 48.6              | 38.3              | 44.4              | 31.2              | 18.6              | 54.8              | 42.2              | 64.1                              | 26.1              |
| Percent of<br>Pasture/Hay                      | 7.4               | 8.6               | 10.3              | 22.4              | 11.1              | 34.4              | 6.8               | 0.3               | 0.1               | 0.5                               | 15.6              |
| Percent of Cultivated<br>Crops                 | 1.7               | 0.0               | 3.6               | 10.9              | 18.2              | 20.1              | 7.2               | 27.2              | 37.6              | 12.6                              | 2.1               |
| Percent of Woody<br>Wetlands                   | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0                               | 0.0               |
| Percent of Emergent<br>Herbaceous Wetlands     | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0               | 0.0                               | 0.0               |
|                                                |                   |                   |                   |                   |                   |                   |                   |                   |                   |                                   |                   |

Table 1-4Land Use Summaries by Watershed

J:\planning\TMDL\Bacteria TMDLs\Parsons\2007\4 Canadian River(15)\Canadian\_FINAL\_081508.doc

|                                        | -                 |                   |                   |                   | I                 | VQM Station       | า                 |                   |                   |                                   |                   |
|----------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------------------------|-------------------|
| Landuse Category                       | Canadian<br>River | Factory<br>Creek  | Julian<br>Creek   | Spring<br>Brook   | Canadian<br>River | Willow<br>Creek   | Bishop<br>Creek   | Buggy<br>Creek    | Canadian<br>River | Walnut<br>Creek-<br>North<br>Fork | Little<br>River   |
| Waterbody ID                           | OK52060001000_00  | OK520600010060_00 | OK520600020170_00 | OK520600030030_00 | OK520610010010_05 | OK520610010080_00 | OK520610010180_00 | OK520610020120_00 | OK520610020150_10 | OK520610030080_00                 | OK520800010010_00 |
| Acres Open Water<br>(percent of total) | 3,432             | 19                | 37                | 250               | 2,749             | 102               | 57                | 239               | 2,380             | 283                               | 874               |
| Acres Developed,<br>Open Space         | 5,135             | 238               | 404               | 2,341             | 9,362             | 616               | 1,357             | 2,758             | 5,027             | 2,070                             | 3,975             |
| Acres Developed, Low<br>Intensity      | 510               | 14                | 8                 | 604               | 2,581             | 121               | 2,543             | 435               | 703               | 411                               | 480               |
| Acres Developed,<br>Medium Intensity   | 117               | 1                 | 0                 | 80                | 656               | 16                | 780               | 79                | 252               | 187                               | 77                |
| Acres Developed, High<br>Intensity     | 34                | 0                 | 0                 | 25                | 268               | 4                 | 273               | 34                | 73                | 23                                | 35                |
| Acres Barren Land<br>(Rock/Sand/Clay)  | 2,061             | 2                 | 10                | 24                | 1,486             | 0                 | 43                | 0                 | 481               | 2                                 | 10                |
| Acres Deciduous<br>Forest              | 42,489            | 2,365             | 3,448             | 8,034             | 28,145            | 1,309             | 1,012             | 3,148             | 8,836             | 6,384                             | 39,749            |
| Acres Evergreen<br>Forest              | 1,901             | 42                | 30                | 0                 | 300               | 0                 | 147               | 4,949             | 11,090            | 34                                | 174               |
| Acres Mixed Forest                     | 0                 | 0                 | 0                 | 0                 | 0                 | 0                 | 0                 | 0                 | 0                 | 0                                 | 0                 |
| Acres Shrub/Scrub                      | 0                 | 0                 | 0                 | 0                 | 1                 | 0                 | 0                 | 0                 | 12                | 0                                 | 0                 |
| Acres<br>Grassland/Herbaceous          | 25,402            | 1,721             | 5,115             | 15,353            | 76,782            | 4,727             | 1,709             | 36,017            | 60,315            | 26,494                            | 21,018            |
| Acres Pasture/Hay                      | 6,562             | 415               | 1,088             | 8,969             | 19,215            | 5,204             | 624               | 168               | 84                | 221                               | 12,552            |
| Acres Cultivated Crops                 | 1,523             | 0                 | 376               | 4,384             | 31,427            | 3,047             | 662               | 17,878            | 53,831            | 5,214                             | 1,678             |
| Acres Woody<br>Wetlands                | 0                 | 0                 | 0                 | 0                 | 0                 | 0                 | 0                 | 0                 | 0                 | 0                                 | 0                 |
| Acres Emergent<br>Herbaceous Wetlands  | 8                 | 0                 | 2                 | 0                 | 14                | 0                 | 0                 | 0                 | 0                 | 0                                 | 2                 |
| Total (Acres)                          | 89,172            | 4,817             | 10,518            | 40,064            | 172,988           | 15,146            | 9,206             | 65,704            | 143,085           | 41,323                            | 80,624            |

J:\planning\TMDL\Bacteria TMDLs\Parsons\2007\4 Canadian River(15)\Canadian\_FINAL\_081508.doc

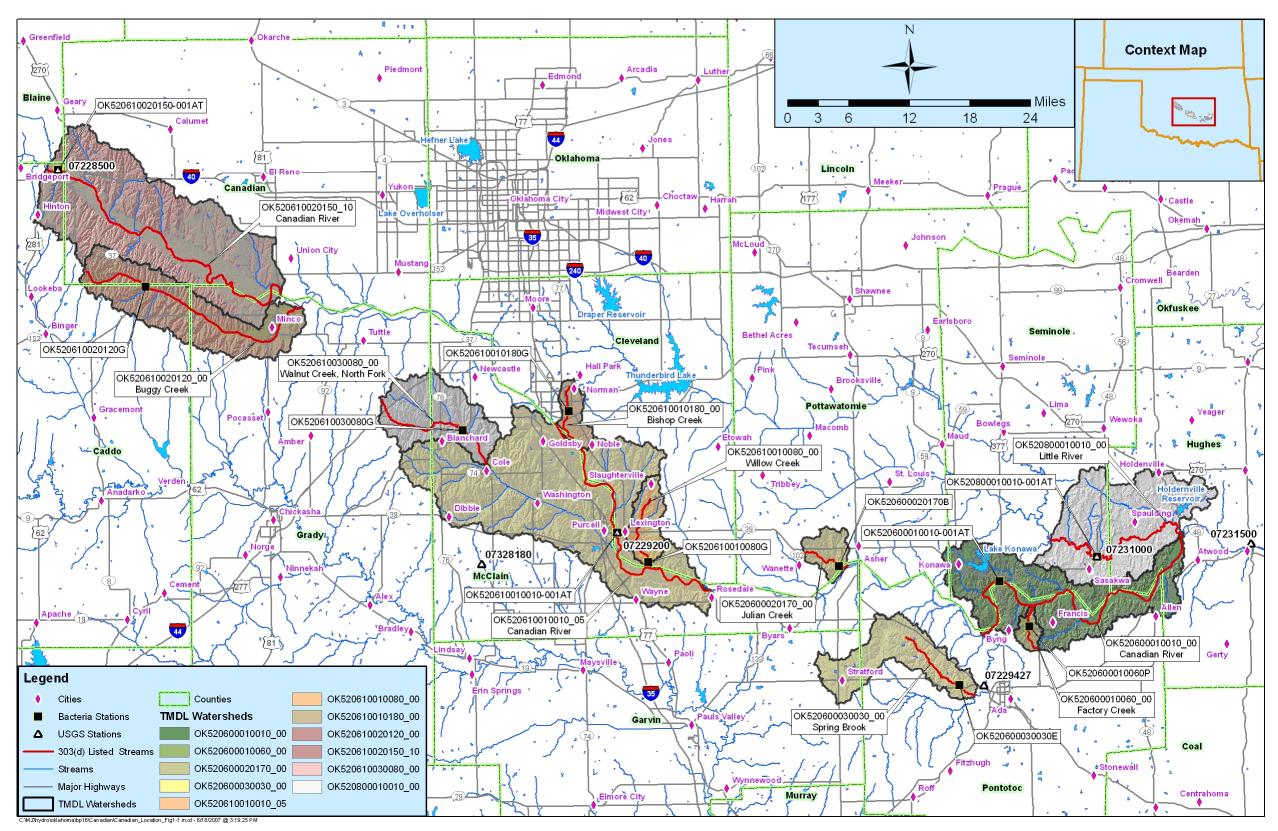



Figure 1-1 Watersheds Not Supporting Primary Body Contact Recreation Use within the Study Area

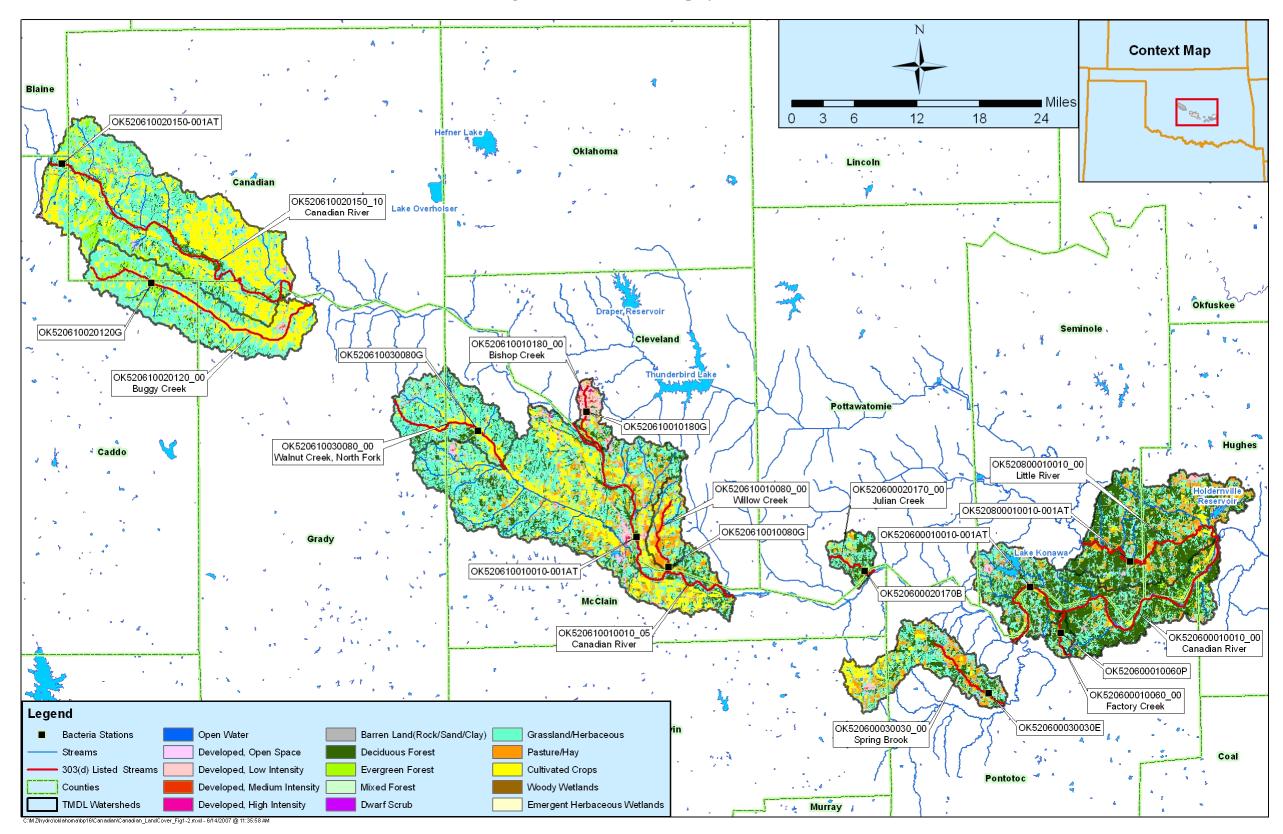



Figure 1-2 Land Use Map by Watershed

## SECTION 2 PROBLEM IDENTIFICATION AND WATER QUALITY TARGET

#### 2.1 Oklahoma Water Quality Standards

Title 785 of the Oklahoma Administrative Code authorizes the Oklahoma Water Resources Board (OWRB) to promulgate Oklahoma's water quality standards (OWRB 2006). The OWRB has statutory authority and responsibility concerning establishment of state water quality standards, as provided under 82 Oklahoma Statute [O.S.], §1085.30. This statute authorizes the OWRB to promulgate rules ... which establish classifications of uses of waters of the state, criteria to maintain and protect such classifications, and other standards or policies pertaining to the quality of such waters. [O.S. 82:1085:30(A)]. Beneficial uses are designated for all waters of the state. Such uses are protected through restrictions imposed by the antidegradation policy statement, narrative water quality criteria, and numerical criteria The beneficial uses designated for Canadian River (OK520600010010), (OWRB 2006). Factory Creek (OK520600010060), Julian Creek (OK520600020170), Spring Brook (OK5206000300030), River (OK520610010010), Willow Canadian Creek (OK520610010080), Bishop Creek (OK520610010180), Buggy Creek (OK520610020120), Canadian River (OK520610020150), Walnut Creek-North Fork, (OK520610030080) and Little River (OK520800010010) include PBCR, secondary body contact recreation (SBCR), public/private water supply, warm water aquatic community, industrial and municipal process and cooling water, agricultural water supply, emergency water supply, habitat-limited aquatic community, fish consumption, sensitive water supply, and aesthetics. The TMDLs in this report only address the PBCR-designated use. Table 2-1, an excerpt from Appendix B of the 2004 Integrated Report (ODEQ 2004), summarizes the PBCR use attainment status for the waterbodies of the Study Area and targeted TMDL dates. The TMDL date for a stream segment indicates the priority of the stream segment for which a TMDL needs to be developed. The TMDLs established in this report are a necessary step in the process to restore the PBCR use designation for each waterbody.

| Waterbody ID      | Waterbody Name | Stream Miles | Category | TMDL Date | Primary Body<br>Contact<br>Recreation | SecondaryBody<br>Contact<br>Recreation |
|-------------------|----------------|--------------|----------|-----------|---------------------------------------|----------------------------------------|
| OK520600010010_00 | Canadian River | 38.81        | 5        | 2005      | Ν                                     |                                        |
| OK520600010060_00 | Factory Creek  | 6.11         | 5        | 2008      | N                                     |                                        |
| OK520600020170_00 | Julian Creek   | 6.21         | 5        | 2008      | N                                     |                                        |
| OK520600030030_00 | Spring Brook   | 26.78        | 5        | 2008      | N                                     |                                        |
| OK520610010010_05 | Canadian River | 33           | 5        | 2005      |                                       | Ν                                      |
| OK520610010080_00 | Willow Creek   | 9.06         | 5        | 2008      | Ν                                     |                                        |
| OK520610010180_00 | Bishop Creek   | 7.82         | 5        | 2008      | Ν                                     |                                        |

| Table 2-1 | Excerpt from the 2004 Integrated Report – Comprehensive Waterbody |
|-----------|-------------------------------------------------------------------|
|           | Assessment Category List                                          |

| Waterbody ID      | Waterbody Name | Stream Miles | Category | TMDL Date | Primary Body<br>Contact<br>Recreation | SecondaryBody<br>Contact<br>Recreation |
|-------------------|----------------|--------------|----------|-----------|---------------------------------------|----------------------------------------|
| OK520610020120_00 | Buggy Creek    | 26.51        | 5        | 2008      | Ν                                     |                                        |
| OK520610020150_10 | Canadian River | 36           | 5        | 2005      | Ν                                     |                                        |

N = Not Attaining

Source: 2004 Integrated Report, ODEQ 2004

The definition of PBCR is summarized by the following excerpt from Chapter 45 of the Oklahoma WQSs.

- (a) Primary Body Contact Recreation involves direct body contact with the water where a possibility of ingestion exists. In these cases the water shall not contain chemical, physical or biological substances in concentrations that are irritating to skin or sense organs or are toxic or cause illness upon ingestion by human beings.
- (b) In waters designated for Primary Body Contact Recreation...limits...shall apply only during the recreation period of May 1 to September 30. The criteria for Secondary Body Contact Recreation will apply during the remainder of the year.

To implement Oklahoma's WQS for PBCR, OWRB promulgated Chapter 46, *Implementation of Oklahoma's Water Quality Standards* (OWRB 2007). The excerpt below from Chapter 46: 785:46-15-6, stipulates how water quality data will be assessed to determine support of the PBCR use as well as how the water quality target for TMDLs will be defined for each bacterial indicator.

(a) Scope. The provisions of this Section shall be used to determine whether the subcategory of Primary Body Contact of the beneficial use of Recreation designated in OAC 785:45 for a waterbody is supported during the recreation season from May 1 through September 30 each year. Where data exist for multiple bacterial indicators on the same waterbody or waterbody segment, the determination of use support shall be based upon the use and application of all applicable tests and data.

(b) Screening levels.

(1) The screening level for fecal coliform shall be a density of 400 colonies per 100ml.

(2) The screening level for Escherichia coli shall be a density of 235 colonies per 100 ml in streams designated in OAC 785:45 as Scenic Rivers and in lakes, and 406 colonies per 100 ml in all other waters of the state designated as Primary Body Contact Recreation.

(3) The screening level for enterococci shall be a density of 61 colonies per 100 ml in streams designated in OAC 785:45 as Scenic Rivers and in lakes, and 108 colonies per 100 ml in all other waters of the state designated as Primary Body Contact Recreation.

(c) Fecal coliform:

(1) The Primary Body Contact Recreation subcategory designated for a waterbody shall be deemed to be fully supported with respect to fecal coliform if the geometric mean of 400 colonies per 100 ml is met and no greater than 25% of the sample concentrations from that waterbody exceed the screening level prescribed in (b) of this Section.

(2) The parameter of fecal coliform is not susceptible to an assessment that Primary Body Contact Recreation is partially supported.

(3) The Primary Body Contact Recreation subcategory designated for a waterbody shall be deemed to be not supported with respect to fecal coliform if the geometric mean of 400 colonies per 100 ml is not met, or greater than 25% of the sample concentrations from that waterbody exceed the screening level prescribed in (b) of this Section, or both such conditions exist.

#### (d) Escherichia coli (E. coli):

(1) The Primary Body Contact Recreation subcategory designated for a waterbody shall be deemed to be fully supported with respect to E. coli if the geometric mean of 126 colonies per 100 ml is met, or the sample concentrations from that waterbody taken during the recreation season do not exceed the screening level prescribed in (b) of this Section, or both such conditions exist.

(2) The parameter of E. coli is not susceptible to an assessment that Primary Body Contact Recreation is partially supported.

(3) The Primary Body Contact Recreation subcategory designated for a waterbody shall be deemed to be not supported with respect to E. coli if the geometric mean of 126 colonies per 100 ml is not met and any of the sample concentrations from that waterbody taken during the recreation season exceed a screening level prescribed in (b) of this Section.

#### (e) Enterococci:

(1) The Primary Body Contact Recreation subcategory designated for a waterbody shall be deemed to be fully supported with respect to enterococci if the geometric mean of 33 colonies per 100 ml is met, or the sample concentrations from that waterbody taken during the recreation season do not exceed the screening level prescribed in (b) of this Section, or both such conditions exist.

(2) The parameter of enterococci is not susceptible to an assessment that Primary Body Contact Recreation is partially supported.

(3) The Primary Body Contact Recreation subcategory designated for a waterbody shall be deemed to be not supported with respect to enterococci if the geometric mean of 33 colonies per 100 ml is not met and any of the sample concentrations from that waterbody taken during the recreation season exceed a screening level prescribed in (b) of this Section.

Compliance with the Oklahoma WQS is based on meeting requirements for all three bacterial indicators. Where concurrent data exist for multiple bacterial indicators on the same waterbody or waterbody segment, each indicator group must demonstrate compliance with the numeric criteria prescribed (OWRB 2006).

As stipulated in the WQS, utilization of the geometric mean to determine compliance for any of the three indicator bacteria depends on the collection of five samples within a 30-day period. For most WQM stations in Oklahoma there are insufficient data available to calculate the 30-day geometric mean since most water quality samples are collected once a month. As a result, waterbodies placed on the 303(d) list for not supporting the PBCR are the result of individual samples exceeding the instantaneous criteria or the long-term geometric mean of individual samples exceeding the geometric mean criteria for each respective bacterial indicator. Targeting the instantaneous criterion established for the primary contact recreation season (May 1<sup>st</sup> to September 30<sup>th</sup>) as the water quality goal for TMDLs corresponds to the basis for 303(d) listing and may be protective of the geometric mean criterion as well as the criteria for the secondary contact recreation season. However, both the instantaneous and geometric mean criteria for *E. coli* and Enterococci will be evaluated as water quality targets to ensure the most protective goal is established for each waterbody.

The specific data assessment method for listing indicator bacteria based on instantaneous or single sample criterion is detailed in Oklahoma's 2004 Integrated Report. As stated in the report, a minimum of 10 samples collected between May  $1^{st}$  and September  $30^{th}$  (during the primary recreation season) is required to list a segment for *E. coli* and Enterococci.

A sample quantity exception exists for fecal coliform that allows waterbodies to be listed for nonsupport of PBCR if there are less than 10 samples. The assessment method states that if there are less than 10 samples and the existing sample set already assures a nonsupport determination, then the waterbody should be listed for TMDL development. This condition is true in any case where the small sample set demonstrates that at least three out of six samples exceed the single sample fecal coliform criterion. In this case if four more samples were available to meet minimum of 10 samples, this would still translate to >25 percent exceedance or nonsupport of PBCR (*i.e.*, three out of 10 samples = 33 percent exceedance). For *E. coli* and Enterococci, the 10-sample minimum was used, without exception, in attainment determination.

Canadian River (OK520610010010\_05) is designated in Okalhoma Water Quality Standards for Secondary Body Contact Recreation (SBCR) beneficial use. The data assessment method used for SBCR streams is the same as with the PBCR, although the criteria are five times those of the PBCR streams. The single sample criterion for SBCR for fecal coliform, E. coli, and Enterococci are 2,000, 2,030, and 540 colonies per 100 mL, respectively; and the geometric mean criterion for fecal coliform, E. coli, and Enterococci are 2000, 630, and 165 colonies per 100 mL, respectively.

#### 2.2 **Problem Identification**

Table 2-2 summarizes water quality data collected during primary body contact recreation season from the WQM stations between 1997 and 2005 for each indicator bacteria. Table 2-3 summarizes water quality data collected during secondary body contact recreation season from the WQM stations between 1997 and 2005 for each indicator bacteria. The 1999 to 2003 subset of this data was used to support the decision to place specific waterbodies within the Study Area on the ODEQ 2004 303(d) list (ODEQ 2004). Water quality data from the primary and secondary contact recreation seasons are provided in Appendix A. For the data collected between 1997 and 2005, evidence of nonsupport of the PBCR use based only on fecal coliform concentrations was observed in six waterbodies: Factory Creek (OK52060001006), Julian

(OK520600020170), Spring Brook (OK520600030030), Creek Willow Creek (OK520610010080), Bishop Creek (OK520610010180) and Walnut Creek-North Fork (OK520610030080). Evidence of nonsupport of the PBCR use based only on Enterococci concentrations was observed in one waterbody on two separate segments: Canadian River (OK520600010010 00 and OK520610020150 10). Evidence of nonsupport of the SBCR use on Enterococci concentrations was observed Canadian based only in River (OK520610010010 05). Evidence of nonsupport of the PBCR use based on both fecal coliform and Enterococci concentrations was observed in two waterbodies: Canadian River (OK520610010010) and Little River (OK520800010010). Lastly, evidence of nonsupport for all three bacterial indicators was observed only in Buggy Creek (OK520610020120). In Appendix C of the ODEQ 2004 Integrated Report total coliform is also identified as a pollutant of concern for some 303(d) listed waterbodies. This indicator is typically associated with evaluating use impairment for waterbodies with drinking water as a designated use. However, because there are no drinking water intakes within 5 miles of the WQM stations associated with total fecal coliform samples collected, the listing of this bacterial indicator in Category 5 of the 2004 Integrated Report does not require the development of a TMDL. Table 2-4 summarizes the waterbodies requiring TMDLs for not supporting designated beneficial uses...

#### 2.3 Water Quality Target

The Code of Federal Regulations (40 CFR \$130.7(c)(1)) states that, "TMDLs shall be established at levels necessary to attain and maintain the applicable narrative and numerical water quality standards." For the WQM stations requiring TMDLs in this report, defining the water quality target is somewhat complicated by the use of three different bacterial indicators with three different numeric criterion for determining attainment of PBCR use as defined in the Oklahoma WQSs. As previously stated, because available bacteria data were collected on an approximate monthly basis (see Appendix A) instead of at least five samples over a 30–day period, data for these TMDLs are analyzed and presented in relation to the instantaneous criteria for fecal coliform and both the instantaneous and a long-term geometric mean for both *E. coli* and Enterococci.

All TMDLs for fecal coliform must take into account that no more than 25 percent of the samples may exceed the instantaneous numeric criteria. For *E. coli* and Enterococci, no more than 10 percent of samples may exceed instantaneous criteria. Since the attainability of stream beneficial uses for *E. coli* and Enterococci is based on the compliance of either the instantaneous or a long-term geometric mean criterion, percent reductions goals will be calculated for both criteria. TMDLs will be based on the percent reduction required to meet either the instantaneous or long-term geometric mean criterion, whichever is less.

The water quality target for each waterbody will also incorporate an explicit 10 percent MOS. For example, if fecal coliform is utilized to establish the TMDL, then the water quality target is 360 organisms per 100 milliliters (mL), 10 percent lower than the instantaneous water quality criteria (400/100 mL). For *E. coli* the instantaneous water quality target is 365 organisms/100 mL, which is 10 percent lower than the criterion value (406/100 mL), and the geometric mean water quality target is 113 organisms/100 mL, which is 10 percent lower than the criterion value (126/100 mL). For Enterococci the instantaneous water quality target is 97/100 mL, which is 10 percent lower than the criterion value (108/100 mL) and the geometric

mean water quality target is 30 organisms/100 mL, which is 10 percent lower than the criterion value (33/100 mL).

For SBCR, the water quality target for fecal coliform is 1,800 organisms per 100 mL, 10 percent lower than the instantaneous water quality criteria (2,000/100 mL). For E. coli the instantaneous water quality target is 1,827 organisms/100 mL, which is 10 percent lower than the criterion value (2,030/100 mL), and the geometric mean water quality target is 567 organisms/100 mL, which is 10 percent lower than the criterion value (630/100 mL). For Enterococci the instantaneous water quality target is 486/100 mL, which is 10 percent lower than the criterion value (540/100 mL) and the geometric mean water quality target is 149 organisms/100 mL, which is 10 percent lower than the criterion value (165/100 mL).

Each water quality target will be used to determine the allowable bacteria load which is derived by using the actual or estimated flow record multiplied by the instream criteria minus a 10 percent MOS. The line drawn through the allowable load data points is the water quality target which represents the maximum load for any given flow that still satisfies the WQS.

| Waterbody ID      | Waterbody<br>Name           | Indicator<br>Bacteria | Single<br>Sample<br>Water<br>Quality<br>Criterion<br>(#/100ml) | Geometric<br>Mean<br>Concentration<br>(count/100ml) | Number<br>of<br>Samples | Number of<br>Samples<br>Exceeding<br>Single<br>Sample<br>Criterion | % of<br>Samples<br>Exceeding<br>Single<br>Sample<br>Criterion | Reason for Listing<br>Change |
|-------------------|-----------------------------|-----------------------|----------------------------------------------------------------|-----------------------------------------------------|-------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|------------------------------|
|                   | Canadian River,             | FC                    | 400                                                            | 121                                                 | 13                      | 2                                                                  | 15%                                                           |                              |
| OK520600010010_00 | US 377, Konawa              | EC                    | 406                                                            | 41                                                  | 13                      | 2                                                                  | 15%                                                           |                              |
|                   |                             | ENT                   | 108                                                            | 69                                                  | 13                      | 6                                                                  | 46%                                                           |                              |
|                   |                             | FC                    | 400                                                            | 375                                                 | 10                      | 4                                                                  | 40%                                                           |                              |
| OK520600010060_00 | Factory Creek               | EC                    | 406                                                            | 338                                                 | 2                       | 1                                                                  | 50%                                                           | Delist: Low Sample Count     |
|                   |                             | ENT                   | 108                                                            | 500                                                 | 1                       | 1                                                                  | 100%                                                          | Delist: Low Sample Count     |
|                   |                             | FC                    | 400                                                            | 603                                                 | 16                      | 9                                                                  | 56%                                                           |                              |
| OK520600020170_00 | Julian Creek                | EC                    | 406                                                            | 1360                                                | 2                       | 2                                                                  | 100%                                                          | Delist: Low Sample Count     |
|                   |                             | ENT                   | 108                                                            | 700                                                 | 1                       | 1                                                                  | 100%                                                          | Delist: Low Sample Count     |
|                   | Spring Brook<br>Creek       | FC                    | 400                                                            | 615                                                 | 9                       | 4                                                                  | 44%                                                           |                              |
| OK520600030030_00 |                             | EC                    | 406                                                            |                                                     |                         |                                                                    |                                                               | Delict: No Deculto Found     |
|                   |                             | ENT                   | 108                                                            |                                                     |                         |                                                                    |                                                               | Delist: No Results Found     |
|                   |                             | FC                    | 400                                                            | 1628                                                | 15                      | 12                                                                 | 80%                                                           |                              |
| OK520610010080_00 | Willow Creek                | EC                    | 406                                                            | 284                                                 | 2                       | 1                                                                  | 50%                                                           | Deliete Law Ormania Ormat    |
|                   |                             | ENT                   | 108                                                            | 6000                                                | 1                       | 1                                                                  | 100%                                                          | Delist: Low Sample Count     |
| OK520610010180 00 | Bishop Creek:               | FC                    | 400                                                            | 726                                                 | 4                       | 3                                                                  | 75%                                                           | List: >25%                   |
| UK520610010180_00 | near Jenkins St.            | ENT                   | 108                                                            |                                                     |                         |                                                                    |                                                               | Delist: No Results Found     |
|                   |                             | FC                    | 400                                                            | 286                                                 | 8                       | 7                                                                  | 88%                                                           |                              |
| OK520610020120_00 | Buggy Creek                 | EC                    | 406                                                            | 213                                                 | 11                      | 5                                                                  | 45%                                                           |                              |
|                   |                             | ENT                   | 108                                                            | 122                                                 | 12                      | 9                                                                  | 75%                                                           |                              |
|                   | Canadian River,             | FC                    | 400                                                            | 109                                                 | 25                      | 5                                                                  | 20%                                                           |                              |
| OK520610020150_10 | US 66,                      | EC                    | 406                                                            | 40                                                  | 26                      | 2                                                                  | 8%                                                            |                              |
|                   | Bridgeport                  | ENT                   | 108                                                            | 109                                                 | 26                      | 10                                                                 | 38%                                                           |                              |
|                   |                             | FC                    | 400                                                            | 245                                                 | 8                       | 3                                                                  | 38%                                                           |                              |
| OK520610030080_00 | Walnut Creek-<br>North Fork | EC                    | 406                                                            | 131                                                 | 4                       | 1                                                                  | 25%                                                           | Delist: Low Sample Count     |
|                   |                             | ENT                   | 108                                                            | 75                                                  | 5                       | 3                                                                  | 60%                                                           | Delist. Low Sample Count     |
| OK520800010010 00 | Little River, SH            | FC                    | 400                                                            | 131                                                 | 18                      | 5                                                                  | 28%                                                           |                              |
|                   | 56, Sasakwa                 | EC                    | 406                                                            | 59                                                  | 18                      | 2                                                                  | 11%                                                           |                              |

#### Table 2-2 Summary of Indicator Bacteria Samples from Primary Contact Recreation Season, 1997-2003

 $J:\planning\TMDL\Bacteria\TMDLs\Parsons\2007\4\Canadian\River(15)\Canadian\_FINAL\_081508.doc$ 

| Waterbody ID      | Waterbody<br>Name | Indicator<br>Bacteria | Single<br>Sample<br>Water<br>Quality<br>Criterion<br>(#/100ml) | Geometric<br>Mean<br>Concentration<br>(count/100ml) | Number<br>of<br>Samples | Number of<br>Samples<br>Exceeding<br>Single<br>Sample<br>Criterion | % of<br>Samples<br>Exceeding<br>Single<br>Sample<br>Criterion | Reason for Listing<br>Change |
|-------------------|-------------------|-----------------------|----------------------------------------------------------------|-----------------------------------------------------|-------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|------------------------------|
|                   |                   | ENT                   | 108                                                            | 76                                                  | 18                      | 8                                                                  | 44%                                                           |                              |
|                   |                   | FC                    | 400                                                            | 138                                                 | 9                       | 3                                                                  | 33%                                                           |                              |
| OK520810000100_00 | Elm Creek         | EC                    | 406                                                            | 338                                                 | 2                       | 1                                                                  | 50%                                                           | No TMDL as per ODEQ          |
|                   |                   | ENT                   | 108                                                            | 1100                                                | 1                       | 1                                                                  | 100%                                                          |                              |

 $EC = E. \ coli$ ; ENT = enterococci;  $FC = fecal \ coliform$ Highlighted bacterial indicators require TMDL

| Table 2-3 | Summary of Indicator | <b>Bacteria Samples from Second</b> | lary Contact Recreation Season, 1997-20 | 03 |
|-----------|----------------------|-------------------------------------|-----------------------------------------|----|
|           |                      | 1                                   |                                         |    |

| Waterbody ID      | Waterbody<br>Name                 | Indicator<br>Bacteria | Single<br>Sample<br>Water<br>Quality<br>Criterion<br>(#/100ml) | Geometric<br>Mean<br>Concentration<br>(count/100ml) | Number<br>of<br>Samples | Number of<br>Samples<br>Exceeding<br>Single<br>Sample<br>Criterion | % of<br>Samples<br>Exceeding<br>Single<br>Sample<br>Criterion | Reason for Listing<br>Change |
|-------------------|-----------------------------------|-----------------------|----------------------------------------------------------------|-----------------------------------------------------|-------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|------------------------------|
| OK520610010010_05 | Canadian River,<br>US 77, Purcell | FC                    | 2000                                                           | 186                                                 | 15                      | 1                                                                  | 7%                                                            |                              |
|                   |                                   | EC                    | 2030                                                           | 45                                                  | 15                      | 0                                                                  | 0%                                                            |                              |
|                   |                                   | ENT                   | 540                                                            | 210                                                 | 15                      | 4                                                                  | 27%                                                           |                              |

| WQM Station          | Weterbedy ID      | Waterbady Name          | Indicator Bacteria |     |         |
|----------------------|-------------------|-------------------------|--------------------|-----|---------|
| WQW Station          | Waterbody ID      | Waterbody Name          | FC                 | ENT | E. coli |
| OK520600010010-001AT | OK520600010010_00 | Canadian River          |                    | Х   |         |
| OK520600010060P      | OK520600010060_00 | Factory Creek           | Х                  |     |         |
| OK520600020170B      | OK520600020170_00 | Julian Creek            | X                  |     |         |
| OK520600030030E      | OK520600030030_00 | Spring Brook            | X                  |     |         |
| OK520610010010-001AT | OK520610010010_05 | Canadian River          |                    | X   |         |
| OK520610010080G      | OK520610010080_00 | Willow Creek            | X                  |     |         |
| OK520610010180G      | OK520610010180_00 | Bishop Creek            | X                  |     |         |
| OK520610020120G      | OK520610020120_00 | Buggy Creek             | X                  | Х   | Х       |
| OK520610020150-001AT | OK520610020150_10 | Canadian River          |                    | Х   |         |
| OK520610030080G      | OK520610030080_00 | Walnut Creek-North Fork | X                  |     |         |
| OK520800010010-001AT | OK520800010010_00 | Little River            | Х                  | X   |         |

#### Table 2-4Waterbodies Requiring TMDLs for Not Supporting Primary or Secondary Body Contact Recreation Use

ENT = enterococci; FC = fecal coliform

J:\planning\TMDL\Bacteria TMDLs\Parsons\2007\4 Canadian River(15)\Canadian\_FINAL\_081508.doc

## SECTION 3 POLLUTANT SOURCE ASSESSMENT

A source assessment characterizes known and suspected sources of pollutant loading to impaired waterbodies. Sources within a watershed are categorized and quantified to the extent that information is available. Bacteria originate from warm-blooded animals; some plant life and sources may be point or nonpoint in nature.

Point sources are permitted through the NPDES program. NPDES-permitted facilities that discharge treated wastewater are required to monitor for one of the three bacterial indicators (fecal coliform, *E coli*, or Enterococci) in accordance with their permits. Nonpoint sources are diffuse sources that typically cannot be identified as entering a waterbody through a discrete conveyance at a single location. These sources may involve land activities that contribute bacteria to surface water as a result of rainfall runoff. For the TMDLs in this report, all sources of pollutant loading not regulated by NPDES are considered nonpoint sources. The following discussion describes what is known regarding point and nonpoint sources of bacteria in the impaired watersheds.

#### 3.1 NPDES-Permitted Facilities

Under 40 CFR, §122.2, a point source is described as a discernable, confined, and discrete conveyance from which pollutants are or may be discharged to surface waters. Certain NPDES-permitted municipal plants are classified as no-discharge facilities. NPDES-permitted facilities classified as point sources that may contribute bacteria loading include:

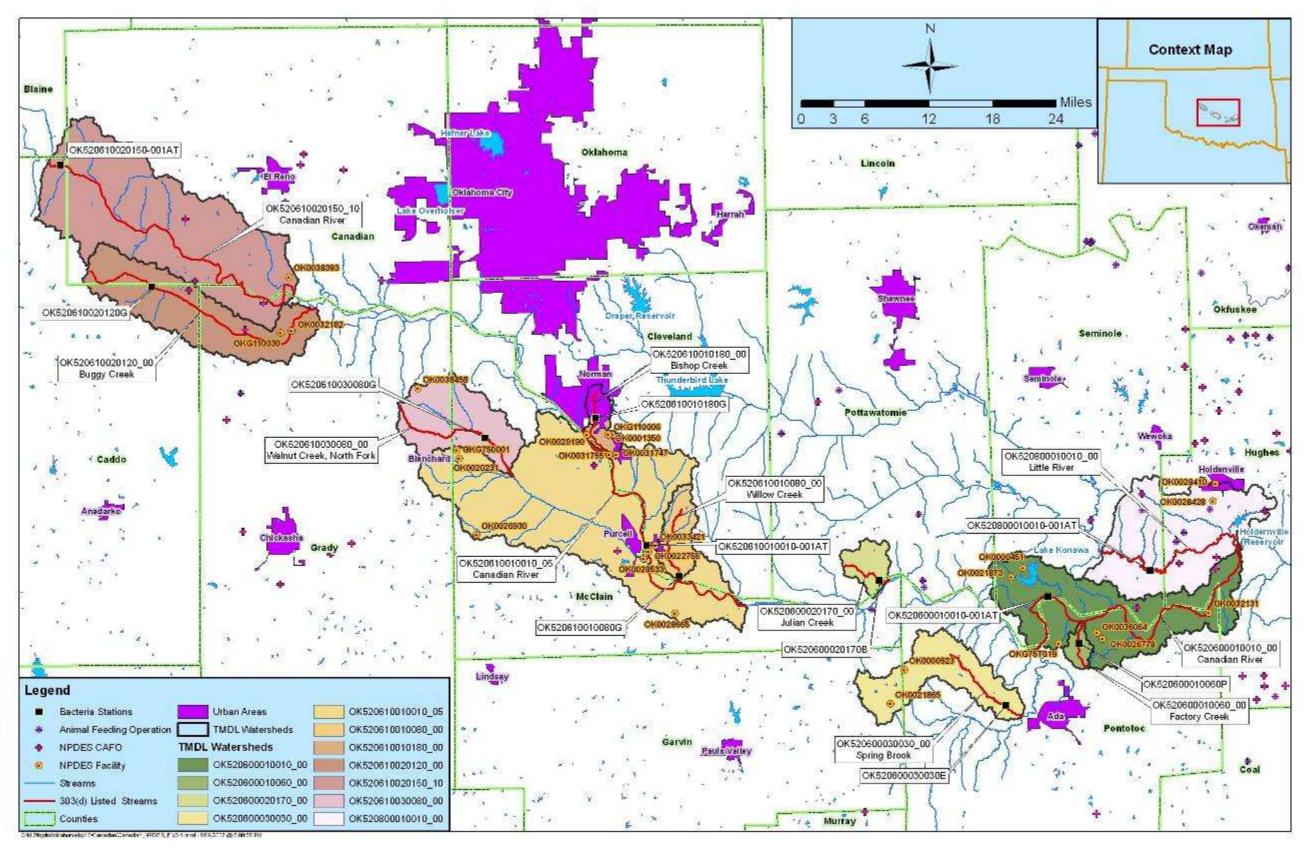
- NPDES municipal wastewater treatment plants (WWTP);
- NPDES municipal no-discharge WWTP;
- NPDES municipal separate storm sewer discharge (MS4); and
- NPDES Concentrated Animal Feeding Operation (CAFO).

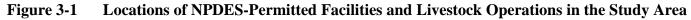
Continuous point source discharges such as WWTPs, could result in discharge of elevated concentrations of fecal coliform bacteria if the disinfection unit is not properly maintained, is of poor design, or if flow rates are above the disinfection capacity. While the no-discharge facilities do not discharge wastewater directly to a waterbody, it is possible that the collection systems associated with each facility may be a source of bacteria loading to surface waters. Stormwater runoff from MS4 areas, which is now regulated under the USEPA NPDES Program, can also contain high fecal coliform bacteria concentrations. CAFOs are recognized by USEPA as one of the significant sources of pollution, and may have the potential to cause serious impacts to water quality if not properly managed.

There are no NPDES-permitted facilities of any type in the contributing watersheds of Factory Creek (OK520600010060\_00), Julian Creek (OK520600020170\_00) and Willow Creek (OK520610010080\_00). Eight of the watersheds in the Study Area, including Spring Brook (OK520600030030\_00), Walnut Creek-North Fork (OK520610030080\_00), Bishop Creek (OK520610010180\_00), Buggy Creek (OK520610020120\_00), Canadian River (OK520600010010\_00, OK520610020150\_10 and OK520610010010\_05), and Little River (OK520800010010\_00), have continuous point source discharges. The city of Norman and University of Oklahoma are the only permitted MS4s within this Study Area.

### 3.1.1 Continuous Point Source Dischargers

The locations of the NPDES-permitted facilities that discharge wastewater to surface waters addressed in these TMDLs are listed in Table 3-1 and displayed in Figure 3-1. For the purposes of the TMDLs calculated in Chapter 5, only facility types identified in Table 3-1 as Sewerage Systems are assumed to contribute bacteria loads within the watersheds of the impaired waterbodies. For some continuous point source discharge facilities the permitted design flow was not available and therefore is not provided in Table 3-1.


| NPDES<br>Permit No. | Name                                                          | Receiving Water                                   | Facility Type               | County<br>Name | Design<br>Flow<br>(mgd) | Active/<br>Inactive | Facility<br>ID |
|---------------------|---------------------------------------------------------------|---------------------------------------------------|-----------------------------|----------------|-------------------------|---------------------|----------------|
| OK0000451           | Oklahoma Gas &<br>Electric Co. Seminole<br>Generating Station | OK520600010010<br>_00 Canadian<br>River           | Electrical<br>Services      | Seminole       | N/A                     | Active              |                |
| OK0021873           | City of Konawa                                                | OK520600010010<br>_00 Canadian<br>River           | Sewerage<br>Systems         | Seminole       | 0.32                    | Active              | S20629         |
| OK0036064           | Town of<br>Francis/Francis Public<br>Works Authority          | OK520600010010<br>_00 Canadian<br>River           | Sewerage<br>Systems         | Pontotoc       | 0.045                   | Active              | S20662         |
| OK0021865           | Stratford Public Works<br>Authority                           | OK520600030030<br>_00 Spring Brook                | Sewerage<br>Systems         | Garvin         | 0.16                    | Active              | S20625         |
| OK0022756           | Lexington Public<br>Works Authority                           | OK520610010010<br>_05 Canadian<br>River           | Sewerage<br>Systems         | Cleveland      | 0.25                    | Active              | S20619         |
| OK0028533           | City of Purcell                                               | OK520610010010<br>_05 Canadian<br>River           | Sewerage McClain<br>Systems |                | 0.65                    | Active              | S20622         |
| OK0029190           | Norman                                                        | OK520610010010<br>_05 Canadian<br>River           | Sewerage<br>Systems         | Cleveland      | 12                      | Active              | S20616         |
| OK0031755           | Noble Utilities<br>Authority - North                          | OK520610010180<br>_00 Bishop Creek                | Sewerage<br>Systems         | Cleveland      | 0.76                    | Active              | S20651         |
| OKG110006           | Dolese Co S.<br>Norman Batch Plant                            | OK520610010180<br>_00 Bishop Creek                | Ready-mixed<br>Concrete     | Cleveland      | N/A                     | Active              |                |
| OK0038393           | Union City WWTP                                               | OK520610020150<br>_10 Canadian<br>River           | Sewerage<br>Systems         | Canadian       | 0.2                     | Active              | S20609         |
| OK0038458           | Bridge Creek Public<br>School                                 | OK520610030080<br>_00 Walnut<br>Creek, North Fork | Sewerage<br>Systems         | Grady          | 0.03                    | Active              | S20675         |
| OK0028428           | Holdenville Public<br>Works Authority                         | OK520800010010<br>_00 Little River                | Sewerage<br>Systems         | Hughes         | 0.8                     | Active              | S20805         |
| OKG75T019           | Pirate Cove Car Wash                                          | OK520600010010<br>_00 Canadian<br>River           | Carwashes                   | Pontotoc       | N/A                     | Inactive            |                |
| OK0028665           | Wayne Public Works<br>Authority                               | OK520610010010<br>_05 Canadian<br>River           | Sewerage<br>Systems         | McClain        | N/A                     | Inactive            | S20623         |


Table 3-1Point Source Discharges in the Study Area

| NPDES<br>Permit No. | Name                                 | Receiving Water                         | Facility Type                         | County<br>Name | Design<br>Flow<br>(mgd) | Active/<br>Inactive | Facility<br>ID |
|---------------------|--------------------------------------|-----------------------------------------|---------------------------------------|----------------|-------------------------|---------------------|----------------|
| OK0001350           | South Norman Batch<br>Plant          | OK520610010180<br>_00 Bishop Creek      | Ready-mixed<br>Concrete               | Cleveland      | N/A                     | Inactive            |                |
| OK0032182           | City of Minco                        | OK520610020120<br>_00 Buggy Creek       | Sewerage<br>Systems                   | Grady          | 0.215                   | Active              | S20610         |
| OK0026778           | J J Layne Lease-<br>Beebe Oilfield   | OK520600010010<br>_00 Canadian<br>River | Crude<br>Petroleum And<br>Natural Gas | Pontotoc       | N/A                     | N/A                 |                |
| OK0032131           | Mid-continent Pipe<br>Line Co-All    | OK520600010010<br>_00 Canadian<br>River | Crude<br>Petroleum And<br>Natural Gas | Pontotoc       | N/A                     | N/A                 |                |
| OK0020231           | City of Blanchard                    | OK520610010010<br>_05 Canadian<br>River | Sewerage<br>Systems                   | McClain        | N/A                     | N/A                 |                |
| OK0026930           | Town of Dibble                       | OK520610010010<br>_05 Canadian<br>River | Sewerage<br>Systems                   | McClain        | N/A                     | N/A                 |                |
| OK0033421           | OK St Dpt Health-<br>Lexington Comm  | OK520610010010<br>_05 Canadian<br>River | Sewerage<br>Systems                   | Cleveland      | N/A                     | N/A                 |                |
| OKG750001           | N/A                                  | OK520610010010<br>_05 Canadian<br>River | N/A                                   | McClain        | N/A                     | N/A                 |                |
| OK0031747           | City of Noble (South<br>WWTP)        | OK520610010180<br>_00 Bishop Creek      | Sewerage<br>Systems                   | Cleveland      | N/A                     | N/A                 |                |
| OKG110030           | Chisholm Trial<br>Concrete Inc.      | OK520610020120<br>_00 Buggy Creek       | Ready-mixed<br>Concrete               | Grady          | N/A                     | N/A                 |                |
| OK0028410           | City of Holdenville<br>(North Plant) | OK520800010010<br>_00 Little River      | Sewerage<br>Systems                   | Hughes         | N/A                     | N/A                 |                |

N/A = not available

Discharge Monitoring Reports (DMR) were used to determine the number of fecal coliform analyses performed from 1998 through 2006, the maximum concentration during this period, the number of violations occurring when the monthly geometric mean concentration exceeded 200 cfu/100 mL, and the number of violations when a daily maximum concentration exceeded 400 cfu/100 mL. DMR data for fecal coliform were only available for the City of Konawa and Bridge Creek Public School (see Appendix B). These data indicate that there are no violations occurring at the City of Konawa. However, Bridge Creek Public School WWTP violated monthly geometric mean permit limits for fecal coliform 1 percent of the time. Given the limited amount of data it is not possible to provide an adequate evaluation on the performance of WWTPs in the impaired watersheds with respect to their compliance with fecal coliform permit limits over time.





J:\planning\TMDL\Bacteria TMDLs\Parsons\2007\4 Canadian River(15)\Canadian\_FINAL\_081508.doc

## 3.1.2 NPDES No-Discharge Facilities and Sanitary Sewer Overflows

There are 12 NPDES no-discharge facilities within the Study Area. The locations of these facilities are shown in Figure 3-1, and are listed in Table 3-2. For the purposes of these TMDLs, it is assumed that no-discharge facilities do not contribute bacteria loading to the Canadian River and its tributaries. However, it is possible the wastewater collection systems associated with those WWTPs could be a source of bacteria loading, or that discharges may occur during large rainfall events that exceed the systems' storage capacities.

| Facility                                       | Facility<br>ID | County    | Facility<br>Type    | Туре       | Watershed                           | Active/<br>Inactive |
|------------------------------------------------|----------------|-----------|---------------------|------------|-------------------------------------|---------------------|
| Blanchard<br>Wastewater<br>Treatment<br>(WWTP) | 20620          | McClain   | Land<br>Application | Municipal  | OK520610010010_05<br>Canadian River | N/A                 |
| Byng-Chickasaw<br>Housing Lagoon               | 20627          | Pontotoc  | Lagoon Municipal    |            | OK520600010010_00<br>Canadian River | N/A                 |
| Cherokee<br>Trading Post<br>WWTP               | 20639          | Canadian  | Lagoon Municipal    |            | OK520610020150_10<br>Canadian River | N/A                 |
| Adkins Hill MHP                                | 20653          | McClain   | Lagoon              | Municipal  | OK520610010010_05<br>Canadian River | N/A                 |
| Ben's Trailer Park                             | 20656          | Cleveland | Lagoon              | Municipal  | OK520610010010_05<br>Canadian River | N/A                 |
| Dibble WWTP                                    | 20657          | McClain   | Lagoon              | Municipal  | OK520610010010_05<br>Canadian River | N/A                 |
| Mantooth Trailer<br>Ct                         | 20658          | McClain   | Lagoon              | Municipal  | OK520610010010_05<br>Canadian River | N/A                 |
| Crystal Lakes<br>Lagoons WWTP                  | 20668          | McClain   | Lagoon              | Municipal  | OK520610010010_05<br>Canadian River | N/A                 |
| Woodbrook<br>Estates WWTP                      | 20669          | Pontotoc  | Lagoon              | Municipal  | OK520600010060_00<br>Factory Creek  | N/A                 |
| Clearview MHP                                  | 20670          | Cleveland | Lagoon              | Municipal  | OK520610010010_05<br>Canadian River | N/A                 |
| Sasakwa WWTP                                   | 20809          | Seminole  | Land<br>Application | Municipal  | OK520800010010_00<br>Little River   | N/A                 |
| Southwest<br>Ostrich<br>Processors             | WD83-<br>011   | McClain   | Total<br>Retention  | Industrial | OK520610010010_05<br>Canadian River | Inactive            |

Table 3-2NPDES No-Discharge Facilities in the Study Area

N/A = not available

Sanitary sewer overflows (SSO) from wastewater collection systems, although infrequent, can be a major source of fecal coliform loading to streams. SSOs have existed since the introduction of separate sanitary sewers, and most are caused by blockage of sewer pipes by grease, tree roots, and other debris that clog sewer lines, by sewer line breaks and leaks, cross connections with storm sewers, and inflow and infiltration of groundwater into sanitary sewers. SSOs are permit violations that must be addressed by the responsible NPDES permittee. The reporting of SSOs over the last 6 years has been strongly encouraged by USEPA, primarily

through enforcement and fines. While not all sewer overflows are reported, ODEQ has some data on SSOs available. There were 1,647 SSO occurrences, ranging from 0 to 7 million gallons, reported from six different waterbodies in the Study Area between July 1989 and April 2007. Table 3-3 summarizes the facilities in the Study Area that reported SSOs. Additional data on each individual SSO event are provided in Appendix B. Given the significant number of occurrences and the size of the overflows reported, SSOs have been a significant source of bacteria loading in the past in the Canadian River (OK520610010010\_05, and OK520600010010\_00), Little River (OK520800010010\_00), and Bishop Creek (OK520610010180\_00) watersheds.

| Facility                  | NPDES      | Receiving Water                               | Facility | Number of   | Date F     | Range      | Amou | nt (Gallons) |
|---------------------------|------------|-----------------------------------------------|----------|-------------|------------|------------|------|--------------|
| Name                      | Permit No. |                                               | ID       | Occurrences | From       | То         | Min  | Max          |
| Blanchard                 | OK0020231  | OK520610010010_05<br>Canadian River           | S20620   | 10          | 04/30/1990 | 04/23/2001 | 0    | 7,000,000    |
| Bridge<br>Creek<br>School | OK0038458  | OK520610030080_00<br>Walnut Creek, North Fork | S20675   | 4           | 10/21/1992 | 01/25/1996 | 0    | 50           |
| Holdenville               | OK0028428  | OK520800010010_00<br>Little River             | S20805   | 309         | 02/28/1990 | 02/20/2007 | 0    | 6,000,000    |
| Konawa                    | OK0021873  | OK520600010010_00<br>Canadian River           | S20629   | 18          | 03/11/1990 | 06/30/1999 | 0    | 210,000      |
| Lexington                 | OK0022756  | OK520610010010_05<br>Canadian River           | S20619   | 8           | 10/13/1991 | 07/24/2002 | 0    | 78,000       |
| Minco                     | OK0032182  | OK520610020120_00<br>Buggy Creek              | S20610   | 4           | 05/10/1993 | 03/11/2003 | 250  | 5,000        |
| Noble                     | OK0031755  | OK520610010180_00<br>Bishop Creek             | S20651   | 90          | 03/11/1990 | 04/10/2007 | 0    | 480,000      |
| Norman                    | OK0029190  | OK520610010010_05<br>Canadian River           | S20616   | 1064        | 07/25/1989 | 04/11/2007 | 0    | 50,000       |
| Purcell                   | OK0028533  | OK520610010010_05<br>Canadian River           | S20622   | 137         | 02/06/1995 | 03/22/2007 | 25   | 470,000      |
| Union City                | OK0038393  | OK520610020150_10<br>Canadian River           | S20609   | 3           | 06/24/1999 | 05/02/2005 | 10   | 650          |

Table 3-3Sanitary Sewer Overflow (SSO) Summary

SSOs are a common result of the aging wastewater infrastructure around the state. DEQ has been ahead of other states and, in some cases, EPA itself in its handling of SSOs. Due to the widespread nature of the SSO problem, DEQ has focused its limited resources to first target SSOs that result in definitive environmental harm, such as fish kills, or lead to citizen complaints. All SSOs falling in these two categories are addressed through DEQ's formal enforcement process. A Notice of Violation (NOV) is first issued to the owner of the collection system and a Consent Order (CO) is negotiated between the owner and DEQ to establish a schedule for necessary collection system upgrades to eliminate future SSOs.

Another target area for DEQ is chronic SSOs from OPDES major facilities, those with a total design flow in excess of 1 MGD. DEQ periodically reviews the bypass reports submitted by these major facilities and identifies problem areas and chronic SSOs. When these problems

are attributable to wet weather, DEQ endeavors to enter into a CO with the owner of the collection system to establish a schedule for necessary repairs. When the problems seem to be dry weather-related, DEQ will encourage the owner of the collection system to implement the proposed Capacity, Management, Operation, and Maintenance (CMOM) guidelines aimed at minimizing or eliminating dry weather SSOs. This is often accomplished through entering into a Consent Order to establish a schedule for implementation and annual auditing of the CMOM program.

All SSOs are considered unpermitted discharges under State statute and DEQ regulations. The smaller towns have a smaller reserve, are more likely to use utility revenue for general purposes, and/or tend to budget less for ongoing and/or preventive maintenance. If and when DEQ becomes aware of chronic SSOs (more than one from a single location in a year) or receives a complaint about an SSO in a smaller community, DEQ will pursue enforcement action. Enforcement almost always begins with the issuance of an NOV and, if the problem is not corrected by a long-term solution, DEQ will enter into a CO with the facility for a long-term solution. Long-term solutions usually begin with sanitary sewer evaluation surveys (SSESs). Based on the result of the SSES, the facilities can prioritize and take corrective action.

## 3.1.3 NPDES Municipal Separate Storm Sewer Discharge

#### Phase I MS4

In 1990 the USEPA developed rules establishing Phase I of the NPDES Stormwater Program, designed to prevent harmful pollutants from being washed by stormwater runoff into MS4s (or from being dumped directly into the MS4) and then discharged into local water bodies (USEPA 2005). Phase I of the program required operators of medium and large MS4s (those generally serving populations of 100,000 or greater) to implement a stormwater management program as a means to control polluted discharges. Approved stormwater management programs for medium and large MS4s are required to address a variety of water quality-related issues, including roadway runoff management, municipal-owned operations, and hazardous waste treatment. There are no Phase I MS4 permits in the Study Area.

#### Phase II MS4

Phase II of the rule extends coverage of the NPDES stormwater program to certain small MS4s. Small MS4s are defined as any MS4 that is not a medium or large MS4 covered by Phase I of the NPDES Stormwater Program. Phase II requires operators of regulated small MS4s to obtain NPDES permits and develop a stormwater management program. Programs are designed to reduce discharges of pollutants to the "maximum extent practicable," protect water quality, and satisfy appropriate water quality requirements of the CWA. Because stormwater discharges cannot be centrally collected, monitored, and treated, they are not subject to the same types of effluent limitations as wastewater facilities. Instead, stormwater discharges are required to meet a performance standard of providing treatment to the "maximum extent practical" through the implementation of best management practices (BMPs).

Small MS4 stormwater programs must address the following minimum control measures:

• Public Education and Outreach;

- Public Participation/Involvement;
- Illicit Discharge Detection and Elimination;
- Construction Site Runoff Control;
- Post- Construction Runoff Control; and
- Pollution Prevention/Good Housekeeping.

The MS4 permit for small communities in Oklahoma became effective on February 8, 2005. The City of Norman, located in Bishop Creek (OK520610010180\_00) watershed, falls under requirements designated by USEPA for inclusion in the Phase II Stormwater Program and has a permitted MS4. The municipalities were designated because their municipal boundaries intersected a U.S. Census-defined Urbanized Area. In an effort to quantify the relative contribution of bacteria loads from the MS4 area of the City of Norman and University of Oklahoma the percentage of the Biship Creek watershed under MS4 jurisdiction was calculated. The area of the City of Norman and University of Oklahoma MS4s within the Bishop Creek watershed is estimated to 5063 acres or 55% of the watershed. The bacterial loads from the City of Norman and University of Oklahoma may be of concern given that over half of the watershed is within the Norman's MS4 area. There are no Phase II MS4s (OK520600010010 00 in the following watersheds: Canadian River and OK520610020150 10), (OK520600010060 00), Factory Creek Julian Creek (OK520600020170 00), Spring Brook (OK520600030030 00), Willow Creek (OK520610010080 00), (OK520610010180 00), **Bishop** Creek Buggy Creek (OK520610020120\_00) and Walnut Creek-North Fork (OK520610030080\_00).

Runoff from urban areas not permitted under the MS4 program can be a significant source of fecal coliform bacteria. Water quality data collected from streams draining many of the nonpermitted communities show existing loads of fecal coliform bacteria at levels greater than the State's instantaneous standards. The specific requirements for bacteria control in a MS4 permit can be found in Appendix E. Appendix E also includes information on a list of BMPs and its effectiveness. ODEQ provides information on the current status of the MS4 program on its website, which can be found at:

http://www.deq.state.ok.us/WQDnew/stormwater/ms4/.

## 3.1.4 Concentrated Animal Feeding Operations

The Agricultural Environmental Management Services (AEMS) of the Oklahoma Department of Agriculture, Food and Forestry (ODAFF) was created to help develop, coordinate, and oversee environmental policies and programs aimed at protecting the Oklahoma environment from pollutants associated with agricultural animals and their waste. Through regulations established by the Oklahoma Concentrated Animal Feeding Operation Act, AEMS works with producers and concerned citizens to ensure that animal waste does not impact the waters of the state. A CAFO is an animal feeding operation that confines and feeds at least 1,000 animal units for 45 days or more in a 12-month period (ODAFF 2005). The CAFO Act is designed to protect water quality through the use of best management practices (BMP) such as dikes, berms, terraces, ditches, or other similar structures used to isolate animal waste from outside surface drainage, except for a 25-year, 24–hour rainfall event (ODAFF 2005). CAFOs are considered no-discharge facilities.

CAFOs are designated by USEPA as one of the significant sources of pollution, and may have the potential to cause serious impacts to water quality if not managed properly. Potential problems for CAFOs can include animal waste discharges to waters of the state and failure to properly operate wastewater lagoons.

Figure 3-1 depicts the locations of the 13 CAFOs located in the Canadian River (OK520610010010\_05, OK520610020150\_10, and OK520600010010\_00), Little River (OK520800010010\_00), and Buggy Creek (OK520610020120\_00). Table 3-4 lists the CAFOs located in the Study Area. Factory Creek, Julian Creek, Spring Brook, Willow Creek, Bishop Creek, and Walnut Creek-North Fork have no CAFOs within their contributing watershed.

| ODAFF     | EPA       | ODAFF | ODAFF<br>License |                  |                 | ximum Numb<br>ted Animals a |                  |                  | Total # of<br>Animal | County   | Watershed                           |
|-----------|-----------|-------|------------------|------------------|-----------------|-----------------------------|------------------|------------------|----------------------|----------|-------------------------------------|
| Owner ID  | Facility  | ID    | Number           | Dairy<br>Heifers | Dairy<br>Cattle | Slaughter<br>Feeder Cattle  | Swine<br>>55 lbs | Swine<br><55 lbs | Units at<br>Facility | County   | Watersneu                           |
| AGN036236 | OKG010284 | 277   | 1494             |                  |                 |                             | 2400             |                  | 960                  | Caddo    | OK520610020120_00<br>Buggy Creek    |
| WQ0000058 | OKU000357 | 150   | 980002           |                  |                 |                             | 3840             |                  | 1536                 | Canadian | OK520610020150_10<br>Canadian River |
| AGN031882 | OKG010241 | 229   | 1398             |                  |                 | 800                         |                  |                  | 800                  | Canadian | OK520610020150_10<br>Canadian River |
| WQ0000066 | OKU000442 | 166   | 980005           |                  |                 |                             | 5760             |                  | 2304                 | Grady    | OK520610020120_00<br>Buggy Creek    |
| AGN031884 | OKG010029 | 78    | 1396             | 1000             | 13000           |                             |                  |                  | 19200                | Grady    | OK520610020150_10<br>Canadian River |
| WQ0000062 | OKU000232 | 155   | 970029           |                  |                 |                             |                  | 10000            | 1000                 | Hughes   | OK520600010010_00<br>Canadian River |
| AGN028939 | OKU000223 | 72    | 1298             |                  |                 |                             |                  | 10000            | 1000                 | Hughes   | OK520800010010_00<br>Little River   |
| WQ0000023 | OKU000406 | 87    | 970035           |                  |                 |                             |                  | 10000            | 1000                 | Hughes   | OK520800010010_00<br>Little River   |
| AGN031061 | OKG010258 | 261   | 1321             |                  |                 |                             | 2400             |                  | 960                  | Hughes   | OK520800010010_00<br>Little River   |
| AGN031827 | OKG010116 | 33    | 1378             |                  |                 | 750                         |                  |                  | 750                  | McClain  | OK520610010010_05<br>Canadian River |
| AGN032025 | OKG010262 | 147   | 1431             |                  |                 | 800                         |                  |                  | 800                  | McClain  | OK520610010010_05<br>Canadian River |
| AGN026635 | OKU000394 | 45    | 1246             |                  |                 |                             | 1200             |                  | 480                  | Hughes   | OK520600010010_00<br>Canadian River |
| AGN031062 | OKU000209 | 25    | 1322             |                  |                 |                             | 600              |                  | 240                  | Seminole | OK520800010010_00<br>Little River   |

Table 3-4NPDES-Permitted CAFOs in Study Area

## 3.2 Nonpoint Sources

Nonpoint sources include those sources that cannot be identified as entering the waterbody at a specific location. Bacteria originate from rural, suburban, and urban areas. The following section describes possible major nonpoint sources contributing fecal coliform loading within the Study Area.

These sources include wildlife, agricultural activities and domesticated animals, land application fields, urban runoff, failing onsite wastewater disposal (OSWD) systems and domestic pets. As previously stated, there are no NPDES-permitted facilities in the Factory Creek, Julian Creek, and Willow Creek watersheds; therefore, nonsupport of PBCR use is caused by nonpoint sources of bacteria only.

Bacteria associated with urban runoff can emanate from humans, wildlife, commercially raised farm animals, and domestic pets. Water quality data collected from streams draining urban communities often show existing concentrations of fecal coliform bacteria at levels greater than a state's instantaneous standards. A study under USEPA's National Urban Runoff Project indicated that the average fecal coliform concentration from 14 watersheds in different areas within the United States was approximately 15,000/100 mL in stormwater runoff (USEPA 1983). Runoff from urban areas not permitted under the MS4 program can be a significant source of fecal coliform bacteria. Water quality data collected from streams draining many of the nonpermitted communities show existing loads of fecal coliform bacteria at levels greater than the State's instantaneous standards. Best management practices (BMP) such as buffer strips, repair of leaking sewage collection systems and proper disposal of domestic animal waste reduce bacteria loading to waterbodies.

## 3.2.1 Wildlife

Fecal coliform bacteria are produced by all warm-blooded animals, including wildlife such as mammals and birds. In developing bacteria TMDLs it is important to identify the potential for bacteria contributions from wildlife by watershed. Wildlife is naturally attracted to riparian corridors of streams and rivers. With direct access to the stream channel, wildlife can be a concentrated source of bacteria loading to a waterbody. Fecal coliform bacteria from wildlife are also deposited onto land surfaces, where it may be washed into nearby streams by rainfall runoff. Currently there are insufficient data available to estimate populations of wildlife and avian species by watershed. Consequently it is difficult to assess the magnitude of bacteria contributions from wildlife species as a general category.

However, adequate data are available by county to estimate the number of deer by watershed. This report assumes that deer habitat includes forests, croplands, and pastures. Using Oklahoma Department of Wildlife and Conservation county data, the population of deer can be roughly estimated from the actual number of deer harvested and harvest rate estimates. Because harvest success varies from year to year based on weather and other factors, the average harvest from 1999 to 2003 was combined with an estimated annual harvest rate of 20 percent to predict deer population by county. Using the estimated deer population by county and the percentage of the watershed area within each county, a wild deer population can be calculated for each watershed. Table 3-5 provides the estimated number of deer for each watershed.

| Waterbody ID      | Waterbody Name          | Deer | Acre    |
|-------------------|-------------------------|------|---------|
| OK520600010010_00 | Canadian River          | 982  | 89,183  |
| OK520600010060_00 | Factory Creek           | 46   | 4,812   |
| OK520600020170_00 | Julian Creek            | 103  | 10,524  |
| OK520600030030_00 | Spring Brook            | 342  | 40,064  |
| OK520610010010_05 | Canadian River          | 981  | 172,991 |
| OK520610010080_00 | Willow Creek            | 120  | 15,144  |
| OK520610010180_00 | Bishop Creek            | 72   | 9,199   |
| OK520610020120_00 | Buggy Creek             | 467  | 65,715  |
| OK520610020150_10 | Canadian River          | 973  | 143,087 |
| OK520610030080_00 | Walnut Creek-North Fork | 218  | 41,327  |
| OK520800010010_00 | Little River            | 934  | 80,627  |

Table 3-5Estimated Deer Populations

According to a study conducted by ASAE (the American Society of Agricultural Engineers), deer release approximately  $5 \times 10^8$  fecal coliform units per animal per day (ASAE 1999). Although only a fraction of the total fecal coliform loading produced by the deer population may actually enter a waterbody, the estimated fecal coliform production for deer provided in Table 3-6 in cfu/day provides a relative magnitude of loading in each watershed.

| 1 able 3-6 | Estimated | Fecal Collio | orm Product | ion for Deer |  |
|------------|-----------|--------------|-------------|--------------|--|
|            |           |              |             |              |  |

| Waterbody ID      | Waterbody Name              | Watershed<br>Area<br>(acres) | Wild Deer<br>Population | Estimated<br>Wild Deer<br>per acre | Fecal<br>Production<br>(x 10 <sup>8</sup> cfu/day)<br>of Deer<br>Population |
|-------------------|-----------------------------|------------------------------|-------------------------|------------------------------------|-----------------------------------------------------------------------------|
| OK520600010010_00 | Canadian River              | 89,183                       | 982                     | 0.01                               | 4,908                                                                       |
| OK520600010060_00 | Factory Creek               | 4,812                        | 46                      | 0.01                               | 231                                                                         |
| OK520600020170_00 | Julian Creek                | 10,524                       | 103                     | 0.01                               | 515                                                                         |
| OK520600030030_00 | Spring Brook                | 40,064                       | 342                     | 0.01                               | 1,711                                                                       |
| OK520610010010_05 | Canadian River              | 172,991                      | 981                     | 0.01                               | 4,905                                                                       |
| OK520610010080_00 | Willow Creek                | 15,144                       | 120                     | 0.01                               | 602                                                                         |
| OK520610010180_00 | Bishop Creek                | 9,199                        | 72                      | 0.01                               | 362                                                                         |
| OK520610020120_00 | Buggy Creek                 | 65,715                       | 467                     | 0.01                               | 2,336                                                                       |
| OK520610020150_10 | Canadian River              | 143,087                      | 973                     | 0.01                               | 4,863                                                                       |
| OK520610030080_00 | Walnut Creek-<br>North Fork | 41,327                       | 218                     | 0.01                               | 1,090                                                                       |
| OK520800010010_00 | Little River                | 80,627                       | 934                     | 0.01                               | 4,670                                                                       |

## 3.2.2 Non-Permitted Agricultural Activities and Domesticated Animals

There are a number of non-permitted agricultural activities that can also be sources of fecal bacteria loading. Agricultural activities of greatest concern are typically those associated with livestock operations (Drapcho and Hubbs 2002). Examples of commercially raised farm animals activities that can contribute to bacteria sources include:

- Processed commercially raised farm animals manure is often applied to fields as fertilizer, and can contribute to fecal bacteria loading to waterbodies if washed into streams by runoff.
- Animals grazing in pastures deposit manure containing fecal bacteria onto land surfaces. These bacteria may be washed into waterbodies by runoff.
- Animals often have direct access to waterbodies and can provide a concentrated source of fecal bacteria loading directly into streams.

Table 3-7 provides estimated numbers of selected commercially raised farm animals by watershed based on the 2002 USDA county agricultural census data (USDA 2002). The estimated animal populations in Table 3-7 were derived by using the percentage of the watershed within each county. Because the watersheds are generally much smaller than the counties, and commercially raised farm animals are not evenly distributed across counties or constant with time, these are rough estimates only. Cattle are clearly the most abundant species of commercially raised farm animals in the Study Area and often have direct access to the impaired waterbodies or their tributaries.

Detailed information is not available to describe or quantify the relationship between instream concentrations of bacteria and land application of manure. The estimated acreage by watershed where manure was applied in 2002 is shown in Table 3-7 These estimates are also based on the county level reports from the 2002 USDA county agricultural census, and thus, represent approximations of the land application area in each watershed. Because of the lack of specific data, land application of animal manure is not quantified in Table 3-8 but is considered a potential source of bacteria loading to the watersheds in the Study Area. Most poultry feeding operations are regulated by ODAFF, and are required to land apply chicken waste in accordance with their Animal Waste Management Plans or Comprehensive Nutrient Management Plans. While these plans are not designed to controlled bacteria loading, best management practices and conservation measures, if properly implemented, could reduce the contribution of bacteria from this group of animals to the watershed.

According to a study conducted by the ASAE, the daily fecal coliform production rates by species were estimated as follows (ASAE 1999):

- Beef cattle release approximately 1.04E+11 fecal coliform counts per animal per day;
- Dairy cattle release approximately 1.01E+11 per animal per day
- Swine release approximately 1.08E+10 per animal per day
- Chickens release approximately 1.36E+08 per animal per day
- Sheep release approximately 1.20E+10 per animal per day
- Horses release approximately 4.20E+08 per animal per day;
- Turkey release approximately 9.30E+07 per animal per day
- Ducks release approximately 2.43E+09 per animal per day
- Geese release approximately 4.90E+10 per animal per day

Using the estimated animal populations and the fecal coliform production rates from ASAE, an estimate of fecal coliform production from each group of commercially rairsed farm animals was calculated in each watershed of the Study Area in Table 3-8. Note that only a small fraction of these fecal coliform are expected to represent loading into waterbodies, either

washed into streams by runoff or by direct deposition from wading animals. Cattle again appear to represent the largest source of fecal bacteria. For informational purposes, data on animal feeding operations provided by ODAFF are summarized in Table 3-9. This data was last updated on April 17, 2004. Table 3-9 lists an estimated number of animals within select watersheds for which data are available. These numbers are considered more representative since they are based on the number of permitted animal feeding operations within the selected watershed derived from an ODAFF GIS inventory. The general locations of animal feeding operations are shown in Figure 3-1. However, for consistency, estimated fecal coliform production for the general category of commercially raised farm animals is based on USDA county agriculture census numbers as summarized in Table 3-8.

| Waterbody ID      | Waterbody Name          | Cattle &<br>Calves-all | Dairy<br>Cows | Horses &<br>Ponies | Goats | Sheep &<br>Lambs | Hogs<br>& Pigs | Ducks &<br>Geese | Chickens<br>& Turkeys | Acres of<br>Manure<br>Application |
|-------------------|-------------------------|------------------------|---------------|--------------------|-------|------------------|----------------|------------------|-----------------------|-----------------------------------|
| OK520600010010_00 | Canadian River          | 10,239                 | 136           | 524                | 299   | 172              | 5,795          | 52               | 376                   | 533                               |
| OK520600010060_00 | Factory Creek           | 622                    | 10            | 34                 | 18    | 16               | 0              | 2                | 22                    | 22                                |
| OK520600020170_00 | Julian Creek            | 992                    | 17            | 64                 | 35    | 32               | 145            | 10               | 64                    | 134                               |
| OK520600030030_00 | Spring Brook            | 5,373                  | 74            | 279                | 139   | 125              | 13             | 24               | 141                   | 190                               |
| OK520610010010_05 | Canadian River          | 24,879                 | 757           | 1,477              | 350   | 1,032            | 2,392          | 61               | 1,249                 | 1,169                             |
| OK520610010080_00 | Willow Creek            | 1,114                  | 10            | 142                | 70    | 68               | 95             | 11               | 179                   | 36                                |
| OK520610010180_00 | Bishop Creek            | 711                    | 7             | 86                 | 42    | 42               | 61             | 7                | 107                   | 24                                |
| OK520610020120_00 | Buggy Creek             | 11,485                 | 767           | 230                | 72    | 228              | 1,634          | 18               | 119                   | 237                               |
| OK520610020150_10 | Canadian River          | 25,020                 | 536           | 638                | 176   | 440              | 2,412          | 32               | 286                   | 401                               |
| OK520610030080_00 | Walnut Creek-North Fork | 7,119                  | 557           | 261                | 62    | 237              | 842            | 13               | 184                   | 258                               |
| OK520800010010_00 | Little River            | 8,856                  | 58            | 349                | 194   | 75               | 14,789         | 36               | 274                   | 969                               |

 Table 3-7
 Commercially Raised Farm Animals and Manure Application Area Estimates by Watershed

Table 3-8Fecal Coliform Production Estimates for Commercially Raised Fard Animals (x109 number/day)

| Waterbody ID      | Waterbody Name          | Cattle &<br>Calves-all | Dairy<br>Cows | Horses &<br>Ponies | Goats | Sheep &<br>Lambs | Hogs &<br>Pigs | Ducks &<br>Geese | Chickens<br>& Turkeys | Total     |
|-------------------|-------------------------|------------------------|---------------|--------------------|-------|------------------|----------------|------------------|-----------------------|-----------|
| OK520600010010_00 | Canadian River          | 1,064,902              | 13,783        | 220                | N/A   | 2,070            | 62,584         | 514              | 51                    | 1,144,123 |
| OK520600010060_00 | Factory Creek           | 64,668                 | 1,001         | 14                 | N/A   | 193              | 0              | 27               | 3                     | 65,906    |
| OK520600020170_00 | Julian Creek            | 103,181                | 1,681         | 27                 | N/A   | 380              | 1,564          | 161              | 9                     | 107,003   |
| OK520600030030_00 | Spring Brook            | 558,773                | 7,486         | 117                | N/A   | 1,497            | 141            | 339              | 19                    | 568,373   |
| OK520610010010_05 | Canadian River          | 2,587,453              | 76,465        | 620                | N/A   | 12,387           | 25,837         | 1,045            | 168                   | 2,703,976 |
| OK520610010080_00 | Willow Creek            | 115,848                | 963           | 60                 | N/A   | 813              | 1,028          | 158              | 24                    | 118,895   |
| OK520610010180_00 | Bishop Creek            | 73,962                 | 720           | 36                 | N/A   | 504              | 662            | 95               | 14                    | 75,993    |
| OK520610020120_00 | Buggy Creek             | 1,194,391              | 77,428        | 97                 | N/A   | 2,731            | 17,645         | 325              | 16                    | 1,292,632 |
| OK520610020150_10 | Canadian River          | 2,602,073              | 54,167        | 268                | N/A   | 5,281            | 26,053         | 818              | 39                    | 2,688,698 |
| OK520610030080_00 | Walnut Creek-North Fork | 740,347                | 56,273        | 110                | N/A   | 2,847            | 9,089          | 241              | 25                    | 808,932   |
| OK520800010010_00 | Little River            | 921,039                | 5,857         | 146                | N/A   | 903              | 159,719        | 329              | 37                    | 1,088,031 |

J:\planning\TMDL\Bacteria TMDLs\Parsons\2007\4 Canadian River(15)\Canadian\_FINAL\_081508.doc

|                   | ODAFE ODAFF |                   | Maximum Number of Permitted<br>Animals at Facility |                 |                               |                     |                     | Total # of                     |          |                                   |
|-------------------|-------------|-------------------|----------------------------------------------------|-----------------|-------------------------------|---------------------|---------------------|--------------------------------|----------|-----------------------------------|
| ODAFF<br>Owner ID | ODAFF<br>ID | License<br>Number | Dairy<br>Heifers                                   | Dairy<br>Cattle | Slaughter<br>Feeder<br>Cattle | Swine<br>>55<br>Ibs | Swine<br><55<br>Ibs | Animal<br>Units at<br>Facility | County   | Watershed                         |
| AGN026634         | 4           | 1245              |                                                    |                 |                               | 600                 |                     | 240                            | Hughes   | OK520800010010_00<br>Little River |
| AGN026891         | 56          | 1256              |                                                    |                 |                               | 600                 |                     | 240                            | Hughes   | OK520800010010_00<br>Little River |
| AGN028193         | 275         | 1284              |                                                    |                 |                               | 600                 |                     | 240                            | Hughes   | OK520800010010_00<br>Little River |
| AGN027153         | 236         | 1265              |                                                    |                 |                               | 650                 |                     | 260                            | Seminole | OK520800010010_00<br>Little River |

| Table 3-9 | Estimated Number of Animals for Animal Feeding Operations Inventoried by ODAFF |
|-----------|--------------------------------------------------------------------------------|
|-----------|--------------------------------------------------------------------------------|

J:\planning\TMDL\Bacteria TMDLs\Parsons\2007\4 Canadian River(15)\Canadian\_FINAL\_081508.doc

## 3.2.3 Failing Onsite Wastewater Disposal Systems and Illicit Discharges

ODEQ is responsible for implementing the regulations of Title 252, Chapter 641 of the Oklahoma Administrative Code, which defines design standards for individual and small public onsite sewage disposal systems (ODEQ 2004). OSWD systems and illicit discharges can be a source of bacteria loading to streams and rivers. Bacteria loading from failing OSWD systems can be transported to streams in a variety of ways, including runoff from surface ponding or through groundwater. Fecal coliform-contaminated groundwater discharges to creeks through springs and seeps.

To estimate the potential magnitude of OSWDs fecal bacteria loading, the number of OSWD systems was estimated for each watershed. The estimate of OSWD systems was derived by using data from the 1990 U.S. Census (U.S. Census Bureau 2000). The density of OSWD systems within each watershed was estimated by dividing the number of OSWD systems in each census block by the number of acres in each census block. This density was then applied to the number of acres of each census block within a WQM station watershed. Census blocks crossing a watershed boundary required additional calculation to estimate the number of OSWD systems based on the proportion of the census tracking falling within each watershed. This step involved adding all OSWD systems for each whole or partial census block.

Over time, most OSWD systems operating at full capacity will fail. OSWD system failures are proportional to the adequacy of a state's minimum design criteria (Hall 2002). The 1995 American Housing Survey conducted by the U.S. Census Bureau estimates that, nationwide, 10 percent of occupied homes with OSWD systems experience malfunctions during the year (U.S. Census Bureau 1995). A study conducted by Reed, Stowe & Yanke, LLC (2001) reported that approximately 12 percent of the OSWD systems in East Texas were chronically malfunctioning. Most studies estimate that the minimum lot size necessary to ensure against contamination is roughly one-half to one acre (Hall 2002). Some studies, however, found that lot sizes in this range or even larger could still cause contamination of ground or surface water (University of Florida 1987). It is estimated that areas with more than 40 OSWD systems per square mile (6.25 septic systems per 100 acres) can be considered to have potential contamination problems (Canter and Knox 1986). Table 3-10 summarizes estimates of sewered and unsewered households for each watershed in the Study Area.

| Waterbody ID      | Waterbody Name | Public<br>Sewer | Septic<br>Tank | Other<br>Means | Housing<br>Units | %<br>Sewered |
|-------------------|----------------|-----------------|----------------|----------------|------------------|--------------|
| OK520600010010_00 | Canadian River | 406             | 582            | 14             | 1,002            | 41%          |
| OK520600010060_00 | Factory Creek  | 17              | 37             | 1              | 55               | 32%          |
| OK520600020170_00 | Julian Creek   | 31              | 66             | 2              | 99               | 31%          |
| OK520600030030_00 | Spring Brook   | 80              | 75             | 3              | 158              | 51%          |
| OK520610010010_05 | Canadian River | 2,570           | 986            | 37             | 3,592            | 72%          |
| OK520610010080_00 | Willow Creek   | 362             | 98             | 0              | 460              | 79%          |
| OK520610010180_00 | Bishop Creek   | 7,329           | 72             | 1              | 7,403            | 99%          |
| OK520610020120_00 | Buggy Creek    | 167             | 290            | 6              | 463              | 36%          |
| OK520610020150_10 | Canadian River | 102             | 145            | 4              | 251              | 41%          |

Table 3-10Estimates of Sewered and Unsewered Households

| Waterbody ID      | Waterbody Name             | Public<br>Sewer | Septic<br>Tank | Other<br>Means | Housing<br>Units | %<br>Sewered |
|-------------------|----------------------------|-----------------|----------------|----------------|------------------|--------------|
| OK520610030080_00 | Walnut Creek-North<br>Fork | 49              | 182            | 2              | 233              | 21%          |
| OK520800010010_00 | Little River               | 139             | 275            | 17             | 432              | 32%          |

For the purpose of estimating fecal coliform loading in watersheds, an OSWD failure rate of 12 percent was used. Using this 12 percent failure rate, calculations were made to characterize fecal coliform loads in each watershed.

Fecal coliform loads were estimated using the following equation (USEPA 2001):

$$\#\frac{counts}{day} = (\#Failing\_systems) \times \left(\frac{10^{6} counts}{100 ml}\right) \times \left(\frac{70 gal}{personday}\right) \times \left(\#\frac{person}{household}\right) \times \left(3785.2\frac{ml}{gal}\right)$$

The average of number of people per household was calculated to be 2.44 for counties in the Study Area (U.S. Census Bureau 2000). Approximately 70 gallons of wastewater were estimated to be produced on average per person per day (Metcalf and Eddy 1991). The fecal coliform concentration in septic tank effluent was estimated to be  $10^6$  per 100 mL of effluent based on reported concentrations from a number of published reports (Metcalf and Eddy 1991; Canter and Knox 1985; Cogger and Carlile 1984). Using this information, the estimated load from failing septic systems within the watersheds was summarized below in Table 3-11.

| Waterbody ID      | Waterbody Name             | Acres   | Septic<br>Tank or<br>Cesspool | # of Failing<br>Septic<br>Tanks | Estimated<br>Loads from<br>Septic Tanks<br>(x 10 <sup>9</sup><br>counts/day) |
|-------------------|----------------------------|---------|-------------------------------|---------------------------------|------------------------------------------------------------------------------|
| OK520600010010_00 | Canadian River             | 89,183  | 582                           | 47                              | 301                                                                          |
| OK520600010060_00 | Factory Creek              | 4,812   | 37                            | 3                               | 19                                                                           |
| OK520600020170_00 | Julian Creek               | 10,524  | 66                            | 5                               | 34                                                                           |
| OK520600030030_00 | Spring Brook               | 40,064  | 75                            | 6                               | 39                                                                           |
| OK520610010010_05 | Canadian River             | 172,991 | 986                           | 79                              | 510                                                                          |
| OK520610010080_00 | Willow Creek               | 15,144  | 98                            | 8                               | 51                                                                           |
| OK520610010180_00 | Bishop Creek               | 9,199   | 72                            | 6                               | 37                                                                           |
| OK520610020120_00 | Buggy Creek                | 65,715  | 290                           | 23                              | 150                                                                          |
| OK520610020150_10 | Canadian River             | 143,087 | 145                           | 12                              | 75                                                                           |
| OK520610030080_00 | Walnut Creek-North<br>Fork | 41,327  | 182                           | 15                              | 94                                                                           |
| OK520800010010_00 | Little River               | 80,627  | 275                           | 22                              | 142                                                                          |

 Table 3-11
 Estimated Fecal Coliform Load from OSWD Systems

## 3.2.4 Domestic Pets

Fecal matter from dogs and cats, which is transported to streams by runoff from urban and suburban areas can be a potential source of bacteria loading. On average nationally, there are 0.58 dogs per household and 0.66 cats per household (American Veterinary Medical Association 2004). Using the U.S. Census data at the block level (U.S. Census Bureau 2000), dog and cat populations can be estimated for each watershed. Table 3-12 summarizes the estimated number of dogs and cats for the watersheds of the Study Area.

| Waterbody ID      | Waterbody Name Dogs     |       | Cats  |
|-------------------|-------------------------|-------|-------|
| OK520600010010_00 | Canadian River          | 561   | 661   |
| OK520600010060_00 | Factory Creek           | 31    | 36    |
| OK520600020170_00 | Julian Creek            | 55    | 65    |
| OK520600030030_00 | Spring Brook            | 88    | 104   |
| OK520610010010_05 | Canadian River          | 2,012 | 2,371 |
| OK520610010080_00 | Willow Creek            | 258   | 304   |
| OK520610010180_00 | Bishop Creek 4,146      |       | 4,886 |
| OK520610020120_00 | Buggy Creek 259         |       | 305   |
| OK520610020150_10 | Canadian River 141      |       | 166   |
| OK520610030080_00 | Walnut Creek-North Fork | 130   | 153   |
| OK520800010010_00 | Little River            | 242   | 285   |

| <b>Table 3-12</b> | <b>Estimated Number of Pets</b> |
|-------------------|---------------------------------|
|                   |                                 |

Table 3-13 provides an estimate of the fecal coliform load from pets. These estimates are based on estimated fecal coliform production rates of  $5.4 \times 10^8$  per day for cats and  $3.3 \times 10^9$  per day for dogs (Schueler 2000).

| Waterbody ID      | Waterbody Name          | Dogs   | Cats  | Total  |
|-------------------|-------------------------|--------|-------|--------|
| OK520600010010_00 | Canadian River          | 1,851  | 357   | 2,209  |
| OK520600010060_00 | Factory Creek           | 101    | 20    | 121    |
| OK520600020170_00 | Julian Creek            | 183    | 35    | 218    |
| OK520600030030_00 | Spring Brook            | 292    | 56    | 348    |
| OK520610010010_05 | Canadian River          | 6,638  | 1,280 | 7,919  |
| OK520610010080_00 | Willow Creek            | 851    | 164   | 1,015  |
| OK520610010180_00 | Bishop Creek            | 13,681 | 2,638 | 16,319 |
| OK520610020120_00 | Buggy Creek             | 855    | 165   | 1,020  |
| OK520610020150_10 | Canadian River          | 464    | 89    | 554    |
| OK520610030080_00 | Walnut Creek-North Fork | 430    | 83    | 513    |
| OK520800010010_00 | Little River            | 797    | 154   | 951    |

 Table 3-13
 Estimated Fecal Coliform Daily Production by Pets (x109)

## 3.3 Summary of Bacteria Sources

Table 3-14 summarizes the suspected sources of bacteria loading in each impaired watershed. As indicated in the table there are no NPDES-permitted facilities in the Factory Creek, Julian Creek, and Willow Creek watersheds; therefore, nonsupport of PBCR use is caused by nonpoint sources of bacteria only. In watersheds with both point and nonpoint sources of bacteria, the available data suggests that the proportion of bacteria from point sources ranges from minor to moderate. Those waterbodies in which point sources are a minor contributor of bacteria include Canadian River (OK520610020150\_10), Walnut Creek-North Fork (OK520610030080\_00), and Spring Brook (OK52060030030\_00). In the remaining five watersheds, Canadian River (OK520600010010\_00), Bishop Creek (OK520610010180\_00), Buggy Creek (OK520610020120\_00), Canadian River (OK520610010010\_05), and Little River (OK520800010010\_00), point sources such as WWTP, SSOs, and CAFOs, contribute moderate bacteria loads in propotion to nonpoint sources. The urban areas designated as Phase II MS4s in the city of Norman further increase the proportion of bacteria loading from

point sources in Bishop Creek (OK520610010180\_00). However, overall nonpoint sources are considered to be the major source of bacteria loading in each watershed.

| Waterbody ID      | Waterbody Name          | Point<br>Sources | Nonpoint<br>Sources | Major<br>Source |
|-------------------|-------------------------|------------------|---------------------|-----------------|
| OK520600010010_00 | Canadian River          | Yes              | Yes                 | Nonpoint        |
| OK520600010060_00 | Factory Creek           | No               | Yes                 | Nonpoint        |
| OK520600020170_00 | Julian Creek            | No               | Yes                 | Nonpoint        |
| OK520600030030_00 | Spring Brook            | Yes              | Yes                 | Nonpoint        |
| OK520610010010_05 | Canadian River          | Yes              | Yes                 | Nonpoint        |
| OK520610010080_00 | Willow Creek            | No               | Yes                 | Nonpoint        |
| OK520610010180_00 | Bishop Creek            | Yes              | Yes                 | Nonpoint        |
| OK520610020120_00 | Buggy Creek             | Yes              | Yes                 | Nonpoint        |
| OK520610020150_10 | Canadian River          | Yes              | Yes                 | Nonpoint        |
| OK520610030080_00 | Walnut Creek-North Fork | Yes              | Yes                 | Nonpoint        |
| OK520800010010_00 | Little River            | Yes              | Yes                 | Nonpoint        |

 Table 3-14
 Estimated Major Source of Bacteria Loading by Watershed

Table 3-15 below provides a summary of the estimated fecal coliform loads in percentage for the four major nonpoint source categories (commercially raised farm animals, pets, deer, and septic tanks) that are contributing to the elevated bacteria concentrations in each watershed. Commercially raised farm animals are estimated to be the largest contributors of fecal coliform loading to land surfaces. It must be noted that while no data are available to estimate populations and fecal loading of wildlife other than deer, a number of bacteria source tracking studies demonstrate that wild birds and mammals represent a major source of the fecal bacteria found in streams.

The magnitude of loading to a stream may not reflect the magnitude of loading to land surfaces. While no studies have quantified these effects, bacteria may die off or survive at different rates depending on the manure characteristics and a number of other environmental conditions. Manure handling practices, use of BMPs, and relative location to streams can also affect stream loading. Also, the structural properties of some manures, such as cow patties, may limit their washoff into streams by runoff. Because litter is applied in a pulverized form, it could be a larger source during storm runoff events. The Shoal Creek report showed that poultry litter was about 71% of the high flow load and cow pats contributed only about 28% of it (Missouri Department of Natural Resources, 2003). The Shoal Creek report also showed that poultry litter was insignificant under low flow conditions up to 50% frequency. In contrast, malfunctioning septic tank effluent may be present in standing water on the surface, or in shallow groundwater, which may enhance its conveyance to streams.

| Waterbody ID      | Waterbody<br>Name           | Commercially Raised<br>Farm Animals | Pets   | Deer  | Estimated<br>Loads<br>from<br>Septic<br>Tanks | Total Fecal<br>Coliform Load<br>(x10 <sup>9</sup> counts/day) |
|-------------------|-----------------------------|-------------------------------------|--------|-------|-----------------------------------------------|---------------------------------------------------------------|
| OK520600010010_00 | Canadian River              | 99.74%                              | 0.19%  | 0.04% | 0.03%                                         | 1,147,124                                                     |
| OK520600010060_00 | Factory Creek               | 99.75%                              | 0.18%  | 0.03% | 0.03%                                         | 66,069                                                        |
| OK520600020170_00 | Julian Creek                | 99.72%                              | 0.20%  | 0.05% | 0.03%                                         | 107,307                                                       |
| OK520600030030_00 | Spring Brook                | 99.90%                              | 0.06%  | 0.03% | 0.01%                                         | 568,931                                                       |
| OK520610010010_05 | Canadian River              | 99.67%                              | 0.29%  | 0.02% | 0.02%                                         | 2,712,895                                                     |
| OK520610010080_00 | Willow Creek                | 99.06%                              | 0.85%  | 0.05% | 0.04%                                         | 120,021                                                       |
| OK520610010180_00 | Bishop Creek                | 82.26%                              | 17.66% | 0.04% | 0.04%                                         | 92,385                                                        |
| OK520610020120_00 | Buggy Creek                 | 99.89%                              | 0.08%  | 0.02% | 0.01%                                         | 1,294,036                                                     |
| OK520610020150_10 | Canadian River              | 99.96%                              | 0.02%  | 0.02% | 0.00%                                         | 2,689,813                                                     |
| OK520610030080_00 | Walnut Creek-<br>North Fork | 99.91%                              | 0.06%  | 0.01% | 0.01%                                         | 809,648                                                       |
| OK520800010010_00 | Little River                | 99.86%                              | 0.09%  | 0.04% | 0.01%                                         | 1,089,591                                                     |

# Table 3-15Summary of Fecal Coliform Load Estimates from Nonpoint Sources to<br/>Land Surfaces

## SECTION 4 TECHNICAL APPROACH AND METHODS

The objective of a TMDL is to estimate allowable pollutant loads and to allocate these loads to the known pollutant sources in the watershed so appropriate control measures can be implemented and the WQS achieved. A TMDL is expressed as the sum of three elements as described in the following mathematical equation:

 $TMDL = \Sigma WLA + \Sigma LA + MOS$ 

The WLA is the portion of the TMDL allocated to existing and future point sources. The LA is the portion of the TMDL allocated to nonpoint sources, including natural background sources. The MOS is intended to ensure that WQSs will be met. Thus, the allowable pollutant load that can be allocated to point and nonpoint sources can then be defined as the TMDL minus the MOS.

40 CFR, §130.2(1), states that TMDLs can be expressed in terms of mass per time, toxicity, or other appropriate measures. For fecal coliform, *E. coli*, or Enterococci bacteria, TMDLs are expressed as colony-forming units per day, where possible, or as a percent reduction goal (PRG), and represent the maximum one-day load the stream can assimilate while still attaining the WQS.

## 4.1 Using Load Duration Curves to Develop TMDLs

The TMDL calculations presented in this report are derived from load duration curves (LDC). LDCs facilitate rapid development of TMDLs, and as a TMDL development tool are effective at identifying whether impairments are associated with point or nonpoint sources. The technical approach for using LDCs for TMDL development includes the four following steps that are described in Subsections 4.2 through 4.4 below:

- Preparing flow duration curves for gaged and ungaged WQM stations;
- Estimating existing bacteria loading in the receiving water using ambient water quality data;
- Using LDCs to identify the critical condition that will dictate loading reductions necessary to attain WQS; and
- Interpreting LDCs to derive TMDL elements WLA, LA, MOS, and PRG.

Historically, in developing WLAs for pollutants from point sources, it was customary to designate a critical low flow condition (*e.g.*, 7Q2) at which the maximum permissible loading was calculated. As water quality management efforts expanded in scope to quantitatively address nonpoint sources of pollution and types of pollutants, it became clear that this single critical low flow condition was inadequate to ensure adequate water quality across a range of flow conditions. Use of the LDC obviates the need to determine a design storm or selected flow recurrence interval with which to characterize the appropriate flow level for the assessment of critical conditions. For waterbodies impacted by both point and nonpoint sources, the "nonpoint source critical condition" would typically occur during high flows, when rainfall runoff would contribute the bulk of the pollutant load, while the "point source critical condition" would typically occur during low flows, when WWTP effluents would dominate the base flow of the impaired water. However, flow range is only a general indicator of the relative

proportion of point/nonpoint contributions. It is not used in this report to quantify point source or nonpoint source contributions. Violations that occur during low flows may not be caused exclusively by point sources. Violations have been noted in some watersheds that contain no point sources. Research has show that bacteria loading in streams during low flow conditions may be due to direct deposit of cattle manure into streams and faulty septic tank/lateral field systems.

LDCs display the maximum allowable load over the complete range of flow conditions by a line using the calculation of flow multiplied by the water quality criterion. The TMDL can be expressed as a continuous function of flow, equal to the line, or as a discrete value derived from a specific flow condition.

## 4.2 Development of Flow Duration Curves

Flow duration curves serve as the foundation of LDCs and are graphical representations of the flow characteristics of a stream at a given site. Flow duration curves utilize the historical hydrologic record from stream gages to forecast future recurrence frequencies. Many WQM stations throughout Oklahoma do not have long term flow data and therefore, flow frequencies must be estimated. The most basic method to estimate flows at an ungaged site involves 1) identifying an upstream or downstream flow gage; 2) calculating the contributing drainage areas of the ungaged sites and the flow gage; and 3) calculating daily flows at the ungaged site by using the flow at the gaged site multiplied by the drainage area ratio. The more complex approach used here also considers watershed differences in rainfall, land use, and the hydrologic properties of soil that govern runoff and retention. More than one upstream flow gage may also be considered. A more detailed explanation of the methods for estimating flow at ungaged WQM stations is provided in Appendix C.

Flow duration curves are a type of cumulative distribution function. The flow duration curve represents the fraction of flow observations that exceed a given flow at the site of interest. The observed flow values are first ranked from highest to lowest, then, for each observation, the percentage of observations exceeding that flow is calculated. The flow value is read from the ordinate (y-axis), which is typically on a logarithmic scale since the high flows would otherwise overwhelm the low flows. The flow exceedance frequency is read from the abscissa, which is numbered from 0 to 100 percent, and may or may not be logarithmic. The lowest measured flow occurs at an exceedance frequency of 100 percent indicating that flow has equaled or exceeded this value 100 percent. The median flow occurs at a flow exceedance frequency of 50 percent. The flow exceedance percentiles for each WQM station addressed in this report are provided in Appendix C.

While the number of observations required to develop a flow duration curve is not rigorously specified, a flow duration curve is usually based on more than 1 year of observations, and encompasses inter-annual and seasonal variation. Ideally, the drought of record and flood of record are included in the observations. For this purpose, the long-term flow gaging stations operated by the USGS are utilized (USGS 2007a).

A typical semi-log flow duration curve exhibits a sigmoidal shape, bending upward near a flow exceedance frequency value of 0 percent and downward at a frequency near 100 percent,

often with a relatively constant slope in between. For sites that on occasion exhibit no flow, the curve will intersect the abscissa at a frequency less than 100 percent. As the number of observations at a site increases, the line of the LDC tends to appear smoother. However, at extreme low and high flow values, flow duration curves may exhibit a "stair step" effect due to the USGS flow data rounding conventions near the limits of quantitation.

Figures 4-1 through 4-11 are flow duration curves for each impaired waterbody. No flow gage exists on Canadian River, segment OK520600010010\_00 at WQM station OK520600010010-001AT. Therefore, flows for this waterbody were based on the difference between measured flows at a downstream USGS gage station 07231500 (Canadian River at Calvin, OK) and another USGS gage station 07231000 (Little River near Sasakwa, OK) on the other tributary to gage 07231500. The flow period used for these stations was 1966 through 2006.

No flow gage exists on Factory Creek, segment OK121600010100\_00. Therefore, flows for this waterbody were projected using the watershed area ratio method based on measured flows at USGS gage station 07328180 (North Criner Creek near Criner, OK). The flow period used for this station was 1989 through 2006.

No flow gage exists on Julian Creek, segment OK520600020170\_00. Therefore, flows for this waterbody were projected using the watershed area ratio method based on measured flows at USGS gage station 07328180 (North Criner Creek near Criner, OK). The flow period used for this station was 1989 through 2006.

No flow gage exists on Spring Brook Creek, segment OK520600030030\_00. Therefore, flows for this waterbody were projected using the watershed area ratio method based on measured flows at USGS gage station 07229427 (Canadian Sandy Creek near Ada, OK) just downstream of Spring Brook Creek. The flow period used for this station was 1986 through 1988. Since point source discharges can comprise a significant fraction of flow under low flow conditions, the permitted point source discharges were added to the projected natural flows.

The flow duration curve for Canadian River at Purcell, segment OK520610010010\_05, was based on measured flows at USGS gage station 07229200 (Canadian River at Purcell, OK). This gage is co-located with WQM station OK520610010010-001AT. The flow duration curve was based on measured flows from 1986 through 2006.

No flow gage exists on Willow Creek, segment OK520610010080\_00. Therefore, flows for this waterbody were projected using the watershed area ratio method based on measured flows at USGS gage station 07328180 (North Criner Creek near Criner, OK). The flow period used for this station was 1989 through 2006.

No flow gage exists on Bishop Creek, segment OK520610010180\_00. Therefore, flows for this waterbody were projected using the watershed area ratio method based on measured flows at USGS gage station 07328180 (North Criner Creek near Criner, OK). The flow period used for this station was 1989 through 2006. Additionally, projected point source flows, estimated as one-half of the design flow of NPDES permit OK0031755, were added to the natural runoff flows.

No flow gage exists on Buggy Creek, segment OK520610020120\_00. Therefore, flows for this waterbody were projected using the watershed area ratio method based on measured

flows at USGS gage station 07328180 (North Criner Creek near Criner, OK). The flow period used for this station was 1989 through 2006.

The flow duration curve for Canadian River, segment OK520610020150\_10 was based on measured flows at USGS gage station 07228500 (Canadian River at Bridgeport, OK). This gage is co-located with WQM station OK520610020150-001AT. The flow duration curve was based on measured flows from 1970 through 2006.

No flow gage exists on Walnut Creek, segment OK520610030080\_00. Therefore, flows for this waterbody were estimated using the watershed area ratio method based on measured flows at USGS gage station 07328180 (North Criner Creek near Criner, OK). The flow period used for this station was 1989 through 2006. Additionally, the point source discharge inflows, estimated as one-half of the design flow of NPDES permit OK0038458, was added to the naturalized flow projections.

The flow duration curve for Little River, segment OK520800010010\_00 was based on measured flows at USGS gage station 07231000 (Little River near Sasakwa, OK). This gage is co-located with WQM station OK520800010010-001AT. The flow duration curve was based on measured flows from 1943 through 2006.

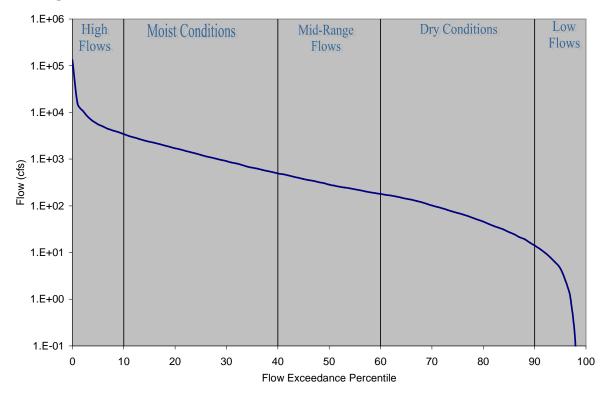



Figure 4-1 Flow Duration Curve for Canadian River (OK520600010010\_00)

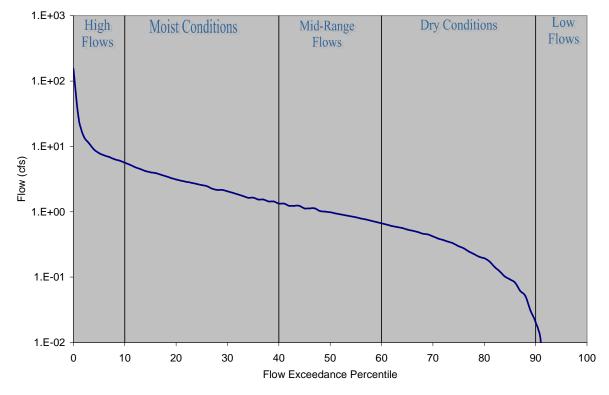
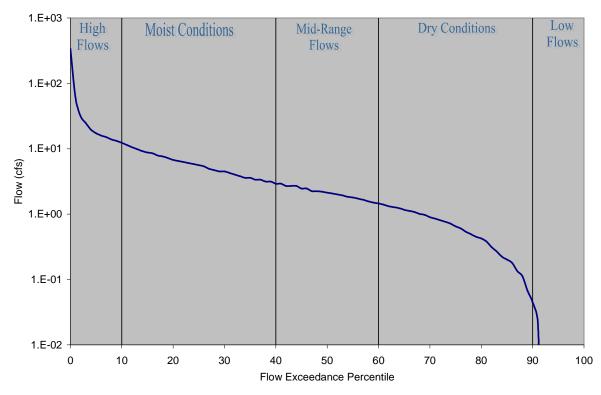




Figure 4-2 Flow Duration Curve for Factory Creek (OK520600010060\_00)





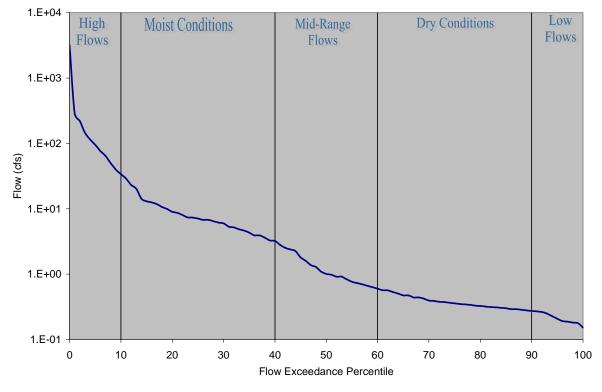
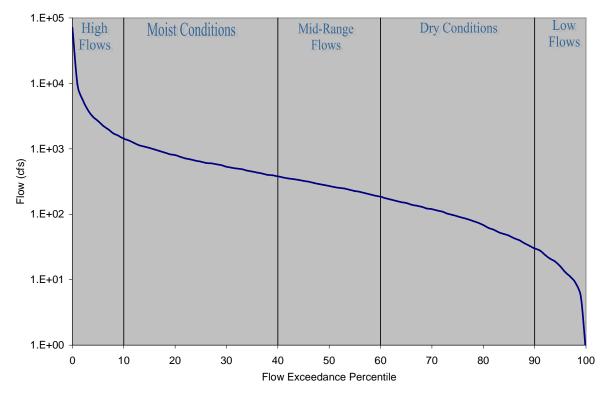




Figure 4-4 Flow Duration Curve for Spring Brook (OK520600030030\_00)

Note: The stepped curve is caused by extremely low flow conditions near the limit of quantitation, as well as data rounding conventions.





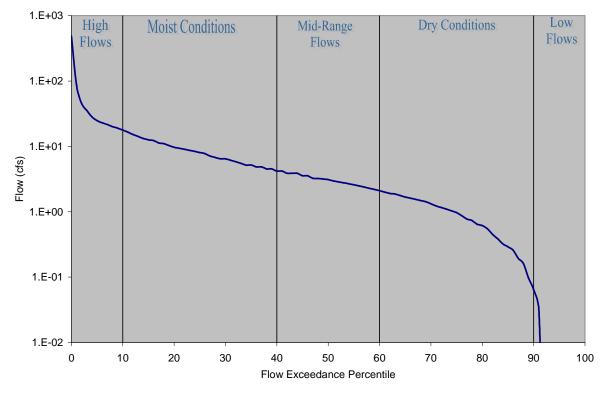
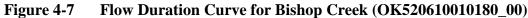
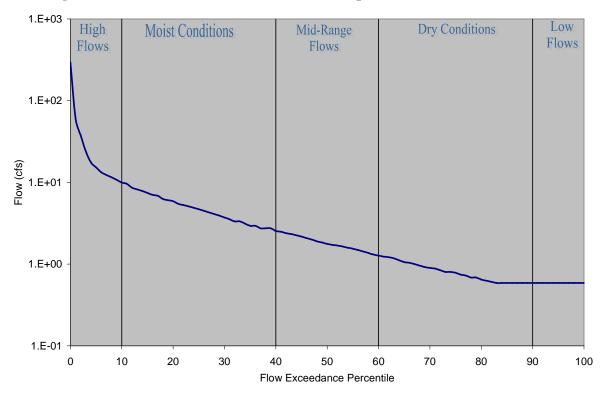





Figure 4-6 Flow Duration Curve for Willow Creek (OK520610010080\_00)





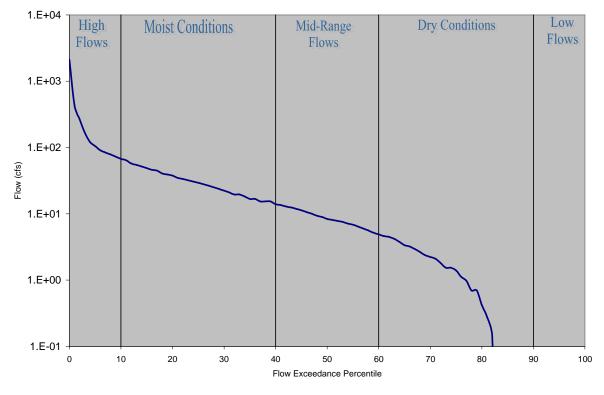
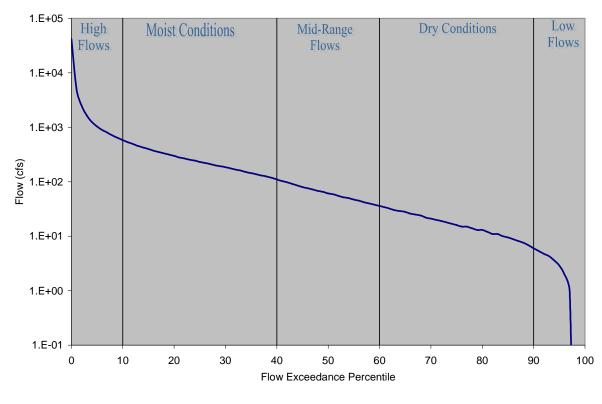




Figure 4-8 Flow Duration Curve for Buggy Creek (OK520610020120\_00)

Note: The stepped curve is caused by extremely low flow conditions near the limit of quantitation, as well as data rounding conventions.





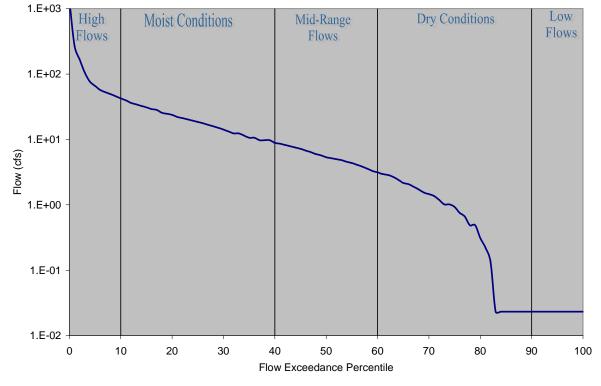
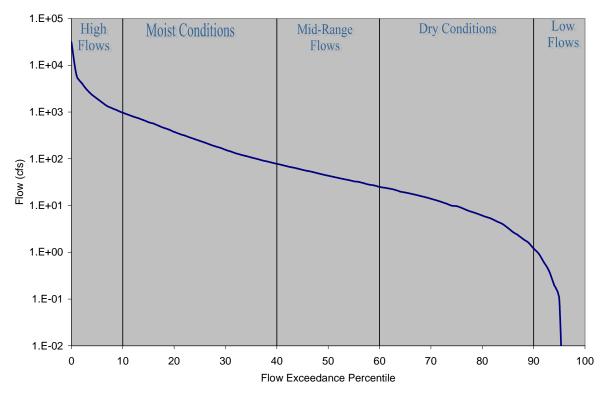




Figure 4-10 Flow Duration Curve for Walnut Creek-North Fork (OK520610030080\_00)

Note: The stepped curve is caused by extremely low flow conditions near the limit of quantitation, as well as data rounding conventions.

Figure 4-11 Flow Duration Curve for Little River (OK520800010010\_00)



Flow duration curves can be subdivided into hydrologic condition classes to facilitate the diagnostic and analytical uses of flow and LDCs. The hydrologic classification scheme utilized in this application is similar to that described by Cleland (2003):

| Flow Exceedance<br>Percentile | Hydrologic Condition<br>Class |
|-------------------------------|-------------------------------|
| 0-10                          | High flows                    |
| 10-40                         | Moist Conditions              |
| 40-60                         | Mid-Range Conditions          |
| 60-90                         | Dry Conditions                |
| 90-100                        | Low Flows                     |

 Table 4-1
 Hydrologic Classification Scheme

Flow duration curves are generated using an ODEQ automated application referred to as the bacteria LDC toolbox. A step-by-step procedure on how to generate flow duration curves and flow exceedance percentiles is provided in Appendix C.

The USGS National Water Information System serves as the primary source of flow measurements for the application. All available daily average flow values for all gages in Oklahoma, as well as the nearest upstream and downstream gages in adjacent states, were retrieved for use in the application. The application includes a data update module that automatically downloads the most recent USGS data and appends it to the existing flow database.

Some instantaneous flow measurements were available from various agencies. These were not combined with the daily average flows or used in calculating flow percentiles, but were matched to bacteria grab measurements collected at the same site and time. When available, these instantaneous flow measurements were used in lieu of the daily average flow to calculate instantaneous bacteria loads.

## 4.3 Estimating Current Point and Nonpoint Loading

Another key step in the use of LDCs for TMDL development is the estimation of existing bacteria loading from point and nonpoint sources and the display of this loading in relation to the TMDL. In Oklahoma, WWTPs that discharge treated sanitary wastewater must meet the state WQSs for fecal bacteria at the point of discharge. However, for TMDL analysis it is necessary to understand the relative contribution of WWTPs to the overall pollutant loading and its general compliance with required effluent limits. The monthly bacteria load for continuous point source dischargers is estimated by multiplying the monthly average flow rates by the monthly geometric mean using a conversion factor. Where available, data necessary for this calculation were extracted from each point source's discharge monitoring reports from 1997 through 2006. The 90<sup>th</sup> percentile value of the monthly loads was used to express the estimated existing point source load in counts/day. The current pollutant loading from each permitted point source discharge is calculated using the equation below.

Point Source Loading = monthly average flow rates (mgd) \* geometric mean of corresponding fecal coliform concentration \* unit conversion factor

Where:

unit conversion factor = 37,854,120 100-ml/million gallons (mg)

It is difficult to estimate current nonpoint loading due to lack of specific water quality and flow information that would assist in estimating the relative proportion of non-specific sources within the watershed. Therefore, existing instream loads minus the point source loads were used as an estimate for nonpoint loading.

#### 4.4 Development of TMDLs Using Load Duration Curves

The final step in the TMDL calculation process involves a group of additional computations derived from the preparation of LDCs. These computations are necessary to derive a PRG (which is one method of presenting how much bacteria loading must be reduced to meet WQSs in the impaired watershed).

**Step 1: Generate Bacteria LDCs.** LDCs are similar in appearance to flow duration curves; however, the ordinate is expressed in terms of a bacteria load in cfu/day. The curve represents the single sample water quality criterion for fecal coliform (400 cfu/100 mL), *E. coli* (406 cfu/100 mL), or Enterococci (108 cfu/100 mL) expressed in terms of a load through multiplication by the continuum of flows historically observed at this site. The basic steps to generating an LDC involve:

- obtaining daily flow data for the site of interest from the USGS;
- sorting the flow data and calculating flow exceedance percentiles for the time period and season of interest;
- obtaining the water quality data from the primary contact recreation season (May 1 through September 30);
- obtaining water quality data from the entire calendar year for waterbodies not supporting the SBCR use;
- matching the water quality observations with the flow data from the same date;
- display a curve on a plot that represents the allowable load multiply the actual or estimated flow by the WQS for each respective indicator;
- multiplying the flow by the water quality parameter concentration to calculate daily loads; then
- plotting the flow exceedance percentiles and daily load observations in a load duration plot.

The culmination of these steps is expressed in the following formula, which is displayed on the LDC as the TMDL curve:

#### TMDL (cfu/day) = WQS \* flow (cfs) \* unit conversion factor

Where

## PBCR: WQS = 400 cfu /100 ml (Fecal coliform); 406 cfu/100 ml (E. coli); or 108 cfu/100 ml (Enterococci)

## SBCR: WQS = 2000 cfu /100 ml (Fecal coliform); 2030 cfu/100 ml (E. coli); or 540 cfu/100 ml (Enterococci)

#### unit conversion factor = 24,465,525 ml\*s / ft3\*day

The flow exceedance frequency (x-value of each point) is obtained by looking up the historical exceedance frequency of the measured or estimated flow, in other words, the percent of historical observations that equal or exceed the measured or estimated flow. Historical observations of bacteria concentration are paired with flow data and are plotted on the LDC. The fecal coliform load (or the y-value of each point) is calculated by multiplying the fecal coliform concentration (colonies/100 mL) by the instantaneous flow (cubic feet per second) at the same site and time, with appropriate volumetric and time unit conversions. Fecal coliform/*E. coli*/Enterococci loads representing exceedance of water quality criteria fall above the water quality criterion line.

Only those flows and water quality samples observed in the months comprising the primary contact recreation season are used to generate the LDCs. It is inappropriate to compare single sample bacteria observations and instantaneous or daily flow durations to a 30-day geometric mean water quality criterion in the LDC.

As noted earlier, runoff has a strong influence on loading of nonpoint pollution. Yet flows do not always correspond directly to local runoff; high flows may occur in dry weather and runoff influence may be observed with low or moderate flows.

Step 2: Develop LDCs with MOS. An LDC depicting slightly lower estimates than the TMDL is developed to represent the TMDL with MOS. The MOS may be defined explicitly or implicitly. A typical explicit approach would reserve some fraction of the TMDL (e.g., 10%) as the MOS. In an implicit approach, conservative assumptions used in developing the TMDL are relied upon to provide an MOS to assure that WQSs are attained.

For the TMDLs in this report, an explicit MOS of 10 percent of the TMDL value (10% of the instantaneous water quality criterion) has been selected to slightly reduce assimilative capacity in the watershed. The MOS at any given percent flow exceedance, therefore, is defined as the difference in loading between the TMDL and the TMDL with MOS.

**Step 3: Calculate WLA.** As previously stated, the pollutant load allocation for point sources is defined by the WLA. A point source can be either a wastewater (continuous) or stormwater (MS4) discharge. Stormwater point sources are typically associated with urban and industrialized areas, and recent USEPA guidance includes NPDES-permitted stormwater discharges as point source discharges and, therefore, part of the WLA.

The LDC approach recognizes that the assimilative capacity of a waterbody depends on the flow, and that maximum allowable loading will vary with flow condition. TMDLs can be expressed in terms of maximum allowable concentrations, or as different maximum loads allowable under different flow conditions, rather than single maximum load values. This concentration-based approach meets the requirements of 40 CFR, 130.2(i) for expressing TMDLs "in terms of mass per time, toxicity, or other appropriate measures" and is consistent with USEPA's Protocol for Developing Pathogen TMDLs (USEPA 2001).

**WLA for WWTP.** WLAs may be set to zero in cases of watersheds with no existing or planned continuous permitted point sources. For watersheds with permitted point sources, wasteloads may be derived from NPDES permit limits. A WLA may be calculated for each

active NPDES wastewater discharger using a mass balance approach as shown in the equation below. The permitted average flow rate used for each point source discharge and the water quality criterion concentration are used to estimate the WLA for each wastewater facility. All WLA values for each NPDES wastewater discharger are then summed to represent the total WLA for the watershed.

WLA = WQS \* flow \* unit conversion factor (#/day) Where: WQS = 200 cfu /100 ml (Fecal coliform); 126 cfu/100 ml (E. coli); or 33 cfu/100 ml (Enterococci)

flow  $(10^6 \text{ gal/day}) = \text{permitted flow}$ unit conversion factor = 37,854,120-10<sup>6</sup> gal/day

**Step 4: Calculate LA and WLA for MS4s.** Given the lack of data and the variability of storm events and discharges from storm sewer system discharges, it is difficult to establish numeric limits on stormwater discharges that accurately address projected loadings. As a result, EPA regulations and guidance recommend expressing NPDES permit limits for MS4s as BMPs.

LAs can be calculated under different flow conditions as the water quality target load minus the WLA. The LA is represented by the area under the LDC but above the WLA. The LA at any particular flow exceedance is calculated as shown in the equation below.

#### LA = TMDL - WLA\_WWTP - WLA\_MS4 - MOS

**WLA for MS4s.** If there are no permitted MS4s in the study area, WLA\_MS4 is set to zero. When there are permitted MS4s in the watershed, we can first calculate the sum of LA + WLA\_MS4 using the above formula, then separate WLA for MS4s from the sum based on the percentage of a watershed that is under a MS4 jurisdiction. This WLA for MS4s may not be the total load allocated for permitted MS4s unless the whole MS4 area is located within the study watershed boundry. However, in most case the study watershed intersects only a portion of the permitted MS4 coverage areas.

**Step 5: Estimate WLA Load Reduction.** The WLA load reduction was not calculated as it was assumed that continuous dischargers (NPDES-permitted WWTPs) are adequately regulated under existing permits to achieve water quality standards at the end-of-pipe and, therefore, no WLA reduction would be required. All SSOs are considered unpermitted discharges under State statute and DEQ regulations. For any MS4s that are located within a watershed requiring a TMDL the load reduction will be equal to the PRG established for the overall watershed.

**Step 6: Estimate LA Load Reduction.** After existing loading estimates are computed for each bacterial indicator, nonpoint load reduction estimates for each WQM station are calculated by using the difference between estimated existing loading and the allowable load expressed by the LDC (TMDL-MOS). This difference is expressed as the overall percent reduction goal (PRG) for the impaired waterbody. For fecal coliform the PRG which ensures that no more than 25 percent of the samples exceed the TMDL based on the instantaneous criteria allocates the loads in manner that is also protective of the geometric mean criterion. For *E. coli* and Enterococci, because WQSs are considered to be met if 1) either the geometric mean of all data is less than the geometric mean criteria, or 2) no sample exceeds the instantaneous criteria, the

TMDL PRG will be the lesser of that required to meet the geometric mean or instantaneous criteria.

## SECTION 5 TMDL CALCULATIONS

### 5.1 Estimated Loading and Critical Conditions

USEPA regulations at 40 CFR 130.7(c) (1) require TMDLs to take into account critical conditions for stream flow, loading, and all applicable water quality standards. To accomplish this, available instream WQM data were evaluated with respect to flows and magnitude of water quality criteria exceedance using LDCs. Furthermore, TMDLs are derived for all bacterial indicators at any given WQM station placed on the 303(d) list.

To calculate the bacteria load at the WQS, the flow rate at each flow exceedance percentile is multiplied by a unit conversion factor  $(24,465,525 \text{ mLs} / ft^3 \text{ day})$  and the criterion specific to each bacterial indicator. This calculation produces the maximum bacteria load in the stream without exceeding the instantaneous standard over the range of flow conditions. The allowable bacteria (fecal coliform, *E. coli*, or Enterococci) loads at the WQS establish the TMDL and are plotted versus flow exceedance percentile as a LDC. The x-axis indicates the flow exceedance percentile, while the y-axis is expressed in terms of a bacteria load.

To estimate existing loading, bacteria observations for the primary contact recreation season (May 1<sup>st</sup> through September 30<sup>th</sup>) from 1999 to 2003 are paired with the flows measured or estimated in that segment on the same date. Pollutant loads are then calculated by multiplying the measured bacteria concentration by the flow rate and the unit conversion factor of 24,465,525 mLs /  $ft^3$  day. The associated flow exceedance percentile is then matched with the measured flow from the tables provided in Appendix C. The observed bacteria loads are then added to the LDC plot as points. These points represent individual ambient water quality samples of bacteria. Points above the LDC indicate the bacteria instantaneous standard was exceeded at the time of sampling. Conversely, points under the LDC indicate the sample met the WQS.

The LDC approach recognizes that the assimilative capacity of a waterbody depends on the flow, and that maximum allowable loading varies with flow condition. Existing loading, and load reductions required to meet the TMDL water quality target can also be calculated under different flow conditions. The difference between existing loading and the water quality target is used to calculate the loading reductions required. Percent reduction goals are calculated for each watershed and bacterial indicator species as the reductions in load required so no more than 10 percent of the existing instantaneous water quality observations would exceed the water quality target. This is because for the PBCR use to be supported, criteria for each bacterial indicator must be met in each impaired waterbody.

Table 5-1 presents the percent reductions necessary for each bacterial indicator in each of the impaired waterbodies in the Study Area. Attainment of WQSs in response to TMDL implementation will be based on results measured at each of these WQM stations. Based on this table, the TMDL PRGs for Canadian River (OK520600010010\_00), Canadian River (OK520610010010\_05), Buggy Creek, Canadian River (OK520610020150\_10) and Little River will be based on Enterococci. The TMDL PRGs for Factory Creek, Julian Creek, Spring Brook, Willow Creek, Bishop Creek, and Walnut Creek-North Fork will be based on fecal coliform.

| Table 5-1 | TMDL Percent Reductions Required to Meet Water Quality Standards for |  |
|-----------|----------------------------------------------------------------------|--|
|           | Impaired Waterbodies in the Canadian River Study Area                |  |

|                      |                   |                             | ercent Re          | duction            | Require      | d   |     |  |  |
|----------------------|-------------------|-----------------------------|--------------------|--------------------|--------------|-----|-----|--|--|
| Waterbody Station    | Waterbody ID      | Waterbody                   | FC E               |                    | C            | EN  | Τ   |  |  |
| Waterbody Station    | Waterbody iD      | Name                        | Instant-<br>aneous | Instant-<br>aneous | Geo-<br>mean |     |     |  |  |
| OK520600010010-001AT | OK520600010010_00 | Canadian River              |                    |                    |              | 56% | 57% |  |  |
| OK520600010060P      | OK520600010060_00 | Factory Creek               | 64%                |                    |              |     |     |  |  |
| OK520600020170B      | OK520600020170_00 | Julian Creek                | 78%                |                    |              |     |     |  |  |
| OK520600030030E      | OK520600030030_00 | Spring Brook                | 88%                |                    |              |     |     |  |  |
| OK520610010010-001AT | OK520610010010_05 | Canadian River              |                    |                    |              | 94% | 29% |  |  |
| OK520610010080G      | OK520610010080_00 | Willow Creek                | 96%                |                    |              |     |     |  |  |
| OK520610010180G      | OK520610010180_00 | Bishop Creek                | 67%                |                    |              |     |     |  |  |
| OK520610020120G      | OK520610020120_00 | Buggy Creek                 | 40%                | 54%                | 47%          | 71% | 74% |  |  |
| OK520610020150-001AT | OK520610020150_10 | Canadian River              |                    |                    |              | 89% | 73% |  |  |
| OK520610030080G      | OK520610030080_00 | Walnut Creek-<br>North Fork | 40%                |                    |              |     |     |  |  |
| OK520800010010-001AT | OK520800010010_00 | Little River                | 29%                |                    |              | 86% | 61% |  |  |

A subset of the LDCs for each impaired waterbody are shown in Figures 5-1 through 5-11. While some waterbodies may be listed for multiple bacterial indicators, only one LDC for each waterbody is presented in Figures 5-1 through 5-11 – the LDC for the bacterial indicator that is highlighted by bold text in Table 5-1. In otherwords, Figures 5-1 through 5-11 display a LDC for each waterbody based on the bacterial indicator that represents the most conservative PRG. The LDCs for the other bacterial indicators that require TMDLs are presented in Subsection 5.7 of this report.

The LDC for Canadian River (Figure 5-1) is based on Enterococci bacteria measurements during the primary contact recreation season at WQM station OK520600010010-001AT (Canadian River, U.S. 377, Konawa, OK). The LDC indicates that Enterococci levels exceed the instantaneous water quality criteria during moist and dry conditions, possibly indicating a combination of point and nonpoint sources.

The LDC for Factory Creek (Figure 5-2) is based on fecal coliform bacteria measurements during primary contact recreation season at WQM station OK520600010060P (Factory Creek, OK). Fecal coliform measurements collected during the secondary contact recreation season (October – April) are also displayed on the figure, although the load for the secondary contact recreation criterion is not shown. The PRG is calculated so measurements under the primary contact recreation season are met; however, this percent reduction is sufficient to ensure that secondary contact recreation criteria are also met. The LDC indicates that fecal coliform levels exceed the instantaneous water quality criteria under a variety of flow conditions. Since there are no point sources in the watershed, all loading must be from nonpoint sources.

The LDC for Julian Creek (Figure 5-3) is based on fecal coliform bacteria measurements during primary contact recreation season at WQM station OK520600020170B (Julian Creek, OK). Fecal coliform measurements collected during the secondary contact recreation season (October – April) are also displayed on the figure, although the load for the secondary contact recreation criterion is not shown. The PRG is calculated so measurements under the primary contact recreation season are met; however, this percent reduction is sufficient to ensure that

secondary contact recreation criteria are also met. The LDC indicates that fecal coliform levels exceed the instantaneous water quality criteria under high flows, moist and dry conditions. Since there are no point sources in the watershed, all loading must be from nonpoint sources.

The LDC for Spring Brook Creek (Figure 5-4) is based on fecal coliform bacteria measurements during the primary contact recreation season at WQM station OK520600030030E (Spring Brook Creek, OK). Fecal coliform measurements collected during the secondary contact recreation season (October – April) are also displayed on the figure, although the load for the secondary contact recreation criterion is not shown. The PRG is calculated so measurements under the primary contact recreation season are met; however, this percent reduction is sufficient to ensure that secondary contact recreation criteria are also met. The LDC indicates that fecal coliform levels exceed the instantaneous water quality criteria under a variety of flow conditions, indicative of nonpoint sources or a combination of point and nonpoint sources.

The LDC for Canadian River at Purcell (Figure 5-5) is based on Enterococci bacteria measurements during the primary contact recreation season at WQM station OK520610010010-001AT (Canadian River at Purcell, OK). The LDC indicates that Enterococci levels exceed the instantaneous water quality criteria during most conditions, but particularly under dry conditions and low flows, are indicative of point sources.

The LDC for Willow Creek (Figure 5-6) is based on fecal coliform bacteria measurements during the primary contact recreation season at WQM station OK520610010080G. Fecal coliform measurements collected during the secondary contact recreation season (October – April) are also displayed on the figure, although the load for the secondary contact recreation criterion is not shown. The PRG is calculated so measurements under the primary contact recreation season are met; however, this percent reduction is sufficient to ensure that secondary contact recreation criteria are also met. The LDC indicates that fecal coliform levels exceed the instantaneous water quality criteria under many flow conditions. Since there is no point source in the watershed, all loadings must be from nonpoint sources.

The LDC for Bishop Creek (Figure 5-7) is based on fecal coliform bacteria measurements during the primary contact recreation season at WQM station OK520610010180G (Bishop Creek near Jenkins Street). The LDC indicates that fecal coliform levels exceeded the instantaneous water quality criteria under a wide range of flow conditions, indicative of a combination of point and nonpoint sources.

The LDC for Buggy Creek (Figure 5-8) is based on Enterococci bacteria measurements during the primary contact recreation season at WQM station OK520610020120G (Buggy Creek, OK). Enterococci measurements collected during the secondary contact recreation season (October – April) are also displayed on the figure, although the load for the secondary contact recreation criterion is not shown. The PRG is calculated so measurements under the primary contact recreation season are met; however, this percent reduction is sufficient to ensure that secondary contact recreation criteria are also met. The LDC indicates that Enterococci levels exceed the instantaneous water quality criteria under a variety of hydrologic conditions, indicative of a combination of point and nonpoint sources.

The LDC for Canadian River (Figure 5-9) is based on Enterococci bacteria measurements during the primary contact recreation season at WQM station OK520610020150-001AT (Canadian River, US 66, Bridgeport, OK). The LDC indicates that Enterococci levels

sometimes exceed the instantaneous water quality criteria under all hydrologic conditions, possibly indicating a combination of point and nonpoint sources.

The LDC for Walnut Creek (Figure 5-10) is based on fecal coliform bacteria primary contact recreation season measurements during the at WOM station OK520610030080G (Walnut Creek-North Fork, OK). Fecal coliform measurements collected during the secondary contact recreation season (October - April) are also displayed on the figure, although the load for the secondary contact recreation criterion is not shown. The PRG is calculated so measurements under the primary contact recreation season are met; however, this percent reduction is sufficient to ensure that secondary contact recreation criteria are also met. The LDC indicates that fecal coliform levels exceed the instantaneous water quality criteria under a variety of flow conditions, indicative of a combination of point and nonpoint sources.

The LDC for Little River (Figure 5-11) is based on Enterococci bacteria measurements during the primary contact recreation season at WQM station OK520800010010-001AT (Little River, SH 56, Sasakwa, OK). The LDC indicates that Enterococci levels exceed the instantaneous water quality criteria under most flow conditions, indicative of nonpoint sources.

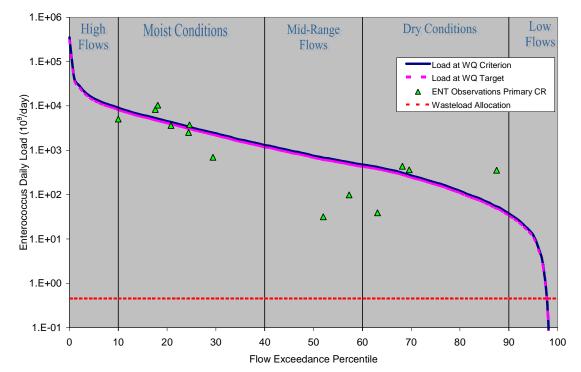



Figure 5-1 Load Duration Curve for Enterococci in Canadian River (OK520600010010\_00)

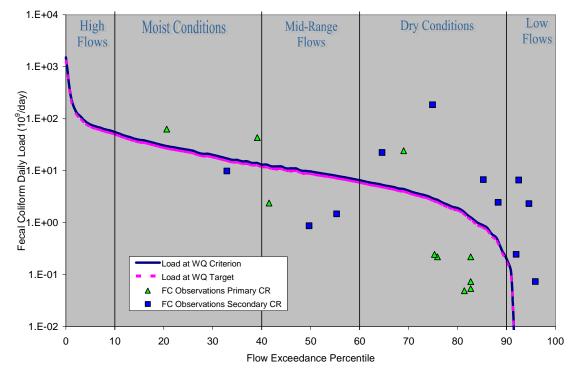
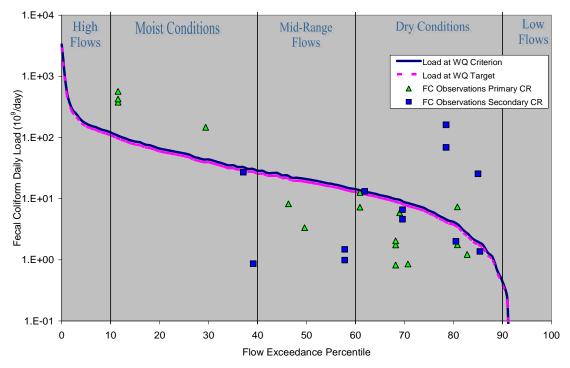




Figure 5-2 Load Duration Curve for Fecal Coliform in Factory Creek (OK520600010060\_00)

\* there is no wasteload allocation for this waterbody

Figure 5-3 Load Duration Curve for Fecal Coliform in Julian Creek (OK520600020170\_00)



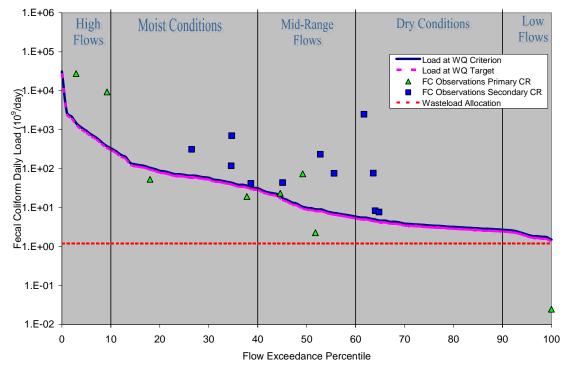
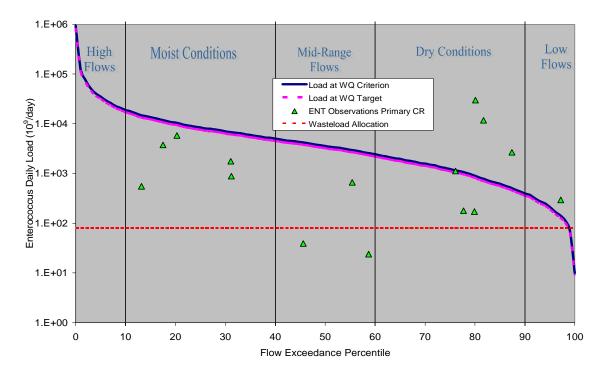
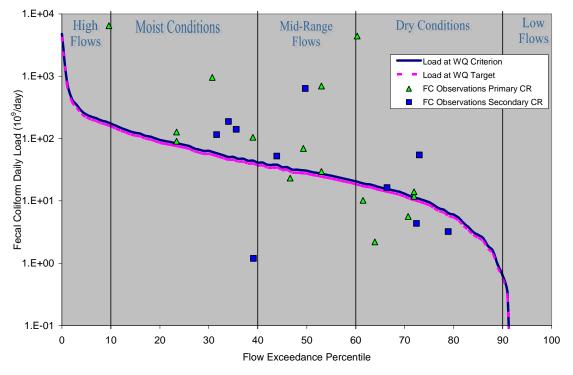
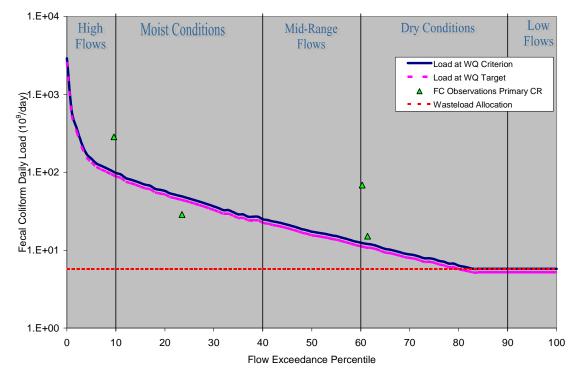
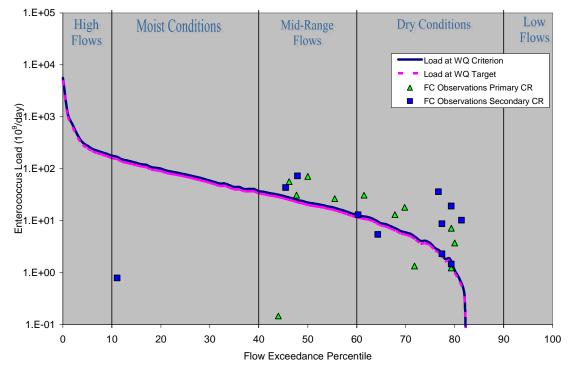




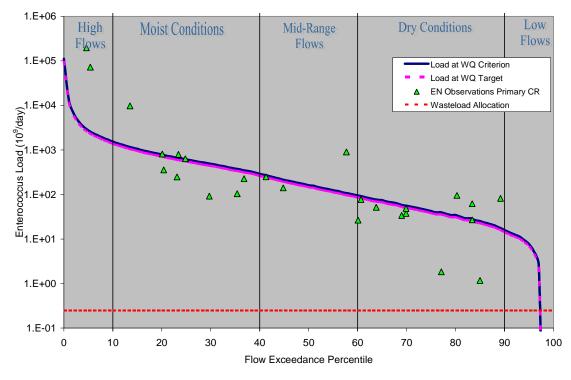

Figure 5-4 Load Duration Curve for Fecal Coliform in Spring Brook (OK520600030030\_00)

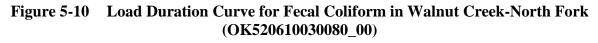

Figure 5-5 Load Duration Curve for Enterococci in Canadian River (OK520610010010\_05)






#### Figure 5-6 Load Duration Curve for Fecal Coliform in Willow Creek (OK520610010080\_00)


Figure 5-7 Load Duration Curve for Fecal Coliform in Bishop Creek (OK520610010180\_00)






#### Figure 5-8 Load Duration Curve for Enterococci in Buggy Creek (OK520610020120\_00)

Figure 5-9 Load Duration Curve for Enterococci in Canadian River (OK520610020150\_10)





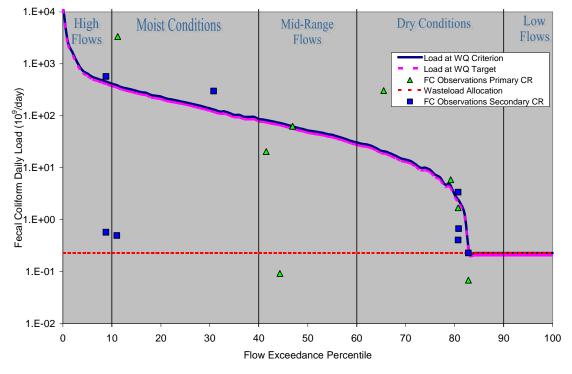
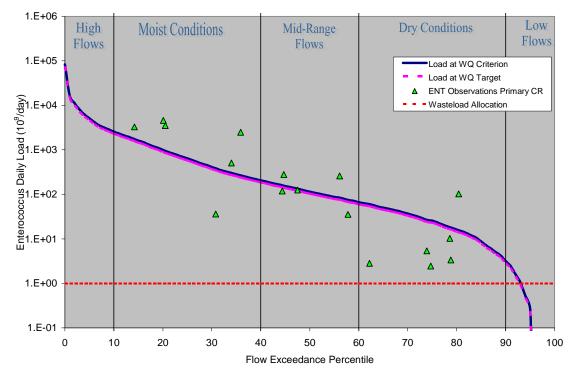




Figure 5-11 Load Duration Curve for Enterococci in Little River (OK520800010010\_00)



#### 5.2 Wasteload Allocation

NPDES-permitted facilities are allocated a daily wasteload calculated as their permitted daily average discharge flow rate multiplied by the instream single-sample water quality criterion. In other words, the facilities are required to meet instream criteria in their discharge. Table 5-2 summarizes the WLA for the NPDES-permitted facilities within the Canadian River Study Area. The WLA for each facility is derived from the following equation:

WLA = WQS \* flow \* unit conversion factor (#/day)

Where:

#### WQS = 33, 200, and 126 cfu/100ml for Enterococci, fecal coliform, and E. coli respectively

 $flow (10^6 gal/day) = permitted flow$ 

#### unit conversion factor = $37,854,120-10^{6}$ gal/day

When multiple NPDES facilities occur within a watershed, individual WLAs are summed and the total WLA for continuous point sources is included in the TMDL calculation for the corresponding waterbody. When there are no NPDES WWTPs discharging into the contributing watershed of a WQM station, then the WLA is zero. Compliance with the WLA will be achieved by adhering to the fecal coliform limits and disinfection requirements of NPDES permits. Table 5-2 indicates which point source dischargers within Oklahoma currently have a disinfection requirement in their permit. Certain facilities that utilize lagoons for treatment have not been required to provide disinfection since storage time and exposure to ultraviolet radiation from sunlight should reduce bacteria levels. In the future, all point source dischargers which are assigned a wasteload allocation but do not currently have a bacteria limit in their permit will receive a permit limit consistent with the wasteload allocation as their permits are reissued.

Permitted stormwater discharges are considered point sources. The WLA calculations for MS4s must be expressed as different maximum loads allowable under different flow conditions. Therefore the percentage of a watershed that is under a MS4 jurisdictional is used to estimate the MS4 contribution. The only urbanized area designated as an MS4 within this Study Area is the City of Norman and University of Oklahoma located in the Bishop Creek (OK520610010180\_00) watershed.

|                                              | NPDES      |                                                   | Docian               |              | Wastelo           | ad Allocatio | n (cfu/day) |
|----------------------------------------------|------------|---------------------------------------------------|----------------------|--------------|-------------------|--------------|-------------|
| Waterbody ID                                 | Permit No. | Name                                              | Design<br>Flow (mgd) | Disinfection | Fecal<br>Coliform | E. Coli      | Enterococci |
| OK520600010010 00                            | OK0021873  | City of Konawa                                    | 0.32                 | Yes          | 2.42E+09          | 1.53E+09     | 4.00E+08    |
| Canadian River                               | OK0036064  | Town of Francis/Francis<br>Public Works Authority | 0.045                | No           | 3.41E+08          | 2.15E+08     | 5.62E+07    |
| OK520600030030_00<br>Spring Brook            | OK0021865  | Stratford Public Works<br>Authority               | 0.16                 | No           | 1.21E+09          | 7.63E+08     | 2.00E+08    |
|                                              | OK0022756  | Lexington Public Works<br>Authority               | 0.25                 | Yes          | 1.89E+09          | 1.19E+09     | 3.12E+08    |
| OK520610010010_05<br>Canadian River          | OK0028533  | City of Purcell                                   | 0.65                 | Yes          | 4.92E+09          | 3.10E+09     | 8.12E+08    |
|                                              | OK0029190  | Norman                                            | 12                   | Yes          | 9.08E+10          | 5.72E+10     | 1.50E+10    |
| OK520610010180_00<br>Bishop Creek            | OK0031755  | Noble Utilities Authority<br>- North              | 0.76                 | Yes          | 5.75E+09          | 3.62E+09     | 9.49E+08    |
| OK520610020150_10<br>Canadian River          | OK0038393  | Union City Waste Water<br>treatment plant         | 0.2                  | No           | 1.51E+09          | 9.54E+08     | 2.50E+08    |
| OK520610020120_00<br>Buggy Creek             | OK0032182  | City of Minco                                     | 0.215                | No           | 1.63E+09          | 1.03E+09     | 2.69E+08    |
| OK520610030080_00<br>Walnut Creek-North Fork | OK0038458  | Bridge Creek Public<br>School                     | 0.03                 | Yes          | 2.27E+08          | 1.43E+08     | 3.75E+07    |
| OK520800010010_00<br>Little River            | OK0028428  | Holdenville Public<br>Works Authority             | 0.8                  | Yes          | 6.06E+09          | 3.82E+09     | 9.99E+08    |

 Table 5-2
 Wasteload Allocations for NPDES-Permitted Facilities

## 5.3 Load Allocation

As discussed in Section 3, nonpoint source bacteria loading to the receiving streams of each waterbody emanate from a number of different sources. The data analysis and the LDCs demonstrate that exceedances at the WQM stations are the result of a variety of nonpoint source loading. The LAs for each stream segment are calculated as the difference between the TMDL, MOS, and WLA for WWTP and MS4s as follows:

 $LA = TMDL - WLA_WWTP - WLA_MS4 - MOS$ 

### 5.4 Seasonal Variability

Federal regulations (40 CFR §130.7(c)(1)) require that TMDLs account for seasonal variation in watershed conditions and pollutant loading. The TMDLs established in this report adhere to the seasonal application of the Oklahoma WQS which limits the PBCR use to the period of May 1<sup>st</sup> through September 30<sup>th</sup>. Seasonal variation was also accounted for in these TMDLs by using more than 5 years of water quality data and by using the longest period of USGS flow records when estimating flows to develop flow exceedance percentiles.

## 5.5 Margin of Safety

Federal regulations (40 CFR §130.7(c)(1)) require that TMDLs include an MOS. The MOS is a conservative measure incorporated into the TMDL equation that accounts for the uncertainty associated with calculating the allowable pollutant loading to ensure WQSs are attained. USEPA guidance allows for use of implicit or explicit expressions of the MOS, or both. When conservative assumptions are used in development of the TMDL, or conservative factors are used in the calculations, the MOS is implicit. When a specific percentage of the TMDL is set aside to account for uncertainty, then the MOS is considered explicit.

For the explicit MOS the water quality target was set at 10 percent lower than the water quality criterion for each pathogen. For PBCR, this equates to 360 cfu/100 mL, 365.4 cfu/100 mL, and 97.2/100 mL for fecal coliform, E. coli, and Enterococci, respectively. For secondary body contact recreation this equates to 1,800 organisms/100 mL, 1,827 organisms/100 mL, and 486/100 mL, for fecal coliform, E. coli, and Enterococci, respectively. The net effect of the TMDL with MOS is that the assimilative capacity or allowable pollutant loading of each waterbody is slightly reduced. These TMDLs incorporate an explicit MOS by using a curve representing 90 percent of the TMDL as the average MOS. The MOS at any given percent flow exceedance, therefore, can be defined as the difference in loading between the TMDL and the TMDL with MOS. The use of instream bacteria concentrations to estimate existing loading is another conservative approach to establishing the MOS will ensure that both the 30-day geometric mean and instantaneous bacteria standards can be achieved and maintained.

## 5.6 TMDL Calculations

The bacteria TMDLs for the 303(d)-listed WQM stations covered in this report were derived using LDCs. A TMDL is expressed as the sum of all WLAs (point source loads), LAs (nonpoint source loads), and an appropriate MOS, which attempts to account for uncertainty concerning the relationship between effluent limitations and water quality.

This definition can be expressed by the following equation:

### $TMDL = \Sigma WLA + \Sigma LA + MOS$

Where the  $\Sigma$  WLA component can be further divided into WLA for WWTPs and WLA for MS4s:

#### $\Sigma$ WLA = WLA\_WWTP + WLA\_MS4

For each stream segment the TMDLs presented in this report are expressed as a percent reduction across the full range of flow conditions. The TMDL, WLA, LA, and MOS will vary with flow condition, and are calculated at every 5<sup>th</sup> flow interval percentile (Tables 5-4 through 5-14). For illustrative purposes, the TMDL, WLA, LA, and MOS are calculated for the median flow at each site in Table 5-3. The WLA component of each TMDL is the sum of all WLAs within the contributing watershed of each WQM station. The sum of the WLAs can be represented as a single line below the LDC. The LDC and the simple equation of:

#### Average LA = average TMDL – MOS – WLA\_WWTP - WLA\_MS4

can provide an individual value for the LA in counts per day, which represents the area under the TMDL target line and above the WLA line. For MS4s the load reduction will be the same as the PRG established for the overall watershed. The LDCs and TMDL calculations for additional bacterial indicators are provided in Subsection 5.7.

| Waterbody ID      | WQM Station          | Waterbody<br>Name           | Bacteria<br>Indicator | TMDL*<br>(cfu/day) | WLA_WWTP<br>(cfu/day) | WLA_MS4*<br>(cfu/day) | LA*<br>(cfu/day) | MOS*<br>(cfu/day) |
|-------------------|----------------------|-----------------------------|-----------------------|--------------------|-----------------------|-----------------------|------------------|-------------------|
| OK520600010010_00 | OK520600010010-001AT | Canadian River              | ENT                   | 7.50E+11           | 4.56E+08              | 0                     | 6.75E+11         | 7.50E+10          |
| OK520600010060_00 | OK520600010060P      | Factory Creek               | FC                    | 9.64E+09           | 0                     | 0                     | 8.67E+09         | 9.64E+08          |
| OK520600020170_00 | OK520600020170B      | Julian Creek                | FC                    | 2.09E+10           | 0                     | 0                     | 1.88E+10         | 2.09E+09          |
| OK520600030030_00 | OK520600030030E      | Spring Brook                | FC                    | 9.85E+09           | 1.21E+09              | 0                     | 7.66E+09         | 9.85E+08          |
| OK520610010010_05 | OK520610010010-001AT | Canadian River              | ENT                   | 7.16E+11           | 1.61E+10              | 0                     | 6.28E+11         | 7.16E+10          |
| OK520610010080_00 | OK520610010080G      | Willow Creek                | FC                    | 3.03E+10           | 0                     | 0                     | 2.73E+10         | 3.03E+09          |
| OK520610010180_00 | OK520610010180G      | Bishop Creek                | FC                    | 1.73E+10           | 5.75E+09              | 5.38E+09              | 4.40E+09         | 1.73E+09          |
| OK520610020120_00 | OK520610020120G      | Buggy Creek                 | ENT                   | 2.22E+10           | 2.69E+08              | 0                     | 1.97E+10         | 2.22E+09          |
| OK520610020150_10 | OK520610020150-001AT | Canadian River              | ENT                   | 1.61E+11           | 2.5E+08               | 0                     | 1.45E+11         | 1.61E+10          |
| OK520610030080_00 | OK520610030080G      | Walnut Creek-<br>North Fork | FC                    | 5.22E+10           | 2.27E+08              | 0                     | 4.67E+10         | 5.22E+09          |
| OK520800010010_00 | OK520800010010-001AT | Little River                | ENT                   | 1.15E+11           | 9.99E+08              | 0                     | 1.02E+11         | 1.15E+10          |

| Table 5-3 | TMDL | Summary | Examples |
|-----------|------|---------|----------|
|-----------|------|---------|----------|

\* Derived for illustrative purposes at the median flow value

J:\planning\TMDL\Bacteria TMDLs\Parsons\2007\4 Canadian River(15)\Canadian\_FINAL\_081508.doc

| Percentile | Flow<br>(cfs) | TMDL<br>(cfu/day) | WLA (cfu/day) | LA<br>(cfu/day) | MOS (cfu/day) |
|------------|---------------|-------------------|---------------|-----------------|---------------|
| 0          | 132,900       | 3.51E+14          | 4.56E+08      | 3.16E+14        | 3.51E+13      |
| 5          | 5,576         | 1.47E+13          | 4.56E+08      | 1.33E+13        | 1.47E+12      |
| 10         | 3,438         | 9.08E+12          | 4.56E+08      | 8.18E+12        | 9.08E+11      |
| 15         | 2,357         | 6.23E+12          | 4.56E+08      | 5.61E+12        | 6.23E+11      |
| 20         | 1,711         | 4.52E+12          | 4.56E+08      | 4.07E+12        | 4.52E+11      |
| 25         | 1,236         | 3.27E+12          | 4.56E+08      | 2.94E+12        | 3.27E+11      |
| 30         | 908           | 2.40E+12          | 4.56E+08      | 2.16E+12        | 2.40E+11      |
| 35         | 655           | 1.73E+12          | 4.56E+08      | 1.56E+12        | 1.73E+11      |
| 40         | 494           | 1.31E+12          | 4.56E+08      | 1.17E+12        | 1.31E+11      |
| 45         | 376           | 9.93E+11          | 4.56E+08      | 8.94E+11        | 9.93E+10      |
| 50         | 284           | 7.50E+11          | 4.56E+08      | 6.75E+11        | 7.50E+10      |
| 55         | 226           | 5.97E+11          | 4.56E+08      | 5.37E+11        | 5.97E+10      |
| 60         | 180           | 4.76E+11          | 4.56E+08      | 4.28E+11        | 4.76E+10      |
| 65         | 142           | 3.75E+11          | 4.56E+08      | 3.37E+11        | 3.75E+10      |
| 70         | 102           | 2.70E+11          | 4.56E+08      | 2.42E+11        | 2.70E+10      |
| 75         | 71            | 1.87E+11          | 4.56E+08      | 1.67E+11        | 1.87E+10      |
| 80         | 46            | 1.21E+11          | 4.56E+08      | 1.08E+11        | 1.21E+10      |
| 85         | 27            | 7.23E+10          | 4.56E+08      | 6.47E+10        | 7.23E+09      |
| 90         | 14            | 3.75E+10          | 4.56E+08      | 3.33E+10        | 3.75E+09      |
| 95         | 4.6           | 1.22E+10          | 4.56E+08      | 1.05E+10        | 1.22E+09      |
| 100        | 0             | 5.07E+08          | 4.56E+08      | 0.00E+00        | 5.07E+07      |

# Table 5-4Enterococci TMDL Calculations for Canadian River<br/>(OK520600010010\_00)

| Percentile | Flow<br>(cfs) | TMDL<br>(cfu/day) | WLA (cfu/day) | LA<br>(cfu/day) | MOS (cfu/day) |
|------------|---------------|-------------------|---------------|-----------------|---------------|
| 0          | 155           | 1.52E+12          | 0             | 1.36E+12        | 1.52E+11      |
| 5          | 7.9           | 7.73E+10          | 0             | 6.96E+10        | 7.73E+09      |
| 10         | 5.6           | 5.52E+10          | 0             | 4.97E+10        | 5.52E+09      |
| 15         | 4.0           | 3.92E+10          | 0             | 3.52E+10        | 3.92E+09      |
| 20         | 3.1           | 3.05E+10          | 0             | 2.75E+10        | 3.05E+09      |
| 25         | 2.6           | 2.51E+10          | 0             | 2.26E+10        | 2.51E+09      |
| 30         | 2.1           | 2.01E+10          | 0             | 1.81E+10        | 2.01E+09      |
| 35         | 1.6           | 1.61E+10          | 0             | 1.44E+10        | 1.61E+09      |
| 40         | 1.3           | 1.31E+10          | 0             | 1.17E+10        | 1.31E+09      |
| 45         | 1.1           | 1.10E+10          | 0             | 9.93E+09        | 1.10E+09      |
| 50         | 0.98          | 9.64E+09          | 0             | 8.67E+09        | 9.64E+08      |
| 55         | 0.82          | 8.03E+09          | 0             | 7.23E+09        | 8.03E+08      |
| 60         | 0.67          | 6.53E+09          | 0             | 5.87E+09        | 6.53E+08      |
| 65         | 0.53          | 5.22E+09          | 0             | 4.70E+09        | 5.22E+08      |
| 70         | 0.42          | 4.12E+09          | 0             | 3.70E+09        | 4.12E+08      |
| 75         | 0.30          | 2.91E+09          | 0             | 2.62E+09        | 2.91E+08      |
| 80         | 0.19          | 1.91E+09          | 0             | 1.72E+09        | 1.91E+08      |
| 85         | 0.09          | 9.03E+08          | 0             | 8.13E+08        | 9.03E+07      |
| 90         | 0.02          | 2.01E+08          | 0             | 1.81E+08        | 2.01E+07      |
| 95         | 0             | 0                 | 0             | 0               | 0             |
| 100        | 0             | 0                 | 0             | 0               | 0             |

# Table 5-5Fecal Coliform TMDL Calculations for Factory Creek<br/>(OK520600010060\_00)

| Percentile | Flow<br>(cfs) | TMDL<br>(cfu/day) | WLA (cfu/day) | LA<br>(cfu/day) | MOS (cfu/day) |
|------------|---------------|-------------------|---------------|-----------------|---------------|
| 0          | 339           | 3.31E+12          | 0             | 2.98E+12        | 3.31E+11      |
| 5          | 17            | 1.69E+11          | 0             | 1.52E+11        | 1.69E+10      |
| 10         | 12            | 1.21E+11          | 0             | 1.09E+11        | 1.21E+10      |
| 15         | 8.7           | 8.56E+10          | 0             | 7.70E+10        | 8.56E+09      |
| 20         | 6.7           | 6.58E+10          | 0             | 5.92E+10        | 6.58E+09      |
| 25         | 5.6           | 5.48E+10          | 0             | 4.93E+10        | 5.48E+09      |
| 30         | 4.5           | 4.39E+10          | 0             | 3.95E+10        | 4.39E+09      |
| 35         | 3.6           | 3.51E+10          | 0             | 3.16E+10        | 3.51E+09      |
| 40         | 2.9           | 2.85E+10          | 0             | 2.57E+10        | 2.85E+09      |
| 45         | 2.5           | 2.41E+10          | 0             | 2.17E+10        | 2.41E+09      |
| 50         | 2.1           | 2.09E+10          | 0             | 1.88E+10        | 2.09E+09      |
| 55         | 1.8           | 1.76E+10          | 0             | 1.58E+10        | 1.76E+09      |
| 60         | 1.5           | 1.43E+10          | 0             | 1.28E+10        | 1.43E+09      |
| 65         | 1.2           | 1.14E+10          | 0             | 1.03E+10        | 1.14E+09      |
| 70         | 0.90          | 8.78E+09          | 0             | 7.90E+09        | 8.78E+08      |
| 75         | 0.65          | 6.36E+09          | 0             | 5.73E+09        | 6.36E+08      |
| 80         | 0.43          | 4.17E+09          | 0             | 3.75E+09        | 4.17E+08      |
| 85         | 0.20          | 1.97E+09          | 0             | 1.78E+09        | 1.97E+08      |
| 90         | 0.04          | 4.39E+08          | 0             | 3.95E+08        | 4.39E+07      |
| 95         | 0             | 0                 | 0             | 0               | 0             |
| 100        | 0             | 0                 | 0             | 0               | 0             |

Table 5-6Fecal Coliform TMDL Calculations for Julian Creek<br/>(OK520600020170\_00)

| Percentile | Flow<br>(cfs) | TMDL<br>(cfu/day) | WLA (cfu/day) | LA<br>(cfu/day) | MOS (cfu/day) |
|------------|---------------|-------------------|---------------|-----------------|---------------|
| 0          | 3,186         | 3.12E+13          | 1.21E+09      | 2.81E+13        | 3.12E+12      |
| 5          | 95            | 9.25E+11          | 1.21E+09      | 8.31E+11        | 9.25E+10      |
| 10         | 34            | 3.32E+11          | 1.21E+09      | 2.97E+11        | 3.32E+10      |
| 15         | 13            | 1.28E+11          | 1.21E+09      | 1.14E+11        | 1.28E+10      |
| 20         | 9.0           | 8.76E+10          | 1.21E+09      | 7.77E+10        | 8.76E+09      |
| 25         | 7.1           | 6.91E+10          | 1.21E+09      | 6.10E+10        | 6.91E+09      |
| 30         | 6.0           | 5.83E+10          | 1.21E+09      | 5.13E+10        | 5.83E+09      |
| 35         | 4.3           | 4.21E+10          | 1.21E+09      | 3.67E+10        | 4.21E+09      |
| 40         | 3.2           | 3.15E+10          | 1.21E+09      | 2.71E+10        | 3.15E+09      |
| 45         | 1.8           | 1.76E+10          | 1.21E+09      | 1.47E+10        | 1.76E+09      |
| 50         | 1.0           | 9.85E+09          | 1.21E+09      | 7.66E+09        | 9.85E+08      |
| 55         | 0.76          | 7.46E+09          | 1.21E+09      | 5.50E+09        | 7.46E+08      |
| 60         | 0.60          | 5.84E+09          | 1.21E+09      | 4.05E+09        | 5.84E+08      |
| 65         | 0.47          | 4.61E+09          | 1.21E+09      | 2.94E+09        | 4.61E+08      |
| 70         | 0.39          | 3.84E+09          | 1.21E+09      | 2.24E+09        | 3.84E+08      |
| 75         | 0.36          | 3.48E+09          | 1.21E+09      | 1.92E+09        | 3.48E+08      |
| 80         | 0.33          | 3.19E+09          | 1.21E+09      | 1.66E+09        | 3.19E+08      |
| 85         | 0.30          | 2.94E+09          | 1.21E+09      | 1.43E+09        | 2.94E+08      |
| 90         | 0.27          | 2.68E+09          | 1.21E+09      | 1.20E+09        | 2.68E+08      |
| 95         | 0.21          | 2.03E+09          | 1.21E+09      | 6.15E+08        | 2.03E+08      |
| 100        | 0.15          | 1.49E+09          | 1.21E+09      | 1.29E+08        | 1.49E+08      |

# Table 5-7Fecal Coliform TMDL Calculations for Spring Brook<br/>(OK520600030030\_00)

|            | Flow  | TMDL      |               | LA        |               |
|------------|-------|-----------|---------------|-----------|---------------|
| Percentile | (cfs) | (cfu/day) | WLA (cfu/day) | (cfu/day) | MOS (cfu/day) |
| 0          | 71000 | 9.38E+14  | 8.06E+10      | 8.44E+14  | 9.38E+13      |
| 5          | 2664  | 3.52E+13  | 8.06E+10      | 3.16E+13  | 3.52E+12      |
| 10         | 1430  | 1.89E+13  | 8.06E+10      | 1.69E+13  | 1.89E+12      |
| 15         | 1030  | 1.36E+13  | 8.06E+10      | 1.22E+13  | 1.36E+12      |
| 20         | 800   | 1.06E+13  | 8.06E+10      | 9.43E+12  | 1.06E+12      |
| 25         | 638   | 8.43E+12  | 8.06E+10      | 7.51E+12  | 8.43E+11      |
| 30         | 532   | 7.03E+12  | 8.06E+10      | 6.25E+12  | 7.03E+11      |
| 35         | 450   | 5.95E+12  | 8.06E+10      | 5.27E+12  | 5.95E+11      |
| 40         | 380   | 5.02E+12  | 8.06E+10      | 4.44E+12  | 5.02E+11      |
| 45         | 324   | 4.28E+12  | 8.06E+10      | 3.77E+12  | 4.28E+11      |
| 50         | 271   | 3.58E+12  | 8.06E+10      | 3.14E+12  | 3.58E+11      |
| 55         | 226   | 2.99E+12  | 8.06E+10      | 2.61E+12  | 2.99E+11      |
| 60         | 185   | 2.44E+12  | 8.06E+10      | 2.12E+12  | 2.44E+11      |
| 65         | 149   | 1.97E+12  | 8.06E+10      | 1.69E+12  | 1.97E+11      |
| 70         | 120   | 1.59E+12  | 8.06E+10      | 1.35E+12  | 1.59E+11      |
| 75         | 93    | 1.23E+12  | 8.06E+10      | 1.03E+12  | 1.23E+11      |
| 80         | 68    | 9.04E+11  | 8.06E+10      | 7.33E+11  | 9.04E+10      |
| 85         | 47    | 6.21E+11  | 8.06E+10      | 4.78E+11  | 6.21E+10      |
| 90         | 30    | 3.96E+11  | 8.06E+10      | 2.76E+11  | 3.96E+10      |
| 95         | 16    | 2.11E+11  | 8.06E+10      | 1.10E+11  | 2.11E+10      |
| 100        | 0.75  | 8.95E+10  | 8.06E+10      | 0.00E+00  | 8.95E+09      |

Table 5-8Enterococci TMDL Calculations for Canadian River<br/>(OK520610010010\_05)

| Percentile | Flow<br>(cfs) | TMDL<br>(cfu/day) | WLA (cfu/day) | LA<br>(cfu/day) | MOS (cfu/day) |
|------------|---------------|-------------------|---------------|-----------------|---------------|
| 0          | 487           | 4.77E+12          | 0             | 4.29E+12        | 4.77E+11      |
| 5          | 25            | 2.43E+11          | 0             | 2.19E+11        | 2.43E+10      |
| 10         | 18            | 1.74E+11          | 0             | 1.56E+11        | 1.74E+10      |
| 15         | 13            | 1.23E+11          | 0             | 1.11E+11        | 1.23E+10      |
| 20         | 9.7           | 9.47E+10          | 0             | 8.53E+10        | 9.47E+09      |
| 25         | 8.1           | 7.89E+10          | 0             | 7.10E+10        | 7.89E+09      |
| 30         | 6.5           | 6.32E+10          | 0             | 5.69E+10        | 6.32E+09      |
| 35         | 5.2           | 5.05E+10          | 0             | 4.55E+10        | 5.05E+09      |
| 40         | 4.2           | 4.11E+10          | 0             | 3.70E+10        | 4.11E+09      |
| 45         | 3.5           | 3.47E+10          | 0             | 3.13E+10        | 3.47E+09      |
| 50         | 3.1           | 3.03E+10          | 0             | 2.73E+10        | 3.03E+09      |
| 55         | 2.6           | 2.53E+10          | 0             | 2.27E+10        | 2.53E+09      |
| 60         | 2.1           | 2.05E+10          | 0             | 1.85E+10        | 2.05E+09      |
| 65         | 1.7           | 1.64E+10          | 0             | 1.48E+10        | 1.64E+09      |
| 70         | 1.3           | 1.30E+10          | 0             | 1.17E+10        | 1.30E+09      |
| 75         | 0.97          | 9.47E+09          | 0             | 8.53E+09        | 9.47E+08      |
| 80         | 0.61          | 6.00E+09          | 0             | 5.40E+09        | 6.00E+08      |
| 85         | 0.29          | 2.84E+09          | 0             | 2.56E+09        | 2.84E+08      |
| 90         | 0.06          | 6.31E+08          | 0             | 5.68E+08        | 6.31E+07      |
| 95         | 0             | 0                 | 0             | 0               | 0             |
| 100        | 0             | 0                 | 0             | 0               | 0             |

Table 5-9Fecal Coliform TMDL Calculations for Willow Creek<br/>(OK520610010080\_00)

| Percentile | Flow<br>(cfs) | TMDL<br>(cfu/day) | WLA_WWTP<br>(cfu/day) | WLA_MS4<br>(cfu/day) | LA<br>(cfu/day) | MOS<br>(cfu/day) |
|------------|---------------|-------------------|-----------------------|----------------------|-----------------|------------------|
| 0          | 297           | 2.90E+12          | 5.75E+09              | 1.44E+12             | 1.17E+12        | 2.90E+11         |
| 5          | 15            | 1.50E+11          | 5.75E+09              | 7.10E+10             | 5.81E+10        | 1.50E+10         |
| 10         | 10            | 9.78E+10          | 5.75E+09              | 4.53E+10             | 3.70E+10        | 9.78E+09         |
| 15         | 7.4           | 7.29E+10          | 5.75E+09              | 3.29E+10             | 2.69E+10        | 7.29E+09         |
| 20         | 5.9           | 5.75E+10          | 5.75E+09              | 2.53E+10             | 2.07E+10        | 5.75E+09         |
| 25         | 4.7           | 4.60E+10          | 5.75E+09              | 1.96E+10             | 1.61E+10        | 4.60E+09         |
| 30         | 3.7           | 3.64E+10          | 5.75E+09              | 1.49E+10             | 1.22E+10        | 3.64E+09         |
| 35         | 2.9           | 2.88E+10          | 5.75E+09              | 1.11E+10             | 9.05E+09        | 2.88E+09         |
| 40         | 2.5           | 2.49E+10          | 5.75E+09              | 9.19E+09             | 7.52E+09        | 2.49E+09         |
| 45         | 2.2           | 2.13E+10          | 5.75E+09              | 7.37E+09             | 6.03E+09        | 2.13E+09         |
| 50         | 1.8           | 1.73E+10          | 5.75E+09              | 5.38E+09             | 4.40E+09        | 1.73E+09         |
| 55         | 1.5           | 1.52E+10          | 5.75E+09              | 4.33E+09             | 3.55E+09        | 1.52E+09         |
| 60         | 1.3           | 1.25E+10          | 5.75E+09              | 3.01E+09             | 2.46E+09        | 1.25E+09         |
| 65         | 1.1           | 1.04E+10          | 5.75E+09              | 1.96E+09             | 1.61E+09        | 1.04E+09         |
| 70         | 0.90          | 8.82E+09          | 5.75E+09              | 1.20E+09             | 9.86E+08        | 8.82E+08         |
| 75         | 0.78          | 7.67E+09          | 5.75E+09              | 6.33E+08             | 5.18E+08        | 7.67E+08         |
| 80         | 0.65          | 6.39E+09          | 5.75E+09              | 0.00E+00             | 0.00E+00        | 6.39E+08         |
| 85         | 0.59          | 6.39E+09          | 5.75E+09              | 0.00E+00             | 0.00E+00        | 6.39E+08         |
| 90         | 0.59          | 6.39E+09          | 5.75E+09              | 0.00E+00             | 0.00E+00        | 6.39E+08         |
| 95         | 0.59          | 6.39E+09          | 5.75E+09              | 0.00E+00             | 0.00E+00        | 6.39E+08         |
| 100        | 0.59          | 6.39E+09          | 5.75E+09              | 0.00E+00             | 0.00E+00        | 6.39E+08         |

Table 5-10Fecal Coliform TMDL Calculations for Bishop Creek<br/>(OK520610010180\_00)

| Percentile | Flow<br>(cfs) | TMDL<br>(cfu/day) | WLA<br>(cfu/day) | LA<br>(cfu/day) | MOS (cfu/day) |
|------------|---------------|-------------------|------------------|-----------------|---------------|
| 0          | 2,115         | 5.59E+12          | 2.69E+08         | 5.03E+12        | 5.59E+11      |
| 5          | 105           | 2.78E+11          | 2.69E+08         | 2.50E+11        | 2.78E+10      |
| 10         | 67            | 1.78E+11          | 2.69E+08         | 1.60E+11        | 1.78E+10      |
| 15         | 49            | 1.30E+11          | 2.69E+08         | 1.17E+11        | 1.30E+10      |
| 20         | 38            | 9.99E+10          | 2.69E+08         | 8.96E+10        | 9.99E+09      |
| 25         | 29            | 7.77E+10          | 2.69E+08         | 6.97E+10        | 7.77E+09      |
| 30         | 22            | 5.92E+10          | 2.69E+08         | 5.30E+10        | 5.92E+09      |
| 35         | 17            | 4.44E+10          | 2.69E+08         | 3.97E+10        | 4.44E+09      |
| 40         | 14            | 3.70E+10          | 2.69E+08         | 3.30E+10        | 3.70E+09      |
| 45         | 11            | 3.00E+10          | 2.69E+08         | 2.67E+10        | 3.00E+09      |
| 50         | 8.4           | 2.22E+10          | 2.69E+08         | 1.97E+10        | 2.22E+09      |
| 55         | 6.9           | 1.81E+10          | 2.69E+08         | 1.60E+10        | 1.81E+09      |
| 60         | 4.9           | 1.30E+10          | 2.69E+08         | 1.14E+10        | 1.30E+09      |
| 65         | 3.4           | 8.88E+09          | 2.69E+08         | 7.72E+09        | 8.88E+08      |
| 70         | 2.2           | 5.92E+09          | 2.69E+08         | 5.06E+09        | 5.92E+08      |
| 75         | 1.4           | 3.70E+09          | 2.69E+08         | 3.06E+09        | 3.70E+08      |
| 80         | 0.42          | 1.11E+09          | 2.69E+08         | 7.30E+08        | 1.11E+08      |
| 85         | 0             | 0                 | 0                | 0               | 0             |
| 90         | 0             | 0                 | 0                | 0               | 0             |
| 95         | 0             | 0                 | 0                | 0               | 0             |
| 100        | 0             | 0                 | 0                | 0               | 0             |

 Table 5-11
 Enterococci TMDL Calculations for Buggy Creek (OK520610020120\_00)

| Percentile | Flow<br>(cfs) | TMDL<br>(cfu/day) | WLA (cfu/day) | LA<br>(cfu/day) | MOS (cfu/day) |
|------------|---------------|-------------------|---------------|-----------------|---------------|
| 0          | 42,100        | 1.11E+14          | 2.50E+08      | 1.00E+14        | 1.11E+13      |
| 5          | 1,040         | 2.75E+12          | 2.50E+08      | 2.47E+12        | 2.75E+11      |
| 10         | 580           | 1.53E+12          | 2.50E+08      | 1.38E+12        | 1.53E+11      |
| 15         | 400           | 1.06E+12          | 2.50E+08      | 9.51E+11        | 1.06E+11      |
| 20         | 300           | 7.93E+11          | 2.50E+08      | 7.13E+11        | 7.93E+10      |
| 25         | 231           | 6.10E+11          | 2.50E+08      | 5.49E+11        | 6.10E+10      |
| 30         | 185           | 4.89E+11          | 2.50E+08      | 4.40E+11        | 4.89E+10      |
| 35         | 144           | 3.80E+11          | 2.50E+08      | 3.42E+11        | 3.80E+10      |
| 40         | 110           | 2.91E+11          | 2.50E+08      | 2.61E+11        | 2.91E+10      |
| 45         | 80            | 2.11E+11          | 2.50E+08      | 1.90E+11        | 2.11E+10      |
| 50         | 61            | 1.61E+11          | 2.50E+08      | 1.45E+11        | 1.61E+10      |
| 55         | 47            | 1.24E+11          | 2.50E+08      | 1.12E+11        | 1.24E+10      |
| 60         | 36            | 9.51E+10          | 2.50E+08      | 8.54E+10        | 9.51E+09      |
| 65         | 28            | 7.40E+10          | 2.50E+08      | 6.63E+10        | 7.40E+09      |
| 70         | 21            | 5.55E+10          | 2.50E+08      | 4.97E+10        | 5.55E+09      |
| 75         | 16            | 4.23E+10          | 2.50E+08      | 3.78E+10        | 4.23E+09      |
| 80         | 13            | 3.43E+10          | 2.50E+08      | 3.07E+10        | 3.43E+09      |
| 85         | 9.5           | 2.51E+10          | 2.50E+08      | 2.23E+10        | 2.51E+09      |
| 90         | 6.0           | 1.59E+10          | 2.50E+08      | 1.40E+10        | 1.59E+09      |
| 95         | 2.9           | 7.66E+09          | 2.50E+08      | 6.65E+09        | 7.66E+08      |
| 100        | 0             | 2.75E+08          | 2.50E+08      | 0.00E+00        | 2.50E+07      |

# Table 5-12Enterococci TMDL Calculations for Canadian River<br/>(OK520610020150\_10)

| Percentile | Flow<br>(cfs) | TMDL<br>(cfu/day) | WLA (cfu/day) | LA<br>(cfu/day) | MOS (cfu/day) |
|------------|---------------|-------------------|---------------|-----------------|---------------|
| 0          | 1330.2        | 1.30E+13          | 2.27E+08      | 1.17E+13        | 1.30E+12      |
| 5          | 66.1          | 6.47E+11          | 2.27E+08      | 5.82E+11        | 6.47E+10      |
| 10         | 42.3          | 4.14E+11          | 2.27E+08      | 3.73E+11        | 4.14E+10      |
| 15         | 30.9          | 3.02E+11          | 2.27E+08      | 2.72E+11        | 3.02E+10      |
| 20         | 23.8          | 2.33E+11          | 2.27E+08      | 2.10E+11        | 2.33E+10      |
| 25         | 18.5          | 1.81E+11          | 2.27E+08      | 1.63E+11        | 1.81E+10      |
| 30         | 14.1          | 1.38E+11          | 2.27E+08      | 1.24E+11        | 1.38E+10      |
| 35         | 10.6          | 1.04E+11          | 2.27E+08      | 9.33E+10        | 1.04E+10      |
| 40         | 8.9           | 8.67E+10          | 2.27E+08      | 7.78E+10        | 8.67E+09      |
| 45         | 7.2           | 7.03E+10          | 2.27E+08      | 6.30E+10        | 7.03E+09      |
| 50         | 5.3           | 5.22E+10          | 2.27E+08      | 4.67E+10        | 5.22E+09      |
| 55         | 4.4           | 4.27E+10          | 2.27E+08      | 3.82E+10        | 4.27E+09      |
| 60         | 3.1           | 3.06E+10          | 2.27E+08      | 2.73E+10        | 3.06E+09      |
| 65         | 2.2           | 2.11E+10          | 2.27E+08      | 1.88E+10        | 2.11E+09      |
| 70         | 1.5           | 1.42E+10          | 2.27E+08      | 1.26E+10        | 1.42E+09      |
| 75         | 0.9           | 9.07E+09          | 2.27E+08      | 7.94E+09        | 9.07E+08      |
| 80         | 0.3           | 3.04E+09          | 2.27E+08      | 2.51E+09        | 3.04E+08      |
| 85         | 0.02          | 2.52E+08          | 2.27E+08      | 0.00E+00        | 2.52E+07      |
| 90         | 0.02          | 2.52E+08          | 2.27E+08      | 0.00E+00        | 2.52E+07      |
| 95         | 0.02          | 2.52E+08          | 2.27E+08      | 0.00E+00        | 2.52E+07      |
| 100        | 0.02          | 2.52E+08          | 2.27E+08      | 0.00E+00        | 2.52E+07      |

Table 5-13Fecal Coliform TMDL Calculations for Walnut Creek-North Fork<br/>(OK520610030080\_00)

| Percentile | Flow<br>(cfs) | TMDL<br>(cfu/day) | WLA (cfu/day) | LA<br>(cfu/day) | MOS (cfu/day) |
|------------|---------------|-------------------|---------------|-----------------|---------------|
| 0          | 31,600        | 8.35E+13          | 9.99E+08      | 7.51E+13        | 8.35E+12      |
| 5          | 1,940         | 5.13E+12          | 9.99E+08      | 4.61E+12        | 5.13E+11      |
| 10         | 966           | 2.55E+12          | 9.99E+08      | 2.30E+12        | 2.55E+11      |
| 15         | 609           | 1.61E+12          | 9.99E+08      | 1.45E+12        | 1.61E+11      |
| 20         | 376           | 9.93E+11          | 9.99E+08      | 8.93E+11        | 9.93E+10      |
| 25         | 242           | 6.40E+11          | 9.99E+08      | 5.75E+11        | 6.40E+10      |
| 30         | 155           | 4.10E+11          | 9.99E+08      | 3.68E+11        | 4.10E+10      |
| 35         | 107           | 2.83E+11          | 9.99E+08      | 2.53E+11        | 2.83E+10      |
| 40         | 78            | 2.06E+11          | 9.99E+08      | 1.84E+11        | 2.06E+10      |
| 45         | 58            | 1.53E+11          | 9.99E+08      | 1.37E+11        | 1.53E+10      |
| 50         | 44            | 1.15E+11          | 9.99E+08      | 1.02E+11        | 1.15E+10      |
| 55         | 33            | 8.72E+10          | 9.99E+08      | 7.75E+10        | 8.72E+09      |
| 60         | 25            | 6.61E+10          | 9.99E+08      | 5.85E+10        | 6.61E+09      |
| 65         | 19            | 5.02E+10          | 9.99E+08      | 4.42E+10        | 5.02E+09      |
| 70         | 14            | 3.70E+10          | 9.99E+08      | 3.23E+10        | 3.70E+09      |
| 75         | 9.7           | 2.56E+10          | 9.99E+08      | 2.21E+10        | 2.56E+09      |
| 80         | 6.1           | 1.61E+10          | 9.99E+08      | 1.35E+10        | 1.61E+09      |
| 85         | 3.3           | 8.72E+09          | 9.99E+08      | 6.85E+09        | 8.72E+08      |
| 90         | 1.2           | 3.17E+09          | 9.99E+08      | 1.85E+09        | 3.17E+08      |
| 95         | 0.10          | 2.64E+08          | 2.38E+08      | 0.00E+00        | 2.64E+07      |
| 100        | 0.00          | 2.64E+05          | 2.38E+05      | 0.00E+00        | 2.64E+04      |

| Table 5-14 | Enterococci TMDL | <b>Calculations for L</b> | Little River (OK520800010010_00) | ) |
|------------|------------------|---------------------------|----------------------------------|---|
|------------|------------------|---------------------------|----------------------------------|---|

### 5.7 LDCs and TMDL Calculations for Additional Bacterial Indicators

As mentioned previously in Section 5.1, USEPA regulations at 40 CFR 130.7(c) (1) require TMDLs to take into account critical conditions for stream flow, loading, and all applicable water quality standards. To accomplish this, available instream WQM data were evaluated with respect to flows and magnitude of water quality criteria exceedance using LDCs. Furthermore as required, TMDL calculations from LDCs for all bacterial indicators not supporting the PBCR use were prepared. The remaining LDCs and TMDL calculations for additional bacterial indicators are shown in Figures 5-12 through 5-15 and Table 5-15 through 5-17 respectively.

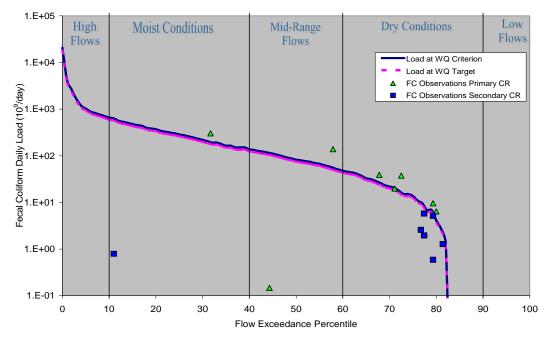
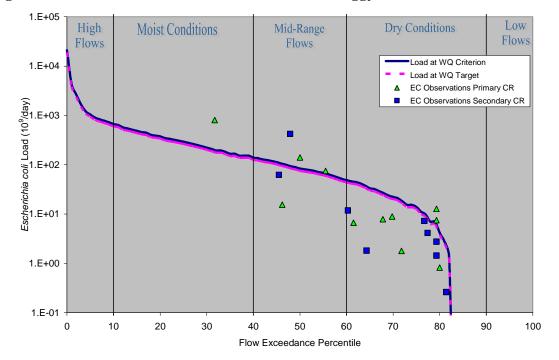




Figure 5-12 Load Duration Curve for Fecal Coliform in Buggy Creek (OK520610020120\_00)

Table 5-15Fecal Coliform TMDL Calculations for Buggy Creek<br/>(OK520610020120\_00)

| Percentile | Flow<br>(cfs) | TMDL<br>(cfu/day) | WLA<br>(cfu/day) | LA<br>(cfu/day) | MOS<br>(cfu/day) |
|------------|---------------|-------------------|------------------|-----------------|------------------|
| 0          | 2,115         | 2.07E+13          | 1.63E+09         | 1.86E+13        | 2.07E+12         |
| 5          | 105           | 1.03E+12          | 1.63E+09         | 9.25E+11        | 1.03E+11         |
| 10         | 67            | 6.58E+11          | 1.63E+09         | 5.91E+11        | 6.58E+10         |
| 15         | 49            | 4.80E+11          | 1.63E+09         | 4.30E+11        | 4.80E+10         |
| 20         | 38            | 3.70E+11          | 1.63E+09         | 3.31E+11        | 3.70E+10         |
| 25         | 29            | 2.88E+11          | 1.63E+09         | 2.58E+11        | 2.88E+10         |
| 30         | 22            | 2.19E+11          | 1.63E+09         | 1.95E+11        | 2.19E+10         |
| 35         | 17            | 1.64E+11          | 1.63E+09         | 1.46E+11        | 1.64E+10         |
| 40         | 14            | 1.37E+11          | 1.63E+09         | 1.22E+11        | 1.37E+10         |
| 45         | 11            | 1.11E+11          | 1.63E+09         | 9.83E+10        | 1.11E+10         |
| 50         | 8.4           | 8.22E+10          | 1.63E+09         | 7.24E+10        | 8.22E+09         |
| 55         | 6.9           | 6.72E+10          | 1.63E+09         | 5.89E+10        | 6.72E+09         |
| 60         | 4.9           | 4.80E+10          | 1.63E+09         | 4.16E+10        | 4.80E+09         |
| 65         | 3.4           | 3.29E+10          | 1.63E+09         | 2.80E+10        | 3.29E+09         |
| 70         | 2.2           | 2.19E+10          | 1.63E+09         | 1.81E+10        | 2.19E+09         |
| 75         | 1.4           | 1.37E+10          | 1.63E+09         | 1.07E+10        | 1.37E+09         |
| 80         | 0.42          | 4.11E+09          | 1.63E+09         | 2.07E+09        | 4.11E+08         |
| 85         | 0             | 0                 | 0                | 0               | 0                |
| 90         | 0             | 0                 | 0                | 0               | 0                |
| 95         | 0             | 0                 | 0                | 0               | 0                |
| 100        | 0             | 0                 | 0                | 0               | 0                |



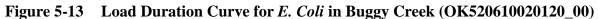



 Table 5-16
 E. Coli TMDL Calculations for Buggy Creek (OK520610020120\_00)

| Percentile | Flow<br>(cfs) | TMDL<br>(cfu/day) | WLA<br>(cfu/day) | LA<br>(cfu/day) | MOS<br>(cfu/day) |
|------------|---------------|-------------------|------------------|-----------------|------------------|
| 0          | 2,115         | 2.10E+13          | 1.03E+09         | 1.89E+13        | 2.10E+12         |
| 5          | 105           | 1.04E+12          | 1.03E+09         | 9.35E+11        | 1.04E+11         |
| 10         | 67            | 6.68E+11          | 1.03E+09         | 6.00E+11        | 6.68E+10         |
| 15         | 49            | 4.87E+11          | 1.03E+09         | 4.37E+11        | 4.87E+10         |
| 20         | 38            | 3.75E+11          | 1.03E+09         | 3.36E+11        | 3.75E+10         |
| 25         | 29            | 2.92E+11          | 1.03E+09         | 2.62E+11        | 2.92E+10         |
| 30         | 22            | 2.22E+11          | 1.03E+09         | 1.99E+11        | 2.22E+10         |
| 35         | 17            | 1.67E+11          | 1.03E+09         | 1.49E+11        | 1.67E+10         |
| 40         | 14            | 1.39E+11          | 1.03E+09         | 1.24E+11        | 1.39E+10         |
| 45         | 11            | 1.13E+11          | 1.03E+09         | 1.01E+11        | 1.13E+10         |
| 50         | 8.4           | 8.35E+10          | 1.03E+09         | 7.41E+10        | 8.35E+09         |
| 55         | 6.9           | 6.82E+10          | 1.03E+09         | 6.04E+10        | 6.82E+09         |
| 60         | 4.9           | 4.87E+10          | 1.03E+09         | 4.28E+10        | 4.87E+09         |
| 65         | 3.4           | 3.34E+10          | 1.03E+09         | 2.90E+10        | 3.34E+09         |
| 70         | 2.2           | 2.23E+10          | 1.03E+09         | 1.90E+10        | 2.23E+09         |
| 75         | 1.4           | 1.39E+10          | 1.03E+09         | 1.15E+10        | 1.39E+09         |
| 80         | 0.42          | 4.17E+09          | 1.03E+09         | 2.72E+09        | 4.17E+08         |
| 85         | 0             | 0                 | 0                | 0               | 0                |
| 90         | 0             | 0                 | 0                | 0               | 0                |
| 95         | 0             | 0                 | 0                | 0               | 0                |
| 100        | 0             | 0                 | 0                | 0               | 0                |

<sup>\*</sup> there is no wasteload allocation for this waterbody

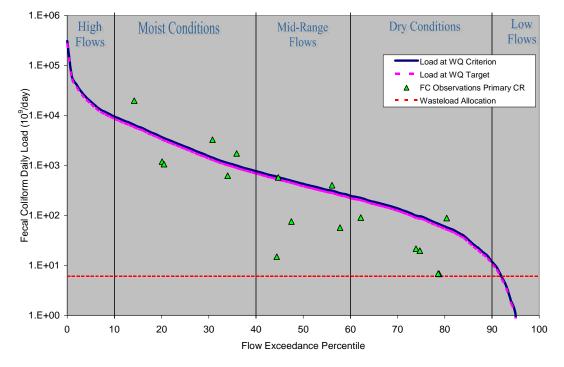



Figure 5-14 Load Duration Curve for Fecal Coliform in Little River (OK520800010010\_00)

Table 5-17Fecal Coliform TMDL Calculations for Little River (OK520800010010\_00)

| Percentile | Flow<br>(cfs) | TMDL<br>(cfu/day) | WLA<br>(cfu/day) | LA<br>(cfu/day) | MOS<br>(cfu/day) |
|------------|---------------|-------------------|------------------|-----------------|------------------|
| 0          | 31,600        | 3.09E+14          | 6.06E+09         | 2.78E+14        | 3.09E+13         |
| 5          | 1,940         | 1.90E+13          | 6.06E+09         | 1.71E+13        | 1.90E+12         |
| 10         | 966           | 9.45E+12          | 6.06E+09         | 8.50E+12        | 9.45E+11         |
| 15         | 609           | 5.96E+12          | 6.06E+09         | 5.36E+12        | 5.96E+11         |
| 20         | 376           | 3.68E+12          | 6.06E+09         | 3.30E+12        | 3.68E+11         |
| 25         | 242           | 2.37E+12          | 6.06E+09         | 2.13E+12        | 2.37E+11         |
| 30         | 155           | 1.52E+12          | 6.06E+09         | 1.36E+12        | 1.52E+11         |
| 35         | 107           | 1.05E+12          | 6.06E+09         | 9.36E+11        | 1.05E+11         |
| 40         | 78            | 7.63E+11          | 6.06E+09         | 6.81E+11        | 7.63E+10         |
| 45         | 58            | 5.68E+11          | 6.06E+09         | 5.05E+11        | 5.68E+10         |
| 50         | 44            | 4.26E+11          | 6.06E+09         | 3.77E+11        | 4.26E+10         |
| 55         | 33            | 3.23E+11          | 6.06E+09         | 2.85E+11        | 3.23E+10         |
| 60         | 25            | 2.45E+11          | 6.06E+09         | 2.14E+11        | 2.45E+10         |
| 65         | 19            | 1.86E+11          | 6.06E+09         | 1.61E+11        | 1.86E+10         |
| 70         | 14            | 1.37E+11          | 6.06E+09         | 1.17E+11        | 1.37E+10         |
| 75         | 9.7           | 9.49E+10          | 6.06E+09         | 7.94E+10        | 9.49E+09         |
| 80         | 6.1           | 5.97E+10          | 6.06E+09         | 4.77E+10        | 5.97E+09         |
| 85         | 3.3           | 3.23E+10          | 6.06E+09         | 2.30E+10        | 3.23E+09         |
| 90         | 1.2           | 1.17E+10          | 6.06E+09         | 4.51E+09        | 1.17E+09         |
| 95         | 0.10          | 6.73E+09          | 6.06E+09         | 0.00E+00        | 6.73E+08         |
| 100        | 0.00          | 6.73E+09          | 6.06E+09         | 0.00E+00        | 6.73E+08         |

### 5.8 Reasonable Assurances

ODEQ will collaborate with a host of other state agencies and local governments working within the boundaries of state and local regulations to target available funding and technical assistance to support implementation of pollution controls and management measures. Various water quality management programs and funding sources provide reasonable assurance that the pollutant reductions as required by these TMDLs can be achieved and water quality can be restored to maintain designated uses. ODEQ's Continuing Planning Process (CPP), required by the CWA §303(e)(3) and 40 CFR 130.5, summarizes Oklahoma's commitments and programs aimed at restoring and protecting water quality throughout the State (ODEQ 2002). The CPP can be viewed from ODEQ's website at <a href="http://www.deq.state.ok.us/WQDnew/pubs/2002\_cpp\_final.pdf">http://www.deq.state.ok.us/WQDnew/pubs/2002\_cpp\_final.pdf</a>. Table 5-19 provides a partial list of the state partner agencies ODEQ will collaborate with to address point and nonpoint source reduction goals established by TMDLs.

| Agency                                                    | Web Link                                       |
|-----------------------------------------------------------|------------------------------------------------|
| Oklahoma Conservation Commission                          | http://www.okcc.state.ok.us/WQ/WQ_home.htm     |
| Oklahoma Department of Wildlife<br>Conservation           | http://www.wildlifedepartment.com/watchabl.htm |
| Oklahoma Department of Agriculture,<br>Food, and Forestry | http://www.oda.state.ok.us/aems-home.htm       |
| Oklahoma Water Resources Board                            | http://www.owrb.state.ok.us/quality/index.php  |

Table 5-19Partial List of Oklahoma Water Quality Management Agencies

Nonpoint source pollution is managed by the Oklahoma Conservation Commission. The primary mechanisms used for management of nonpoint source pollution are incentive-based programs that support the installation of BMPs and public education and outreach. Other programs include regulations and permits for CAFOs. The CAFO Act, as administered by the ODAFF, provides CAFO operators the necessary tools and information to deal with the manure and wastewater animals produce so streams, lakes, ponds, and groundwater sources are not polluted.

As authorized by Section 402 of the CWA, the ODEQ has delegation of the NPDES Program in Oklahoma, except for certain jurisdictional areas related to agriculture and the oil and gas industry retained by State Department of Agriculture and Oklahoma Corporation Commission, for which the USEPA has retained permitting authority. The NPDES Program in Oklahoma is implemented via Title 252, Chapter 606 of the Oklahoma Pollution Discharge Elimination System (OPDES) Act and in accordance with the agreement between ODEQ and USEPA relating to administration and enforcement of the delegated NPDES Program. Implementation of point source WLAs is done through permits issued under the OPDES program.

The reduction rates called for in this TMDL report are as high as 96 percent. The ODEQ recognizes that achieving such high reductions may not be realistic, especially since unregulated nonpoint sources are a major cause of the impairment. The high reduction rates are not uncommon for pathogen-impaired waters. Similar reduction rates are often found in other pathogen TMDLs around the nation. The suitability of the current criteria for pathogens and

the beneficial uses of the receiving stream should be reviewed. For example, the Kansas Department of Environmental Quality has proposed to exclude certain high flow conditions during which pathogen standards will not apply, although that exclusion was not approved by the USEPA. Additionally, USEPA has been conducting new epidemiology studies and may develop new recommendations for pathogen criteria in the near future.

Revisions to the current pathogen provisions of Oklahoma's WQSs should be considered. There are three basic approaches to such revisions that may apply.

- **Removing the PBCR use:** This revision would require documentation in a Use Attainability Analysis that the use is not existing and cannot be attained. It is unlikely that this approach would be successful since there is evidence that people do swim in these waterbodies, thus constituting an existing use. Existing uses cannot be removed.
- **Modifying application of the existing criteria:** This approach would include considerations such as an exemption under certain high flow conditions, an allowance for wildlife or "natural conditions," a sub-category of the use or other special provision for urban areas, or other special provisions for storm flows. Since large bacteria violations occur over all flow ranges, it is likely that large reductions would still be necessary. However, this approach may have merit and should be considered.
- **Revising the existing numeric criteria:** Oklahoma's current pathogen criteria are based on USEPA guidelines (See Implementation Guidance for Ambient Water Quality Criteria for Bacteria, May 2002 Draft; and Ambient Water Quality Criteria for Bacteria-1986, January 1986). However, those guidelines have received much criticism and USEPA studies that could result in revisions to their recommendations are ongoing. The use of the three indicators specified in Oklahoma's standards should be evaluated. The numeric criteria values should also be evaluated using a risk-based method such as that found in USEPA guidance.

Unless or until the WQSs are revised and approved by USEPA, federal rules require that the TMDLs in this report must be based on attainment of the current standards. If revisions to the pathogen standards are approved in the future, reductions specified in these TMDLs will be re-evaluated.

# SECTION 6 PUBLIC PARTICIPATION

This TMDL report was sent to other related state agencies and local government agencies for peer review. Then the report was submitted to the EPA for technical review. The report was technically approved by the EPA on May 8, 2008. A public notice was published on June 25, 2008 and the TMDL report was made available for public review and comments. The public comment period started on June 25, 2008 and ended on August 11, 2008. Three written comments were received.

All comments were responded and the report was updated accordingly. The response to comments was included in Appendix F of this report.

# SECTION 7 REFERENCES

- American Veterinary Medical Association 2002. U.S. Pet Ownership and Demographics Sourcebook (2002 Edition). Schaumberg, IL.
- ASAE (American Society of Agricultural Engineers) 1999. ASAE standards, 46th edition: standards, engineering practices, data. St. Joseph, MI.
- Canter, LW and RC Knox. 1985. Septic tank system effects on ground water quality. Lewis Publishers, Boca Raton, FL.
- Cleland 2003. Cleland, B. TMDL Development from the "Bottom Up" Part III: Duration Curves and Wet-Weather Assessments. Water Environment Federation National TMDL Science and Policy Conference 2003. Chicago, IL.
- Cogger, CG and BL Carlile 1984. Field performance of conventional and alternative septic systems in wet soils. *J. Environ. Qual.* 13 (1).
- Drapcho, C.M. and A.K.B. Hubbs 2002. Fecal Coliform Concentration in Runoff from Fields with Applied Dairy Manure. <u>http://www.lwrri.lsu.edu/downloads/drapcho</u> Annual%20report01.02.pdf
- Hall, S. 2002. Washington State Department of Health, Wastewater Management Program Rule Development Committee, Issue Research Report Failing Systems, June 2002.

Metcalf and Eddy 1991. Wastewater Engineering: Treatment, Disposal, Reuse: 2<sup>nd</sup> Edition.

ODAFF 2005. http://www.state.ok.us/~okag/water-home.htm

- ODEQ 2002. The State of Oklahoma 2002 Continuing Planning Process. 2002.
- ODEQ 2004. The State of Oklahoma 2004 Water Quality Assessment Integrated Report. 2004.
- Oklahoma Climate Survey. 2005. Viewed August 29, 2005 in

http://climate.ocs.ou.edu/county\_climate/Products/County\_Climatologies/

- OWRB 2006. Oklahoma Water Resources Board. 2006 Water Quality Standards.
- OWRB 2007. Oklahoma Water Resources Board. Viewed June 1, 2007. Implementation of Oklahoma's Water Quality Standards (Chapter 46).
- Reed, Stowe &Yanke, LLC 2001. Study to Determine the Magnitude of, and Reasons for, Chronically Malfunctioning On-Site Sewage Facility Systems in Texas. September 2001.
- Schueler, TR. 2000. Microbes and Urban Watersheds: Concentrations, Sources, and Pathways. In *The Practice of Watershed Protection*, TR Schueler and HK Holland, eds. Center for Watershed Protection, Ellicott City, MD.
- University of Florida 1987. Institute of Food and Agricultural Sciences, University Of Florida, Florida Cooperative Extension Service, No. 31, December, 1987.

U.S. Census Bureau 1995. http://www.census.gov/.

U.S. Census Bureau 2000. http://www.census.gov/main/www/cen2000.html

- USDA 2002. Census of Agriculture, National Agricultural Statistics Service, United States Department of Agriculture. <u>http://www.nass.usda.gov/Census/Create\_Census\_US\_CNTY.jsp</u>
- USEPA 1983. Final Report of the Nationwide Urban Runoff Program. U.S. Environmental Protection Agency, Water Planning Division.
- USEPA 1991. Guidance for Water Quality-Based Decisions: The TMDL Process. Office of Water, USEPA 440/4-91-001.

- USEPA 2001. 2001 Protocol for Developing Pathogen TMDLs. First Edition. Office of Water, USEPA 841-R-00-002.
- USEPA 2003. Guidance for 2004 Assessment, Listing and Reporting Requirements Pursuant to Sections 303(d) and 305(b) of the Clean Water Act, TMDL -01-03 Diane Regas-- July 21, 2003.
- USEPA 2005. U.S. Environmental Protection Agency, Office of Water. Stormwater Phase II Final Rule. EPA833-F-00-002 Fact Sheet 2.0. December 2005.

USGS 2007. Multi-Resolution Land Characteristics Consortium. http://www.mrlc.gov/index.asp

USGS 2007a. USGS Daily Streamflow Data. <u>http://waterdata.usgs.gov/nwis/sw</u>

Missouri Department of Natural Resources 2003, Total Maximum daily Loads (TMDLs) for Shoal Creek Newton and Barry Counties, Missouri.

# APPENDIX A AMBIENT WATER QUALITY BACTERIA DATA – 1999 TO 2003

| WQM Station          | Water Body Name                | Date      | Bacteria<br>Concentration<br>(#/100ml) | Bacteria<br>Indicator | Single<br>Sample<br>Criteria *<br>(#/100ml) |
|----------------------|--------------------------------|-----------|----------------------------------------|-----------------------|---------------------------------------------|
| OK520600010010-001AT | Canadian River, US 377, Konawa | 6/15/1999 | 970                                    | FC                    | 400                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 7/13/1999 | 4200                                   | FC                    | 400                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 8/11/1999 | 100                                    | FC                    | 400                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 9/21/1999 | 30                                     | FC                    | 400                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 5/8/2000  | 280                                    | FC                    | 400                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 6/12/2000 | 40                                     | FC                    | 400                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 5/16/2001 | 130                                    | FC                    | 400                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 6/13/2001 | 100                                    | FC                    | 400                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 7/18/2001 | 20                                     | FC                    | 400                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 8/15/2001 | 190                                    | FC                    | 400                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 6/10/2002 | 90                                     | FC                    | 400                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 7/16/2002 | 10                                     | FC                    | 400                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 9/17/2002 | 190                                    | FC                    | 400                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 6/15/1999 | 909                                    | EC                    | 406                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 7/13/1999 | 794                                    | EC                    | 406                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 8/11/1999 | 10                                     | EC                    | 406                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 9/21/1999 | 41                                     | EC                    | 406                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 5/8/2000  | 272                                    | EC                    | 406                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 6/12/2000 | 52                                     | EC                    | 406                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 5/16/2001 | 61                                     | EC                    | 406                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 6/13/2001 | 10                                     | EC                    | 406                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 7/18/2001 | 5                                      | EC                    | 406                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 8/15/2001 | 20                                     | EC                    | 406                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 6/10/2002 | 10                                     | EC                    | 406                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 7/16/2002 | 10                                     | EC                    | 406                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 9/17/2002 | 41                                     | EC                    | 406                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 6/15/1999 | 30                                     | ENT                   | 108                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 7/13/1999 | 60                                     | ENT                   | 108                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 8/11/1999 | 5                                      | ENT                   | 108                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 9/21/1999 | 20                                     | ENT                   | 108                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 5/8/2000  | 170                                    | ENT                   | 108                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 6/12/2000 | 220                                    | ENT                   | 108                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 5/16/2001 | 90                                     | ENT                   | 108                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 6/13/2001 | 120                                    | ENT                   | 108                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 7/18/2001 | 140                                    | ENT                   | 108                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 8/15/2001 | 700                                    | ENT                   | 108                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 6/10/2002 | 80                                     | ENT                   | 108                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 7/16/2002 | 10                                     | ENT                   | 108                                         |
| OK520600010010-001AT | Canadian River, US 377, Konawa | 9/17/2002 | 150                                    | ENT                   | 108                                         |

Appendix A Ambient Water Quality Bacteria Data – 1999 to 2003

| WQM Station                        | Water Body Name              | Date                  | Bacteria<br>Concentration<br>(#/100ml) | Bacteria<br>Indicator | Single<br>Sample<br>Criteria *<br>(#/100ml) |
|------------------------------------|------------------------------|-----------------------|----------------------------------------|-----------------------|---------------------------------------------|
| OK520600010060P                    | Factory Creek                | 4/20/1999             | 15200                                  | FC                    | 2000                                        |
| OK520600010060P                    | Factory Creek                | 5/18/1999             | 1700                                   | FC                    | 400                                         |
| OK520600010060P                    | Factory Creek                | 6/15/1999             | 5500                                   | FC                    | 400                                         |
| OK520600010060P                    | Factory Creek                | 7/13/1999             | 100                                    | FC                    | 400                                         |
| OK520600010060P                    | Factory Creek                | 8/17/1999             | 100                                    | FC                    | 400                                         |
| OK520600010060P                    | Factory Creek                | 9/28/1999             | 100                                    | FC                    | 400                                         |
| OK520600010060P                    | Factory Creek                | 11/2/1999             | 1900                                   | FC                    | 2000                                        |
| OK520600010060P                    | Factory Creek                | 12/7/1999             | 1100                                   | FC                    | 2000                                        |
| OK520600010060P                    | Factory Creek                | 1/11/2000             | 100                                    | FC                    | 2000                                        |
| OK520600010060P                    | Factory Creek                | 2/15/2000             | 100                                    | FC                    | 2000                                        |
| OK520600010060P                    | Factory Creek                | 3/21/2000             | 500                                    | FC                    | 2000                                        |
| OK520600010060P                    | Factory Creek                | 5/2/2000              | 1000                                   | FC                    | 400                                         |
| OK520600010060P                    | Factory Creek                | 6/6/2000              | 100                                    | FC                    | 400                                         |
| OK520600010060P                    | Factory Creek                | 7/11/2000             | 300                                    | FC                    | 400                                         |
| OK520600010060P                    | Factory Creek                | 8/15/2000             | 220                                    | FC                    | 400                                         |
| OK520600010060P                    | Factory Creek                | 9/19/2000             | 900                                    | FC                    | 400                                         |
| OK520600010060P                    | Factory Creek                | 10/24/2000            | 3000                                   | FC                    | 2000                                        |
| OK520600010060P                    | Factory Creek                | 11/28/2000            | 1200                                   | FC                    | 2000                                        |
| OK520600010060P                    | Factory Creek                | 1/9/2001              | 30                                     | FC                    | 2000                                        |
| OK520600010060P                    | Factory Creek                | 2/13/2001             | 200                                    | FC                    | 2000                                        |
| OK520600010060P                    | Factory Creek                | 3/20/2001             | 60                                     | FC                    | 2000                                        |
| OK520600010060P                    | Factory Creek                | 8/15/2000             | 145                                    | EC                    | 406                                         |
| OK520600010060P                    | Factory Creek                | 9/19/2000             | 789                                    | EC                    | 406                                         |
| OK520600010060P                    | Factory Creek                | 10/24/2000            | 3448                                   | EC                    | 2030                                        |
| OK520600010060P                    | Factory Creek                | 11/28/2000            | 1178                                   | EC                    | 2030                                        |
| OK520600010060P                    | Factory Creek                | 1/9/2001              | 41                                     | EC                    | 2030                                        |
| OK520600010060P                    | Factory Creek                | 2/13/2001             | 169                                    | EC                    | 2030                                        |
| OK520600010060P                    | Factory Creek                | 3/20/2001             | 31                                     | EC                    | 2030                                        |
| OK520600010060P                    | Factory Creek                | 9/19/2000             | 500                                    | ENT                   | 108                                         |
| OK520600010060P                    | Factory Creek                | 10/24/2000            | 23000                                  | ENT                   | 540                                         |
| OK520600010060P                    | Factory Creek                | 11/28/2000            | 800                                    | ENT                   | 540                                         |
| OK520600010060P                    | Factory Creek                | 1/9/2001              | 90                                     | ENT                   | 540                                         |
| OK520600010060P                    | Factory Creek                | 2/13/2001             | 200                                    | ENT                   | 540                                         |
| OK520600010060P                    | Factory Creek                | 3/20/2001             | 60                                     | ENT                   | 540                                         |
| OK520600010000F                    | Julian Creek                 | 5/18/1999             | 1600                                   | FC                    | 400                                         |
| OK520600020170B                    | Julian Creek                 | 6/15/1999             | 100                                    | FC                    | 400                                         |
| OK520600020170B                    | Julian Creek                 | 7/13/1999             | 200                                    | FC                    | 400                                         |
| OK520600020170B                    | Julian Creek                 | 8/17/1999             | 100                                    | FC                    | 400                                         |
| OK520600020170B                    | Julian Creek                 | 9/28/1999             | 600                                    | FC                    | 400                                         |
| OK520600020170B                    | Julian Creek                 | 12/7/1999             | 1800                                   | FC                    | 2000                                        |
| OK520600020170B                    | Julian Creek                 | 1/11/2000             | 1800                                   | FC                    | 2000                                        |
| OK520600020170B                    | Julian Creek                 |                       | 100                                    | FC                    | 2000                                        |
|                                    |                              | 2/15/2000             |                                        | FC                    |                                             |
| OK520600020170B<br>OK520600020170B | Julian Creek<br>Julian Creek | 3/21/2000<br>5/2/2000 | 300<br>1600                            | FC                    | 2000<br>400                                 |

| WQM Station                        | Water Body Name                          | Date                   | Bacteria<br>Concentration<br>(#/100ml) | Bacteria<br>Indicator | Single<br>Sample<br>Criteria *<br>(#/100ml) |
|------------------------------------|------------------------------------------|------------------------|----------------------------------------|-----------------------|---------------------------------------------|
| OK520600020170B                    | Julian Creek                             | 5/2/2000               | 1800                                   | FC                    | 400                                         |
| OK520600020170B                    | Julian Creek                             | 5/2/2000               | 2400                                   | FC                    | 400                                         |
| OK520600020170B                    | Julian Creek                             | 6/6/2000               | 700                                    | FC                    | 400                                         |
| OK520600020170B                    | Julian Creek                             | 6/6/2000               | 400                                    | FC                    | 400                                         |
| OK520600020170B                    | Julian Creek                             | 7/11/2000              | 170                                    | FC                    | 400                                         |
| OK520600020170B                    | Julian Creek                             | 7/11/2000              | 80                                     | FC                    | 400                                         |
| OK520600020170B                    | Julian Creek                             | 7/11/2000              | 200                                    | FC                    | 400                                         |
| OK520600020170B                    | Julian Creek                             | 8/15/2000              | 1200                                   | FC                    | 400                                         |
| OK520600020170B                    | Julian Creek                             | 8/15/2000              | 5000                                   | FC                    | 400                                         |
| OK520600020170B                    | Julian Creek                             | 9/19/2000              | 5000                                   | FC                    | 400                                         |
| OK520600020170B                    | Julian Creek                             | 10/24/2000             | 3000                                   | FC                    | 2000                                        |
| OK520600020170B                    | Julian Creek                             | 10/24/2000             | 7000                                   | FC                    | 2000                                        |
| OK520600020170B                    | Julian Creek                             | 11/28/2000             | 140                                    | FC                    | 2000                                        |
| OK520600020170B                    | Julian Creek                             | 11/28/2000             | 200                                    | FC                    | 2000                                        |
| OK520600020170B                    | Julian Creek                             | 1/9/2001               | 30                                     | FC                    | 2000                                        |
| OK520600020170B                    | Julian Creek                             | 1/9/2001               | 20                                     | FC                    | 2000                                        |
| OK520600020170B                    | Julian Creek                             | 2/13/2001              | 300                                    | FC                    | 2000                                        |
| OK520600020170B                    | Julian Creek                             | 3/20/2001              | 10                                     | FC                    | 2000                                        |
| OK520600020170B                    | Julian Creek                             | 8/15/2000              | 425                                    | EC                    | 406                                         |
| OK520600020170B                    | Julian Creek                             | 9/19/2000              | 4352                                   | EC                    | 406                                         |
| OK520600020170B                    | Julian Creek                             | 10/24/2000             | 669                                    | EC                    | 2030                                        |
| OK520600020170B                    | Julian Creek                             | 11/28/2000             | 169                                    | EC                    | 2030                                        |
| OK520600020170B                    | Julian Creek                             | 1/9/2001               | 20                                     | EC                    | 2030                                        |
| OK520600020170B                    | Julian Creek                             | 2/13/2001              | 388                                    | EC                    | 2030                                        |
| OK520600020170B                    | Julian Creek                             | 3/20/2001              | 20                                     | EC                    | 2030                                        |
| OK520600020170B                    | Julian Creek                             | 9/19/2000              | 700                                    | ENT                   | 108                                         |
| OK520600020170B                    | Julian Creek                             | 10/24/2000             | 10000                                  | ENT                   | 540                                         |
| OK520600020170B                    | Julian Creek                             | 10/24/2000             | 11000                                  | ENT                   | 540                                         |
| OK520600020170B                    | Julian Creek                             | 11/28/2000             | 4000                                   | ENT                   | 540                                         |
| OK520600020170B                    | Julian Creek                             | 11/28/2000             | 2000                                   | ENT                   | 540                                         |
| OK520600020170B                    | Julian Creek                             | 1/9/2001               | 3000                                   | ENT                   | 540                                         |
| OK520600020170B                    | Julian Creek                             | 1/9/2001               | 500                                    | ENT                   | 540                                         |
| OK520600020170B                    | Julian Creek                             | 2/13/2001              | 600                                    | ENT                   | 540                                         |
| OK520600020170B                    | Julian Creek                             | 2/13/2001              | 300                                    | ENT                   | 540                                         |
| OK520600020170B                    | Julian Creek                             | 3/20/2001              | 90                                     | ENT                   | 540                                         |
| OK520600020170B                    | Julian Creek                             | 3/20/2001              | 110                                    | ENT                   | 540                                         |
| OK520600030030E                    | Spring Brook Creek                       | 4/20/1999              | 21000                                  | FC                    | 2000                                        |
| OK520600030030E                    | Spring Brook Creek                       | 5/18/1999              | 10000                                  | FC                    | 400                                         |
| OK520600030030E                    | Spring Brook Creek                       | 6/15/1999              | 200                                    | FC                    | 400                                         |
| OK520600030030E                    | Spring Brook Creek                       | 7/13/1999              | 200                                    | FC                    | 400                                         |
| OK520600030030E                    | Spring Brook Creek                       | 8/17/1999              | 100                                    | FC                    | 400                                         |
| OK520600030030E                    |                                          | 9/28/1999              | 500                                    | FC                    | 400                                         |
|                                    | Spring Brook Creek                       |                        |                                        | FC                    |                                             |
| OK520600030030E<br>OK520600030030E | Spring Brook Creek<br>Spring Brook Creek | 11/2/1999<br>12/7/1999 | 1000<br>800                            | FC                    | 2000<br>2000                                |

| WQM Station          | Water Body Name                | Date       | Bacteria<br>Concentration<br>(#/100ml) | Bacteria<br>Indicator | Single<br>Sample<br>Criteria *<br>(#/100ml) |
|----------------------|--------------------------------|------------|----------------------------------------|-----------------------|---------------------------------------------|
| OK520600030030E      | Spring Brook Creek             | 1/11/2000  | 100                                    | FC                    | 2000                                        |
| OK520600030030E      | Spring Brook Creek             | 2/15/2000  | 100                                    | FC                    | 2000                                        |
| OK520600030030E      | Spring Brook Creek             | 3/21/2000  | 400                                    | FC                    | 2000                                        |
| OK520600030030E      | Spring Brook Creek             | 5/2/2000   | 7000                                   | FC                    | 400                                         |
| OK520600030030E      | Spring Brook Creek             | 6/6/2000   | 100                                    | FC                    | 400                                         |
| OK520600030030E      | Spring Brook Creek             | 7/11/2000  | 2900                                   | FC                    | 400                                         |
| OK520600030030E      | Spring Brook Creek             | 10/24/2000 | 310                                    | FC                    | 2000                                        |
| OK520600030030E      | Spring Brook Creek             | 11/28/2000 | 200                                    | FC                    | 2000                                        |
| OK520600030030E      | Spring Brook Creek             | 1/9/2001   | 90                                     | FC                    | 2000                                        |
| OK520600030030E      | Spring Brook Creek             | 2/13/2001  | 1200                                   | FC                    | 2000                                        |
| OK520600030030E      | Spring Brook Creek             | 3/20/2001  | 130                                    | FC                    | 2000                                        |
| OK520600030030E      | Spring Brook Creek             | 10/24/2000 | 5172                                   | EC                    | 2030                                        |
| OK520600030030E      | Spring Brook Creek             | 11/28/2000 | 408                                    | EC                    | 2030                                        |
| OK520600030030E      | Spring Brook Creek             | 1/9/2001   | 135                                    | EC                    | 2030                                        |
| OK520600030030E      | Spring Brook Creek             | 2/13/2001  | 1039                                   | EC                    | 2030                                        |
| OK520600030030E      | Spring Brook Creek             | 3/20/2001  | 120                                    | EC                    | 2030                                        |
| OK520600030030E      | Spring Brook Creek             | 10/24/2000 | 70000                                  | ENT                   | 540                                         |
| OK520600030030E      | Spring Brook Creek             | 11/28/2000 | 5000                                   | ENT                   | 540                                         |
| OK520600030030E      | Spring Brook Creek             | 1/9/2001   | 900                                    | ENT                   | 540                                         |
| OK520600030030E      | Spring Brook Creek             | 2/13/2001  | 13000                                  | ENT                   | 540                                         |
| OK520600030030E      | Spring Brook Creek             | 3/20/2001  | 700                                    | ENT                   | 540                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 6/16/1999  | 2100                                   | FC                    | 400                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 7/19/1999  | 350                                    | FC                    | 400                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 8/11/1999  | 60                                     | FC                    | 400                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 5/8/2000   | 260                                    | FC                    | 400                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 6/12/2000  | 150                                    | FC                    | 400                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 7/24/2000  | 900                                    | FC                    | 400                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 8/14/2000  | 20                                     | FC                    | 400                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 9/11/2000  | 1800                                   | FC                    | 400                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 5/16/2001  | 500                                    | FC                    | 400                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 6/11/2001  | 400                                    | FC                    | 400                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 7/16/2001  | 170                                    | FC                    | 400                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 7/18/2001  | 20                                     | FC                    | 400                                         |
|                      |                                |            |                                        | FC                    |                                             |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 8/13/2001  | 300                                    |                       | 400                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 8/15/2001  | 5                                      | FC                    | 400                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 9/4/2001   | 200                                    | FC                    | 400                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 6/16/1999  | 389                                    | EC                    | 406                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 7/19/1999  | 288                                    | EC                    | 406                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 8/11/1999  | 10                                     | EC                    | 406                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 5/8/2000   | 314                                    | EC                    | 406                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 6/12/2000  | 148                                    | EC                    | 406                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 7/24/2000  | 51                                     | EC                    | 406                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 8/14/2000  | 5                                      | EC                    | 406                                         |

| WQM Station          | Water Body Name                | Date      | Bacteria<br>Concentration<br>(#/100ml) | Bacteria<br>Indicator | Single<br>Sample<br>Criteria *<br>(#/100ml) |
|----------------------|--------------------------------|-----------|----------------------------------------|-----------------------|---------------------------------------------|
| OK520610010010-001AT | Canadian River, US 77, Purcell | 9/11/2000 | 41                                     | EC                    | 406                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 5/16/2001 | 20                                     | EC                    | 406                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 6/11/2001 | 121                                    | EC                    | 406                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 7/16/2001 | 30                                     | EC                    | 406                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 7/18/2001 | 10                                     | EC                    | 406                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 8/13/2001 | 74                                     | EC                    | 406                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 8/15/2001 | 10                                     | EC                    | 406                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 9/4/2001  | 20                                     | EC                    | 406                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 6/16/1999 | 170                                    | ENT                   | 108                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 7/19/1999 | 5                                      | ENT                   | 108                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 8/11/1999 | 5                                      | ENT                   | 108                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 5/8/2000  | 140                                    | ENT                   | 108                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 6/12/2000 | 20                                     | ENT                   | 108                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 7/24/2000 | 120                                    | ENT                   | 108                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 8/14/2000 | 2800                                   | ENT                   | 108                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 9/11/2000 | 1200                                   | ENT                   | 108                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 5/16/2001 | 70                                     | ENT                   | 108                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 6/11/2001 | 300                                    | ENT                   | 108                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 7/16/2001 | 18000                                  | ENT                   | 108                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 7/18/2001 | 8000                                   | ENT                   | 108                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 8/13/2001 | 520                                    | ENT                   | 108                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 8/15/2001 | 100                                    | ENT                   | 108                                         |
| OK520610010010-001AT | Canadian River, US 77, Purcell | 9/4/2001  | 90                                     | ENT                   | 108                                         |
| OK520610010080G      | Willow Creek                   | 5/21/1997 | 16000                                  | FC                    | 400                                         |
| OK520610010080G      | Willow Creek                   | 6/22/1997 | 700                                    | FC                    | 400                                         |
| OK520610010080G      | Willow Creek                   | 6/22/1997 | 500                                    | FC                    | 400                                         |
| OK520610010080G      | Willow Creek                   | 8/12/1997 | 16000                                  | FC                    | 400                                         |
| OK520610010080G      | Willow Creek                   | 9/15/1997 | 160000                                 | FC                    | 400                                         |
| OK520610010080G      | Willow Creek                   | 5/18/1999 | 1300                                   | FC                    | 400                                         |
| OK520610010080G      | Willow Creek                   | 6/15/1999 | 400                                    | FC                    | 400                                         |
| OK520610010080G      | Willow Creek                   | 8/17/1999 | 100                                    | FC                    | 400                                         |
| OK520610010080G      | Willow Creek                   | 9/28/1999 | 1400                                   | FC                    | 400                                         |
| OK520610010080G      | Willow Creek                   | 11/2/1999 | 100                                    | FC                    | 2000                                        |
| OK520610010080G      | Willow Creek                   | 12/7/1999 | 1300                                   | FC                    | 2000                                        |
| OK520610010080G      | Willow Creek                   | 1/11/2000 | 100                                    | FC                    | 2000                                        |
| OK520610010080G      | Willow Creek                   | 2/15/2000 | 300                                    | FC                    | 2000                                        |
| OK520610010080G      | Willow Creek                   | 3/21/2000 | 7000                                   | FC                    | 2000                                        |
| OK520610010080G      | Willow Creek                   | 5/2/2000  | 8000                                   | FC                    | 400                                         |
| OK520610010080G      | Willow Creek                   | 6/6/2000  | 400                                    | FC                    | 400                                         |
| OK520610010080G      | Willow Creek                   | 7/11/2000 | 680                                    | FC                    | 400                                         |
| OK520610010080G      | Willow Creek                   | 8/15/2000 | 460                                    | FC                    | 400                                         |
| OK520610010080G      | Willow Creek                   | 9/19/2000 | 1100                                   | FC                    | 400                                         |
| OK520610010080G      | Willow Creek                   | 9/19/2000 | 1300                                   | FC                    | 400                                         |

| WQM Station     | Water Body Name                | Date       | Bacteria<br>Concentration<br>(#/100ml) | Bacteria<br>Indicator | Single<br>Sample<br>Criteria *<br>(#/100ml) |
|-----------------|--------------------------------|------------|----------------------------------------|-----------------------|---------------------------------------------|
| OK520610010080G | Willow Creek                   | 10/24/2000 | 10                                     | FC                    | 2000                                        |
| OK520610010080G | Willow Creek                   | 11/28/2000 | 500                                    | FC                    | 2000                                        |
| OK520610010080G | Willow Creek                   | 1/9/2001   | 700                                    | FC                    | 2000                                        |
| OK520610010080G | Willow Creek                   | 2/13/2001  | 1000                                   | FC                    | 2000                                        |
| OK520610010080G | Willow Creek                   | 3/20/2001  | 1300                                   | FC                    | 2000                                        |
| OK520610010080G | Willow Creek                   | 8/15/2000  | 131                                    | EC                    | 406                                         |
| OK520610010080G | Willow Creek                   | 9/19/2000  | 617                                    | EC                    | 406                                         |
| OK520610010080G | Willow Creek                   | 10/24/2000 | 8664                                   | EC                    | 2030                                        |
| OK520610010080G | Willow Creek                   | 11/28/2000 | 408                                    | EC                    | 2030                                        |
| OK520610010080G | Willow Creek                   | 1/9/2001   | 110                                    | EC                    | 2030                                        |
| OK520610010080G | Willow Creek                   | 2/13/2001  | 416                                    | EC                    | 2030                                        |
| OK520610010080G | Willow Creek                   | 3/20/2001  | 1148                                   | EC                    | 2030                                        |
| OK520610010080G | Willow Creek                   | 9/19/2000  | 6000                                   | ENT                   | 108                                         |
| OK520610010080G | Willow Creek                   | 10/24/2000 | 141000                                 | ENT                   | 540                                         |
| OK520610010080G | Willow Creek                   | 11/28/2000 | 2000                                   | ENT                   | 540                                         |
| OK520610010080G | Willow Creek                   | 1/9/2001   | 5000                                   | ENT                   | 540                                         |
| OK520610010080G | Willow Creek                   | 2/13/2001  | 600                                    | ENT                   | 540                                         |
| OK520610010080G | Willow Creek                   | 3/20/2001  | 500                                    | ENT                   | 540                                         |
| OK520610010180G | Bishop Creek: near Jenkins St. | 5/21/1997  | 1100                                   | FC                    | 400                                         |
| OK520610010180G | Bishop Creek: near Jenkins St. | 6/22/1997  | 230                                    | FC                    | 400                                         |
| OK520610010180G | Bishop Creek: near Jenkins St. | 7/22/1997  | 500                                    | FC                    | 400                                         |
| OK520610010180G | Bishop Creek: near Jenkins St. | 9/15/1997  | 2200                                   | FC                    | 400                                         |
| OK520610020120G | Buggy Creek                    | 5/16/2000  | 900                                    | FC                    | 400                                         |
| OK520610020120G | Buggy Creek                    | 6/20/2000  | 1000                                   | FC                    | 400                                         |
| OK520610020120G | Buggy Creek                    | 7/25/2000  | 400                                    | FC                    | 400                                         |
| OK520610020120G | Buggy Creek                    | 8/29/2000  | 570                                    | FC                    | 400                                         |
| OK520610020120G | Buggy Creek                    | 10/3/2000  | 200                                    | FC                    | 2000                                        |
| OK520610020120G | Buggy Creek                    | 11/14/2000 | 100                                    | FC                    | 2000                                        |
| OK520610020120G | Buggy Creek                    | 12/18/2000 | 40                                     | FC                    | 2000                                        |
| OK520610020120G | Buggy Creek                    | 3/5/2001   | 0                                      | FC                    | 2000                                        |
| OK520610020120G | Buggy Creek                    | 5/14/2001  | 0                                      | FC                    | 400                                         |
| OK520610020120G | Buggy Creek                    | 6/18/2001  | 600                                    | FC                    | 400                                         |
| OK520610020120G | Buggy Creek                    | 8/27/2001  | 600                                    | FC                    | 400                                         |
| OK520610020120G | Buggy Creek                    | 9/18/2001  | 600                                    | FC                    | 400                                         |
| OK520610020120G | Buggy Creek                    | 10/1/2001  | 320                                    | FC                    | 2000                                        |
| OK520610020120G | Buggy Creek                    | 11/5/2001  | 250                                    | FC                    | 2000                                        |
| OK520610020120G | Buggy Creek                    | 11/5/2001  | 85                                     | FC                    | 2000                                        |
| OK520610020120G | Buggy Creek                    | 8/29/2000  | 73                                     | EC                    | 406                                         |
| OK520610020120G | Buggy Creek                    | 10/3/2000  | 41                                     | EC                    | 2030                                        |
| OK520610020120G | Buggy Creek                    | 11/14/2000 | 281                                    | EC                    | 2030                                        |
| OK520610020120G | Buggy Creek                    | 12/18/2000 | 98                                     | EC                    | 2030                                        |
| OK520610020120G | Buggy Creek                    | 6/18/2001  | 120                                    | EC                    | 406                                         |
| OK520610020120G | Buggy Creek                    | 7/23/2001  | 520                                    | EC                    | 400                                         |
| OK520610020120G | Buggy Creek                    | 8/14/2001  | 460                                    | EC                    | 406                                         |

| WQM Station          | Water Body Name                   | Date       | Bacteria<br>Concentration<br>(#/100ml) | Bacteria<br>Indicator | Single<br>Sample<br>Criteria *<br>(#/100ml) |
|----------------------|-----------------------------------|------------|----------------------------------------|-----------------------|---------------------------------------------|
| OK520610020120G      | Buggy Creek                       | 8/27/2001  | 800                                    | EC                    | 406                                         |
| OK520610020120G      | Buggy Creek                       | 9/18/2001  | 1600                                   | EC                    | 406                                         |
| OK520610020120G      | Buggy Creek                       | 10/1/2001  | 170                                    | EC                    | 2030                                        |
| OK520610020120G      | Buggy Creek                       | 10/22/2001 | 100                                    | EC                    | 2030                                        |
| OK520610020120G      | Buggy Creek                       | 11/5/2001  | 180                                    | EC                    | 2030                                        |
| OK520610020120G      | Buggy Creek                       | 4/23/2002  | 230                                    | EC                    | 2030                                        |
| OK520610020120G      | Buggy Creek                       | 7/9/2002   | 60                                     | EC                    | 406                                         |
| OK520610020120G      | Buggy Creek                       | 8/6/2002   | 155                                    | EC                    | 406                                         |
| OK520610020120G      | Buggy Creek                       | 9/9/2002   | 40                                     | EC                    | 406                                         |
| OK520610020120G      | Buggy Creek                       | 10/15/2002 | 20                                     | EC                    | 2030                                        |
| OK520610020120G      | Buggy Creek                       | 4/7/2003   | 1800                                   | EC                    | 2030                                        |
| OK520610020120G      | Buggy Creek                       | 5/12/2003  | 670                                    | EC                    | 406                                         |
| OK520610020120G      | Buggy Creek                       | 6/16/2003  | 60                                     | EC                    | 406                                         |
| OK520610020120G      | Buggy Creek                       | 8/29/2000  | 330                                    | ENT                   | 108                                         |
| OK520610020120G      | Buggy Creek                       | 10/3/2000  | 1600                                   | ENT                   | 540                                         |
| OK520610020120G      | Buggy Creek                       | 11/14/2000 | 1400                                   | ENT                   | 540                                         |
| OK520610020120G      | Buggy Creek                       | 12/18/2000 | 1300                                   | ENT                   | 540                                         |
| OK520610020120G      | Buggy Creek                       | 3/5/2001   | 0                                      | ENT                   | 540                                         |
| OK520610020120G      | Buggy Creek                       | 5/14/2001  | 0                                      | ENT                   | 108                                         |
| OK520610020120G      | Buggy Creek                       | 6/18/2001  | 200                                    | ENT                   | 108                                         |
| OK520610020120G      | Buggy Creek                       | 7/23/2001  | 85                                     | ENT                   | 108                                         |
| OK520610020120G      | Buggy Creek                       | 8/14/2001  | 163                                    | ENT                   | 108                                         |
| OK520610020120G      | Buggy Creek                       | 8/27/2001  | 450                                    | ENT                   | 108                                         |
| OK520610020120G      | Buggy Creek                       | 10/1/2001  | 90                                     | ENT                   | 540                                         |
| OK520610020120G      | Buggy Creek                       | 10/22/2001 | 110                                    | ENT                   | 540                                         |
| OK520610020120G      | Buggy Creek                       | 11/5/2001  | 380                                    | ENT                   | 540                                         |
| OK520610020120G      | Buggy Creek                       | 11/5/2001  | 100                                    | ENT                   | 540                                         |
| OK520610020120G      | Buggy Creek                       | 4/23/2002  | 160                                    | ENT                   | 540                                         |
| OK520610020120G      | Buggy Creek                       | 5/29/2002  | 130                                    | ENT                   | 108                                         |
| OK520610020120G      | Buggy Creek                       | 7/9/2002   | 280                                    | ENT                   | 108                                         |
| OK520610020120G      | Buggy Creek                       | 8/6/2002   | 315                                    | ENT                   | 108                                         |
| OK520610020120G      | Buggy Creek                       | 9/9/2002   | 30                                     | ENT                   | 108                                         |
| OK520610020120G      | Buggy Creek                       | 10/15/2002 | 60                                     | ENT                   | 540                                         |
| OK520610020120G      | Buggy Creek                       | 4/7/2003   | 310                                    | ENT                   | 540                                         |
| OK520610020120G      | Buggy Creek                       | 5/12/2003  | 340                                    | ENT                   | 108                                         |
| OK520610020120G      | Buggy Creek                       | 6/16/2003  | 220                                    | ENT                   | 108                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 6/16/1999  | 120                                    | FC                    | 400                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 7/12/1999  | 1500                                   | FC                    | 400                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 8/18/1999  | 1400                                   | FC                    | 400                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 9/15/1999  | 70                                     | FC                    | 400                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 5/9/2000   | 540                                    | FC                    | 400                                         |
|                      |                                   |            |                                        | FC                    |                                             |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 6/13/2000  | 100                                    |                       | 400                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 7/19/2000  | 130                                    | FC                    | 400                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 8/16/2000  | 5                                      | FC                    | 400                                         |

| WQM Station          | Water Body Name                   | Date      | Bacteria<br>Concentration<br>(#/100ml) | Bacteria<br>Indicator | Single<br>Sample<br>Criteria *<br>(#/100ml) |
|----------------------|-----------------------------------|-----------|----------------------------------------|-----------------------|---------------------------------------------|
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 9/13/2000 | 5                                      | FC                    | 400                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 5/22/2001 | 21000                                  | FC                    | 400                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 6/18/2001 | 350                                    | FC                    | 400                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 7/23/2001 | 40                                     | FC                    | 400                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 8/20/2001 | 50                                     | FC                    | 400                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 9/17/2001 | 80                                     | FC                    | 400                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 5/14/2002 | 20                                     | FC                    | 400                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 6/12/2002 | 30                                     | FC                    | 400                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 7/17/2002 | 10                                     | FC                    | 400                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 8/14/2002 | 120                                    | FC                    | 400                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 5/12/2003 | 310                                    | FC                    | 400                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 5/27/2003 | 30                                     | FC                    | 400                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 6/16/2003 | 2000                                   | FC                    | 400                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 6/30/2003 | 30                                     | FC                    | 400                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 8/25/2003 | 130                                    | FC                    | 400                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 9/8/2003  | 90                                     | FC                    | 400                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 9/29/2003 | 50                                     | FC                    | 400                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 6/16/1999 | 122                                    | EC                    | 406                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 7/12/1999 | 884                                    | EC                    | 406                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 8/18/1999 | 85                                     | EC                    | 406                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 9/15/1999 | 110                                    | EC                    | 406                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 5/9/2000  | 404                                    | EC                    | 406                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 6/13/2000 | 62                                     | EC                    | 406                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 7/19/2000 | 5                                      | EC                    | 406                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 8/16/2000 | 5                                      | EC                    | 406                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 9/13/2000 | 5                                      | EC                    | 406                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 5/22/2001 | 12033                                  | EC                    | 406                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 6/18/2001 | 96                                     | EC                    | 406                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 7/23/2001 | 10                                     | EC                    | 406                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 8/20/2001 | 5                                      | EC                    | 406                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 9/17/2001 | 30                                     | EC                    | 406                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 5/14/2002 | 20                                     | EC                    | 406                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 6/12/2002 | 20                                     | EC                    | 406                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 7/17/2002 | 10                                     | EC                    | 406                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 8/14/2002 | 10                                     | EC                    | 406                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 5/12/2003 | 41                                     | EC                    | 406                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 5/27/2003 | 52                                     | EC                    | 406                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 6/16/2003 | 247                                    | EC                    | 406                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 6/30/2003 | 10                                     | EC                    | 406                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 7/21/2003 | 31                                     | EC                    | 406                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 8/25/2003 | 10                                     | EC                    | 406                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 9/8/2003  | 97                                     | EC                    | 406                                         |

| WQM Station          | Water Body Name                   | Date       | Bacteria<br>Concentration<br>(#/100ml) | Bacteria<br>Indicator | Single<br>Sample<br>Criteria *<br>(#/100ml) |
|----------------------|-----------------------------------|------------|----------------------------------------|-----------------------|---------------------------------------------|
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 9/29/2003  | 10                                     | EC                    | 406                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 6/16/1999  | 40                                     | ENT                   | 108                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 7/12/1999  | 50                                     | ENT                   | 108                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 8/18/1999  | 60                                     | ENT                   | 108                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 9/15/1999  | 90                                     | ENT                   | 108                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 5/9/2000   | 900                                    | ENT                   | 108                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 6/13/2000  | 130                                    | ENT                   | 108                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 7/19/2000  | 70                                     | ENT                   | 108                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 8/16/2000  | 5                                      | ENT                   | 108                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 9/13/2000  | 5                                      | ENT                   | 108                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 5/22/2001  | 7000                                   | ENT                   | 108                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 6/18/2001  | 110                                    | ENT                   | 108                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 7/23/2001  | 70                                     | ENT                   | 108                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 8/20/2001  | 90                                     | ENT                   | 108                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 9/17/2001  | 900                                    | ENT                   | 108                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 5/14/2002  | 70                                     | ENT                   | 108                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 6/12/2002  | 20                                     | ENT                   | 108                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 7/17/2002  | 30                                     | ENT                   | 108                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 8/14/2002  | 300                                    | ENT                   | 108                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 5/12/2003  | 100                                    | ENT                   | 108                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 5/27/2003  | 30                                     | ENT                   | 108                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 6/16/2003  | 3000                                   | ENT                   | 108                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 6/30/2003  | 110                                    | ENT                   | 108                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 7/21/2003  | 70                                     | ENT                   | 108                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 8/25/2003  | 500                                    | ENT                   | 108                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 9/8/2003   | 100                                    | ENT                   | 108                                         |
| OK520610020150-001AT | Canadian River, US 66, Bridgeport | 9/29/2003  | 230                                    | ENT                   | 108                                         |
| OK520610030080G      | Walnut Creek: North Fork          | 5/16/2000  | 400                                    | FC                    | 400                                         |
| OK520610030080G      | Walnut Creek: North Fork          | 6/20/2000  | 3500                                   | FC                    | 400                                         |
| OK520610030080G      | Walnut Creek: North Fork          | 7/25/2000  | 6000                                   | FC                    | 400                                         |
| OK520610030080G      | Walnut Creek: North Fork          | 8/29/2000  | 120                                    | FC                    | 400                                         |
| OK520610030080G      | Walnut Creek: North Fork          | 10/3/2000  | 400                                    | FC                    | 2000                                        |
| OK520610030080G      | Walnut Creek: North Fork          | 12/18/2000 | 900                                    | FC                    | 2000                                        |
| OK520610030080G      | Walnut Creek: North Fork          | 3/5/2001   | 0                                      | FC                    | 2000                                        |
| OK520610030080G      | Walnut Creek: North Fork          | 4/9/2001   | 500                                    | FC                    | 2000                                        |
| OK520610030080G      | Walnut Creek: North Fork          | 4/9/2001   | 0                                      | FC                    | 2000                                        |
| OK520610030080G      | Walnut Creek: North Fork          | 5/14/2001  | 0                                      | FC                    | 400                                         |
| OK520610030080G      | Walnut Creek: North Fork          | 6/18/2001  | 100                                    | FC                    | 400                                         |
| OK520610030080G      | Walnut Creek: North Fork          | 7/23/2001  | 230                                    | FC                    | 400                                         |
| OK520610030080G      | Walnut Creek: North Fork          | 8/27/2001  | 600                                    | FC                    | 400                                         |
| OK520610030080G      | Walnut Creek: North Fork          | 10/1/2001  | 110                                    | FC                    | 2000                                        |
| OK520610030080G      | Walnut Creek: North Fork          | 11/5/2001  | 460                                    | FC                    | 2000                                        |
| OK520610030080G      | Walnut Creek: North Fork          | 11/5/2001  | 55                                     | FC                    | 2000                                        |

| WQM Station          | Water Body Name              | Date       | Bacteria<br>Concentration<br>(#/100ml) | Bacteria<br>Indicator | Single<br>Sample<br>Criteria *<br>(#/100ml) |
|----------------------|------------------------------|------------|----------------------------------------|-----------------------|---------------------------------------------|
| OK520610030080G      | Walnut Creek: North Fork     | 8/29/2000  | 52                                     | EC                    | 406                                         |
| OK520610030080G      | Walnut Creek: North Fork     | 10/3/2000  | 537                                    | EC                    | 2030                                        |
| OK520610030080G      | Walnut Creek: North Fork     | 12/18/2000 | 988                                    | EC                    | 2030                                        |
| OK520610030080G      | Walnut Creek: North Fork     | 6/18/2001  | 52                                     | EC                    | 406                                         |
| OK520610030080G      | Walnut Creek: North Fork     | 7/23/2001  | 135                                    | EC                    | 406                                         |
| OK520610030080G      | Walnut Creek: North Fork     | 8/27/2001  | 800                                    | EC                    | 406                                         |
| OK520610030080G      | Walnut Creek: North Fork     | 10/1/2001  | 180                                    | EC                    | 2030                                        |
| OK520610030080G      | Walnut Creek: North Fork     | 11/5/2001  | 230                                    | EC                    | 2030                                        |
| OK520610030080G      | Walnut Creek: North Fork     | 8/29/2000  | 110                                    | ENT                   | 108                                         |
| OK520610030080G      | Walnut Creek: North Fork     | 10/3/2000  | 1300                                   | ENT                   | 540                                         |
| OK520610030080G      | Walnut Creek: North Fork     | 12/18/2000 | 13000                                  | ENT                   | 540                                         |
| OK520610030080G      | Walnut Creek: North Fork     | 3/5/2001   | 0                                      | ENT                   | 540                                         |
| OK520610030080G      | Walnut Creek: North Fork     | 4/9/2001   | 90                                     | ENT                   | 540                                         |
| OK520610030080G      | Walnut Creek: North Fork     | 4/9/2001   | 0                                      | ENT                   | 540                                         |
| OK520610030080G      | Walnut Creek: North Fork     | 5/14/2001  | 0                                      | ENT                   | 108                                         |
| OK520610030080G      | Walnut Creek: North Fork     | 6/18/2001  | 100                                    | ENT                   | 108                                         |
| OK520610030080G      | Walnut Creek: North Fork     | 7/23/2001  | 340                                    | ENT                   | 108                                         |
| OK520610030080G      | Walnut Creek: North Fork     | 8/27/2001  | 630                                    | ENT                   | 108                                         |
| OK520610030080G      | Walnut Creek: North Fork     | 10/1/2001  | 170                                    | ENT                   | 540                                         |
| OK520610030080G      | Walnut Creek: North Fork     | 11/5/2001  | 170                                    | ENT                   | 540                                         |
| OK520610030080G      | Walnut Creek: North Fork     | 11/5/2001  | 135                                    | ENT                   | 540                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 6/15/1999  | 220                                    | FC                    | 400                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 7/13/1999  | 1200                                   | FC                    | 400                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 8/11/1999  | 160                                    | FC                    | 400                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 9/21/1999  | 510                                    | FC                    | 400                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 5/8/2000   | 130                                    | FC                    | 400                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 6/12/2000  | 390                                    | FC                    | 400                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 7/24/2000  | 700                                    | FC                    | 400                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 8/14/2000  | 80                                     | FC                    | 400                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 9/11/2000  | 5                                      | FC                    | 400                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 5/16/2001  | 60                                     | FC                    | 400                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 6/13/2001  | 120                                    | FC                    | 400                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 7/18/2001  | 80                                     | FC                    | 400                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 8/15/2001  | 40                                     | FC                    | 400                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 9/5/2001   | 600                                    | FC                    | 400                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 5/20/2002  | 900                                    | FC                    | 400                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 6/10/2002  | 10                                     | FC                    | 400                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 7/16/2002  | 80                                     | FC                    | 400                                         |
| OK520800010010-001AT |                              |            | 40                                     | FC                    | 400                                         |
|                      | Little River, SH 56, Sasakwa | 9/17/2002  |                                        |                       |                                             |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 6/15/1999  | 185                                    | EC                    | 406                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 7/13/1999  | 74                                     | EC                    | 406                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 8/11/1999  | 41                                     | EC                    | 406                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 9/21/1999  | 637                                    | EC                    | 406                                         |

| WQM Station          | Water Body Name              | Date      | Bacteria<br>Concentration<br>(#/100ml) | Bacteria<br>Indicator | Single<br>Sample<br>Criteria *<br>(#/100ml) |
|----------------------|------------------------------|-----------|----------------------------------------|-----------------------|---------------------------------------------|
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 5/8/2000  | 143                                    | EC                    | 406                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 6/12/2000 | 345                                    | EC                    | 406                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 7/24/2000 | 305                                    | EC                    | 406                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 8/14/2000 | 10                                     | EC                    | 406                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 9/11/2000 | 5                                      | EC                    | 406                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 5/16/2001 | 52                                     | EC                    | 406                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 6/13/2001 | 41                                     | EC                    | 406                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 7/18/2001 | 20                                     | EC                    | 406                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 8/15/2001 | 20                                     | EC                    | 406                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 9/5/2001  | 121                                    | EC                    | 406                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 5/20/2002 | 439                                    | EC                    | 406                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 6/10/2002 | 30                                     | EC                    | 406                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 7/16/2002 | 20                                     | EC                    | 406                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 9/17/2002 | 10                                     | EC                    | 406                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 6/15/1999 | 180                                    | ENT                   | 108                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 7/13/1999 | 200                                    | ENT                   | 108                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 8/11/1999 | 5                                      | ENT                   | 108                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 9/21/1999 | 330                                    | ENT                   | 108                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 5/8/2000  | 500                                    | ENT                   | 108                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 6/12/2000 | 190                                    | ENT                   | 108                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 7/24/2000 | 1000                                   | ENT                   | 108                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 8/14/2000 | 20                                     | ENT                   | 108                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 9/11/2000 | 5                                      | ENT                   | 108                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 5/16/2001 | 100                                    | ENT                   | 108                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 6/13/2001 | 400                                    | ENT                   | 108                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 7/18/2001 | 50                                     | ENT                   | 108                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 8/15/2001 | 20                                     | ENT                   | 108                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 9/5/2001  | 700                                    | ENT                   | 108                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 5/20/2002 | 10                                     | ENT                   | 108                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 6/10/2002 | 80                                     | ENT                   | 108                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 7/16/2002 | 10                                     | ENT                   | 108                                         |
| OK520800010010-001AT | Little River, SH 56, Sasakwa | 9/17/2002 | 60                                     | ENT                   | 108                                         |

EC = E. coli; ENT = enterococci; FC = fecal coliform

\* Single sample criterion for secondary contact recreation season is shown for all samples collected between October 1st and April 30th.

## APPENDIX B NPDES PERMIT DISCHARGE MONITORING REPORT DATA AND SANITARY SEWER OVERFLOW DATA

| Appendix B |  |
|------------|--|
|            |  |

## NPDES Permit Discharge Monitoring Report Data 1998-2006

| NPDES     | Monthly<br>Average<br>Concentration<br>(cfu/100ml) | Monthly<br>Maximum<br>Concentration<br>(cfu/100ml) | Outfall | Report<br>Date | Parameter<br>Code | Parameter | Monthly<br>Average<br>Flow<br>(MGD) | Monthly<br>Maximum<br>Flow<br>(MGD) | Parameter<br>Code | Parameter |
|-----------|----------------------------------------------------|----------------------------------------------------|---------|----------------|-------------------|-----------|-------------------------------------|-------------------------------------|-------------------|-----------|
| OK0021873 | < 20                                               | < 20                                               | 001     | 5/31/1998      | 74055             | FC        | 0.174                               | 0.408                               | 50050             | Flow      |
| OK0021873 | < 20                                               | < 20                                               | 001     | 6/30/1998      | 74055             | FC        | 0.112                               | 0.147                               | 50050             | Flow      |
| OK0021873 | 76                                                 | 120                                                | 001     | 7/31/1998      | 74055             | FC        | 0.087                               | 0.106                               | 50050             | Flow      |
| OK0021873 | < 20                                               | < 20                                               | 001     | 8/31/1998      | 74055             | FC        | 0.09                                | 0.105                               | 50050             | Flow      |
| OK0021873 | 33                                                 | 45                                                 | 001     | 9/30/1998      | 74055             | FC        | 0.105                               | 0.187                               | 50050             | Flow      |
| OK0021873 | 29                                                 | 38                                                 | 001     | 5/31/1999      | 74055             | FC        | 0.289                               | 0.417                               | 50050             | Flow      |
| OK0021873 | 24                                                 | 28                                                 | 001     | 6/30/1999      | 74055             | FC        | 0.274                               | 0.419                               | 50050             | Flow      |
| OK0021873 | < 20                                               | < 20                                               | 001     | 7/31/1999      | 74055             | FC        | 0.195                               | 0.412                               | 50050             | Flow      |
| OK0021873 | < 20                                               | < 20                                               | 001     | 8/31/1999      | 74055             | FC        | 0.0965                              | 0.116                               | 50050             | Flow      |
| OK0021873 | < 20                                               | < 20                                               | 001     | 9/30/1999      | 74055             | FC        | 0.119                               | 0.252                               | 50050             | Flow      |
| OK0021873 | < 20                                               | < 20                                               | 001     | 5/31/2000      | 74055             | FC        | 0.152                               | 0.372                               | 50050             | Flow      |
| OK0021873 | < 20                                               | < 20                                               | 001     | 6/30/2000      | 74055             | FC        | 0.152                               | 0.373                               | 50050             | Flow      |
| OK0021873 | < 20                                               | < 20                                               | 001     | 7/31/2000      | 74055             | FC        | 0.15                                | 0.288                               | 50050             | Flow      |
| OK0021873 | < 20                                               | < 20                                               | 001     | 8/31/2000      | 74055             | FC        | 0.0813                              | 0.0978                              | 50050             | Flow      |
| OK0021873 | < 20                                               | < 20                                               | 001     | 9/30/2000      | 74055             | FC        | 0.079                               | 0.111                               | 50050             | Flow      |
| OK0021873 | < 20                                               | < 20                                               | 001     | 5/31/2001      | 74055             | FC        | 0.192                               | 0.34                                | 50050             | Flow      |
| OK0021873 | < 20                                               | < 20                                               | 001     | 6/30/2001      | 74055             | FC        | 0.107                               | 0.198                               | 50050             | Flow      |
| OK0021873 | 11                                                 | 21                                                 | 001     | 7/31/2001      | 74055             | FC        | 0.0825                              | 0.142                               | 50050             | Flow      |
| OK0021873 | < 20                                               | < 20                                               | 001     | 8/31/2001      | 74055             | FC        | 0.088                               | 0.132                               | 50050             | Flow      |
| OK0021873 | < 20                                               | < 20                                               | 001     | 9/30/2001      | 74055             | FC        | 0.17                                | 0.358                               | 50050             | Flow      |
| OK0021873 | < 20                                               | < 20                                               | 001     | 5/31/2002      | 74055             | FC        | 0.151                               | 0.279                               | 50050             | Flow      |
| OK0021873 | < 20                                               | < 20                                               | 001     | 6/30/2002      | 74055             | FC        | 0.163                               | 0.349                               | 50050             | Flow      |
| OK0021873 | < 20                                               | < 20                                               | 001     | 7/31/2002      | 74055             | FC        | 0.139                               | 0.306                               | 50050             | Flow      |
| OK0021873 | < 20                                               | < 20                                               | 001     | 8/31/2002      | 74055             | FC        | 0.126                               | 0.295                               | 50050             | Flow      |
| OK0021873 | < 20                                               | < 20                                               | 001     | 9/30/2002      | 74055             | FC        | 0.113                               | 0.13                                | 50050             | Flow      |
| OK0021873 | < 20                                               | < 20                                               | 001     | 5/31/2003      | 74055             | FC        | 0.13                                | 0.181                               | 50050             | Flow      |
| OK0021873 | 29.5                                               | 31                                                 | 001     | 6/30/2003      | 74055             | FC        | 0.162                               | 0.321                               | 50050             | Flow      |

| NPDES     | Monthly<br>Average<br>Concentration<br>(cfu/100ml) | Monthly<br>Maximum<br>Concentration<br>(cfu/100ml) | Outfall | Report<br>Date | Parameter<br>Code | Parameter | Monthly<br>Average<br>Flow<br>(MGD) | Monthly<br>Maximum<br>Flow<br>(MGD) | Parameter<br>Code | Parameter |
|-----------|----------------------------------------------------|----------------------------------------------------|---------|----------------|-------------------|-----------|-------------------------------------|-------------------------------------|-------------------|-----------|
| OK0021873 | < 20                                               | < 20                                               | 001     | 7/31/2003      | 74055             | FC        | 0.0898                              | 0.104                               | 50050             | Flow      |
| OK0021873 | 28.5                                               | 37                                                 | 001     | 8/31/2003      | 74055             | FC        | 0.0975                              | 0.26                                | 50050             | Flow      |
| OK0021873 | 35.5                                               | 37                                                 | 001     | 9/30/2003      | 74055             | FC        | 0.145                               | 0.32                                | 50050             | Flow      |
| OK0021873 | < 20                                               | < 20                                               | 001     | 5/31/2004      | 74055             | FC        | 0.106                               | 0.163                               | 50050             | Flow      |
| OK0021873 | < 20                                               | < 20                                               | 001     | 6/30/2004      | 74055             | FC        | 0.149                               | 0.361                               | 50050             | Flow      |
| OK0021873 | < 20                                               | < 20                                               | 001     | 7/31/2004      | 74055             | FC        | 0.182                               | 0.38                                | 50050             | Flow      |
| OK0021873 | < 20                                               | < 20                                               | 001     | 8/31/2004      | 74055             | FC        | 0.108                               | 0.154                               | 50050             | Flow      |
| OK0021873 | < 20                                               | < 20                                               | 001     | 9/30/2004      | 74055             | FC        | 0.0839                              | 0.104                               | 50050             | Flow      |
| OK0021873 | < 20                                               | < 20                                               | 001     | 5/31/2005      | 74055             | FC        | 0.094                               | 0.162                               | 50050             | Flow      |
| OK0021873 | < 20                                               | < 20                                               | 001     | 6/30/2005      | 74055             | FC        | 0.122                               | 0.329                               | 50050             | Flow      |
| OK0021873 | 22                                                 | 24                                                 | 001     | 7/31/2005      | 74055             | FC        | 0.126                               | 0.401                               | 50050             | Flow      |
| OK0021873 | < 20                                               | < 20                                               | 001     | 8/31/2005      | 74055             | FC        | 0.135                               | 0.413                               | 50050             | Flow      |
| OK0021873 | 48.5                                               | 77                                                 | 001     | 9/30/2005      | 74055             | FC        | 0.096                               | 0.137                               | 50050             | Flow      |
| OK0021873 | < 20                                               | < 20                                               | 001     | 5/31/2006      | 74055             | FC        | 0.109                               | 0.249                               | 50050             | Flow      |
| OK0021873 | < 20                                               | < 20                                               | 001     | 6/30/2006      | 74055             | FC        | 0.073                               | 0.091                               | 50050             | Flow      |
| OK0021873 | < 20                                               | < 20                                               | 001     | 7/31/2006      | 74055             | FC        | 0.075                               | 0.111                               | 50050             | Flow      |
| OK0021873 | < 20                                               | < 20                                               | 001     | 8/31/2006      | 74055             | FC        | 0.076                               | 0.104                               | 50050             | Flow      |
| OK0021873 | < 20                                               | < 20                                               | 001     | 9/30/2006      | 74055             | FC        | 0.075                               | 0.194                               | 50050             | Flow      |
| OK0038458 | 0.0                                                | 0.0                                                | 001     | 5/31/1998      | 74055             | FC        | 0.006568                            | 0.012442                            | 50050             | Flow      |
| OK0038458 | 0.0                                                | 0.0                                                | 001     | 6/30/1998      | 74055             | FC        | 0.007                               | 0.014641                            | 50050             | Flow      |
| OK0038458 | 6                                                  | 6                                                  | 001     | 7/31/1998      | 74055             | FC        | 0.006                               | 0.008                               | 50050             | Flow      |
| OK0038458 | 33                                                 | 33                                                 | 001     | 8/31/1998      | 74055             | FC        | 0.007                               | 0.01173                             | 50050             | Flow      |
| OK0038458 | 0                                                  | 0                                                  | 001     | 9/30/1998      | 74055             | FC        | 0.014                               | 0.03                                | 50050             | Flow      |
| OK0038458 | 0                                                  | 0                                                  | 001     | 5/31/1999      | 74055             | FC        | 0.007                               | 0.011                               | 50050             | Flow      |
| OK0038458 |                                                    |                                                    | 001     | 6/30/1999      | 74055             | FC        | 0.008                               | 0.011                               | 50050             | Flow      |
| OK0038458 | 1                                                  | 1                                                  | 001     | 7/31/1999      | 74055             | FC        | 0.007                               | 0.0118                              | 50050             | Flow      |
| OK0038458 | 0                                                  | 0                                                  | 001     | 8/31/1999      | 74055             | FC        | 0.008                               | 0.015                               | 50050             | Flow      |
| OK0038458 | 0                                                  | 0                                                  | 001     | 9/30/1999      | 74055             | FC        | 0.011                               | 0.014                               | 50050             | Flow      |
| OK0038458 | 6                                                  | 6                                                  | 001     | 5/31/2000      | 74055             | FC        | 0.008                               | 0.013                               | 50050             | Flow      |
| OK0038458 | 10                                                 | 10                                                 | 001     | 6/30/2000      | 74055             | FC        | 0.006                               | 0.007                               | 50050             | Flow      |

| NPDES     | Monthly<br>Average<br>Concentration<br>(cfu/100ml) | Monthly<br>Maximum<br>Concentration<br>(cfu/100ml) | Outfall | Report<br>Date | Parameter<br>Code | Parameter | Monthly<br>Average<br>Flow<br>(MGD) | Monthly<br>Maximum<br>Flow<br>(MGD) | Parameter<br>Code | Parameter |
|-----------|----------------------------------------------------|----------------------------------------------------|---------|----------------|-------------------|-----------|-------------------------------------|-------------------------------------|-------------------|-----------|
| OK0038458 | 12                                                 | 12                                                 | 001     | 7/31/2000      | 74055             | FC        | 0.002                               | 0.006                               | 50050             | Flow      |
| OK0038458 | < 1                                                | < 1                                                | 001     | 8/31/2000      | 74055             | FC        | 0.003                               | 0.007                               | 50050             | Flow      |
| OK0038458 | 1                                                  | 1                                                  | 001     | 9/30/2000      | 74055             | FC        | 0.005                               | 0.007                               | 50050             | Flow      |
| OK0038458 | 6000                                               | 6000                                               | 001     | 5/31/2001      | 74055             | FC        | 0.006                               | 0.017                               | 50050             | Flow      |
| OK0038458 | 10                                                 | 10                                                 | 001     | 6/30/2001      | 74055             | FC        | 0.003                               | 0.016                               | 50050             | Flow      |
| OK0038458 | 0                                                  | 0                                                  | 001     | 7/31/2001      | 74055             | FC        | 0.004                               | 0.013                               | 50050             | Flow      |
| OK0038458 | 0                                                  | 0                                                  | 001     | 8/31/2001      | 74055             | FC        | 0.002                               | 0.011                               | 50050             | Flow      |
| OK0038458 | 1                                                  | 1                                                  | 001     | 9/30/2001      | 74055             | FC        | 0.005                               | 0.008                               | 50050             | Flow      |
| OK0038458 | 0                                                  | 0                                                  | 001     | 6/30/2002      | 74055             | FC        | 0.003                               | 0.004                               | 50050             | Flow      |
| OK0038458 | 0                                                  | 0                                                  | 001     | 7/31/2002      | 74055             | FC        | 0.002                               | 0.005                               | 50050             | Flow      |
| OK0038458 | 0                                                  | 0                                                  | 001     | 8/31/2002      | 74055             | FC        | 0.004                               | 0.006                               | 50050             | Flow      |
| OK0038458 | 0                                                  | 0                                                  | 001     | 9/30/2002      | 74055             | FC        | 0.003                               | 0.004                               | 50050             | Flow      |
| OK0038458 | 0                                                  | 0                                                  | 001     | 5/31/2003      | 74055             | FC        | 0.003                               | 0.003                               | 50050             | Flow      |
| OK0038458 | 0                                                  | 0                                                  | 001     | 6/30/2003      | 74055             | FC        | 0.003                               | 0.005                               | 50050             | Flow      |
| OK0038458 | 0                                                  | 0                                                  | 001     | 8/31/2003      | 74055             | FC        | 0.002                               | 0.002                               | 50050             | Flow      |
| OK0038458 | 47                                                 | 47                                                 | 001     | 5/31/2004      | 74055             | FC        | 0.002                               | 0.002                               | 50050             | Flow      |
| OK0038458 |                                                    |                                                    | 001     | 5/31/2006      | 74055             | FC        | 0.003                               | 0.003                               | 50050             | Flow      |
| OK0038458 |                                                    |                                                    | 001     | 6/30/2006      | 74055             | FC        | 0.001                               | 0.001                               | 50050             | Flow      |
| OK0038458 |                                                    |                                                    | 001     | 7/31/2006      | 74055             | FC        | 0.002                               | 0.002                               | 50050             | Flow      |
| OK0038458 |                                                    |                                                    | 001     | 8/31/2006      | 74055             | FC        | 0.004                               | 0.004                               | 50050             | Flow      |
| OK0038458 |                                                    |                                                    | 001     | 9/30/2006      | 74055             | FC        | 0.001                               | 0.001                               | 50050             | Flow      |

| Facility Name          | Date       | Facility<br>ID | Location                                     | Amount<br>(Gal) | Cause                                                           | Type Of<br>Source |
|------------------------|------------|----------------|----------------------------------------------|-----------------|-----------------------------------------------------------------|-------------------|
| BLANCHARD              | 4/30/1990  | S20620         |                                              |                 | RAIN                                                            |                   |
| BLANCHARD              | 5/3/1990   | S20620         | LIFT STATION UNABLE TO LOAD BYPASS           | 0               | EXCESSIVE RAIN                                                  |                   |
| BLANCHARD              | 1/11/1993  | S20620         | SEWER PLANT                                  | 0               | RAINFALL                                                        |                   |
| BLANCHARD              | 5/24/1993  | S20620         | LAGOON                                       | 7000000         | EXCESSIVE RAINS AND I/I                                         |                   |
| BLANCHARD              | 4/28/1999  | S20620         | 623 S. MONROE                                |                 | ELECTRICAL PROBLEM                                              |                   |
| BLANCHARD              | 4/28/1999  | S20620         | 623 S. MONROE                                |                 | ELECTRICAL PROBLEM                                              |                   |
| BLANCHARD              | 6/23/1999  | S20620         | 623 S. MONROE                                |                 |                                                                 |                   |
| BLANCHARD              | 10/16/1999 | S20620         | 500 FT. E. OF SOUTH TYLER & HWY 62           |                 | GREASE                                                          |                   |
| BLANCHARD              | 7/18/2000  | S20620         | 76 HWY & LOVER LANEOF W. OF DOCTOR 'S OFFICE |                 | GREASE                                                          |                   |
| BLANCHARD              | 4/23/2001  | S20620         | BROADWAY & 62 HWY                            | 400             | HOLE IN LINE                                                    | PIPE              |
| BRIDGE CREEK<br>SCHOOL | 10/21/1992 | S20675         | AT FACILITY                                  | 0               | VANDALISM TURNED OFF FLOW<br>VALVE & TURNED ON WATER<br>HYDRANT |                   |
| BRIDGE CREEK<br>SCHOOL | 10/21/1992 | S20675         | AT TREATMENT PLANT                           |                 | VANDALISM                                                       |                   |
| BRIDGE CREEK<br>SCHOOL | 3/21/1994  | S20675         | LAGOON                                       | 50              | OPERATING MISTAKE                                               |                   |
| BRIDGE CREEK<br>SCHOOL | 1/25/1996  | S20675         | WWTP                                         |                 | FLOAT BROKE                                                     |                   |
| HOLDENVILLE            | 2/28/1990  | S20805         | IN THE ALLEY BEHIND 215 S. OAK               |                 | HEAVY RAINS                                                     |                   |
| HOLDENVILLE            | 3/6/1990   | S20805         |                                              |                 | RAINFALL                                                        |                   |
| HOLDENVILLE            | 3/6/1990   | S20805         | AQUA FARM ROAD                               | 1000            | HEAVY RIANFALL                                                  |                   |
| HOLDENVILLE            | 3/6/1990   | S20805         | 215 S. OAK                                   | 5000            | HEAVY RAINFALL                                                  |                   |
| HOLDENVILLE            | 3/6/1990   | S20805         | 200 W. HICKORY                               | 25000           | HEAVY RAINFALL                                                  |                   |
| HOLDENVILLE            | 3/9/1990   | S20805         | AQUA FARM ROAD                               | 1000            | HEAVY RAINFALL                                                  |                   |
| HOLDENVILLE            | 3/9/1990   | S20805         | 215 S. OAK                                   | 2500            | HEAVY RAINFALL                                                  |                   |
| HOLDENVILLE            | 3/9/1990   | S20805         | 200 W. HICKORY                               | 15000           | HEAVY RAINFALL                                                  |                   |
| HOLDENVILLE            | 3/11/1990  | S20805         | 200 W. HICKORY                               | 1000            | HEAVY RAINFALL                                                  |                   |
| HOLDENVILLE            | 3/11/1990  | S20805         | AQUA FARM ROAD                               | 1000            | HEAVY RAINFALL                                                  |                   |
| HOLDENVILLE            | 3/11/1990  | S20805         | 215 S. OAK                                   | 20000           | HEAVY RAINFALL                                                  |                   |
| HOLDENVILLE            | 3/11/1990  | S20805         | 200 W. HICKORY                               | 65000           | HEAVY RAINFALL                                                  |                   |
| HOLDENVILLE            | 3/14/1990  | S20805         | 215 S. OAK                                   | 19500           | HEAVY RAINFALL                                                  |                   |
| HOLDENVILLE            | 3/14/1990  | S20805         | 200 W. HICKORY                               | 48400           | HEAVY RAINFALL                                                  |                   |
| HOLDENVILLE            | 3/14/1990  | S20805         | AQUA FARM ROAD                               | 72000           | HEAVY RAINFALL                                                  |                   |
| HOLDENVILLE            | 3/27/1990  | S20805         | MANHOLEAT 200 W. HICKORY                     | 5000            | HEAVY RAINFALL                                                  |                   |
| HOLDENVILLE            | 3/27/1990  | S20805         | 200 W. HICKORY                               | 5000            | HEVY RAIFALL                                                    |                   |
| HOLDENVILLE            | 3/28/1990  | S20805         | MANHOLE 215 OAK                              | 500             | HEAVY RAINFALL                                                  |                   |

| Facility Name | Date       | Facility<br>ID | Location                                                   | Amount<br>(Gal) | Cause                                    | Type Of<br>Source |
|---------------|------------|----------------|------------------------------------------------------------|-----------------|------------------------------------------|-------------------|
| HOLDENVILLE   | 3/28/1990  | S20805         | 215 S. OAK                                                 | 500             | HEAVY RAINFALL                           |                   |
| HOLDENVILLE   | 4/25/1990  | S20805         | AQUA FARM ROAD                                             | 423000          | DISCHARGES DUE TO HEAVY<br>RAINFALL      |                   |
| HOLDENVILLE   | 4/26/1990  | S20805         | SOUTH OAK                                                  | 6750            | DISCHARGES DUE TO HEAVY<br>RAINFALL      |                   |
| HOLDENVILLE   | 4/26/1990  | S20805         | AT WEST HICKORY                                            | 282000          | DISCHARGES DUE TO HEAVY<br>RAINFALL      |                   |
| HOLDENVILLE   | 4/27/1990  | S20805         | SOUTH OAK                                                  | 938             | DISCHARGES DUE TO HEAVY<br>RAINFALL      |                   |
| HOLDENVILLE   | 5/2/1990   | S20805         | 215 S. OAK                                                 | 18375           | EXCESSIVE RAIN                           |                   |
| HOLDENVILLE   | 5/2/1990   | S20805         | 200 W. HICKORY                                             | 73500           | EXCESSIVE RAIN                           |                   |
| HOLDENVILLE   | 5/2/1990   | S20805         | AQUAFARM ROAD MANHOLE OVERFLOW                             | 126000          | EXCESSIVE RAIN                           |                   |
| HOLDENVILLE   | 5/4/1990   | S20805         | WEST HICKORY AND AQUA FARM ROAD                            | 141000          | HEAVY RAINFALL                           |                   |
| HOLDENVILLE   | 5/3/1991   | S20805         | 215 S. OAK                                                 | 4               | EXCESSIVE RAIN                           |                   |
| HOLDENVILLE   | 5/3/1991   | S20805         | 200 W. HICKORY                                             | 6               | EXCESSIVE RAIN                           |                   |
| HOLDENVILLE   | 5/3/1991   | S20805         | AQUA-FARL ROAD                                             | 8               | EXCESSIVE RAIN                           |                   |
| HOLDENVILLE   | 5/6/1991   | S20805         | 215 S. OAK                                                 | 310             | HEAVY RAIN                               |                   |
| HOLDENVILLE   | 6/2/1991   | S20805         | 215 S. OAK                                                 | 6               | EXCESSIVE RAIN                           |                   |
| HOLDENVILLE   | 6/2/1991   | S20805         | 200 W. HICKORY                                             | 8               | EXCESSIVE RAIN                           |                   |
| HOLDENVILLE   | 6/2/1991   | S20805         | AQUA FARMS ROAD                                            | 10              | EXCESSIVE RAIN                           |                   |
| HOLDENVILLE   | 6/3/1991   | S20805         | 200 COMMERCE                                               |                 | LIFT STATION MOTOR BROKE                 |                   |
| HOLDENVILLE   | 6/3/1991   | S20805         | 215 S OAK                                                  | 6000            | HEAVY RAIN                               |                   |
| HOLDENVILLE   | 6/3/1991   | S20805         | 200 W HICKORY                                              | 8000            | HEAVY RAIN                               |                   |
| HOLDENVILLE   | 6/3/1991   | S20805         | AQUA FARON RD                                              | 10000           | HEAVY RAIN                               |                   |
| HOLDENVILLE   | 6/5/1991   | S20805         | 215 S. OAK                                                 | 2               | EXCESSIVE RAIN                           |                   |
| HOLDENVILLE   | 6/5/1991   | S20805         | 200 W. HICKORY                                             | 6               | EXCESSIVE RAIN                           |                   |
| HOLDENVILLE   | 6/5/1991   | S20805         | AQUA FARMS ROAD                                            | 10              | EXCESSIVE RAIN                           |                   |
| HOLDENVILLE   | 10/31/1991 | S20805         | AQUA FARM ROAD                                             |                 | EXCESSIVE RAINFALL                       |                   |
| HOLDENVILLE   | 10/31/1991 | S20805         | 200 W HICKORY                                              |                 | EXCESSIVE RAINFALL                       |                   |
| HOLDENVILLE   | 10/31/1991 | S20805         | 215 S OAK                                                  |                 | EXCESSIVE RAINFALL                       |                   |
| HOLDENVILLE   | 6/11/1992  | S20805         | 1/4 N OF #270 #48 INTERSECTION                             |                 | LINE STOPPED UP                          |                   |
| HOLDENVILLE   | 6/11/1992  | S20805         | 1/4 MI NORTH OF HIGHWAY 270 AND HIGHWAY 48<br>INTERSECTION | 0               | HEAVING RAIN AND STOPPAGE IN<br>THE LINE |                   |
| HOLDENVILLE   | 9/6/1993   | S20805         | ARNOLD ACRES APARTMENTS                                    | 300             | LINE STOPPAGE                            |                   |
| HOLDENVILLE   | 2/22/1994  | S20805         | 215 S OAK                                                  | 1500            | RAINFALL                                 |                   |
| HOLDENVILLE   | 3/8/1994   | S20805         | 215 SOUTH OAK                                              | 30000           | RAIN AND SLEET I/I                       |                   |
| HOLDENVILLE   | 3/26/1994  | S20805         | 215 S OAK                                                  | 1000            | 1/1                                      |                   |

| Facility Name | Date       | Facility<br>ID | Location                                           | Amount<br>(Gal) | Cause                                  | Type Of<br>Source |
|---------------|------------|----------------|----------------------------------------------------|-----------------|----------------------------------------|-------------------|
| HOLDENVILLE   | 4/11/1994  | S20805         | 215 SOUTH OAK                                      | 1500            | HEAVY RAIN                             |                   |
| HOLDENVILLE   | 4/29/1994  | S20805         | 215 OAK                                            | 3000            | RAIN I/I                               |                   |
| HOLDENVILLE   | 5/3/1994   | S20805         | 1/4 MILE N. HIWAY 270 ON HIWAY 48                  | 50              | PUMP FAILURE                           |                   |
| HOLDENVILLE   | 6/27/1994  | S20805         | N LIFT STATION                                     | 200             | PUMPS WENT OUT AT MAIN LIFT<br>STATION |                   |
| HOLDENVILLE   | 1/26/1995  | S20805         | 410 NORTH HINKLEY                                  | 20              | LINE BLOCKAGE                          |                   |
| HOLDENVILLE   | 1/26/1995  | S20805         | 300 POPLAR                                         | 2000            | LINE BLOCKAGE                          |                   |
| HOLDENVILLE   | 5/9/1995   | S20805         | 1/4 N OF 270 & 48TH HERITAGE VILLAGE               | 25000           | LINE BACK PRESSURE                     |                   |
| HOLDENVILLE   | 6/21/1996  | S20805         | HOUSING PROJECT LIFT STATION                       | 1000            | ELECTRICAL FAILURE                     |                   |
| HOLDENVILLE   | 9/5/1996   | S20805         | 100 LAKESIDE                                       | 50              | SEWER INSTALLED IMPROPERLY             |                   |
| HOLDENVILLE   | 11/14/1996 | S20805         | 1ST BETWEEN OAK                                    |                 | LINE PLUGGED                           |                   |
| HOLDENVILLE   | 2/26/1997  | S20805         | 1/4 OF 270 - 48                                    |                 | RAIN                                   |                   |
| HOLDENVILLE   | 2/26/1997  | S20805         | CYPRESS                                            |                 | RAIN                                   |                   |
| HOLDENVILLE   | 2/26/1997  | S20805         | 202 N. CHERRY                                      |                 | RAIN                                   |                   |
| HOLDENVILLE   | 2/26/1997  | S20805         | 200 W. HICKORY                                     |                 | RAIN                                   |                   |
| HOLDENVILLE   | 2/26/1997  | S20805         |                                                    |                 | RAIN                                   |                   |
| HOLDENVILLE   | 12/23/1997 | S20805         | 270/48                                             |                 | RAIN                                   |                   |
| HOLDENVILLE   | 12/23/1997 | S20805         | 100 S. BURGESS                                     |                 | OLD SEWER LINE                         |                   |
| HOLDENVILLE   | 4/26/1998  | S20805         | MH AT PLANT                                        |                 | RAIN                                   |                   |
| HOLDENVILLE   | 6/16/1998  | S20805         | L.S.                                               |                 | PUMPS DOWN                             |                   |
| HOLDENVILLE   | 7/9/1998   | S20805         | KINGS BERRY L.S.                                   |                 | PUMP FAILURE                           |                   |
| HOLDENVILLE   | 1/16/2000  | S20805         | BEHIND WALMART                                     |                 | LINE STOPPED                           |                   |
| HOLDENVILLE   | 2/9/2001   | S20805         |                                                    |                 | RAIN                                   |                   |
| HOLDENVILLE   | 2/20/2002  | S20805         | CHAPMAN L.S.                                       |                 | UNDER REPAIR                           | LIFT STATION      |
| HOLDENVILLE   | 3/25/2002  | S20805         | WWTP                                               | 10,000          | RAIN                                   |                   |
| HOLDENVILLE   | 6/13/2002  | S20805         | CYPRESS ST.                                        | 150,000         | RAIN                                   | MANHOLE           |
| HOLDENVILLE   | 7/1/2002   | S20805         | HOLDING POND S. OF TREATMENT PLANT                 | 86,400          | RAIN                                   |                   |
| HOLDENVILLE   | 7/10/2002  | S20805         | ALLEY AT VORHEES & 2ND IN PENN WEST                | 100             | LINE STOPPAGE                          | MANHOLE           |
| HOLDENVILLE   | 7/10/2002  | S20805         | ALLEY AT VORHEES & 2ND P.W. BEHIND 206 E. 2ND P.W. | 100             | STOPPED MANHOLE                        |                   |
| HOLDENVILLE   | 7/10/2002  | S20805         | W. OF TOWN AT THE ARNOLD ACRES APTS.               | 5,000           | L.S. DOWN                              | MANHOLE           |
| HOLDENVILLE   | 7/12/2002  | S20805         | S. OF TREATMENT PLANT                              | 75,000          | RAIN                                   | LAGOON/BASIN      |
| HOLDENVILLE   | 7/17/2002  | S20805         | S. OF PLANT - HOLDING PONDS                        | 8,000           | RAIN                                   |                   |
| HOLDENVILLE   | 7/29/2002  | S20805         | S. OF PLANT - HOLDING POND                         | 7,800           | 1&1                                    | LAGOON/BASIN      |
| HOLDENVILLE   | 9/19/2002  | S20805         | S. OF PLANT                                        | 9,000           | 1&1                                    | LAGOON/BASIN      |
| HOLDENVILLE   | 10/9/2002  | S20805         | HOLDING PONDS S. OF PLANT                          | >1 MILLN        | 1&1                                    | LAGOON/BASIN      |
| HOLDENVILLE   | 10/20/2002 | S20805         | S. OF PLANT - HOLDING POND                         | 95,000          | 1&1                                    | LAGOON/BASIN      |

| Facility Name | Date       | Facility<br>ID | Location                          | Amount<br>(Gal) | Cause               | Type Of<br>Source |
|---------------|------------|----------------|-----------------------------------|-----------------|---------------------|-------------------|
| HOLDENVILLE   | 10/24/2002 | S20805         | S. OF PLANT - HOLDING POND        |                 | 1&1                 |                   |
| HOLDENVILLE   | 10/28/2002 | S20805         | S. OF PLANT                       | 57,600          | 1&1                 | LAGOON/BASIN      |
| HOLDENVILLE   | 11/5/2002  | S20805         | S. OF PLANT                       | 10,000          | 1&1                 | MANHOLE           |
| HOLDENVILLE   | 12/3/2002  | S20805         | WEST OF PLANT                     | 6,000           | 1&1                 | MANHOLE           |
| HOLDENVILLE   | 12/13/2002 | S20805         | S. OF PLANT                       | 8,000           | 1&1                 | LAGOON/BASIN      |
| HOLDENVILLE   | 12/24/2002 | S20805         | PLANT                             | 1,000           | 1&1                 | MANHOLE           |
| HOLDENVILLE   | 12/26/2002 | S20805         | LAGOON                            | 6,000           | 1&1                 | MANHOLE           |
| HOLDENVILLE   | 12/30/2002 | S20805         | S. OF PLANT                       | 12,500          | 1&1                 | LAGOON/BASIN      |
| HOLDENVILLE   | 2/3/2003   | S20805         | 3RD & GULF                        | 1,000           | MALFUNCTION OF L.S. | LIFT STATION      |
| HOLDENVILLE   | 2/6/2003   | S20805         | HOLDING PONDS S. OF PLANT         | 9,000           | 1&1                 | LAGOON/BASIN      |
| HOLDENVILLE   | 2/8/2003   | S20805         | 301 DIAMOND                       | 350             | ROOTS               | MANHOLE           |
| HOLDENVILLE   | 2/10/2003  | S20805         | 209 GRIMES ST.                    | 10              | STORM WATER         | MANHOLE           |
| HOLDENVILLE   | 4/16/2003  | S20805         | 108 BUTTS ST.                     | 20              | STOPPED LINE        | PIPE              |
| HOLDENVILLE   | 5/10/2003  | S20805         | 108 BUTTS DR.                     | 100             | STORM WATER         | MANHOLE           |
| HOLDENVILLE   | 5/20/2003  | S20805         | S. OF PLANT                       | 100             | 1&1                 | LAGOON/BASIN      |
| HOLDENVILLE   | 5/20/2003  | S20805         | PLANT                             | 50              | 1&1                 | MANHOLE           |
| HOLDENVILLE   | 5/21/2003  | S20805         | S. OF PLANT                       | 95              | 1&1                 | LAGOON/BASIN      |
| HOLDENVILLE   | 6/12/2003  | S20805         | S. OF PLANT                       | 450             | 1&1                 | MANHOLE           |
| HOLDENVILLE   | 6/13/2003  | S20805         | HEADWORKS                         | 100             | 1&1                 | MANHOLE           |
| HOLDENVILLE   | 8/2/2003   | S20805         | HEADWORKS                         | 150             | 1&1                 | MANHOLE           |
| HOLDENVILLE   | 9/2/2003   | S20805         | LAGOON S. OF WWTP                 | 250             | 1&1                 | LAGOON/BASIN      |
| HOLDENVILLE   | 9/23/2003  | S20805         | 201 DIAMOND                       | 150             | BLOCKAGE            | MANHOLE           |
| HOLDENVILLE   | 10/14/2003 | S20805         | ARNOLD ACRES                      | 3,500           | RAGS                | PIPE              |
| HOLDENVILLE   | 12/2/2003  | S20805         | 1000 S. OAK                       | 2,000           | STOPPAGE            | MANHOLE           |
| HOLDENVILLE   | 12/4/2003  | S20805         | NORTH L.S. ON HWY 48              | 200             | PUMP DOWN           | LIFT STATION      |
| HOLDENVILLE   | 1/13/2004  | S20805         | 500 E. HWY 270                    | 2,000           | PIPE COLLAPSED      | PIPE              |
| HOLDENVILLE   | 1/21/2004  | S20805         | HOLDING POND                      | 600             | 1&1                 | LAGOON/BASIN      |
| HOLDENVILLE   | 3/4/2004   | S20805         |                                   | 100             |                     |                   |
| HOLDENVILLE   | 3/13/2004  | S20805         | W. OF HWY 48 ON HWY 270           | 50,000          | LINE BREAK          | PIPE              |
| HOLDENVILLE   | 3/18/2004  | S20805         | ARNOLD ACRES                      | 1,200           | PIPE BREAK          | PIPE              |
| HOLDENVILLE   | 5/15/2004  | S20805         | ARNOLD ACRES ON SPAULDING RD.     | 1,500           | BLOCKAGE            | LIFT STATION      |
| HOLDENVILLE   | 9/29/2004  | S20805         | ECHO ST. AT COVEY RD. & SPAULDING | 5500            | BUSTED PIPE         | PIPE              |
| HOLDENVILLE   | 10/4/2004  | S20805         | PLANT                             | 1,500           | ELECTRICAL DAMAGE   | LAGOON/BASIN      |
| HOLDENVILLE   | 10/11/2004 | S20805         | PLANT                             | 20,000          | RAIN                | LAGOON/BASIN      |
| HOLDENVILLE   | 10/27/2004 | S20805         | PLANT                             | 50,000          | RAIN                | LAGOON/BASIN      |
| HOLDENVILLE   | 10/31/2004 | S20805         | PLANT                             | 100,000         | RAIN                | LAGOON/BASIN      |

J:\planning\TMDL\Bacteria TMDLs\Parsons\2007\4 Canadian River(15)\Canadian\_FINAL\_081508.doc

| Facility Name | Date       | Facility<br>ID | Location                                               | Amount<br>(Gal) | Cause    | Type Of<br>Source |
|---------------|------------|----------------|--------------------------------------------------------|-----------------|----------|-------------------|
| HOLDENVILLE   | 10/31/2004 | S20805         | 1/4 MILE N. OF HWY 270 ON HWY 48 - HERITAGE<br>VILLAGE | 2,500           | RAIN     | PIPE              |
| HOLDENVILLE   | 11/1/2004  | S20805         | 1101 S. BROADWAY                                       | 1,000           | BLOCKAGE | PIPE              |
| HOLDENVILLE   | 11/17/2004 | S20805         | PLANT                                                  | 200             | 1&1      | LAGOON/BASIN      |
| HOLDENVILLE   | 11/18/2004 | S20805         | HOLDING PONDS                                          | 2,000           | 1&1      | LAGOON/BASIN      |
| HOLDENVILLE   | 11/19/2004 | S20805         | PLANT                                                  | 2,000           | 1&1      | LAGOON/BASIN      |
| HOLDENVILLE   | 11/22/2004 | S20805         | PLANT                                                  | 2,000           | 1&1      | LAGOON/BASIN      |
| HOLDENVILLE   | 11/23/2004 | S20805         | PLANTS                                                 | 5,000           | 1&1      | MANHOLE           |
| HOLDENVILLE   | 12/6/2004  | S20805         | PLANT                                                  | 2,000           | 1&1      |                   |
| HOLDENVILLE   | 12/7/2004  | S20805         | PLANT                                                  | 2,000           | 1&1      | LAGOON/BASIN      |
| HOLDENVILLE   | 12/8/2004  | S20805         | PLANT                                                  | 2,000           | 1&1      | LAGOON/BASIN      |
| HOLDENVILLE   | 12/9/2004  | S20805         | PLANT                                                  | 1,000           | 1&1      | LAGOON/BASIN      |
| HOLDENVILLE   | 12/27/2004 | S20805         | PLANT                                                  | 500             | 1&1      | LAGOON/BASIN      |
| HOLDENVILLE   | 12/28/2004 | S20805         | PLANT                                                  | 500             | 1&1      | LAGOON/BASIN      |
| HOLDENVILLE   | 1/3/2005   | S20805         | HEADWORKS                                              | 5,000           | 1&1      | MANHOLE           |
| HOLDENVILLE   | 1/4/2005   | S20805         | PLANT                                                  | 2,000           | 1&1      | PIPE              |
| HOLDENVILLE   | 1/4/2005   | S20805         | PLANT                                                  | 5,000           | 1&1      | LAGOON/BASIN      |
| HOLDENVILLE   | 1/5/2005   | S20805         | HOLDING PONDS                                          | 5,000           | RAIN     | LAGOON/BASIN      |
| HOLDENVILLE   | 1/5/2005   | S20805         | PLANT                                                  | 5,000           | RAIN     | PIPE              |
| HOLDENVILLE   | 1/6/2005   | S20805         | PLANT                                                  | 10,000          | 1&1      | LAGOON/BASIN      |
| HOLDENVILLE   | 1/6/2005   | S20805         | PLANT                                                  | 10,000          | 1&1      | PIPE              |
| HOLDENVILLE   | 1/19/2005  | S20805         | HOLDING PONDS                                          | 5,000           | 1&1      | LAGOON/BASIN      |
| HOLDENVILLE   | 1/20/2005  | S20805         | PLANT                                                  | 5,000           | 1&1      | LAGOON/BASIN      |
| HOLDENVILLE   | 1/20/2005  | S20805         | PLANT                                                  | 5,000           | 1&1      | LAGOON/BASIN      |
| HOLDENVILLE   | 1/24/2005  | S20805         | PLANT                                                  | 1,000           | 1&1      | LAGOON/BASIN      |
| HOLDENVILLE   | 1/25/2005  | S20805         | PLANT                                                  | 1,000           | 1&1      | LAGOON/BASIN      |
| HOLDENVILLE   | 1/26/2005  | S20805         | PLANTS                                                 | 1,000           | 1&1      | LAGOON/BASIN      |
| HOLDENVILLE   | 1/27/2005  | S20805         | PLANT                                                  | 5,000           | 1&1      | LAGOON/BASIN      |
| HOLDENVILLE   | 1/31/2005  | S20805         | PLANT                                                  | 5,000           | 1&1      | LAGOON/BASIN      |
| HOLDENVILLE   | 2/2/2005   | S20805         | PLANT                                                  | 5,000           | 1&1      | LAGOON/BASIN      |
| HOLDENVILLE   | 2/3/2005   | S20805         | PLANT                                                  | 4,500           | 1&1      | LAGOON/BASIN      |
| HOLDENVILLE   | 2/4/2005   | S20805         | PLANT                                                  | 4,500           | 1&1      | LAGOON/BASIN      |
| HOLDENVILLE   | 2/7/2005   | S20805         | PLANT                                                  | 10,000          | 1&1      | LAGOON/BASIN      |
| HOLDENVILLE   | 2/8/2005   | S20805         | PLANT                                                  | 20,000          | 1&1      | LAGOON/BASIN      |
| HOLDENVILLE   | 2/9/2005   | S20805         | PLANT - HOLDEN PONDS                                   | 20,000          | 1&1      | LAGOON/BASIN      |
| HOLDENVILLE   | 2/10/2005  | S20805         | PLANT                                                  | 20,000          | 1&1      | LAGOON/BASIN      |
| HOLDENVILLE   | 2/14/2005  | S20805         | PLANT                                                  | 10,000          | 1&1      | LAGOON/BASIN      |

J:\planning\TMDL\Bacteria TMDLs\Parsons\2007\4 Canadian River(15)\Canadian\_FINAL\_081508.doc

| Facility Name | Date       | Facility<br>ID | Location                                | Amount<br>(Gal) | Cause               | Type Of<br>Source |
|---------------|------------|----------------|-----------------------------------------|-----------------|---------------------|-------------------|
| HOLDENVILLE   | 2/15/2005  | S20805         | PLANT                                   | 10,000          | 1&1                 | LAGOON/BASIN      |
| HOLDENVILLE   | 2/15/2005  | S20805         | HERITAGE VILLAGE RETIREMENT VILLAGE     | 30              | STOPPAGE            | MANHOLE           |
| HOLDENVILLE   | 2/16/2005  | S20805         | PLANT                                   | 10,000          | 1&1                 | LAGOON/BASIN      |
| HOLDENVILLE   | 2/17/2005  | S20805         | PLANT                                   | 6 MILLN         | 1&1                 | LAGOON/BASIN      |
| HOLDENVILLE   | 3/8/2005   | S20805         | NORTH LIFT STATION                      | 2 MILLN         | PUMP FAILURE        | LIFT STATION      |
| HOLDENVILLE   | 3/21/2005  | S20805         | 101 SPALDING RD.                        | 75              | STOPPAGE            | MANHOLE           |
| HOLDENVILLE   | 3/21/2005  | S20805         | N. OF CITY IN FRONT OF HERITAGE VILLAGE | 80              | 1&1                 | MANHOLE           |
| HOLDENVILLE   | 3/27/2005  | S20805         | 101 E. POPLAR                           | 30              | STOPPAGE            | PIPE              |
| HOLDENVILLE   | 5/9/2005   | S20805         | S. BROADWAY & S. CREEK AT 1ST           | 200             | BLOCKAGE            | PIPE              |
| HOLDENVILLE   | 5/30/2005  | S20805         | PLANT                                   | 100,000         | SLUDGE              | CLARIFIER         |
| HOLDENVILLE   | 7/2/2005   | S20805         | HERITAGE VILLAGE                        |                 | RAIN                | MANHOLE           |
| HOLDENVILLE   | 7/3/2005   | S20805         |                                         | 2,500           | RAIN                | MANHOLE           |
| HOLDENVILLE   | 7/5/2005   | S20805         |                                         | 2,000           | 1&1                 | MANHOLE           |
| HOLDENVILLE   | 7/29/2005  | S20805         | 1023 S. BROADWAY                        | 900             | BLOCKAGE            | PIPE              |
| HOLDENVILLE   | 8/14/2005  | S20805         | HERITAGE VILLAGE                        | 1,000           | 1&1                 | LAGOON/BASIN      |
| HOLDENVILLE   | 8/14/2005  | S20805         | PLANT                                   | 25,000          | 1&1                 | MANHOLE           |
| HOLDENVILLE   | 8/14/2005  | S20805         | PLANT                                   | 25,000          | 1&1                 |                   |
| HOLDENVILLE   | 8/14/2005  | S20805         | PLANT                                   | 5,000           | 1&1                 | MANHOLE           |
| HOLDENVILLE   | 8/15/2005  | S20805         | PLANT                                   | 25,000          | 1&1                 | LAGOON/BASIN      |
| HOLDENVILLE   | 8/16/2005  | S20805         | PLANT                                   | 25,000          | 1&1                 | LAGOON/BASIN      |
| HOLDENVILLE   | 8/16/2005  | S20805         | PLANT                                   | 25,000          | 1&1                 | MANHOLE           |
| HOLDENVILLE   | 8/17/2005  | S20805         | PLANT                                   | 2,000           | 1&1                 | MANHOLE           |
| HOLDENVILLE   | 8/17/2005  | S20805         | PLANT                                   | 25,000          | 1&1                 | LAGOON/BASIN      |
| HOLDENVILLE   | 8/17/2005  | S20805         | PLANT                                   | 5,000           | 1&1                 | MANHOLE           |
| HOLDENVILLE   | 8/23/2005  | S20805         | 405 & 403 S. BROADWAY                   | 500             | BLOCKAGE            | PIPE              |
| HOLDENVILLE   | 9/15/2005  | S20805         | ON GROUND AT DITCH                      | 500             | CONSTRUCTION ERRORS |                   |
| HOLDENVILLE   | 9/15/2005  | S20805         | PLANT                                   | 500,000         | 1&1                 | MANHOLE           |
| HOLDENVILLE   | 9/23/2005  | S20805         | 101 POPLAR                              | 50              | BLOCKAGE            | PIPE              |
| HOLDENVILLE   | 9/25/2005  | S20805         | HERITAGE VILLAGE NURSING HOME - HWY 48  | 100             | BLOCKAGE            | PIPE              |
| HOLDENVILLE   | 10/25/2005 | S20805         | 101 POPLAR ST.                          | 20              | BLOCKAGE            | PIPE              |
| HOLDENVILLE   | 10/27/2005 | S20805         | HERITAGE VILLAGE                        | 2,000           | BLOCKAGE            | PIPE              |
| HOLDENVILLE   | 10/31/2005 | S20805         | HERITAGE VILLAGE                        | 200,000         | 1&1                 | MANHOLE           |
| HOLDENVILLE   | 11/11/2005 | S20805         | KELKER & MAIN                           | 2,000           | BLOCKAGE            | MANHOLE           |
| HOLDENVILLE   | 11/12/2005 | S20805         | KELKER & MAIN                           | 2,000           | BLOCKAGE            | MANHOLE           |
| HOLDENVILLE   | 11/13/2005 | S20805         | KELKER & MAIN                           | 2,000           | BLOCKAGE            | MANHOLE           |
| HOLDENVILLE   | 11/14/2005 | S20805         | KELKER & MAIN                           | 2,000           | BLOCKAGE            | MANHOLE           |
| HOLDENVILLE   | 11/15/2005 | S20805         | KELKER & MAIN ST.                       | 2,000           | BLOCKAGE            | MANHOLE           |

| Facility Name | Date       | Facility<br>ID | Location                      | Amount<br>(Gal) | Cause                | Type Of<br>Source |
|---------------|------------|----------------|-------------------------------|-----------------|----------------------|-------------------|
| HOLDENVILLE   | 11/18/2005 | S20805         | MAIN & KELKER                 | 1,000           | BLOCKAGE             | PIPE              |
| HOLDENVILLE   | 11/18/2005 | S20805         | HERITAGE VILLAGE              | 200             | BLOCKAGE             | PIPE              |
| HOLDENVILLE   | 11/21/2005 | S208005        | 101 SPALDING RD.              | 1,000           | L.S. DOWN            | LIFT STATION      |
| HOLDENVILLE   | 11/23/2005 | S20805         | 100 GRIMES ST.                | 1,000           | BLOCKAGE             | PIPE              |
| HOLDENVILLE   | 11/30/2005 | S20805         | HERITAGE VILLAGE              | 500             | OVERFLOW             |                   |
| HOLDENVILLE   | 12/5/2005  | S20805         | 206 E. 2ND                    | 2,000           | BLOCKAGE             | PIPE              |
| HOLDENVILLE   | 12/14/2005 | S20805         | 101 POPLAR                    | 20              | BLOCKAGE             | PIPE              |
| HOLDENVILLE   | 12/14/2005 | S20805         | HERITAGE VILLAGE              | 5,000           | BLOCKAGE             | MANHOLE           |
| HOLDENVILLE   | 12/15/2005 | S20805         | HERITAGE VILLAGE              | 5,000           | BLOCKAGE             | PIPE              |
| HOLDENVILLE   | 12/16/2005 | S20805         | HERITAGE VILLAGE              | 2,000           | BLOCKAGE             | PIPE              |
| HOLDENVILLE   | 12/20/2005 | S20805         | 100 CLIFT DR. HOUSING PROJECT | 1,500           | PIPE CRACKED         | PIPE              |
| HOLDENVILLE   | 12/20/2005 | S20805         | 402 COUNTRY CLUB              | 15              | BLOCKAGE             | PIPE              |
| HOLDENVILLE   | 12/21/2005 | S20805         | MCDOUGLE & RODGERS            | 500             | BLOCKAGE             | PIPE              |
| HOLDENVILLE   | 12/25/2005 | S20805         | HERITAGE VILLAGE HWY 48       | 2,000           | BLOCKAGE             | MANHOLE           |
| HOLDENVILLE   | 12/28/2005 | S20805         | ARNOLD ACRES                  | 2,000           | MALFUNCTION          | LIFT STATION      |
| HOLDENVILLE   | 12/29/2005 | S20805         | ARNOLD ACRES                  | 2,000           | ELECTRICAL PROBLEM   | LIFT STATION      |
| HOLDENVILLE   | 12/30/2005 | S20805         | ARNOLD ACRES                  | 2,000           | ELECTRICAL PROBLEMS  | MANHOLE           |
| HOLDENVILLE   | 1/5/2006   | S20805         | OLD HWY 270AT TYSON L.S.      | 100,000         | BUSTED PIPE          | PIPE              |
| HOLDENVILLE   | 1/16/2006  | S20805         | HERITAGE VILLAGE              | 1,000           | BLOCKAGE             | PIPE              |
| HOLDENVILLE   | 1/23/2006  | S20805         | HERITAGE VILLAGE              | 2,000           | BLOCKAGE             | PIPE              |
| HOLDENVILLE   | 1/24/2006  | S20805         | 101 POPLAR                    | 20              | BLOCKAGE             | PIPE              |
| HOLDENVILLE   | 1/30/2006  | S20805         | 101 POPLAR                    | 20              | LINE STOPPAGE        | PIPE              |
| HOLDENVILLE   | 2/17/2006  | S20805         | 412 HICKORY                   | 100             | BLOCKAGE             | PIPE              |
| HOLDENVILLE   | 2/24/2006  | S20805         | 101 POPLAR                    | 50              | BLOCKAGE             | PIPE              |
| HOLDENVILLE   | 2/27/2006  | S20805         | 615 N. HINKLEY                | 100             | BLOCKAGE             | MANHOLE           |
| HOLDENVILLE   | 3/3/2006   | S20805         | 1105 S. OAK                   | 200             | BLOCKAGE             | MANHOLE           |
| HOLDENVILLE   | 3/3/2006   | S10805         | HOUSING                       | 50              | BLOCKAGE             | MANHOLE           |
| HOLDENVILLE   | 3/4/2006   | S20805         | 101 POPLAR                    | 50              | BLOCKAGE             | PIPE              |
| HOLDENVILLE   | 3/6/2006   | S20805         | PLANT                         | 100             | FOAM                 | CLARIFIER         |
| HOLDENVILLE   | 3/7/2006   | S20805         | 103 SURREY LN.                |                 | PROBLEM WITH MANHOLE | MANHOLE           |
| HOLDENVILLE   | 3/9/2006   | S20805         | 702 GRIMES                    | 20              | BLOCKAGE             | MANHOLE           |
| HOLDENVILLE   | 3/11/2006  | S20805         | 101 POPLAR                    | 50              | BLOCKAGE             | PIPE              |
| HOLDENVILLE   | 3/19/2006  | S20805         | PLANT                         | 100             | STORMWATER           | MANHOLE           |
| HOLDENVILLE   | 3/20/2006  | S20805         | PLANT                         | 200             | FOAM                 | CLARIFIER         |
| HOLDENVILLE   | 3/21/2006  | S20805         | PLANT                         |                 | FOAM                 | CLARIFIER         |
| HOLDENVILLE   | 3/26/2006  | S20805         | PLANT                         | 50              | UNKNOWN              | MANHOLE           |
| HOLDENVILLE   | 3/30/2006  | S20805         | PLANT                         | 1,000           | 1&1                  | CLARIFIER         |

| Facility Name | Date       | Facility<br>ID | Location                                   | Amount<br>(Gal) | Cause                     | Type Of<br>Source |
|---------------|------------|----------------|--------------------------------------------|-----------------|---------------------------|-------------------|
| HOLDENVILLE   | 3/30/2006  | S20805         | PLANT                                      | 100             | 1&1                       | CLARIFIER         |
| HOLDENVILLE   | 3/30/2006  | S20805         | PLANT                                      | 500             | 1&1                       | MANHOLE           |
| HOLDENVILLE   | 4/17/2006  | S20805         | 1100 S. OAK                                | 100             | BLOCKAGE                  | MANHOLE           |
| HOLDENVILLE   | 4/25/2006  | S20805         | 207 KELLY DR.                              | 50              | CLOGGED LINE              | MANHOLE           |
| HOLDENVILLE   | 4/25/2006  | S20805         | 101 KELLY DR.                              | 50              | CLOGGED LINE              | MANHOLE           |
| HOLDENVILLE   | 4/29/2006  | S20805         | PLANT                                      | 400             | RAINS                     | MANHOLE           |
| HOLDENVILLE   | 5/5/2006   | S208005        | GULF & 7TH                                 | 1,000           | BLOCKAGE                  |                   |
| HOLDENVILLE   | 5/8/2006   | S20805         | N. SIDE OAK RIDGE ACROSS FROM CHAPMAN L.S. | 1,000           | L.S. DOWN                 | MANHOLE           |
| HOLDENVILLE   | 5/17/2006  | S20805         | PLANT                                      | 100             | LEAK AT POOL              | MANHOLE           |
| HOLDENVILLE   | 5/20/2006  | S20805         | LINE IN FRONT OF NICHOLS                   | 100             | CLOGGED                   |                   |
| HOLDENVILLE   | 5/31/2006  | S20805         | PLANT SPITTER BOX                          | 300             | RAIN                      | PIPE              |
| HOLDENVILLE   | 6/14/2006  | S20805         | PLANT                                      | 100             | LEAK IN HOSE AT PUMP      |                   |
| HOLDENVILLE   | 7/8/2006   | S20805         | HOUSING LIFT STATION                       | 200             | LIFT STATION              |                   |
| HOLDENVILLE   | 7/9/2006   | S20805         | HOUSING LIFT STATION - 400 CLIFT DR.       | 400             | LIFT STATION DOWN         | LIFT STATION      |
| HOLDENVILLE   | 9/11/2006  | S20805         | PLANT                                      | 1,000           | PUMP FAILURE              | LAGOON/BASIN      |
| HOLDENVILLE   | 9/19/2006  | S20805         | PLANT                                      |                 | BLOCKAGE                  |                   |
| HOLDENVILLE   | 10/5/2006  | S20805         | LIFT STATION                               | 350             | PUMP FAILURE              | MANHOLE           |
| HOLDENVILLE   | 10/21/2006 | S20805         | TYSON LIFT STATION                         | 1,000           | PUMP FAILURE              | LIFT STATION      |
| HOLDENVILLE   | 11/1/2006  | S20805         | TYSON L.S.                                 | 300             | TRASH IN PUMP             | MANHOLE           |
| HOLDENVILLE   | 11/6/2006  | S20805         | HOLDENVILLE RIDGE APTS.                    | 500             | PUMP FAILURE              | MANHOLE           |
| HOLDENVILLE   | 11/7/2006  | S20805         | HOLDENVILLE RIDGE APTS.                    | 500             | PUMP AIR LOCKED           | MANHOLE           |
| HOLDENVILLE   | 11/29/2006 | S20805         | ARNOLD ACRES                               | 800             | PUMPS LOCKED              | MANHOLE           |
| HOLDENVILLE   | 12/7/2006  | S20805         | ARNOLD ACRES APTS.                         | 100             | PUMP FAILURE              | MANHOLE           |
| HOLDENVILLE   | 12/19/2006 | S20805         | PLANT                                      | 5,000           | OVERFLOW                  | MANHOLE           |
| HOLDENVILLE   | 12/23/2006 | S2085          | HOLDENVILLE RIDGE APTS.                    | 300             | PUMP FAILURE              | MANHOLE           |
| HOLDENVILLE   | 12/29/2006 | S20805         | RIDGE APTS                                 | 300             | MALFUNCTION               | MANHOLE           |
| HOLDENVILLE   | 1/4/2007   | S20805         | 430 VORHEIS                                | 100             | L.S. DOWN                 | LIFT STATION      |
| HOLDENVILLE   | 1/5/2007   | S20805         | ARNOLD ACRES                               | 250             | L.S. AIR LOCKED           | MANHOLE           |
| HOLDENVILLE   | 1/9/2007   | S20805         | RIDGE APTS.                                | 96,000          | LIFT STATION              | MANHOLE           |
| HOLDENVILLE   | 1/12/2007  | S20805         | RIDGE APTS.                                | 400             | PUMP FAILURE              | MANHOLE           |
| HOLDENVILLE   | 1/13/2007  | S20805         | RIDGE APTS                                 | 5,000           | PUMP FAILURE              | MANHOLE           |
| HOLDENVILLE   | 1/13/2007  | S20805         | RIDGE APTS.                                | 56,000          | LIFT STATION              | MANHOLE           |
| HOLDENVILLE   | 1/14/2007  | S20805         | REGIONAL APTS.                             | 200,000         |                           |                   |
| HOLDENVILLE   | 1/16/2007  | S20805         | RIDGE APTS.                                | 5,000           | L.S. DOWN                 | MANHOLE           |
| HOLDENVILLE   | 1/19/2007  | S20805         | LIFT STATION                               | 500,000         | DISASSEMBLE & CLEAN LINES | MANHOLE           |
| HOLDENVILLE   | 1/23/2007  | S20805         | PLANT                                      | 10,000          | 1&1                       | MANHOLE           |
| HOLDENVILLE   | 1/23/2007  | S20805         | TYSON L.S. ON OLD HWY 270                  | 20,000          | CLAMP ON PIPE DIDN'T HOLD | PIPE              |

| Facility Name    | Date      | Facility<br>ID | Location                                            | Amount<br>(Gal) | Cause                     | Type Of<br>Source |
|------------------|-----------|----------------|-----------------------------------------------------|-----------------|---------------------------|-------------------|
| HOLDENVILLE      | 1/23/2007 | S20805         | PLANT                                               | 200             | 1&1                       |                   |
| HOLDENVILLE      | 1/26/2007 | S20805         | 114 7TH                                             | 1,000           | BLOCKAGE                  | MANHOLE           |
| HOLDENVILLE      | 1/26/2007 | S20805         | 124 E. COMMERCE                                     | 500             | BLOCKAGE                  | LAGOON/BASIN      |
| HOLDENVILLE      | 2/8/2007  | S20805         | RIDGE APTS.                                         | 500             | PUMP FAILURE              | MANHOLE           |
| HOLDENVILLE      | 2/12/2007 | S20805         | RIDGE APTS.                                         | 400             | PUMP FAILURE              | MANHOLE           |
| HOLDENVILLE      | 2/19/2007 | S20805         | 714 E. MAIN                                         | 7,000           | SEWER STOPPAGE            | MANHOLE           |
| HOLDENVILLE      | 2/20/2007 | S20805         | RIDGE APTS.                                         | 5,000           | PUMP FAILURE              | LIFT STATION      |
| HOLDENVILLE      | 2/20/2007 | S20805         | 815 S. CREEK                                        | 500             | SEWER STOPPED UP          | MANHOLE           |
| HOLDENVILLE      |           | S20805         | S. OF PLANT                                         |                 |                           |                   |
| HOLDENVILLE      |           | S20805         | HOLDING PONDS                                       |                 |                           | LAGOON/BASIN      |
| HOLDENVILLE      |           | S20805         | HOLDING PONDS S. OF PLANT                           |                 | 1&1                       |                   |
| HOLDENVILLE      |           | S20805         | PLANT                                               |                 | 1&1                       | LAGOON/BASIN      |
| HOLDENVILLE      |           | S20805         | PLANT                                               |                 | 1&1                       |                   |
| HOLDENVILLE      |           | S20805         | PLANT                                               |                 | 1&1                       |                   |
| HOLDENVILLE      |           | S20805         |                                                     |                 |                           |                   |
| HOLDENVILLE      |           | S20805         | BECK & MCCOY RD.                                    |                 |                           |                   |
| HOLDENVILLE      |           | S20805         | 200 W. HICKORY                                      | 23              | HEAVY RAIN                |                   |
| HOLDENVILLE      |           | S20805         | 215 S. OAK                                          | 12000           | HEAVY RAIN                |                   |
| HOLDENVILLE      |           | S20805         | AQUA FARM ROAD                                      | 25000           | HEAVY RAIN                |                   |
| HOLDENVILLE WWTP | 4/11/2000 | S20805         | 1/4 N OF HWY 270 AT HWY 48                          |                 | EXCESSIVE RAIN            |                   |
| HOLDENVILLE WWTP | 4/15/2000 | S20805         | 1/4 N OF HWY 270 AT HWY 48. AND 200 W HICKORY       |                 | EXCESSIVE RAIN            |                   |
| HOLDENVILLE WWTP | 4/22/2000 | S20805         | 1/2 N OF HWY 270 AT HWY 48. AND 200 W HICKORY       |                 | EXCESSIVE RAIN            |                   |
| HOLDENVILLE WWTP | 5/9/2000  | S20805         | 1/4 N OF HWY 270 AT HWY 48. AND 200 W HICKORY       |                 | EXCESSIVE RAIN            |                   |
| HOLDENVILLE WWTP | 5/24/2000 | S20805         | 1/4 N OF HWY 270 AT HWY 48. AND 200 W HICKORY       |                 | EXCESSIVE RAIN            |                   |
| HOLDENVILLE WWTP | 5/26/2000 | S20805         | 1/4 N OF HWY 270 ON HWY 48 & 200 W HICKORY          |                 | EXCESSIVE RAIN            |                   |
| HOLDENVILLE WWTP | 7/12/2000 | S20805         | 1/4 N OF HWY 270 AT HWY 48. AND AT 200 W<br>HICKORY |                 |                           |                   |
| HOLDENVILLE WWTP | 7/21/2000 | S20805         | 1/4 N OF HWY 270 AT HWY 48. AND AT 200 W<br>HICKORY |                 | EXCESSIVE RAIN            |                   |
| HOLDENVILLE WWTP | 7/22/2000 | S20805         | 1/4 N OF HWY 270 AT HWY 48. AND 200 W HICKORY       |                 | EXCESSIVE RAIN            |                   |
| HOLDENVILLE WWTP | 7/28/2000 | S20805         | HERITAGE VILLAGE & 200 W. HICKORY                   |                 | EXCESSIVE RAIN            |                   |
| HOLDENVILLE WWTP | 11/6/2000 | S20805         | BECK/MCCOY RD                                       |                 |                           |                   |
| HOLDENVILLE WWTP | 1/29/2001 | S20805         | 400 E 9TH                                           | UNKNOWN         | LINE BLOCKAGE. HEAVY RAIN |                   |
| HOLDENVILLE WWTP | 1/30/2001 | S20805         | 48/270 N 4 MILE                                     | UNKNOWN         | RAIN                      |                   |
| HOLDENVILLE WWTP | 1/30/2001 | S20805         | BECK/MCCOY RD                                       | UNKNOWN         | RAIN                      |                   |
| HOLDENVILLE WWTP | 2/9/2001  | S20805         | BECK/MCCOY RD                                       |                 | RAIN                      |                   |
| HOLDENVILLE WWTP | 2/15/2001 | S20805         | 1/4 MILE NORTH OF 270/48 INTERSECTION               |                 | RAIN                      |                   |

| Facility Name    | Date       | Facility<br>ID | Location                                                  | Amount<br>(Gal) | Cause                                           | Type Of<br>Source |
|------------------|------------|----------------|-----------------------------------------------------------|-----------------|-------------------------------------------------|-------------------|
| HOLDENVILLE WWTP | 2/15/2001  | S20805         | BECK/MCCOY RD                                             |                 | RAIN                                            |                   |
| HOLDENVILLE WWTP | 2/23/2001  | S20805         | BECK/MCCOY RD                                             |                 | HEAVY RAINS                                     |                   |
| HOLDENVILLE WWTP | 2/23/2001  | S20805         | 1/4 N OF 270/48                                           |                 | HEAVY RAIN                                      |                   |
| HOLDENVILLE WWTP | 3/10/2001  | S20805         | 200 BLK OF W. CYPRESS                                     |                 | RAIN                                            |                   |
| HOLDENVILLE WWTP | 3/10/2001  | S20805         | PENN WEST LIFT STATION COMMERCE ST                        |                 | RAIN                                            | LIFT STATION      |
| HOLDENVILLE WWTP | 3/10/2001  | S20805         | BECK MCCOY RD                                             |                 | RAIN                                            |                   |
| KONAWA           | 3/11/1990  | S20629         | KONAWA WASTEWATER TREATMENT PLANT                         |                 | HEAVY RAINFALL                                  |                   |
| KONAWA           | 4/26/1990  | S20629         | BYPASSING AT HEADWORKS OF THE PLANT                       | 100000          | RAIN INDUCED HYDRAULIC<br>OVERLOAD              |                   |
| KONAWA           | 5/2/1990   | S20629         | BYPASSING AT THE BAR SCREEN AT THE SEWAGE TREATMENT PLANT | 100000          | HYDRAULIC OVERLOAD DUE TO<br>RAIN               |                   |
| KONAWA           | 6/8/1991   | S20629         | HEAD OF SEWER PLANT                                       | 82              | OVERLOAD DUE TO RAIN                            |                   |
| KONAWA           | 6/30/1991  | S20629         | 2425 WEATHERFORD DRIVE - BISHOP CREEK                     | 75              | PAPER TOWELS, GREASE                            |                   |
| KONAWA           | 7/1/1991   | S20629         | LIFT STATION ON EAST COLONIAL DRIVE                       | 1500            | POWER FAILURE                                   |                   |
| KONAWA           | 11/16/1991 | S20629         | SOUTH BAR SCREEN AT THE WASTEWATER<br>TREATMENT PLANT     | 80000           | INFLOW/INFILTRATION<br>OVERLOADED THE SYSTEM    |                   |
| KONAWA           | 12/20/1991 | S20629         | WEST WTP                                                  | 210             | INFILTRATION, HEAVY RAIN                        |                   |
| KONAWA           | 12/20/1991 | S20629         | WWTP HOLDING POND FILLED UP                               | 210000          | EXCESSIVE RAINFALL                              |                   |
| KONAWA           | 5/19/1992  | S20629         | WWTP                                                      | 100000          | PLANT OVERLOAD DUE TO I/I                       |                   |
| KONAWA           | 6/2/1992   | S20629         | WWTP                                                      | 100000          | PLANT SURCHARGE BY RAIN & I/I                   |                   |
| KONAWA           | 6/29/1992  | S20629         | WWTP                                                      | 100000          | EXCESSIVE RAINFALL I/I                          |                   |
| KONAWA           | 12/9/1992  | S20629         | SOUTH BAR SCREEN AND MH 2                                 | 0               | I/I FROM HEAVY RAINFALL                         |                   |
| KONAWA           | 12/13/1992 | S20629         | WWTP HOLDING POND                                         |                 | I/I FROM HEAVY RAINFALL                         |                   |
| KONAWA           | 2/15/1993  | S20629         | AT WWTP                                                   |                 | RAIN OVERLOAD                                   |                   |
| KONAWA           | 4/4/1993   | S20629         | AT PLANT HEADWORKS AND MH #2                              |                 | HYDROLIC OVER LOAD FROM RAIN                    |                   |
| KONAWA           | 6/5/1995   | S20629         | AT THE PLANT                                              | 0               | WET WEATHER                                     |                   |
| KONAWA           | 6/30/1999  | S20629         |                                                           |                 | RAIN                                            |                   |
| LEXINGTON        | 10/13/1991 | S20619         | TREATMENT PLANT                                           | 78000           | ELECTRICAL FAILURE                              |                   |
| LEXINGTON        | 10/14/1991 | S20619         | TREATMENT PLANT                                           | 78              | POWER OUTAGE                                    |                   |
| LEXINGTON        | 12/27/1991 | S20619         | LINE ACROSS CREEK IN TOWN                                 | 10000           | LINE COLLASPED                                  |                   |
| LEXINGTON        | 5/11/1992  | S20619         | SE FIRST STREET - 2 MANHOLES                              | 0               | OG&E'S POWER WENT OUT<br>CAUSING POWER SHORTAGE |                   |
| LEXINGTON        | 12/11/1992 | S20619         | LIFT STATION AND MH AT NE 2ND AND ASH                     | 1000            | I/I FROM HEAVY RAINFALL                         |                   |
| LEXINGTON        | 5/9/1993   | S20619         | S.E. 1ST                                                  | 10              | CREEK OVERFLOWED MANHOLE -<br>HEAVY RAIN        |                   |
| LEXINGTON        | 5/23/1993  | S20619         | SE 1ST                                                    | 5000            | RAINFALL                                        |                   |
| LEXINGTON        | 7/24/2002  | S20619         | S.E. 1ST & CATALPA                                        | 26,0000         | LIFT STATION DOWN                               | LIFT STATION      |
| MINCO            | 5/10/1993  | S20610         | NORTH & SECOND ST                                         | 5000            | EXCESSIVE RAIN                                  |                   |

J:\planning\TMDL\Bacteria TMDLs\Parsons\2007\4 Canadian River(15)\Canadian\_FINAL\_081508.doc

| Facility Name | Date       | Facility<br>ID | Location                                                     | Amount<br>(Gal) | Cause                                    | Type Of<br>Source |
|---------------|------------|----------------|--------------------------------------------------------------|-----------------|------------------------------------------|-------------------|
| MINCO         | 11/7/2002  | S20610         | LAGOON                                                       |                 |                                          | LAGOON/BASIN      |
| MINCO         | 1/16/2003  | S20610         |                                                              | 325             | BLOCKAGE                                 | MANHOLE           |
| MINCO         | 3/11/2003  | S20610         | 6TH ST AT BELLE & PONTOTOC                                   | 250             | BLOCKAGE                                 | MANHOLE           |
| NOBLE         | 3/11/1990  | S20651         | NORTH TREATMENT PLANT                                        |                 | HEAVY RAINS                              |                   |
| NOBLE         | 3/11/1990  | S20651         | MANHOLE AT MAGUIRE ROAD AND BELL CREEK                       |                 | HEAVY RAINS                              |                   |
| NOBLE         | 3/14/1990  | S20651         | MANHOLE AT 814 CATHERINE                                     |                 | HEAVY RAINS                              |                   |
| NOBLE         | 11/19/1990 | S20651         | NORTH PLANT                                                  |                 | MAINTANANCE                              |                   |
| NOBLE         | 12/1/1990  | S20651         | 900 ASPEN                                                    | 1500            | LINE BLOCK                               |                   |
| NOBLE         | 5/20/1991  | S20651         | 814 CATHERINE STREET                                         |                 | SEWER STOPPED UP                         |                   |
| NOBLE         | 6/24/1991  | S20651         | NOBLE NORTH PLANT                                            |                 | AERATOR MOTOR BURNED UP                  |                   |
| NOBLE         | 6/24/1991  | S20651         | NORTH PLANT/ PASSING THROUGH PLANT W/OUT<br>AERIATION        |                 | MOTOR ON AERATION BROKE<br>DOWN          |                   |
| NOBLE         | 12/14/1992 | S20617         | 901 MAGUIRE, 814 CATHERINE                                   | 0               | TOO MUCH RAIN - SOUTH LAGOON<br>TOO FULL |                   |
| NOBLE         | 12/8/1993  | S20651         | 800 SOUTH HIWAY 77                                           | 1500            | POP OFF VALVE ON FORCE MAIN              |                   |
| NOBLE         | 3/14/1995  | S20651         | 8143 CATHRINE                                                | 1000            | COLLAPSED LINE                           |                   |
| NOBLE         | 3/22/1995  | S20651         | 900 ACIACA                                                   | 200             | GREASE STOPPAGE                          |                   |
| NOBLE         | 5/26/1995  | S20651         | 814 KATHERINE                                                | 0               | RAIN I/I                                 |                   |
| NOBLE         | 5/26/1995  | S20651         | 810 CARTWRIGHT                                               | 0               | RAIN I/I                                 |                   |
| NOBLE         | 5/26/1995  | S20651         | MACQUIRE AND BELL CREEK                                      | 0               | RAIN I/I                                 |                   |
| NOBLE         | 6/4/1995   | S20651         | HEADWORKS AT PLANT                                           | 50000           | RAIN I/I                                 |                   |
| NOBLE         | 6/6/1995   | S20651         | 5TH & 6TH AT MAPLE                                           | 1500            | RAIN I/I                                 |                   |
| NOBLE         | 6/6/1995   | S20651         | 810 CARTWRIGHT                                               | 1500            | RAIN I/I                                 |                   |
| NOBLE         | 6/6/1995   | S20651         | 814 KATHERINE                                                | 1500            | RAIN I/I                                 |                   |
| NOBLE         | 6/6/1995   | S20651         | BELL CREEK & MCQUIRE                                         | 1500            | RAIN I/I                                 |                   |
| NOBLE         | 1/4/1997   | S20651         | MCGUIRE & BELL CREEK/ KATHRINE & BELL CREEK                  | 100,000         | RAIN                                     |                   |
| NOBLE         | 7/10/1997  | S20651         | 1000 BLK. N. ASPEN                                           | 2,000           | STOPPAGE                                 |                   |
| NOBLE         | 12/24/1997 | S20651         | 8TH & PECAN                                                  | 70,000          | LINE STOPPAGE                            |                   |
| NOBLE         | 4/25/1999  | S20651         | 810 CARTWRIGHT/ CATHERINE ST INTO BELL CK. AT<br>MAGUIRE RD. |                 | PUMP FAILURE                             |                   |
| NOBLE         | 4/26/1999  | S20651         | 810 CARTWRIGHT                                               | 1               | PUMP FAILURE                             |                   |
| NOBLE         | 4/27/1999  | S20651         | CATHERINE ST                                                 |                 | PUMP FAILURE                             |                   |
| NOBLE         | 6/27/2000  | S              | KATHERINE & JACQULYN/ MCGUIRE RD & BELL<br>CREEK             |                 | RAIN                                     |                   |
| NOBLE         | 7/2/2000   | S20651         | KATHERINE ST/MCGUIRE RD/CARTWRIGHT/MAPLE<br>AT 5TH & 6TH     |                 | RAIN                                     |                   |
| NOBLE         | 10/23/2000 | S              | MAGUIRE RD. & BELL CREEK / JACQUELYN & CATHERINE             |                 | RAIN                                     |                   |

| Facility Name | Date       | Facility<br>ID | Location                                                  | Amount<br>(Gal) | Cause                 | Type Of<br>Source |
|---------------|------------|----------------|-----------------------------------------------------------|-----------------|-----------------------|-------------------|
| NOBLE         | 10/26/2000 | S20651         | CATHERINE & JAQUELYN                                      |                 | RAIN                  |                   |
| NOBLE         | 10/26/2000 | S20651         | MAGUIRE RD & BELL CREEK                                   |                 | RAIN                  |                   |
| NOBLE         | 11/6/2000  | S20651         | KATHERINE & JACKSON/ MCGUIRE & BELL CK/ 812<br>CARTWRIGHT |                 | RAIN                  |                   |
| NOBLE         | 11/8/2000  | S20651         | 812 CARTWRIGHT                                            |                 | RAIN                  |                   |
| NOBLE         | 11/8/2000  | S20651         | MAGUIRE RD & BELL CR                                      |                 | RAIN                  |                   |
| NOBLE         | 11/15/2000 | S              | WOODLAND MHP                                              |                 | LINE STOPPAGE         |                   |
| NOBLE         | 11/15/2000 | S20651         | WOODLAND MHP                                              |                 | GREASE & TRASH        |                   |
| NOBLE         | 12/19/2000 | S20651         | 807 E. ETOWAH                                             |                 | STOPPED LINE          |                   |
| NOBLE         | 1/11/2001  | S20651         | 812 CARTWRIGHT / BELL CREEK & MCGUIRE                     |                 | WET WEATHER           |                   |
| NOBLE         | 1/27/2001  | S20651         | 812 CARTWRIGHT/ MCGUIRE RD. & BELL CR/<br>CATHERINE       |                 | RAIN                  |                   |
| NOBLE         | 1/30/2001  | S20651         | 812 CARTWRIGHT                                            |                 | RAIN                  |                   |
| NOBLE         | 2/9/2001   | S20651         | CATHERINE & MCGUIRE & BELL CREEK                          |                 | BLOCKAGE              |                   |
| NOBLE         | 2/15/2001  | S20651         | CATHERINE & BELL CREEK/MAGUIRE RD.                        |                 | RAIN                  |                   |
| NOBLE         | 2/23/2001  | S20651         | CATHERINE & MAGUIRE AT BELL CREEK                         |                 | RAIN                  |                   |
| NOBLE         | 4/14/2001  | S20651         | MCGUIRE RD. & 8TH                                         |                 | BLOCKAGE              |                   |
| NOBLE         | 5/30/2001  | S20651         | 812 CARTWRIGHT/ MCGUIRE RD & BELL                         |                 | RAIN                  |                   |
| NOBLE         | 2/19/2002  | S20651         | 700 BLK. OF S. HWY77                                      |                 | ROOTS                 |                   |
| NOBLE         | 2/21/2002  | S20651         | PLANT L.S. WEST OF RR TRACKS                              |                 | ROCKS & DEBRIS        |                   |
| NOBLE         | 3/6/2002   | S20651         | 4505 BROOKWOOD                                            |                 | ROOTS                 |                   |
| NOBLE         | 9/1/2004   | S20651         | 4601 BROOKWOOD                                            |                 | ROOTS                 | MANHOLE           |
| NOBLE         | 5/13/2005  | S20651         | PLANT                                                     | 10,000          | EQUIPMENT FAILURE     | HEAD WORKS        |
| NOBLE         | 4/10/2006  | S20651         | 712 W. ETOWAH                                             | 160,000         | ROOTS , RAGS & GREASE |                   |
| NOBLE         | 4/29/2006  | S20651         | 200 BLK. OF CHERRY                                        | 4,000           | ROOTS & GREASE        | MANHOLE           |
| NOBLE         | 6/27/2006  | S206           |                                                           | 400             |                       |                   |
| NOBLE         | 2/1/2007   | S20651         | 1006 LINDEN LN.                                           | 4,000           | BACKUP                | PIPE              |
| NOBLE         | 2/2/2007   | S20651         | 1006 LINDEN LN.                                           | 400             | BACKUP                | PIPE              |
| NOBLE         | 2/3/2007   | S20651         | 812 ETOWAH RD.                                            | 75              | ROOTS                 | MANHOLE           |
| NOBLE         | 2/8/2007   | S20651         | 900 BLK. N. MAIN IN CREEK N.E. OF 7-ELEVEN<br>STORE       | 480,000         | RAGS, GREASE & ROOTS  | MANHOLE           |
| NOBLE         | 2/19/2007  | S20651         | 4600 BLK. OF ETOWAH                                       | 5,000           | ROOTS                 | MANHOLE           |
| NOBLE         | 3/12/2007  | S20651         | 900 BLK. OF PARKWOODS                                     | 10,000          | TOWELS & DEBRIS       | MANHOLE           |
| NOBLE         | 3/17/2007  | S20651         | 1011 E. ETOWAH                                            | 1,000           | ROOTS                 | MANHOLE           |
| NOBLE         | 3/29/2007  | S206           | 600 BLK. N. MAIN                                          | 800             | ROOTS & GREASE        | MANHOLE           |
| NOBLE         | 3/30/2007  | S206           | 4601 BROOKWOOD                                            | 1,000           | ROOTS                 |                   |
| NOBLE         | 4/3/2007   | S20651         | 1013 E. ETOWAH                                            | 125             | ROOTS                 | MANHOLE           |
| NOBLE         | 4/9/2007   | S206           |                                                           | 50,000          |                       |                   |

J:\planning\TMDL\Bacteria TMDLs\Parsons\2007\4 Canadian River(15)\Canadian\_FINAL\_081508.doc

| Facility Name | Date       | Facility<br>ID | Location                                                     | Amount<br>(Gal) | Cause                                                     | Type Of<br>Source |
|---------------|------------|----------------|--------------------------------------------------------------|-----------------|-----------------------------------------------------------|-------------------|
| NOBLE SOUTH   | 5/17/1995  | S20617         | 1200 S 8TH                                                   | 2000            | PUMPS FAILED AT LAGOON                                    |                   |
| NOBLE WWTP    | 1/4/1998   | 20651          | MAGUIRE & BELL CRK, CATHERINE & BELL CRK                     |                 | HEAVY RAINS CAUSED TO HIGH<br>INFILTRATION FOR SOUTH LIFT |                   |
| NOBLE(SOUTH)  | 5/2/1990   | S20651         | 814 CATHERINE,BELL CREEK&MAGUIRE,500 BLK<br>MAPLE ST,N PLANT |                 | HEAVY RAINS WASHED OUT<br>AERATION BASIN                  |                   |
| NOBLE(SOUTH)  | 9/23/1991  | S20651         | 301 N 8TH                                                    |                 | TREE ROOTS STOPPED UP                                     |                   |
| NOBLE(SOUTH)  | 6/2/1992   | S20651         | 814 CATHRINE                                                 |                 |                                                           |                   |
| NOBLE(SOUTH)  | 6/2/1992   | S20651         | 814 KATHERINE                                                | 0               | UNKNOWN. CHD SAID THAT<br>REPORT WAS CALLED IN TO THEM.   |                   |
| NOBLE(SOUTH)  | 11/18/1992 | S20651         | WWTP(AERATION BASIN)                                         | 220000          | AERATATORS WENT OUT                                       |                   |
| NOBLE(SOUTH)  | 11/19/1992 | S20651         | 901 MAGUIRE RD                                               | 50              | RAINFALL                                                  |                   |
| NOBLE(SOUTH)  | 11/25/1992 | S20651         | 901 MCQUIRE RD                                               | 1000            | HEAVY RAINS; FILTRATION INTO<br>LINES                     |                   |
| NOBLE(SOUTH)  | 11/25/1992 | S20651         | 814 KATHERINE                                                | 1000            | HEAVY RAINFALL; LINE<br>INFILTRATION                      |                   |
| NOBLE(SOUTH)  | 12/10/1992 | S20651         | 901 MAGUIRE ROAD                                             | 0               | RAINFALL                                                  |                   |
| NOBLE(SOUTH)  | 1/19/1993  | S20651         | ETOWAH & 48TH STREET                                         | 3000            | ROOT STOPPAGE                                             |                   |
| NOBLE(SOUTH)  | 2/10/1993  | S20651         | 901 MCGUIRE                                                  | 6000            | EXTENDED RAINFALL                                         |                   |
| NOBLE(SOUTH)  | 2/10/1993  | S20651         | 814 KATHERINE                                                | 6000            | HEAVY RAINFALL                                            |                   |
| NOBLE(SOUTH)  | 2/16/1993  | S20651         | 901 MCGUIRE RD                                               | 4000            | HEAVY RAINFALL                                            |                   |
| NOBLE(SOUTH)  | 2/16/1993  | S20651         | 814 KATHRINE                                                 | 4000            | HEAVY RAINFALL                                            |                   |
| NOBLE(SOUTH)  | 3/1/1993   | S20651         | 814 CATHERINE                                                | 2000            | RAIN OVERLOAD                                             |                   |
| NOBLE(SOUTH)  | 3/1/1993   | S20651         | 901 MCGUIRE                                                  | 2000            | RAIN OVERLOAD                                             |                   |
| NOBLE(SOUTH)  | 3/30/1993  | S20651         | 901 MCQUIRE RD                                               | 2000            | HYDROLIC OVERLOAD FROM RAIN                               |                   |
| NOBLE(SOUTH)  | 3/30/1993  | S20651         | 814 CATHRINE CLRCLE                                          | 2000            | HYDROLIC OVERLOAD FROM RAIN                               |                   |
| NOBLE(SOUTH)  | 3/30/1993  | S20651         | 901 MAGUIRE ROAD                                             | 2000            | SYSTEM OVERLOAD DUE TO I/I                                |                   |
| NOBLE(SOUTH)  | 3/30/1993  | S20651         | 814 CATHRINE CIRCLE                                          | 2000            | SYSTEM OVERLOAD DUE TO I/I                                |                   |
| NOBLE(SOUTH)  | 5/9/1993   | S20651         | 901 MCGUIRE RD                                               | 4               | HEAVY RAIN                                                |                   |
| NOBLE(SOUTH)  | 5/9/1993   | S20651         | 814 CATHRINE                                                 | 4               | HEAVY RAINS                                               |                   |
| NOBLE(SOUTH)  | 5/23/1993  | S20651         | 901 MACGUIRE                                                 | 3000            | RAIN FALL                                                 |                   |
| NOBLE(SOUTH)  | 5/23/1993  | S20651         | 814 CATHERINE                                                | 3000            | RAIN FALL                                                 |                   |
| NORMAN        | 7/25/1989  | S20616         | HIGHWAY #9 AND JENKINS                                       | 0               | MANHOLE RUNNING OVER                                      |                   |
| NORMAN        | 10/2/1989  | S20616         | ANDOVER & JUSTIN STR.                                        | 0               | MANHOLE OVERFLOW/LINE<br>STOPPAGE                         |                   |
| NORMAN        | 10/2/1989  | S20616         | ANDOVER APTS                                                 | 0               | MANHOLES OVERFLOWING                                      |                   |
| NORMAN        | 10/11/1989 | S20616         | ELMWOOD AND COLLEGE                                          | 0               | OVERFLOW                                                  |                   |
| NORMAN        | 10/12/1989 | S20616         | 817 BARBOUR, MANHOLE BACK-UP                                 | 0               | OBSTRUCTION IN THE LINE                                   |                   |

J:\planning\TMDL\Bacteria TMDLs\Parsons\2007\4 Canadian River(15)\Canadian\_FINAL\_081508.doc

| Facility Name | Date       | Facility<br>ID | Location                  | Amount<br>(Gal) | Cause                                                              | Type Of<br>Source |
|---------------|------------|----------------|---------------------------|-----------------|--------------------------------------------------------------------|-------------------|
| NORMAN        | 10/16/1989 | S20616         | 231 S PETERS              | 0               | MANHOLE OVERFLOW                                                   |                   |
| NORMAN        | 10/24/1989 | S20616         | 510 UNIVERSITY DR.        | 0               | OBSTRUCTION                                                        |                   |
| NORMAN        | 11/6/1989  | S20616         | 510 UNICERSITY BLVD.      | 0               | MANHOLE GOT CHOKED                                                 |                   |
| NORMAN        | 11/13/1989 | S20616         | 800 BLOCK OF MOCKINBIRD   | 0               | OBSTRUCTION IN LINE                                                |                   |
| NORMAN        | 11/14/1989 | S20616         | 2904 CYNTHIA CICLE        | 0               | OBSTRUCTED SEWER LINE                                              |                   |
| NORMAN        | 11/15/1989 | S20616         | 419 GEORGE CROSS COURT    | 0               | OBSTRUCTION IN THE SEWER LINE                                      |                   |
| NORMAN        | 11/15/1989 | S20616         | 1027 N. PORTER            | 0               | LINE OBSTRUCTION                                                   |                   |
| NORMAN        | 11/15/1989 | S20616         | N. PORTER                 | 0               | LINE OBSTRUCTION                                                   |                   |
| NORMAN        | 11/20/1989 | S20616         | 536 S. PICKARD            | 0               | OBSTRUCTION IN LINE                                                |                   |
| NORMAN        | 12/4/1989  | S20616         | ELWOOD & COLLEGE          | 0               | OBSTRUCTION IN MANHOLE                                             |                   |
| NORMAN        | 12/11/1989 | S20616         | 1532 E. BOYD              | 10              | OBSTRUCTION IN THE SEWER LINE                                      |                   |
| NORMAN        | 12/18/1989 | S20616         | 2609 WILLOWCREEK DR.      | 20              | OBSTRUCTION IN SEWER LINE                                          |                   |
| NORMAN        | 12/20/1989 | S20616         | 3750 W. MAIN              | 40              | MANHOLES WERE BACK-UP. THE<br>DEAD END MANHOLE WAS<br>RUNNING OVE  |                   |
| NORMAN        | 12/21/1989 | S20616         | 3750 W MAIN               | 40              |                                                                    |                   |
| NORMAN        | 1/2/1990   | S20616         | SUTTON PLACE LIFT STATION | 20              | FIRE BREAKAGE CAUSINF LIFT<br>STATION NOT OPERATE MANHOLE<br>OVERF |                   |
| NORMAN        | 1/2/1990   | S20616         | 705 E LINDSEY             | 100             | TREE ROOTS IN THE SEWER LINE                                       |                   |
| NORMAN        | 1/2/1990   | S20616         | 705V E LINDSEY            | 100             | ROOTS IN LINE                                                      |                   |
| NORMAN        | 1/5/1990   | S20616         | 12TH & ALAMEDA            | 20              | CHOKE UNSTOP                                                       |                   |
| NORMAN        | 1/8/1990   | S20616         | 2745 MEADOW BROOK DR.     | 10              | SEWER MAN BACKUP, OVERFLOW<br>INTO HOUSE                           |                   |
| NORMAN        | 1/10/1990  | S20616         | 300 HAL MULDROW           | 30              | OVERFLOW                                                           |                   |
| NORMAN        | 1/17/1990  | S20616         | 201 MERKLE DR.            | 10              | OBSTRUCTION IN SEWER LINE                                          |                   |
| NORMAN        | 1/21/1990  | S20616         | 1926 OAK HILL             | 50              | ROOTS IN LINE                                                      |                   |
| NORMAN        | 1/22/1990  | S20616         | 3219 WILLOW ROCK          | 100             | OBSTRUCTION                                                        |                   |
| NORMAN        | 1/23/1990  | S20616         | 2510 WYANDOTTE WAY        | 30              | MANHOLE IN CREEK WAS<br>RUNNING OVER                               |                   |
| NORMAN        | 2/1/1990   | S20616         | 909 EAST ALAMEDA          | 25              | OBSTRUCTION IN LINE                                                |                   |
| NORMAN        | 2/2/1990   | S20616         | 1806 SHELBY COURT         | 20              | OBSTRUCTION IN THE LINE                                            |                   |
| NORMAN        | 2/9/1990   | S20616         | 2745 MEADOW BROOK DR.     | 10              | OBSTRUCTION IN SEWER MAIN<br>LINE                                  |                   |
| NORMAN        | 2/21/1990  | S20616         | 1701 ELM                  | 10              | OBSTRUCTION IN SEWER LINE                                          |                   |
| NORMAN        | 2/26/1990  | S20616         | FLOOD AND MCNAMEU         | 25              | OBSTRUCTION OF LINE                                                |                   |
| NORMAN        | 2/26/1990  | S20616         | MANHOLE AT PICKARD & BOYD | 25              |                                                                    |                   |
| NORMAN        | 2/28/1990  | S20616         | MANHOLE AT 200 CHALMETTE  | 20              | OBSTRUCTION IN SEWER MAIN                                          |                   |

| Facility Name | Date      | Facility<br>ID | Location                              | Amount<br>(Gal) | Cause                                                | Type Of<br>Source |
|---------------|-----------|----------------|---------------------------------------|-----------------|------------------------------------------------------|-------------------|
| NORMAN        | 3/9/1990  | S20616         | 2002 SADDLEBACK                       | 10              | LIFT STATION WAS PUMPING                             |                   |
| NORMAN        | 3/9/1990  | S20616         | BOYD AND PICKARD                      | 30              | OBSTRUCTION IN THE SEWER LINE                        |                   |
| NORMAN        | 3/14/1990 | S20616         | MANHOLE CHAUTAUTUA & COMANCHE         | 0               | HEAVY RAINFALL                                       |                   |
| NORMAN        | 3/14/1990 | S20616         | 1806 SHELBY CT                        | 50              | RAIN WATER                                           |                   |
| NORMAN        | 3/14/1990 | S20616         | MANHOLE PICKARD & BOYDE               | 100             | HEAVY RAINFALL                                       |                   |
| NORMAN        | 3/15/1990 | S20616         | 2512 WALNUT ROAD                      | 100             | EXCESSIVE RAINFALL                                   |                   |
| NORMAN        | 3/15/1990 | S20616         |                                       | 7000            | CRACK IN WIRE BOX SEEPAGE TO<br>WEIRTROUGH.          |                   |
| NORMAN        | 3/16/1990 | S20616         | 200 BLOCK OF CHALNETTE                | 20              | OBSTRUCTION IN CITY SEWER<br>MAIN                    |                   |
| NORMAN        | 3/16/1990 | S20616         | PICKARD AND BOYD                      | 50              | RAIN                                                 |                   |
| NORMAN        | 3/16/1990 | S20616         | 536 S PICKARD                         | 50              | HEAVY RAIN                                           |                   |
| NORMAN        | 3/29/1990 | S20616         | 424 GEORGE CROSS                      | 2               | OBSTRUCTION IN THE SEWER LINE                        |                   |
| NORMAN        | 3/30/1990 | S20616         | 500 BLK E ROBINSON                    | 50              |                                                      |                   |
| NORMAN        | 4/4/1990  | S20616         | 500 BLOCK E. ROBINSON                 | 50              | OBSTRUCTION IN THE MANHOLE                           |                   |
| NORMAN        | 4/9/1990  | S20616         | 1613 N. CRAWFORD                      | 30              | OBSTRUCTION IN SEWER LINE                            |                   |
| NORMAN        | 4/25/1990 | S20616         | 100 BLK OF LAHOMA                     | 100             | EXCESSIVE RAINFALL                                   |                   |
| NORMAN        | 4/25/1990 | S20616         | BOYD & PICKARD                        | 500             | INFLOW OF RAIN WATER CAUSING<br>MANHOLES TO OVERFLOW |                   |
| NORMAN        | 4/25/1990 | S20616         | BOYD THRU MCNAMEE                     | 500             | EXCESSIVE RAINFALL                                   |                   |
| NORMAN        | 4/26/1990 | S20616         | 821 SYMMES MANHOLE                    | 500             | EXCESSIVE RAIN                                       |                   |
| NORMAN        | 4/26/1990 | S20616         | LAHOMA & COMANCHE MANHOLE             | 500             | EXCESSIVE RAIN                                       |                   |
| NORMAN        | 4/26/1990 | S20616         | BOYD & PICKARD                        | 500             | EXCESSIVE RAIN                                       |                   |
| NORMAN        | 4/26/1990 | S20616         | LAHOMA & COMMANCHE                    | 500             | EXCESSIVE RAINFALL                                   |                   |
| NORMAN        | 4/30/1990 | S20616         | 821 BARBOUR                           | 10              | OBSTRUCTION IN LINE                                  |                   |
| NORMAN        | 5/2/1990  | S20616         | 200-500 BLK LAHOMA                    |                 | RAIN IN CITY MAINE CAUSING<br>MANHOLES TO OVERFLOW   |                   |
| NORMAN        | 5/2/1990  | S20616         | 400 BLK CHAUTAUQUA                    |                 | RAIN CAUSING OVERFLOW                                |                   |
| NORMAN        | 5/2/1990  | S20616         | 200 BLK CHAUTAUQUA                    |                 | RAIN CAUSING OVERFLOW                                |                   |
| NORMAN        | 5/2/1990  | S20616         | 100 BLK LAHOMA                        |                 | RAIN CAUSING OVERFLOW                                |                   |
| NORMAN        | 5/2/1990  | S20616         | MCNAMEE THRU BOYD                     |                 | RAIN CAUSING MANHOLE TO<br>OVERFLOW                  |                   |
| NORMAN        | 5/2/1990  | S20616         | 2508 S WALNUT ROAD                    | 0               | EXCESSIVE RAINFALL                                   |                   |
| NORMAN        | 5/2/1990  | S20616         | 400,500,600,700,800 BLOCKS OF PICKARD | 0               | EXCESSIVE RAINWATER                                  |                   |
| NORMAN        | 5/2/1990  | S20616         | 424 N. UNIVERSITY                     | 0               | EXCESSIVE RAIN                                       |                   |
| NORMAN        | 5/2/1990  | S20616         | 312 MIMOSA MANHOLE                    | 0               | EXCESSIVE RAIN                                       |                   |
| NORMAN        | 5/2/1990  | S20616         | 1507-1527 EISENHOWER MANHOLES         | 0               | EXCESSIVE RAINS                                      |                   |

J:\planning\TMDL\Bacteria TMDLs\Parsons\2007\4 Canadian River(15)\Canadian\_FINAL\_081508.doc

| Facility Name | Date       | Facility<br>ID | Location                                          | Amount<br>(Gal) | Cause                                            | Type Of<br>Source |
|---------------|------------|----------------|---------------------------------------------------|-----------------|--------------------------------------------------|-------------------|
| NORMAN        | 5/3/1990   | S20616         | MCNAMEE & BOYD                                    | 0               | RAINWATER                                        |                   |
| NORMAN        | 5/3/1990   | S20616         | 1804 AIKEN CT                                     | 100             | RAIN IN CITY MAIN CAUSING<br>MANHOLE TO OVERFLOW |                   |
| NORMAN        | 5/3/1990   | S20616         | 200 BLOCK OF CHAUTAUQUEA                          | 1000            | EXCESSIVE RAIN                                   |                   |
| NORMAN        | 5/3/1990   | S20616         | 400 BLOCK OF CHAUTAUQUEA                          | 1000            | RAINWATER                                        |                   |
| NORMAN        | 5/3/1990   | S20616         | 100 BLOCK OF LAHOMA                               | 1000            | RAINWATER                                        |                   |
| NORMAN        | 5/9/1990   | S20616         | 401 MERCEDES                                      | 200             | 18" BROKEN SEWER LINE                            |                   |
| NORMAN        | 5/9/1990   | S20616         | 1912-1920 LOGAN                                   | 200             | BYPASS DUE TO A BROKEN LINE                      |                   |
| NORMAN        | 5/10/1990  | S20616         | 1804 AIKEN COURT                                  | 100             | EXCESSIVE RAINFALL                               |                   |
| NORMAN        | 5/10/1990  | S20616         | 1733 CRESTMONT                                    | 200             | SEWERLINE BROKEN DOWN                            |                   |
| NORMAN        | 5/10/1990  | S20616         | BOYD & PICKARD MANHOLE                            | 500             | FLOODING                                         |                   |
| NORMAN        | 5/31/1990  | S20616         | HALL PARK UTILITIES/WESTERN HOME SERVICE<br>CORP. |                 | OVERNIGHT RAIN                                   |                   |
| NORMAN        | 6/18/1990  | S20616         | 1300 BLOCK MCGEE                                  | 15              | SHOWER OVERFLOW NOT<br>SPECIFIC AS TO CAUSE      |                   |
| NORMAN        | 6/19/1990  | S20616         | 1300 MCGEE                                        | 18              | OBSTRUCTION IN SEWER MAIN                        |                   |
| NORMAN        | 6/21/1990  | S20616         | HUNDRED BLOCK 1617                                | 10              | SEWER MAIN OBSTRUCTED                            |                   |
| NORMAN        | 6/21/1990  | S20616         | 1617 PARKVIEW                                     | 10              | OBSTRUCTION                                      |                   |
| NORMAN        | 6/25/1990  | S20616         | 2706 WINDING CREEK                                | 10              | SEWER MAIN OBSTRUCTION                           |                   |
| NORMAN        | 7/2/1990   | S20616         | 2321 REMINGTON COURT                              | 10              | OBSTRUCTION IN THE SEWER<br>MAIN                 |                   |
| NORMAN        | 8/12/1990  | S20616         | 2500 9TH                                          |                 | MAIN BLOCK                                       |                   |
| NORMAN        | 8/16/1990  | S20616         | BISHOP CR 333 0RR                                 | 20              | MAIN BLOCK                                       |                   |
| NORMAN        | 8/20/1990  | S20616         | ELMWOOD & COLLEGE                                 | 30              | MAIN BLOCK                                       |                   |
| NORMAN        | 8/22/1990  | S20616         | 700 HIGHLAND PKWY                                 | 100             | MAIN BLOCK                                       |                   |
| NORMAN        | 8/30/1990  | S20616         | CRESTMONT LIFT                                    | 2000            | FUSE OUT                                         |                   |
| NORMAN        | 8/30/1990  | S20616         | MERKLE CR LIFT STA                                | 2000            | FUSE BLOWN                                       |                   |
| NORMAN        | 8/31/1990  | S20616         | GEORGE L CROSS CT                                 | 150             | CLOGGED SEWER                                    |                   |
| NORMAN        | 9/11/1990  | S20616         | GEORGE L CROSS CT                                 | 10              | EXCESSIVE GREASE                                 |                   |
| NORMAN        | 9/11/1990  | S20616         | N CRAWFORD                                        | 100             | SEWAR MAIN BLOCK                                 |                   |
| NORMAN        | 9/12/1990  | S20616         | JENKINS & HY 9                                    | 10              | ROOT & GREASE                                    |                   |
| NORMAN        | 9/21/1990  | S20616         | IMHOFF CREEK                                      | 100             | RAINFALL                                         |                   |
| NORMAN        | 9/21/1990  | S20616         | 500 PICKARD                                       | 100             | RAIN                                             |                   |
| NORMAN        | 10/10/1990 | S20616         | IMHOFF INTERCEPTOR                                | 100             | MAIN BLOCK                                       |                   |
| NORMAN        | 10/22/1990 | S20616         | 1440 HOMELAND                                     | 20              | LINE BLOCK                                       |                   |
| NORMAN        | 10/22/1990 | S20616         | BISHOP CREEK                                      | 20              | MAIN BLOCK                                       |                   |
| NORMAN        | 11/5/1990  | S20616         | 900APACHE                                         | 100             | LINE BLOCK                                       |                   |
| NORMAN        | 11/5/1990  | S20616         | E APACHE                                          | 100             | LINE BLOCK                                       |                   |

| Facility Name | Date       | Facility<br>ID | Location                       | Amount<br>(Gal) | Cause                     | Type Of<br>Source |
|---------------|------------|----------------|--------------------------------|-----------------|---------------------------|-------------------|
| NORMAN        | 11/19/1990 | S20616         | SUTTON PL LIFT STA             | 1200            | POWER FAILURE             |                   |
| NORMAN        | 11/23/1990 | S20616         | 48 & MAIN                      | 20              | LINE BREAK                |                   |
| NORMAN        | 11/23/1990 | S20616         | MAIN ST                        | 20              | LINE BREAK                |                   |
| NORMAN        | 11/24/1990 | S20616         | 1237 BARKLEY                   | 20              | LINE BLOCK                |                   |
| NORMAN        | 11/24/1990 | S20616         | 1900 OAKHURST DR               | 20              | LINE BLOCK                |                   |
| NORMAN        | 12/3/1990  | S20616         | BISHOP CREEK                   | 5               | LINE BLOCK                |                   |
| NORMAN        | 12/3/1990  | S20616         | 1900 OAKHURST                  | 5               | LINE BLOCK                |                   |
| NORMAN        | 12/15/1990 | S20616         | BISHOP CREEK                   | 40              | MAIN BLOCK                |                   |
| NORMAN        | 12/18/1990 | S20616         | 12TH AVE NE                    | 100             | MAIN BLOCK                |                   |
| NORMAN        | 12/22/1990 | S20616         | 1400 HOMELAND                  | 20              | LINE BLOCK                |                   |
| NORMAN        | 1/7/1991   | S20616         | 1900 OAKHURST                  | 20              | LINE BLOCK                |                   |
| NORMAN        | 1/23/1991  | S20616         | IMHOFF CR                      | 10              | LINE BLOCK                |                   |
| NORMAN        | 1/31/1991  | S20616         | 600 N JONES                    | 20              | BLOCK                     |                   |
| NORMAN        | 2/7/1991   | S20616         | ELM & DELTA                    | 20              | MAIN BLOCK                |                   |
| NORMAN        | 2/9/1991   | S20616         | 2425 WEATHERFORD DR            | 10              | LINE BLOCK                |                   |
| NORMAN        | 2/22/1991  | S20616         | 1938 PHILLMORE                 |                 | LINE BLOCK                |                   |
| NORMAN        | 3/4/1991   | S20616         | 1816 WREN                      | 30              | LINE BLOCK                |                   |
| NORMAN        | 3/5/1991   | S20616         | 1100 CANTABURY                 | 15              | PAPER TOWELS              |                   |
| NORMAN        | 3/6/1991   | S20616         | 1900 ROLLING STONE             | 20              | LINE BLOCK                |                   |
| NORMAN        | 3/9/1991   | S20616         | 616 E. COMANCHE                | 25              | SEWER MAIN WAS OBSTRUCTED |                   |
| NORMAN        | 3/11/1991  | S20616         | 1212 BENSON                    | 25              | LINE BLOCK                |                   |
| NORMAN        | 3/18/1991  | S20616         | BILOXI DR. & LINDSEY           | 50              | SEWER MAIN OBSTRUCTION    |                   |
| NORMAN        | 3/29/1991  | S20616         | 429 E. ROBINSON                | 20              | OBSTRUCTION IN SEWER MAIN |                   |
| NORMAN        | 4/3/1991   | S20616         | 1518 CINDERELLA                | 20              | OBSTRUCTION IN SEWER      |                   |
| NORMAN        | 4/11/1991  | S20616         | 24TH AVE & MAIN                |                 | BROKEN LINE               |                   |
| NORMAN        | 4/19/1991  | S20616         | 1927 TWISTED OAK               | 20              | LINE BLOCK                |                   |
| NORMAN        | 4/22/1991  | S20616         | 500 MARYWOOD LANE              | 5               | ROOTS                     |                   |
| NORMAN        | 4/24/1991  | S20616         | 2300 ALEMEDA                   | 25              | LINE BLOCK                |                   |
| NORMAN        | 4/26/1991  | S20616         | 3200 S BERRY                   | 50              | LINE BLOCK                |                   |
| NORMAN        | 4/27/1991  | S20616         | 1900 ROLLING STONE DR          | 50              | ROOTS                     |                   |
| NORMAN        | 5/4/1991   | S20616         | 1631 N. CRAWFORD               | 1               | GREASE                    |                   |
| NORMAN        | 5/6/1991   | S20616         | 1131 CADDELL LANE              | 10              | OBSTRUCTION IN SEWER MAIN |                   |
| NORMAN        | 5/8/1991   | S20616         | 1405 PEACHTREE LANE            | 2               | DEBRIS STOPPING UP LINE   |                   |
| NORMAN        | 5/8/1991   | S20616         | 440 S. PICKARD                 | 100             | EXCESSIVE RAIN            |                   |
| NORMAN        | 5/9/1991   | S20616         | 1903 ROLLING STONE CIRCLE      | 50              | SEWER MAIN OBSTRUCTION    |                   |
| NORMAN        | 5/13/1991  | S20616         | CELL NO. 1, BEYOND N.E. CORNER |                 | EXCESSIVE RAIN            |                   |
| NORMAN        | 5/13/1991  | S20616         | 501 E. ROBINSON                | 2               | OBSTRUCTION               |                   |

| Facility Name | Date       | Facility<br>ID | Location                                                   | Amount<br>(Gal) | Cause                                                      | Type Of<br>Source |
|---------------|------------|----------------|------------------------------------------------------------|-----------------|------------------------------------------------------------|-------------------|
| NORMAN        | 5/17/1991  | S20616         | 621 SHERRY                                                 | 15              | BREAK IN LINE                                              |                   |
| NORMAN        | 5/20/1991  | S20616         | 1401 PEACHTREE LANE                                        | 30              | LINE OBSTRUCTED WITH GREASE<br>AND DEBRIS                  |                   |
| NORMAN        | 5/21/1991  | S20616         | 12TH AVE AND HIGH MEADOWS                                  | 100             | SEWER MAIN OBSTRUCTION                                     |                   |
| NORMAN        | 5/23/1991  | S20616         |                                                            |                 | HEAVY RAIN                                                 |                   |
| NORMAN        | 5/24/1991  | S20616         | 1002 MCNAMEE                                               | 30              | SEWER MAIN OBSTRUCTION                                     |                   |
| NORMAN        | 5/28/1991  | S20616         | SUTTON PLACE                                               | 40              | FUSE BLOWN, CAUSING LIFT<br>STATION TO MALFUNCTION         |                   |
| NORMAN        | 6/2/1991   | S20616         | 536 S PICKARD                                              | 30              | EXCESSIVE RAIN                                             |                   |
| NORMAN        | 6/17/1991  | S20616         | 1600 BEAUMONT                                              | 50              | VANDALISM                                                  |                   |
| NORMAN        | 6/30/1991  | S20616         | 2429 WEATHERFORD                                           | 75              | PAPER TOWELS & GREASE<br>BLOCKING LINE CAUSING<br>OVERFLOW |                   |
| NORMAN        | 7/12/1991  | S20616         | 33RD AND JENKINS                                           | 400             | BLOCKED BY DEBRIS                                          |                   |
| NORMAN        | 7/15/1991  | S20616         | 563 BUCHANAN - IMHOFF CREEK                                | 6               | GREASE WAS POURED INTO<br>STORM DRAIN                      |                   |
| NORMAN        | 7/16/1991  | S20616         | 24TH AND ALEMEDA                                           |                 | OBSTRUCTION IN CITY LINE<br>CAUSING MANHOLE OVERFLOW       |                   |
| NORMAN        | 7/28/1991  | S20616         | 1200 E. BROOKS                                             | 200             | GREASE IN LINE AND MANHOLE                                 |                   |
| NORMAN        | 8/19/1991  | S20616         | N OF TECUMSEH /12TH AVE NORTH SIDE                         | 10000           | PRESSURE LINE FROM L.S. D<br>RUPTURED                      |                   |
| NORMAN        | 9/4/1991   | S20616         | 500 S UNIVERSITY                                           | 20              | STOPPED UP LINE                                            |                   |
| NORMAN        | 9/9/1991   | S20616         | BROOKHAVEN; 4001 KNIGHT BRIDGE ST                          | 20              | MUD BLOCKAGE                                               |                   |
| NORMAN        | 9/16/1991  | S20616         | PICKARD STREET, 5 AND 6 HUNDRED BLOCK,<br>MANHOLES         | 50              | RAIN                                                       |                   |
| NORMAN        | 9/16/1991  | S20616         | WASTEWATER TREATMENT FACILITY                              | 2000            | FULL STORMWATER HOLDING<br>CELL                            |                   |
| NORMAN        | 9/16/1991  | S20616         | DIVERSION BOX 3 PRIOR TO STROM WATER<br>HOLDING BASIN      | 2000            | HEAVY RAINFALL AND IMPROPER<br>GATE SETTINGS               |                   |
| NORMAN        | 9/19/1991  | S20616         | 1/4 MILE NORTH OF TECUMSEH ON 12TH AVE. N.E.,<br>WEST SIDE | 0               | PRESSURE LINE FROM LIFT<br>STATION D                       |                   |
| NORMAN        | 9/21/1991  | S20616         | BISHOP INTERCEPTOR                                         | 25              | GREASE PLUG                                                |                   |
| NORMAN        | 9/21/1991  | S20616         | AEROBIC DIGESTER                                           | 1500            | OPERATOR ERROR                                             |                   |
| NORMAN        | 9/25/1991  | S20616         | 1109 PORTER                                                | 25              | GREASE IN LINE                                             |                   |
| NORMAN        | 10/18/1991 | S20616         | 721 N. GALE                                                |                 | VANDALS PLACED ROCKS IN<br>MANHOLE                         |                   |
| NORMAN        | 11/8/1991  | S20616         | 200 LAHOMA AVE                                             | 20              | ROOTS AND GREASE                                           |                   |
| NORMAN        | 12/10/1991 | S20616         | 1209 W. LINDSEY                                            | 15              | GREASE IN LINE                                             |                   |
| NORMAN        | 12/10/1991 | S20616         | 1209 LINDSEY                                               | 15              | GREASE STOPPAGE                                            |                   |
| NORMAN        | 12/15/1991 | S20616         | THE CORNER OF CLASSEN AND DRAKE                            | 500             | OBSTRUCTION                                                |                   |

| Facility Name | Date       | Facility<br>ID | Location                                                 | Amount<br>(Gal) | Cause                                                  | Type Of<br>Source |
|---------------|------------|----------------|----------------------------------------------------------|-----------------|--------------------------------------------------------|-------------------|
| NORMAN        | 12/20/1991 | S20616         | 210 S. LAHOMA                                            |                 | RAINFALL                                               |                   |
| NORMAN        | 12/20/1991 | S20616         | 536 S. PICKARD                                           | 100             | RAINFALL                                               |                   |
| NORMAN        | 12/20/1991 | S20616         | PICKARD AND BOYD                                         | 100             | RAINFALL                                               |                   |
| NORMAN        | 12/20/1991 | S20616         | 100 S. LAHOMA                                            | 100             | RAINFALL                                               |                   |
| NORMAN        | 12/20/1991 | S20616         | 1836 W. ROBINSON                                         | 100             | RAINFALL                                               |                   |
| NORMAN        | 12/20/1991 | S20616         | 210 S LAHOMA                                             | 150             | HEAVY RAINFALL                                         |                   |
| NORMAN        | 12/20/1991 | S20616         | PICKARD/BOYD                                             | 150             | HEAVY RAINFALL                                         |                   |
| NORMAN        | 12/30/1991 | S20616         | 2100 W LINDSEY                                           | 25              | GREASE STOPPAGE                                        |                   |
| NORMAN        | 12/31/1991 | S20616         | 2100 BLOCK OF WEST LINDSEY-MANHOLE<br>OVERFLOW           | 0               | GREASE IN LINE                                         |                   |
| NORMAN        | 12/31/1991 | S20616         | 2300 CLYDE COURT                                         | 500             | LINE BREAK                                             |                   |
| NORMAN        | 1/27/1992  | S20616         | 600 VICKSBERG, BISHOP CREEK INTERCEPTOR                  | 40              | OBSTRUCTION IN LINE                                    |                   |
| NORMAN        | 2/7/1992   | S20616         | BISHOP CREEK, 200 REED                                   | 50              | GREASE                                                 |                   |
| NORMAN        | 2/7/1992   | S20616         | 200 REED ST                                              | 50              | GREASE BLOCKAGE                                        |                   |
| NORMAN        | 2/26/1992  | S20616         | 3400 JENKINS & BISHOP CREEK                              | 100             | ROOTS AND CREEK                                        |                   |
| NORMAN        | 3/14/1992  | S20616         | 400 GEORGE L CROSSCORT                                   | 100             | OBSTRUCTION IN THE LINE                                |                   |
| NORMAN        | 3/26/1992  | S20616         | HIGH MEADOWS INTERCEPTOR 12TH AVE. NE<br>SOUTHEAST FIELD | 30              | BLOCKAGE OF TISSUE PAPER &<br>PAPER TOWELS             |                   |
| NORMAN        | 3/27/1992  | S20616         | MH IN 200 BLOCK OF VICKSBURG                             | 20              | LINE BLOCKAGE DUE TO DEIBRIS<br>FROM APARTMENT COMPLEX |                   |
| NORMAN        | 3/27/1992  | S20616         | 200 BISHOP CREEK                                         | 20              | PAPER & GREASE BLOCKAGE                                |                   |
| NORMAN        | 4/6/1992   | S20616         | BILOXI & SINCLAIR CORNER                                 | 1               | CALLAPSE SEWER LINE                                    |                   |
| NORMAN        | 4/15/1992  | S20616         | 4001 KNIGHTS BRIDGE                                      | 25              | STOPPAGE IN LINE                                       |                   |
| NORMAN        | 5/11/1992  | S20616         | 2027 ALLENHURST                                          | 100             | PAPER & GREASE BLOCKAGE                                |                   |
| NORMAN        | 5/11/1992  | S20616         | ALLENHURST                                               | 100             | LINE STOPPAGE                                          |                   |
| NORMAN        | 5/29/1992  | S20616         | 1601 MCGEE DRIVE                                         | 15              | TOILET PAPER AND PAPER<br>TOWELS                       |                   |
| NORMAN        | 5/29/1992  | S20616         | 414 CRIPPLE CREEK                                        | 100             | OBSTRUCTION IN THE LINE                                |                   |
| NORMAN        | 6/2/1992   | S20616         | 400 BLOCK OF PICKARD                                     | 50              | RAIN INDUCED                                           |                   |
| NORMAN        | 6/2/1992   | S20616         | 200 S. LAHOMA                                            | 50              | RAIN INDUCED                                           |                   |
| NORMAN        | 6/2/1992   | S20616         | 500 BLOCK OF PICKARD                                     | 100             | RAIN INDUCED                                           |                   |
| NORMAN        | 6/2/1992   | S20616         | BOYD AND PICKARD                                         | 100             | RAIN INDUCED                                           |                   |
| NORMAN        | 6/2/1992   | S20616         | 1400 KINGSTON RD                                         | 1400            | OBSTRUCTION IN LINE                                    |                   |
| NORMAN        | 6/8/1992   | S20616         | 1400 KINGSTON ROAD                                       | 50              | OBSTRUCTION IN THE LINE                                |                   |
| NORMAN        | 6/10/1992  | S20616         | 200 HUBERT ST.                                           | 0               | SERVICE LINE BROKEN                                    |                   |
| NORMAN        | 6/25/1992  | S20616         | 800 DRAKE                                                | 25              | LINE STOPPAGE                                          |                   |
| NORMAN        | 6/25/1992  | S20616         | 800 DRAKE                                                | 25              | UNKNOWN                                                |                   |
| NORMAN        | 6/25/1992  | S20616         | 1300 ANDOVER                                             | 50              | LINE STOPPAGE                                          |                   |

| Facility Name | Date       | Facility<br>ID | Location                                   | Amount<br>(Gal) | Cause                                                            | Type Of<br>Source |
|---------------|------------|----------------|--------------------------------------------|-----------------|------------------------------------------------------------------|-------------------|
| NORMAN        | 6/25/1992  | S20616         | 12TH AND ROCK CREEK ROAD                   | 150             | GREASE AND DEBRIS                                                |                   |
| NORMAN        | 7/2/1992   | S20616         | 1300 ANDOVR APTS.                          | 50              | REMOVE OBSTRUCTION LINE;<br>REGAIN FLOW; & WASH AND<br>DISENFECT |                   |
| NORMAN        | 7/20/1992  | S20616         | 200 FINDLAY                                | 50              | GREASE AND PAPER STOPPAGE                                        |                   |
| NORMAN        | 7/27/1992  | S20616         | 452 PICKARD (MANHOLE)                      | 500             | RAIN WATER                                                       |                   |
| NORMAN        | 7/27/1992  | S20616         | 536 PICKARD (MANHOLE)                      | 500             | RAIN WATER                                                       |                   |
| NORMAN        | 7/27/1992  | S20616         | BOYD AND PICKARD INTERSECTION (MANHOLE)    | 500             | RAIN WATER                                                       |                   |
| NORMAN        | 8/13/1992  | S20616         | 102 CRAWFORD CT                            | 50              | STOPPAGE                                                         |                   |
| NORMAN        | 8/15/1992  | S20616         | 629 VICKSBERG                              | 75              | STOPPAGE                                                         |                   |
| NORMAN        | 9/1/1992   | S20616         | MANHOLE 500 W. TONAWA                      | 100             | OBSTRUCTION IN LINE OVERFLOW<br>INTO CREEK                       |                   |
| NORMAN        | 9/6/1992   | S20616         | NORMANDY C CRESTMONT AVE.                  | 500             | POWER FAILURE DUE TO STORM                                       |                   |
| NORMAN        | 9/6/1992   | S20616         | 2014 SADDLEBACK                            | 500             | POWER FAILURE DUE TO STORM                                       |                   |
| NORMAN        | 9/13/1992  | S20616         | 102 CRAWFORD COURT                         | 50              | LINE OBSTRUCTION                                                 |                   |
| NORMAN        | 9/16/1992  | S20616         | 200 BLOCK JASON                            | 0               | DIAPERS & PAPER TOWELS<br>BLOCKAGE                               |                   |
| NORMAN        | 9/22/1992  | S20616         | 1300 SUPERIOR & HURON                      | 200             | OBSTRUCTION IN SEWER MAIN                                        |                   |
| NORMAN        | 9/23/1992  | S20616         | 200 S. LAHOMA MANHOLE                      | 10              | PAPER TOWELS & GREASE                                            |                   |
| NORMAN        | 9/25/1992  | S20616         | 1500 HIGH TRAIL                            | 100             | MANHOLE-OBSTRUCTION IN LINE                                      |                   |
| NORMAN        | 10/7/1992  | S20616         | 1500 REBECCA LANE                          | 80              | GREASE BLOCKAGE                                                  |                   |
| NORMAN        | 10/7/1992  | S20616         | 200 HUGHBERT                               | 200             | ROOT BLOCKAGE                                                    |                   |
| NORMAN        | 10/7/1992  | S20616         | 2000 ALLENHURST                            | 2000            | ROOT BLOCKAGE                                                    |                   |
| NORMAN        | 10/15/1992 | S20616         | 100 BLOCK OF LAHOMA                        | 200             | OBSTRUCTION IN MAIN LINE                                         |                   |
| NORMAN        | 10/23/1992 | S20616         | 1400 BLOCK NEBRASKA                        | 175             | OBSTRUCTION IN LINE                                              |                   |
| NORMAN        | 11/6/1992  | S20616         | 200 BLOCK - 300 BLOCK OF 36 AVENUE NW      | 250             | SAND AND GREASE IN LINE.                                         |                   |
| NORMAN        | 11/6/1992  | S20616         | 200 36TH AVE NW                            | 250             | SAND AND GREASE BLOCKAGE                                         |                   |
| NORMAN        | 11/19/1992 | S20616         | 500 BLK PICKARD(BOYD)                      | 1000            | RAINWATER                                                        |                   |
| NORMAN        | 11/19/1992 | S20616         | 500 BLOCK OF PICKARD                       | 1000            | RAINWATER                                                        |                   |
| NORMAN        | 12/7/1992  | S20616         | 100 MERKLE                                 | 50              | UNKNOWN OBSTRUCTION                                              |                   |
| NORMAN        | 12/10/1992 | S20616         | 2110 CRESTMONT                             | 200             | GREASE BLOCKAGE                                                  |                   |
| NORMAN        | 12/10/1992 | S20616         | 2205 W MAIN                                | 200             | GREASE BLOCKAGE                                                  |                   |
| NORMAN        | 12/10/1992 | S20616         | HIWAY 9 & JENKINS 300 BLK                  | 250             | GREASE AND ROOT BLOCKAGE                                         |                   |
| NORMAN        | 12/27/1992 | S20616         | 945 MOCKING BIRD                           | 500             | BLOCKAGE                                                         |                   |
| NORMAN        | 12/28/1992 | S20616         | 600 LINDSEY                                | 500             | LINE BLOCKED                                                     |                   |
| NORMAN        | 1/4/1993   | S20616         | 641 WELSTON                                | 50              | LINE BLOCKAGE                                                    |                   |
| NORMAN        | 1/6/1993   | S20616         | 500 EAST ROBINSON-BISHOP CREEK INTERSEPTOR | 30              | PAPER TOWELS                                                     |                   |
| NORMAN        | 1/15/1993  | S20616         | 1508 WESTBROOK TERRACE                     | 50              | GREASE AND PAPER                                                 |                   |

J:\planning\TMDL\Bacteria TMDLs\Parsons\2007\4 Canadian River(15)\Canadian\_FINAL\_081508.doc

| Facility Name | Date      | Facility<br>ID | Location                    | Amount<br>(Gal) | Cause                                                  | Type Of<br>Source |
|---------------|-----------|----------------|-----------------------------|-----------------|--------------------------------------------------------|-------------------|
| NORMAN        | 1/20/1993 | S20616         | 12 AVE NE & HIGH MEADOWS    | 100             | GREASE STOPPAGE                                        |                   |
| NORMAN        | 2/5/1993  | S20616         | 3800 W BISHOP               | 500             | GREASE BLOCKAGE                                        |                   |
| NORMAN        | 3/4/1993  | S20616         | 419 GEORGE L CROSS CT       | 100             | GREASE FROM FURR'S CAFETERIA                           |                   |
| NORMAN        | 3/19/1993 | S20616         | 3219 WILLOW ROCK RD.        | 100             | BLOCKAGE BY GREASE AND<br>TOWELS                       |                   |
| NORMAN        | 3/20/1993 | S20616         | 2100 VANESSA                | 20              | LINE BLOCKAGE                                          |                   |
| NORMAN        | 4/7/1993  | S20616         | 200 ANDOVER                 | 50              | GREASE AND DEBRIS BOLCKAGE                             |                   |
| NORMAN        | 4/9/1993  | S20616         | 517 UNIVERSITY BLVD         | 30              | GREASE BLOCKAGE                                        |                   |
| NORMAN        | 4/20/1993 | S20616         | 2000 CRESTMONT AVE.         | 2000            | POWER FAILURE AT LIFT STATION                          |                   |
| NORMAN        | 5/10/1993 | S20616         | 500 PICKARD                 |                 | HEAVY RAINS                                            |                   |
| NORMAN        | 5/10/1993 | S20610         | 2512 WALNUT RD              |                 | HEAVY RAINS                                            |                   |
| NORMAN        | 5/10/1993 | S20616         | PITCHARD AND MCNAMEE        | 500             | HEAVY RAIN                                             |                   |
| NORMAN        | 5/10/1993 | S20616         | 1500 E LINDSDEY             | 4800            | HEAVY RAINS                                            |                   |
| NORMAN        | 6/15/1993 | S20616         | 301 COOK                    | 25              | GREASE AND DEBRIS STOPPAGE                             |                   |
| NORMAN        | 6/18/1993 | S20616         | 1100 MAIN ST                | 50              | OBSTRUCTION IN MANHOLE                                 |                   |
| NORMAN        | 6/21/1993 | S20616         | 1100 E MAIN, NORMAN         | 50              | OBSTRUCTION IN SEWER LINE,<br>OVERFLOW AT MANHOLE SITE |                   |
| NORMAN        | 6/29/1993 | S20616         | 1800 LAKEHURST              | 10              | GREASE BLOCKAGE                                        |                   |
| NORMAN        | 7/4/1993  | S20616         | 3300 N PORTER               | 2500            | OBSTRUCTION IN THE LINE                                |                   |
| NORMAN        | 7/7/1993  | S20616         | 800 S CANADIAN TRAILS DRIVE | 20              | LINE BLOCKAGE                                          |                   |
| NORMAN        | 7/14/1993 | S20616         | 731 WEST IMHOFF             | 5               | GREASE BLOCKAGE                                        |                   |
| NORMAN        | 7/22/1993 | S20616         | 213 CHALMETT                | 5000            | LINE BLOCKAGE                                          |                   |
| NORMAN        | 7/31/1993 | S20616         | 1700 CHAMBLEE               | 10000           | DEBRIS BLOCKAGE                                        |                   |
| NORMAN        | 8/2/1993  | S20616         | 100 N PORTER                | 50              | LINE BLOCKAGE                                          |                   |
| NORMAN        | 8/3/1993  | S20616         | 1900 THORNTON               | 100             | OBSTRUCTION IN THE LINE                                |                   |
| NORMAN        | 8/16/1993 | S20616         | 1000 N COLLEGE              | 75              | GREASE BLOCKAGE                                        |                   |
| NORMAN        | 8/18/1993 | S20616         | 1200 OAKHURST               | 5               | LINE BLOCKAGE                                          |                   |
| NORMAN        | 8/19/1993 | S20616         | 1400 ELM                    | 50              | GREASE BLOCKAGE                                        |                   |
| NORMAN        | 8/20/1993 | S20616         | 2100 CRESTMONT              | 50              | MALFUNCTION AT LIFT STATION                            |                   |
| NORMAN        | 8/25/1993 | S20616         | 1528 ROSEMONT DRIVE         | 25              | GREASE AND SOAP                                        |                   |
| NORMAN        | 8/25/1993 | S20616         | 500 ROBINSON                | 30              | GREASE STOPPAGE                                        |                   |
| NORMAN        | 8/27/1993 | S20616         | 1400 12 STREET              | 25              | GREASE AND DEBRIS BLOCKAGE                             |                   |
| NORMAN        | 8/27/1993 | S20616         | 12TH AVE. NORTH EAST        | 30              | LINE BLOCKAGE                                          |                   |
| NORMAN        | 9/7/1993  | S20616         | 2502 NW WYANDOTTE           | 25              | ROOTS BLOCKAGE IN MANHOLE                              |                   |
| NORMAN        | 9/10/1993 | S20616         | 419 GEORGE L CROSS CT       | 100             | GREASE BLOCKAGE                                        |                   |
| NORMAN        | 9/11/1993 | S20616         | 1611 ISENHOWER ROAD         | 50              | GREASE AND SMALL LOG CHAIN                             |                   |
| NORMAN        | 9/14/1993 | S20616         | 204 SOUTH STEWART           | 25              | OBSTRUCTED LINE                                        |                   |

| Facility Name | Date       | Facility<br>ID | Location                           | Amount<br>(Gal) | Cause                                   | Type Of<br>Source |
|---------------|------------|----------------|------------------------------------|-----------------|-----------------------------------------|-------------------|
| NORMAN        | 10/13/1993 | S20616         | 300 W BAKER                        | 200             | LINE BLOCKAGE                           |                   |
| NORMAN        | 10/21/1993 | S20616         | 3100 WALNUT ROAD                   | 15              | LINE BLOCKAGE(PAPER TOWELS)             |                   |
| NORMAN        | 10/26/1993 | S20616         | 2014 SADDLEBACK                    | 100             | LIFT STATION MALFUNCTION                |                   |
| NORMAN        | 10/27/1993 | S20616         | 600 WEST MAIN                      | 20              | GREASE BLOCKAGE                         |                   |
| NORMAN        | 10/28/1993 | S20616         | 600 W BEAUMONT                     | 25              | LINE BLOCKAGE                           |                   |
| NORMAN        | 11/1/1993  | S20616         | 2500 WYANDOTTE WAY                 | 50              | LINE STOPPAGE                           |                   |
| NORMAN        | 11/15/1993 | S20616         | 206 S LAHOMA                       | 5               | GREASE STOPPAGE                         |                   |
| NORMAN        | 11/29/1993 | S20616         | 1421 KINGSTON                      | 10              | GREASE BLOCKAGE                         |                   |
| NORMAN        | 12/16/1993 | S20616         | 2014 SADDLEBACK                    | 200             | LIFT STATION MALFUNCTION                |                   |
| NORMAN        | 12/30/1993 | S20616         | 1025 BILOXI                        | 1500            | DEBRIS BLOCKAGE                         |                   |
| NORMAN        | 1/12/1994  | S20616         | 5`12 STARBROOK CRT                 | 10              | EASE BLOCKAGE                           |                   |
| NORMAN        | 1/14/1994  | S20616         | 1938 FILMORE                       | 50              | GREASE AND DEBRIS BLOCKAGE              |                   |
| NORMAN        | 1/14/1994  | S20616         | 207 MERKLE DRIVE                   | 200             | GREASE BLOCKAGE                         |                   |
| NORMAN        | 1/19/1994  | S20616         | 1609 PARKVIEW TERRACE              | 30              | UNKNOWN BLOCKAGE                        |                   |
| NORMAN        | 2/3/1994   | S20616         | 510 SOUTH UNIVERSITY BLVD.         | 20              | GREASE BLOCKAGE                         |                   |
| NORMAN        | 2/8/1994   | S20616         | 415 12TH AVENUE NE                 | 50              | BOARDS IN THE MOUTH OF 10-<br>INCH PIPE |                   |
| NORMAN        | 2/9/1994   | S20616         | 1713 EAST BOYD                     | 350             | OBSTRUCTION IN LINE                     |                   |
| NORMAN        | 2/16/1994  | S20616         | 827 RICHMOND DRIVE                 | 2               | DEBRIS BLOCKAGE                         |                   |
| NORMAN        | 2/16/1994  | S20616         | 528 COCKREL AVE                    | 50              | ROOT BLOCKAGE                           |                   |
| NORMAN        | 3/11/1994  | S20616         | 801 DRAKE DRIVE                    | 30              | GREASE STOPPAGE                         |                   |
| NORMAN        | 3/14/1994  | S20616         | 4321 24TH AVE NORTHWEST            | 1000            | OKEN FORCE MAIN                         |                   |
| NORMAN        | 3/15/1994  | S20616         | 2400 SOUTH CLASSEN                 | 30              | GREASE BLOCKAGE                         |                   |
| NORMAN        | 3/30/1994  | S20616         | 2517 HOLLYWOOD                     | 8               | LINE BLOCKAGE                           |                   |
| NORMAN        | 4/6/1994   | S20616         | 2500 WYANDOTTE                     | 50              | ROOT STOPPAGE                           |                   |
| NORMAN        | 4/8/1994   | S20616         | 1300 LOUISANA ST                   | 100             | DEBRIS AND ROOT BLOCKAGE                |                   |
| NORMAN        | 4/10/1994  | S20616         | 3511 H E BLACK DRIVE               | 100             | LINE BLOCKAGE                           |                   |
| NORMAN        | 4/17/1994  | S20616         | 1911 TWISTED OAK                   | 400             | GREASE AND DEBRIS                       |                   |
| NORMAN        | 4/18/1994  | S20616         | 1532 LINDSEY                       | 100             | LINE BLOCKAGE                           |                   |
| NORMAN        | 4/19/1994  | S20616         | 226 SKYLARK COURTS                 | 200             | LINE BLOCKAGE                           |                   |
| NORMAN        | 4/24/1994  | S20616         | 2104 LA DEAN DRIVE                 | 100             | GREASE BLOCKAGE                         |                   |
| NORMAN        | 4/26/1994  | S20616         | 3450 SOUTH LINCOLN                 | 400             | DEBRIS BLOCKAGE                         |                   |
| NORMAN        | 4/27/1994  | S20616         | 2262 WEST MAIN                     | 30              | GREASE BLOCKAGE                         |                   |
| NORMAN        | 5/1/1994   | S20616         | 519 SOUTH UNIVERSITY               | 100             | GREASE BLOCKAGE                         |                   |
| NORMAN        | 5/2/1994   | S20616         | 429 ROBINSON STREET                | 50              | LINE BLOCKAGE                           |                   |
| NORMAN        | 5/9/1994   | S20616         | CANDLEWOOD DR W OF BRANDYWINE LANE | 200             | DEBRIS STOPPAGE                         |                   |
| NORMAN        | 5/11/1994  | S20616         | 2025 RISING HILL DRIVE             | 1000            | OBSTRUCTION IN LINE                     |                   |

| Facility Name | Date       | Facility<br>ID | Location                             | Amount<br>(Gal) | Cause                                               | Type Of<br>Source |
|---------------|------------|----------------|--------------------------------------|-----------------|-----------------------------------------------------|-------------------|
| NORMAN        | 5/15/1994  | S20616         | LADBROOK STREET                      | 500             | UNKNOWN OBSTRUCTION IN LINE                         |                   |
| NORMAN        | 5/16/1994  | S20616         | 2380 INDUSTRIAL BLVD                 | 25              | LIFT STATION DOWN                                   |                   |
| NORMAN        | 5/28/1994  | S20616         | 528 MARYWOOD LANE                    | 50              | GREASE BLOCKAGE                                     |                   |
| NORMAN        | 6/1/1994   | S20616         | 2029 RISING HILL DRIVE               | 100             | UNKNOWN OBSTRUCTION                                 |                   |
| NORMAN        | 6/7/1994   | S20616         | LIFT STATION AT SANDPIPER LANE       | 50              | ELECTRICAL FAILURE                                  |                   |
| NORMAN        | 6/12/1994  | S20616         | 1502 FARMINGTON AVE                  | 20              | UNKNOWN                                             |                   |
| NORMAN        | 6/12/1994  | S20616         | 12TH AND HIGH MEDOWS DRIVE           | 400             | GREASE BLOCKAGE                                     |                   |
| NORMAN        | 6/13/1994  | S20616         | 2025 RISING HILLS DRIVE              | 30              | UNKNOWN                                             |                   |
| NORMAN        | 6/13/1994  | S20616         | 1140 MCGEE DRIVE                     | 50              | UNKNOWN                                             |                   |
| NORMAN        | 6/17/1994  | S21616         | 4025 HIDDEN HILLS DRIVE              | 15              | GREASE BLOCKAGE                                     |                   |
| NORMAN        | 6/17/1994  | S20616         | POSTAL LIFT STATION ON S IMHOFF ROAD | 600             | INTAKE CLOGGED                                      |                   |
| NORMAN        | 7/9/1994   | S20616         | 501 MEDOW RIDGE CIRCLE               | 10              | SERVICE LINE STOPPED UP AND<br>RAIN CAUSED OVERFLOW |                   |
| NORMAN        | 7/9/1994   | S20616         | 1801-1805 SADDLE BACK BLVD           | 75              | LINE STOPPED UP AND RAIN<br>CAUSED OVERFLOW         |                   |
| NORMAN        | 7/14/1994  | S20616         | 402 WOODLINE DR                      | 300             | OBSTRUCTION IN LINE                                 |                   |
| NORMAN        | 7/23/1994  | S20616         | 712 MOCKING BIRD LANE                | 50              | OBSTRUCTION IN LINE                                 |                   |
| NORMAN        | 7/25/1994  | S20616         | HIWAY 77 N ON 24TH 1/2 MILE          | 500             | BROKEN FORCE MAIN                                   |                   |
| NORMAN        | 8/1/1994   | S20616         | 2845 CREEKVIEW TR                    | 50              | UNKNOWN BLOCKAGE                                    |                   |
| NORMAN        | 8/8/1994   | S20616         | 536 S PICKARD                        | 50              | DEBRIS BLOCKAGE                                     |                   |
| NORMAN        | 8/11/1994  | S20616         | 3300 S JENKINS                       | 50              | OBSTRUCTION IN THE LINE                             |                   |
| NORMAN        | 8/19/1994  | S20616         | ROYAL OAK LIFT STATION               | 2000            | PUMP FAILURE                                        |                   |
| NORMAN        | 8/22/1994  | S20616         | 604 WEST MAIN                        | 20              | GREASE STOPPAGE                                     |                   |
| NORMAN        | 8/24/1994  | S20616         | 200 VICKSBURG AVE                    | 20              | DEBRIS BLOCKAGE                                     |                   |
| NORMAN        | 9/11/1994  | S20616         | 1200 E BROOKS ST                     | 350             | GREASE BLOCKAGE                                     |                   |
| NORMAN        | 9/19/1994  | S20616         | 1000 MOCKINGBIRD LANE                | 20              | UNKNOWN OBSTRUCTION                                 |                   |
| NORMAN        | 9/19/1994  | S20616         | 1600 FARMING AVE.                    | 30              | GREASE AND PAPER BLOCKAGE                           |                   |
| NORMAN        | 10/2/1994  | S20616         | 2743 WINDING CREEK CIRCLE            | 100             | DEBRIS BLOCKAGE                                     |                   |
| NORMAN        | 10/3/1994  | S20616         | 4205 HARROGATE                       | 15              | DEBRIA BLOCKAGE                                     |                   |
| NORMAN        | 10/7/1994  | S20616         | 300 PICKARD                          | 15              | UNKNOWN OBSTRUCTION                                 |                   |
| NORMAN        | 10/9/1994  | S20616         | PICKARD & MAIN                       | 300             | GREASE                                              |                   |
| NORMAN        | 10/10/1994 | S20616         | PICKARD AND MAIN                     | 200             | GREASE                                              |                   |
| NORMAN        | 10/10/1994 | S20616         | 300 PICKARD                          | 300             | GREASE                                              |                   |
| NORMAN        | 10/16/1994 | S20616         | 901 BEONNE CIRCLE                    | 100             | UNKNOWN OBSTRUCTION                                 |                   |
| NORMAN        | 10/22/1994 | S20616         | 731 WEST MAIN                        | 100             | GREASE AND DEBRIS BLOCKAGE                          |                   |
| NORMAN        | 10/23/1994 | S20616         | 820 CHAUTAUQUA AVE                   | 5               | UNKNOWN OBSTRUCTION                                 |                   |

| Facility Name | Date       | Facility<br>ID | Location                            | Amount<br>(Gal) | Cause                            | Type Of<br>Source |
|---------------|------------|----------------|-------------------------------------|-----------------|----------------------------------|-------------------|
| NORMAN        | 10/26/1994 | S20616         | 206 ORR DRIVE                       | 10              | DEBRIS BLOCKAGE(PAPER<br>TOWELS) |                   |
| NORMAN        | 10/26/1994 | S20616         | 1938 FILMOORE                       | 50              | OBSTRUCTION IN THE LINE          |                   |
| NORMAN        | 10/28/1994 | S20616         | 510 S UNIVERSITY BLVD.              | 10              | DEBRIS AND GREASE                |                   |
| NORMAN        | 10/28/1994 | S20616         | 4725 RANCHWOOD & N 48TH AVE         | 40              | UNKNOWN OBSTRUCTION              |                   |
| NORMAN        | 10/30/1994 | S20616         | 215 E VIDA WAY                      | 200             | GREASE                           |                   |
| NORMAN        | 10/30/1994 | S20616         | 2205 W MAIN ST                      | 500             | GREASE                           |                   |
| NORMAN        | 11/2/1994  | S20616         | 2743 WINDING CREEK CIRCLE           | 25              | UNKNOWN OBSTRUCTION              |                   |
| NORMAN        | 11/5/1994  | S20616         | 2205 WEST MAIN                      | 100             | GREASE BLOCKAGE                  |                   |
| NORMAN        | 11/7/1994  | S20616         | 709 W MAIN                          | 90              | GREASE STOPPAGE                  |                   |
| NORMAN        | 11/9/1994  | S20616         | DELTA AND ELM                       | 75              | OBSTRUCTION IN LINE              |                   |
| NORMAN        | 11/27/1994 | S20616         | 101 ANDOVER STREET                  | 50              | GREASE BLOCKAGE                  |                   |
| NORMAN        | 11/28/1994 | S20616         | 505 CORONADO STREET                 | 20              | GREASE BLOCKAGE                  |                   |
| NORMAN        | 11/29/1994 | S20616         | 2014 SADDLEBACK ROAD (LIFT STATION) | 50              | PUMP FAILURE                     |                   |
| NORMAN        | 12/10/1994 | S20616         | 2526 BRENTWOOD DRIVE                | 80              | ROOT STOPPAGE                    |                   |
| NORMAN        | 12/12/1994 | S20616         | 500 FLEETWOOD                       | 10              | OBSTRUCTION IN LINE              |                   |
| NORMAN        | 12/27/1994 | S20616         | 1516 MORLAND STREET                 | 5               | OBSTRUCTION IN THE LINE          |                   |
| NORMAN        | 12/28/1994 | S20616         | 1403 KINGSTON ROAD                  | 30              | DEBRIS BLOCKAGE                  |                   |
| NORMAN        | 12/30/1994 | S20616         | FIELD BEHIND 2801 RAMPART COURT     | 30              | LINE OBSTRUCTION                 |                   |
| NORMAN        | 12/31/1994 | S20616         | 702 MCCALL DRIVE                    | 25              | LINE OBSTRUCTION                 |                   |
| NORMAN        | 12/31/1994 | S20616         | 629 VICKBURG AVE.                   | 25              | LINE OBSTRUCTION                 |                   |
| NORMAN        | 1/2/1995   | S20616         | 500 N E 23RD AVE                    | 25              | LINE OBSTRUCTION                 |                   |
| NORMAN        | 1/2/1995   | S20616         | 1000 QUANNAH PARKER TRAIL           | 150             | LINE OBSTRUCTION                 |                   |
| NORMAN        | 1/11/1995  | S20616         | 1504 DAKOTA                         | 15              | LINE OBSTRUCTION                 |                   |
| NORMAN        | 1/11/1995  | S20616         |                                     | 50              | LINE OBSTRUCTION                 |                   |
| NORMAN        | 1/15/1995  | S20616         | 1545 HIGH TRAIL ROAD                | 25              | DEBRIS BLOCKAGE                  |                   |
| NORMAN        | 1/17/1995  | S20616         | 1022 QUANAH PARKER TRAIL            | 100             | UNK OBSTRUCTION                  |                   |
| NORMAN        | 1/23/1995  | S20616         | 629 SINCLAIR                        | 20              | LINE OBSTRUCTION                 |                   |
| NORMAN        | 1/28/1995  | S20616         | 503 ELM CREST DRIVE                 | 50              | GREASE BLOCKAGE                  |                   |
| NORMAN        | 1/30/1995  | S20616         | 623 SINCLAIR DRIVE                  | 20              | OBSTRUCTION IN LINE              |                   |
| NORMAN        | 1/31/1995  | S20616         | 804 WEST COMANCHE                   | 20              | OBSTRUCTION ON THE LINE          |                   |
| NORMAN        | 1/31/1995  | S20616         | 1610 TERRA JOE DRIVE                | 150             | OBSTRUCTION ON THE LINE          |                   |
| NORMAN        | 2/1/1995   | S20616         | BEAUMONT AND PEPPER TREE            | 50              | GREASE AND PAPER<br>OBSTRUCTION  |                   |
| NORMAN        | 2/3/1995   | S20616         | 640 WELLSTON CIRCLE                 | 20              | GREASE BLOCKAGE                  |                   |
| NORMAN        | 2/4/1995   | S20616         | 1814 E LINDSEY                      | 500             | DEBRIS BLOCKAGE                  |                   |
| NORMAN        | 2/9/1995   | S20616         | 2200 CLASSEN                        | 20              | LINE BLOCKAGE                    |                   |

| Facility Name | Date       | Facility<br>ID | Location                              | Amount<br>(Gal) | Cause                              | Type Of<br>Source |
|---------------|------------|----------------|---------------------------------------|-----------------|------------------------------------|-------------------|
| NORMAN        | 2/10/1995  | S20616         | 300 VICKABERG                         | 500             | UNK OBSTRUCTION                    |                   |
| NORMAN        | 2/13/1995  | S20616         | 556 24TH AVE NW                       | 20              | DEBRIS BLOCKAGE                    |                   |
| NORMAN        | 2/13/1995  | S20616         | 600 EAST LINDSEY                      | 100             | UNKNOWN OBSTRUCTION                |                   |
| NORMAN        | 2/17/1995  | S20616         | 2518 WYANDOTTE WAY                    | 20              | UNKNOWN LINE BLOCKAGE              |                   |
| NORMAN        | 2/21/1995  | S20616         | 500 FLEETWOOD DRIVE                   | 15              | PAPER TOWEL STOPPAGE               |                   |
| NORMAN        | 2/27/1995  | 20616          | 524 JEAN MARIE DRIVE                  | 10              | UNKNOWN OBSTRUCTION                |                   |
| NORMAN        | 3/8/1995   | S20616         | 508 SEQUOYAH TRAIL                    | 25              | LINE OBSTRUCTION                   |                   |
| NORMAN        | 3/20/1995  | S20616         | 302 VICKSBURG                         | 50              | GREASE BLOCKAGE                    |                   |
| NORMAN        | 3/21/1995  | S21616         | 1419 PECAN AVE                        | 100             | UNK OBSTRUCTION                    |                   |
| NORMAN        | 3/27/1995  | S20616         | 900 N CRAWFORD AVE                    | 5               | DEBRIS BLOCKAGE BY<br>CONTRACTOR   |                   |
| NORMAN        | 3/27/1995  | S20616         | 1910 CHEROKEE LN.                     | 20              | OBSTRUCTION IN LINE                |                   |
| NORMAN        | 3/27/1995  | S20616         | 115 BILUXI DR                         | 100             | OBSTRUCTION IN LINE                |                   |
| NORMAN        | 3/30/1995  | S20616         | 1 MILE WEST OF HIWAY 77 AND TECHUMSEH | 1500            | CONTRACTOR BROKE FORCE<br>MAIN     |                   |
| NORMAN        | 4/2/1995   | S20616         | 2743 WINDING CREEK CIRCLE             | 20              | UNKNOWN OBSTRUCTION                |                   |
| NORMAN        | 4/21/1995  | S20616         | 2308 DAKOTA STREET                    | 100             | NK OBSTRUCTION                     |                   |
| NORMAN        | 4/25/1995  | S20616         | 1300 COMMERCE DRIVE                   | 20              | UNK OBSTRUCTION                    |                   |
| NORMAN        | 4/25/1995  | S20616         | 1318 ABBEY DRIVE                      | 500             | UNK OBSTRUCTION                    |                   |
| NORMAN        | 4/30/1995  | S20616         | 1604 FARMINGTON AVE                   | 50              | GREASE BLOCKAGE                    |                   |
| NORMAN        | 5/5/1995   | S20616         | 2107 JACKSON DRIVE                    | 15              | ROOT BLOCKAGE                      |                   |
| NORMAN        | 5/6/1995   | S20616         | 1418 ABBIE DRIVE                      | 100             | DEBRIS BLOCKAGE                    |                   |
| NORMAN        | 5/10/1995  | S20616         | 1600 OAK CLIFF ROAD                   | 50              | UNK OBSTRUCTION                    |                   |
| NORMAN        | 5/14/1995  | S20616         | 629 VICKSBERG AVE                     | 100             | GREASE                             |                   |
| NORMAN        | 5/24/1995  | S20616         | NW 36TH AND ROBINSON                  | 75              | UNK OBSTRUCTION                    |                   |
| NORMAN        | 6/1/1995   | S20616         | 1613 AVENDALE DRIVE                   | 10              | DEBRIS BLOCKAGE                    |                   |
| NORMAN        | 6/8/1995   | S20616         | 4305 LYREWOOD LANE                    | 100             | LINE STOPPAGE                      |                   |
| NORMAN        | 6/12/1995  | S20616         | 1120 WESTBROOKE TERRACE               | 50              | GREASE AND ROOT BLOCKAGE           |                   |
| NORMAN        | 6/24/1995  | S20616         | 508 SEQUYOHA TRAIL                    | 100             | LINE STOPPAGE                      |                   |
| NORMAN        | 10/5/1995  | S20616         | 2543 WAST MAIN ST                     | 50              | GREASE BLOCKAGE                    |                   |
| NORMAN        | 10/7/1995  | S20616         | 640 WELLSTON CIRCLE                   | 100             | GREASE BLOCKAGE                    |                   |
| NORMAN        | 10/13/1995 | S20616         | 2400 CLASSEN                          | 15              | GREASE STOPPAGE                    |                   |
| NORMAN        | 10/15/1995 | S20616         | 3116 MEADOWS                          | 200             | GREASE & PAPER STOPPAGE            |                   |
| NORMAN        | 10/24/1995 | S20616         | 24TH AVE SE & IMHOFF                  | 250             | LIFT STATION BACKUP FROM<br>GREASE |                   |
| NORMAN        | 11/15/1995 | S20616         | 3761 CEADER RIDGE                     | 8               | UNK                                |                   |
| NORMAN        | 11/15/1995 | S20616         | 1209 WEST LINDSEY                     | 50              | GREASE STOPPAGE                    |                   |
| NORMAN        | 11/19/1995 | S20616         | 721 BOYD                              | 25              | UNK LINE STOPPAGE                  |                   |

| Facility Name | Date       | Facility<br>ID | Location                  | Amount<br>(Gal) | Cause                            | Type Of<br>Source |
|---------------|------------|----------------|---------------------------|-----------------|----------------------------------|-------------------|
| NORMAN        | 11/20/1995 | S20616         | 414 CRIPPLE CREEK         | 20              | LINE STOPPAGE                    |                   |
| NORMAN        | 11/23/1995 | S20616         | 2919 WILLOW CREEK DR      | 100             | GREASE AND ROOTS                 |                   |
| NORMAN        | 11/29/1995 | S20616         | 414 CRIPPLE CREEK         | 15              | UNKNOWN                          |                   |
| NORMAN        | 11/29/1995 | S20616         | 2743 WINDING CREEK        | 15              | UNKNOWN                          |                   |
| NORMAN        | 12/5/1995  | S20616         | 2308 DACOTA               | 15              | UNKNOWN                          |                   |
| NORMAN        | 12/10/1995 | S20616         | 203 JUSTINE DR.           | 100             | GREASE & PAPER                   |                   |
| NORMAN        | 12/11/1995 | S20616         | 100 BLK. OF LAHOMA        | 20              | UNKNOWN                          |                   |
| NORMAN        | 12/12/1995 | S20616         | 2204 HARTFORD             | 10              | UNKNOWN                          |                   |
| NORMAN        | 12/24/1995 | S20616         | 206 ORR DR.               | 50              | GREASE & PAPER                   |                   |
| NORMAN        | 1/8/1996   | S20616         | CORNER OF DRAKE & CLASSEN | 500             | UNKNOWN                          |                   |
| NORMAN        | 1/10/1996  | S20616         | 1310 GARFIELD             | 10              | UNKNOWN                          |                   |
| NORMAN        | 1/11/1996  | S20616         | 801 DRAKE                 | 8               | GREASE STOPPAGE                  |                   |
| NORMAN        | 1/19/1996  | S20616         | 821 E. FRANK              | 20              | MANHOLE STOPPAGE                 |                   |
| NORMAN        | 1/22/1996  | S20616         | 1501 ELM                  | 6               | GREASE STOPPAGE                  |                   |
| NORMAN        | 1/26/1996  | S20616         | 1212 S. BERRY RD.         | 10              | GREASE                           |                   |
| NORMAN        | 1/27/1996  | S20616         | 600 W. MAIN ST.           | 50              | GREASE                           |                   |
| NORMAN        | 1/28/1996  | S20616         | 903 GARVER                | 10              | GREASE COMING FROM TACO<br>MAYO  |                   |
| NORMAN        | 2/1/1996   | S20616         | 1400 ELM AVE.             | 100             | UNKNOWN                          |                   |
| NORMAN        | 2/9/1996   | S20616         | 822 WYLIE RD.             | 20              | UNKNOWN                          |                   |
| NORMAN        | 2/12/1996  | S20616         | 4105 BEECHWOOD            | 20              | UNKNOWN                          |                   |
| NORMAN        | 2/12/1996  | S20616         | 1922 OAK MEADOWS          | 30              | OBSTRUCTION IN LINE              |                   |
| NORMAN        | 2/12/1996  | S20616         | 2211 W. MAIN ST.          | 100             | PRIVATE SERVICE LINE<br>OVERFLOW |                   |
| NORMAN        | 2/14/1996  | S20616         | 603 TERRACE PL.           | 20              | OBSTRUCTION IN LINE              |                   |
| NORMAN        | 2/18/1996  | S20616         | 205 E. DALE               | 100             | GREASE & PAPER IN MAIN           |                   |
| NORMAN        | 2/19/1996  | S20616         | 233 CHALMETTE             | 300             | OBSTRUCTION IN MAIN              |                   |
| NORMAN        | 2/20/1996  | S20616         | 1920 CHERRYSTONE          | 50              | OBSTRUCTION IN LINE              |                   |
| NORMAN        | 3/1/1996   | S20616         | 904 COLLEGE               | 20              | GREASE & PAPER TOWELS IN<br>MAIN |                   |
| NORMAN        | 3/3/1996   | S20616         | 1840 E. LINDSAY           | 50              | GREASE & PAPER                   |                   |
| NORMAN        | 3/20/1996  | S20616         | 515 E. ALAMEDA            | 18              | MUD FROM NEW CONSTRUCTION        |                   |
| NORMAN        | 3/21/1996  | S20616         | 2330 N. PORTER            | 500             | UNKNOWN                          |                   |
| NORMAN        | 3/22/1996  | S20616         | 2330 N. PORTER            | 200             | DROP FELL INTO MANHOLE           |                   |
| NORMAN        | 4/1/1996   | S20616         | 2931 WILLOW CREEK DR.     | 50              | OBSTRUCTION IN LINE              |                   |
| NORMAN        | 4/1/1996   | S20616         | 300 BLK. SKYLARK CT.      | 100             | OBSTRUCTION IN LINE              |                   |
| NORMAN        | 4/4/1996   | S20616         | 822 N. PORTER AVE.        | 3               | UNKNOWN                          |                   |
| NORMAN        | 4/8/1996   | S20616         | 206 ORR                   | 5               | PAPER TOWELS                     |                   |

J:\planning\TMDL\Bacteria TMDLs\Parsons\2007\4 Canadian River(15)\Canadian\_FINAL\_081508.doc

| Facility Name | Date       | Facility<br>ID | Location                    | Amount<br>(Gal) | Cause                                    | Type Of<br>Source |
|---------------|------------|----------------|-----------------------------|-----------------|------------------------------------------|-------------------|
| NORMAN        | 4/28/1996  | S20616         | 1623 SHEFFIELD DR.          | 50              | GREASE & PAPER                           |                   |
| NORMAN        | 5/9/1996   | S20616         | 2200 BLK. BUD WILKINSON DR. | 100             | OBSTRUCTION IN LINE                      |                   |
| NORMAN        | 5/13/1996  | S20616         | FLOOD AVE. & MAIN ST.       | 100             | FLOOD AVE. & MAIN ST.                    |                   |
| NORMAN        | 5/13/1996  | S20616         | HWY 9 & CHATAUQUA AVE       | 100             | OBSTRUCTION IN LINE                      |                   |
| NORMAN        | 5/18/1996  | S20616         | 2713 WYANDOTTE WAY          | 50              | GREASE & PAPER                           |                   |
| NORMAN        | 6/24/1996  | S20616         | 1650 W. TECUMSEH RD.        | 30              | LIFT STATION DOWN                        |                   |
| NORMAN        | 8/3/1996   | S20616         |                             | 100             | GREASE & PAPER                           |                   |
| NORMAN        | 8/4/1996   | S20616         | 806 MOCKINGBIRD LN.         | 100             | GREASE & PAPER                           |                   |
| NORMAN        | 8/26/1996  | S20616         | FLEETWOOD & JAMES           | 50              | OBSTRUCTION IN LINE                      |                   |
| NORMAN        | 8/26/1996  | S20616         | S.E. 24TH AVE. & IMHOFF RD. | 50              | LIFT STATION STOPPED RUNNING             |                   |
| NORMAN        | 9/4/1996   | S20616         | 1134 MCGEE DR.              |                 | GREASE & PAPER                           |                   |
| NORMAN        | 9/5/1996   | S20616         | 3500 S. JENKINS             | 5               | GREASE                                   |                   |
| NORMAN        | 9/11/1996  | S20616         | 1007 CANTERBURY             | 5               | GREASE                                   |                   |
| NORMAN        | 9/13/1996  | S20616         | 200 VICKSBURG               | 50              | OBSTRUCTION IN LINE                      |                   |
| NORMAN        | 9/20/1996  | S20616         | 1028 W. BROOKS ST.          |                 | GREASE                                   |                   |
| NORMAN        | 10/1/1996  | S20616         | 800 W. ROCK CREEK RD.       | 500             | LIFT STATION DOWN                        |                   |
| NORMAN        | 10/23/1996 | S20616         | BOYD ST. & ELM AVE.         | 1000            | COLLAPSED LINE                           |                   |
| NORMAN        | 11/3/1996  | S20616         | ALAMEDA & RANCHO            | 200             | BRICKS & DEBRIS IN MH FROM<br>CONTRACTOR |                   |
| NORMAN        | 11/18/1996 | S20616         | N.E. 12TH & ALAMEDA         | 100             | OBSTRUCTION & BREAK IN MAIN              |                   |
| NORMAN        | 11/27/1996 | S20616         | BERRY RD. & IMHOFF RD.      | 25              | GREASE                                   |                   |
| NORMAN        | 11/27/1996 | S20616         | 500 RAMBLING OAKS DR.       | 50              | OBSTRUCTION IN LINE                      |                   |
| NORMAN        | 11/27/1996 | S20616         | 2114 BUD WILKINSON CT.      | 75              | OBSTRUCTION IN LINE                      |                   |
| NORMAN        | 12/3/1996  | S20616         | 2600 BLK. WILDWOOD LN.      | 100             | OBSTRUCTION IN LINE                      |                   |
| NORMAN        | 12/9/1996  | S20616         | 205 E. DALE                 | 15              | OBSTRUCTION                              |                   |
| NORMAN        | 12/16/1996 | S20616         | 228 N. FLOOD                | 100             | OBSTRUCTION IN LINE                      |                   |
| NORMAN        | 12/22/1996 | S20616         | 516 STARBROOK CT.           | 100             | GREASE & PAPER                           |                   |
| NORMAN        | 12/22/1996 | S20616         | 1525 CINDERELLA             | 100             | GREASE & PAPER                           |                   |
| NORMAN        | 12/22/1996 | S20616         | 1731 BRANDON CIR.           | 300             | GREASE & PAPER                           |                   |
| NORMAN        | 1/7/1997   | S20616         | 1202 CHARLESTON CT.         | 30              | OBSTRUCTION                              |                   |
| NORMAN        | 1/21/1997  | S20616         | 1728 WESTBROOK TER.         | 50              | OBSTRUCTION                              |                   |
| NORMAN        | 1/23/1997  | S20616         | 1720 ROLLINGSTONE DR.       | 25              | OBSTRUCTION                              |                   |
| NORMAN        | 2/1/1997   | S20616         | 500 ROSEWOOD                | 50              | UNKNOWN                                  |                   |
| NORMAN        | 2/9/1997   | S20616         | 508 SEQUOYAH TR.            | 200             | GREASE & PAPER                           |                   |
| NORMAN        | 2/10/1997  | S20616         | COLLEGE & ELMWOOD           | 50              | OBSTRUCTION                              |                   |
| NORMAN        | 2/15/1997  | S20616         | 635 WELLSTON CIR.           | 100             | GREASE & PAPER                           |                   |
| NORMAN        | 2/22/1997  | S20616         | 1208 HIGH MEADOWS           | 100             | GREASED & PAPER                          |                   |

| Facility Name | Date       | Facility<br>ID | Location                                   | Amount<br>(Gal) | Cause                                                 | Type Of<br>Source |
|---------------|------------|----------------|--------------------------------------------|-----------------|-------------------------------------------------------|-------------------|
| NORMAN        | 2/23/1997  | S20616         | 515 S. UNIVERSITY BLVD.                    | 100             | GREASE & PAPER                                        |                   |
| NORMAN        | 3/25/1997  | S20616         | 1109 N. PORTER AVE.                        | 50              | GREASE                                                |                   |
| NORMAN        | 3/25/1997  | S20616         | LINN & FINDLAY                             | 150             | UNKNOWN                                               |                   |
| NORMAN        | 3/26/1997  | S20616         | 1441 VINE ST.                              | 300             | GREASE & PAPER                                        |                   |
| NORMAN        | 3/28/1997  | S20616         | 1109 N. PORTER                             | 75              | OBSTRUCTION IN MAIN                                   |                   |
| NORMAN        | 5/5/1997   | S20616         | 1200 BLK. LOUISIANA ST.                    | 50              | OBSTRUCTION IN LINES                                  |                   |
| NORMAN        | 5/7/1997   | S20616         | 633 SINCLAIR                               |                 | OBSTRUCTION IN LINES                                  |                   |
| NORMAN        | 5/9/1997   | S20616         | 900 BLK. ALAMEDA ST.                       | 25              | OBSTRUCTION                                           |                   |
| NORMAN        | 5/10/1997  | S20616         | 510 S. UNIVERSITY BLVD.                    | 25              | OBSTRUCTION IN LINE                                   |                   |
| NORMAN        | 5/13/1997  | S20616         | WWTP                                       | 2,000           | DEBRIS                                                |                   |
| NORMAN        | 5/13/1997  | S20616         | MH AT WWTP                                 | 2000            | LINE CLOGGED UP BY SOLIDS<br>DURING DIGESTER CLEANOUT |                   |
| NORMAN        | 5/19/1997  | S20616         |                                            |                 |                                                       |                   |
| NORMAN        | 5/19/1997  | S20616         | CITY WWTP                                  | 7,500           | RAIN                                                  |                   |
| NORMAN        | 6/11/1997  | S20616         | 3800 COBBLE CIR.                           | 25              | OBSTRUCTION IN LINE                                   |                   |
| NORMAN        | 7/5/1997   | S20616         | SUTTON PLACE L.S.                          | 300             | POWER FAILURE                                         |                   |
| NORMAN        | 7/11/1997  | S20616         | 448 CLAREMONT                              | 20              | OBSTRUCTION IN LINE                                   |                   |
| NORMAN        | 8/7/1997   | S20616         | 1901 OAKHURST AVE.                         | 200             | OBSTRUCTION IN LINE                                   |                   |
| NORMAN        | 8/15/1997  | S20616         | 2509 HOLLYWOOD                             | 20              | ROOTS                                                 |                   |
| NORMAN        | 9/9/1997   | S20616         | 624 SINCLAIR                               | 2,000           | ROCKS IN MH                                           |                   |
| NORMAN        | 4/22/1998  | S20616         | 705 W. MAIN                                | 10              | GREASE                                                |                   |
| NORMAN        | 5/7/1998   | S20616         | WILEY & BROOKS                             | 30              | SEWER BACKUP                                          |                   |
| NORMAN        | 5/27/1998  | S20616         | CLASSEN & DRAKE                            | 100             | OBSTRUCTION                                           |                   |
| NORMAN        | 7/7/1998   | S20616         | 200 S. VICKSBURG                           | 100             |                                                       |                   |
| NORMAN        | 7/29/1998  | S20616         | 1100 BLK. OF E. MAIN                       | 150             | LINE BREAK                                            |                   |
| NORMAN        | 7/30/1998  | S20616         | 817 DENISON                                | 75              | SEWER BACKUP                                          |                   |
| NORMAN        | 8/7/1998   | S20616         | SHAKLEE                                    | 500             | SEWER BACKUP                                          |                   |
| NORMAN        | 8/30/1998  | S20616         | WWP                                        | 2,000           | PUMP FAILURE                                          |                   |
| NORMAN        | 9/2/1998   | S20616         | 634 WELSTON CIR.                           | 500             | DEBRIS                                                |                   |
| NORMAN        | 9/30/1998  | S20616         | DRAKE & CLASSEN                            | 200             | ROOTS                                                 |                   |
| NORMAN        | 10/2/1998  | S20616         | 501 CHESWICK                               | 100             |                                                       |                   |
| NORMAN        | 10/8/1998  | S20616         | 2907 WILLOWCREEK DR.                       | 100             | CHOKE                                                 |                   |
| NORMAN        | 10/13/1998 | S20616         | HWY 9 & S. JENKINS/WOODED AREA S. OF HWY 9 | 1,500           | ROOTS                                                 |                   |
| NORMAN        | 11/2/1998  | S20616         | 1730 PARKVIEW TER.                         | 50              | UNKNOWN                                               |                   |
| NORMAN        | 11/3/1998  | S20616         | PETERS & ROBINSON                          | 300             | UNKNOWN                                               |                   |
| NORMAN        | 11/19/1998 | S20616         | 1900 FILMORE                               | 100             | OBSTRUCTION                                           |                   |
| NORMAN        | 11/21/1998 | S20616         | 640 WELSTON CIR.                           | 50              | LINE BACKUP                                           |                   |

| Facility Name | Date       | Facility<br>ID | Location                        | Amount<br>(Gal) | Cause               | Type Of<br>Source |
|---------------|------------|----------------|---------------------------------|-----------------|---------------------|-------------------|
| NORMAN        | 12/3/1998  | S20616         | 2027 ALLENHURST                 | 500             | СНОКЕ               |                   |
| NORMAN        | 12/25/1998 | S20616         | VICKSBURG APTS.                 | 200             | CHOKE               |                   |
| NORMAN        | 12/26/1998 | S20616         | 1606 EISENHOWER                 | 300             | CHOKE               |                   |
| NORMAN        | 12/29/1998 | S20616         | WASHINGTON-IRVING MIDDLE SCHOOL | 100             | CHOKE               |                   |
| NORMAN        | 1/9/1999   | S20616         | PETERS & ROBINSON               | 200             | CHOKE               |                   |
| NORMAN        | 1/16/1999  | S20616         | 1303 OAKHURST                   | 300             | CHOKE               |                   |
| NORMAN        | 1/27/1999  | S20616         | 1921 SHELBY CT.                 | 100             | UNKNOWN             |                   |
| NORMAN        | 2/9/1999   | S20616         | 1016 COLLEGE                    | 50              | CHOKE               |                   |
| NORMAN        | 2/11/1999  | S20616         | ROCKHOLLOW & QUEENSTON          | 100             | GREASE              |                   |
| NORMAN        | 2/12/1999  | S20616         | 623 SINCLAIR                    |                 | STOPPAGE            |                   |
| NORMAN        | 2/26/1999  | S20616         | 1314 ABBEY DR.                  | 50              | SEWER CHOKE         |                   |
| NORMAN        | 2/26/1999  | S20616         | 501 CORONADO                    | 50              |                     |                   |
| NORMAN        | 3/4/1999   | S20616         | 623 SINCLAIR DR.                | 50              | SEWER CHOKE         |                   |
| NORMAN        | 3/25/1999  | S20616         | 500 ED NOBLE PARKWAY            | 200             | GREASE & CHOKE      |                   |
| NORMAN        | 3/26/1999  | S20616         | 2203 ALAMEDA PLAZA DR.          | 500             | SEWER CHOKE         |                   |
| NORMAN        | 4/15/1999  | S20616         | 332 WICHITA ST.                 | 100             | UNKNOWN             |                   |
| NORMAN        | 5/13/1999  | S20616         | 1300 HIGH MEADOWS               | 200             | GREASE & PAPER      |                   |
| NORMAN        | 5/26/1999  | S20616         | 2014 SADDLEBACK                 | 200             | L.S. DOWN           |                   |
| NORMAN        | 6/2/1999   | S20616         | O.U. GOLF COURSE                | 50              | UNKNOWN             |                   |
| NORMAN        | 6/17/1999  | S20616         | OU GOLF COURSE                  | 100             | UNKNOWN             |                   |
| NORMAN        | 6/23/1999  | S20616         | 704 STINSON                     | 3,600           | RAINWATER           |                   |
| NORMAN        | 6/23/1999  | S20616         | 1521 W. LINDSEY                 | 50              | CHOKE               |                   |
| NORMAN        | 7/15/1999  | S20616         | O.U. GOLF COURSE                | 50              | UNKNOWN             |                   |
| NORMAN        | 7/16/1999  | S20616         | IRVING MIDDLE SCHOOL            | 500             | CHOKE               |                   |
| NORMAN        | 8/1/1999   | S20616         | 315 MIMOSA                      | 50              | CHOKE               |                   |
| NORMAN        | 8/19/1999  | S20616         | 826 W. SYMMES                   | 500             | UNKNOWN             |                   |
| NORMAN        | 8/20/1999  | S20616         | 1501 ELM                        | 250             | CHOKE               |                   |
| NORMAN        | 9/6/1999   | S20616         | 413 CRESTLAND DR.               | 300             | CHOKED LINE         |                   |
| NORMAN        | 9/9/1999   | S20616         | SUTTON PLACE L.S.               | 300             | L.S. FAILURE        |                   |
| NORMAN        | 9/24/1999  | S20616         | 4201 NORTHHAMPTON CT.           | 50              | GREASE              |                   |
| NORMAN        | 9/27/1999  | S20616         | 1717 MCGEE                      | 50              | OBSTRUCTION IN LINE |                   |
| NORMAN        | 9/30/1999  | S20616         | 707 WESTPARK                    | 30              | OBSTRUCTION IN LINE |                   |
| NORMAN        | 10/1/1999  | S20616         | 1100 COLLEGE                    | 100             | OBSTRUCTION         |                   |
| NORMAN        | 10/10/1999 | S20616         | 1623 SHEFFIELD                  | 100             | SEWER STOPPAGE      |                   |
| NORMAN        | 10/13/1999 | S20616         | 2312 CAROLYN CT.                | 50              | STOPPAGE            |                   |
| NORMAN        | 10/22/1999 | S20616         | 2502 WYANDOTTE WAY              | 25              | UNKNOWN             |                   |
| NORMAN        | 10/23/1999 | S20616         | 3124 MEADOW AVE.                | 50              | SEWER CHOKE         |                   |

| Facility Name | Date       | Facility<br>ID | Location                                            | Amount<br>(Gal) | Cause               | Type Of<br>Source |
|---------------|------------|----------------|-----------------------------------------------------|-----------------|---------------------|-------------------|
| NORMAN        | 10/28/1999 | S20616         | 2235 BUD WILKINSON CT.                              | 500             | UNKNOWN             |                   |
| NORMAN        | 10/28/1999 | S20616         | 1419 PECAN                                          | 500             | UNKNOWN             |                   |
| NORMAN        | 11/4/1999  | S20616         | DAKOTA & PICKARD, IN ALLEY                          | 25              | OBSRUCTION          |                   |
| NORMAN        | 11/11/1999 | S20616         | 1606 EISENHOWER                                     | 50              | OBSTRUCTION IN LINE |                   |
| NORMAN        | 11/16/1999 | S20616         | 2743 WINDING CREEK CIR.                             | 150             | STOPPAGE            |                   |
| NORMAN        | 11/19/1999 | S20616         | 501 & 505 CORONADO                                  | 50              | ROOTS               |                   |
| NORMAN        | 11/29/1999 | S20616         | 613 E. ROCK CREEK                                   | 50              | UNKNOWN             |                   |
| NORMAN        | 12/2/1999  | S20616         | 1901 E. LINDSEY                                     | 50              | UNKNOWN             |                   |
| NORMAN        | 12/5/1999  | S20616         | 2510 WYANDOTTE WAY                                  | 600             | STOPPAGE            |                   |
| NORMAN        | 12/6/1999  | S20616         | 2510 WYANDOTTE WAY                                  |                 | STOPPAGE            |                   |
| NORMAN        | 12/7/1999  | S20616         | 3500 S. JENKINS                                     | 5,000           |                     |                   |
| NORMAN        | 12/12/1999 | S20616         | 623 SINCLAIR                                        | 500             | SEWER CHOKE         |                   |
| NORMAN        | 12/17/1999 | S20616         | 441 THORNTON                                        | 100             | STOPPAGE            |                   |
| NORMAN        | 12/28/1999 | S20616         | 1727 WESTBROOK TER.                                 | 300             | CHOKE IN LINE       |                   |
| NORMAN        | 1/6/2000   | S20616         | 1028 CEDARCREST                                     | 100             | STOPPAGE            |                   |
| NORMAN        | 1/6/2000   | S20616         | 314 SKYLARK                                         | 100             | STOPPAGE            |                   |
| NORMAN        | 1/6/2000   | 20616          | 213 CHALMETTE                                       | 100             | UNKNOWN             |                   |
| NORMAN        | 1/9/2000   | S20616         | 623 SINCLAIR                                        | 300             | SEWER STOPPAGE      |                   |
| NORMAN        | 1/12/2000  | S20616         | LINDSAY & WYLIE                                     | 500             | SEWER STOPPAGE      |                   |
| NORMAN        | 1/13/2000  | S20616         | 623 SINCLAIR                                        | 200             |                     |                   |
| NORMAN        | 1/19/2000  | S20616         | 120 MERKLE                                          | 500             | SEWER STOPPAGE      |                   |
| NORMAN        | 1/23/2000  | S20616         | ALLEY N. OF COMMERCE DR. W. OF LINDSEY PLAZA<br>DR. | 100             | SEWER STOPPAGE      |                   |
| NORMAN        | 2/7/2000   | S20616         | 1300 OAKHURST                                       | 1,000           | OBSTRUCTION IN LINE |                   |
| NORMAN        | 2/7/2000   | S20616         | FLEETWOOD & JAMES                                   | 150             | ROOTS               |                   |
| NORMAN        | 2/8/2000   | S20616         | 2402 S. CLASSEN                                     | 100             | UNKNOWN             |                   |
| NORMAN        | 2/11/2000  | S20616         | 2811 RAINTREE CR                                    | 500             | STOPPAGE            |                   |
| NORMAN        | 2/14/2000  | S20616         | 908 MCNAMEE                                         | 30              | OBSTRUCTION         |                   |
| NORMAN        | 2/23/2000  | S20616         | 707 S.W. 24TH AVE                                   | 20              | GREASE              |                   |
| NORMAN        | 2/27/2000  | S20616         | 2001 BURGUNDY CT.                                   | 100             | GREASE              |                   |
| NORMAN        | 2/27/2000  | S20616         | 1713 PARKVIEW TERR                                  | 200             | STOPPAGE            |                   |
| NORMAN        | 3/4/2000   | S20616         | 1304 HIGH MEADOW DR.                                | 250             | STOPPAGE            |                   |
| NORMAN        | 3/6/2000   | S20616         | 221 MERKLE                                          | 100             | OBSTRUCTION         |                   |
| NORMAN        | 3/9/2000   | S20616         | 1912 THORNTON ST.                                   | 100             | SEWER STOPPAGE      |                   |
| NORMAN        | 3/13/2000  | S20616         | 3627 BELLWOOD                                       | 30              | OBSTRUCTION IN LINE |                   |
| NORMAN        | 3/26/2000  | S20616         | 903 DEONNE CIR.                                     | 40              | GREASE              |                   |
| NORMAN        | 3/28/2000  | S20616         | 1300 MCGEE DR                                       | 50              | STOPPED MH          |                   |

J:\planning\TMDL\Bacteria TMDLs\Parsons\2007\4 Canadian River(15)\Canadian\_FINAL\_081508.doc

| Facility Name | Date       | Facility<br>ID | Location                          | Amount<br>(Gal) | Cause                            | Type Of<br>Source |
|---------------|------------|----------------|-----------------------------------|-----------------|----------------------------------|-------------------|
| NORMAN        | 4/20/2000  | S20616         | 1713 PARKVIEW TERR.               | 20              | STOPPAGE                         |                   |
| NORMAN        | 4/24/2000  | S20616         | 401 N. MERKLE                     | 100             | OBSTRUCTION                      |                   |
| NORMAN        | 5/2/2000   | S20616         | 714 LONG CIR.                     | 50              | OBSTRUCTION                      |                   |
| NORMAN        | 5/11/2000  | S20616         | 1432 24TH AVE. S.E.               | 100             | OBSTRUCTION                      |                   |
| NORMAN        | 5/12/2000  | S20616         | 1501 MORREN                       | 50              |                                  |                   |
| NORMAN        | 5/30/2000  | S20616         | 2601 S. BERRY RD.                 |                 | OBSTRUCTION IN LINE              |                   |
| NORMAN        | 6/5/2000   | S20616         | 1713 PARKVIEW TERR.               | 20              | GREASE & PAPER TOWELS            |                   |
| NORMAN        | 6/13/2000  | S20616         | 708 STINSON                       | 500             | OKLA. UNIV. PUMPING DUCK<br>POND |                   |
| NORMAN        | 6/29/2000  | S20616         | 1610 EISENHOWER                   | 10              | OBSTRUCTION IN LINE              |                   |
| NORMAN        | 6/29/2000  | S20616         | 603 TERRACE PL                    | 150             | UNKNOWN                          |                   |
| NORMAN        | 7/3/2000   | S20616         | HWY 9 & JENKINS - SHAKLEE         | 500             | ROOTS                            |                   |
| NORMAN        | 7/18/2000  | S20616         | 965 BILOXI ( BROOK HOLLOW APTS. ) | 200             | UNKNOWN                          |                   |
| NORMAN        | 7/20/2000  | S20616         | 1405 S. ELM                       | 50              | SEWER STOPPAGE                   |                   |
| NORMAN        | 7/28/2000  | S20616         | 711 TERRY DR.                     | 30              | SEWAGE STOPPAGE                  |                   |
| NORMAN        | 7/31/2000  | S20616         | 1201 CHARLESTON CT.               | 30              | STOPPAGE                         |                   |
| NORMAN        | 8/24/2000  | S20616         | 2704 S. BERRY                     | 50              | OBSTRUCTION IN LINE              |                   |
| NORMAN        | 9/14/2000  | S20616         | CHISOLM TRAIL PARK                | 250             | OVERFLOW                         |                   |
| NORMAN        | 9/23/2000  | S20616         | 808 RICHMOND                      | 100             | STICKS IN MH                     |                   |
| NORMAN        | 9/27/2000  | S20616         | 901 DEONNE CIR                    | 75              | STOPPAGE                         |                   |
| NORMAN        | 10/9/2000  | S20616         | 12TH AVE N.E. & ROCK CREEK RD.    | 1,500           | BROKE LINE                       |                   |
| NORMAN        | 10/13/2000 | S20616         | 1351 REGENT                       | 500             | SEWER STOPPAGE                   |                   |
| NORMAN        | 10/19/2000 | S20616         | HWY 9 & JENKINS - SHAKLEE         | 50,000          | ROOTS                            |                   |
| NORMAN        | 10/23/2000 | S20616         | OAKTREE APTS                      | 10,000          | RAIN                             |                   |
| NORMAN        | 10/23/2000 | S20616         | 48TH S.W. AVE & MAIN ST           | 10,000          | RAIN                             |                   |
| NORMAN        | 10/23/2000 | S20616         | 704 STINSON                       | 10,000          | RAIN                             |                   |
| NORMAN        | 10/30/2000 | S20616         | 901 DEONNE CIR                    | 450             | CHOKE                            |                   |
| NORMAN        | 11/13/2000 | S20616         | 2708 CHELSEA CT.                  | 50,000          | LINE BREAK                       |                   |
| NORMAN        | 11/22/2000 | S20616         | 2505 BOXWOOD                      | 10              | STOPPAGE                         |                   |
| NORMAN        | 11/29/2000 | S20616         | 515 N.W. 24                       | 100             | OBSTRUCTION                      |                   |
| NORMAN        | 12/8/2000  | S20616         | 1429 BILL CARROLL                 | 100             | GREASE & PAPER                   |                   |
| NORMAN        | 12/11/2000 | S20616         | 1631 N. CRAWFORD                  | 100             | OBSTRUCTION                      |                   |
| NORMAN        | 12/11/2000 | S20616         | 707 S.W. 24                       | 50              | OBSTRUCTION                      |                   |
| NORMAN        | 12/13/2000 | S20616         | 1501 ELM                          | 50              | OBSTRUCTION                      |                   |
| NORMAN        | 1/4/2001   | S20616         | 1806 SHELBY COURT                 | 1,000           | STOPPAGE IN MAIN                 |                   |
| NORMAN        | 1/10/2001  | S20616         | 1314 ABBEY                        | 300             | STOPPAGE                         |                   |
| NORMAN        | 1/12/2001  | S20616         | 2205 W MAIN ST                    | 100             | OBSTRUCTION IN LINES             |                   |

J:\planning\TMDL\Bacteria TMDLs\Parsons\2007\4 Canadian River(15)\Canadian\_FINAL\_081508.doc

| Facility Name | Date      | Facility<br>ID | Location                  | Amount<br>(Gal) | Cause                               | Type Of<br>Source |
|---------------|-----------|----------------|---------------------------|-----------------|-------------------------------------|-------------------|
| NORMAN        | 1/15/2001 | S20616         | 1600 CHAMBLEE DR.         | 10,000          | LINE COLLAPSED                      |                   |
| NORMAN        | 1/18/2001 | S20616         | 1606 EISENHOWER           | 50              | REMOVED OBSTRUCTION                 |                   |
| NORMAN        | 1/21/2001 | S20616         | 1003 MEADOW RIDGE DR      | 40              | OBSTRUCTION OF MAIN                 |                   |
| NORMAN        | 1/22/2001 | S20616         | 1314 ABBEY                | 50              | OBSTRUCTION IN LINE                 |                   |
| NORMAN        | 1/24/2001 | S20616         | 1308 MCKINLEY             | 10              | OBSTRUCTION IN MAIN                 |                   |
| NORMAN        | 1/25/2001 | S20616         | 1717 E BOYD               | 1000            | OBSTRUCTION IN LINE                 |                   |
| NORMAN        | 1/29/2001 | S20616         | 213 MOUNT VERNON          | 25              | ROOTS                               |                   |
| NORMAN        | 1/29/2001 | S20616         | 12TH AVE N.E. & PALOMA ST | 40              | SEWER OBSTRUCTION                   |                   |
| NORMAN        | 2/4/2001  | S20616         | 601 S.E. 12TH AVE         | 300             | SEWER OBSTRUCTION                   |                   |
| NORMAN        | 2/9/2001  | S20616         | 2919 WILLOW CREEK DR      | 50              | OBSTRUCTION IN LINE                 |                   |
| NORMAN        | 2/10/2001 | S20616         | 708 RICHMOND DR           | 40              | OBSTRUCTION IN LINE                 |                   |
| NORMAN        | 2/19/2001 | S20616         | 4501 W. MAIN              | 50              | OBSTRUCTION                         |                   |
| NORMAN        | 2/21/2001 | S20616         | 624 SINCLAIR              | 500             | OBSTRUCTION                         |                   |
| NORMAN        | 2/25/2001 | S20616         | 920 HARDIN                | 30              | SEWER OBSTRUCTION                   |                   |
| NORMAN        | 2/26/2001 | S20616         | 1056 CARLISLE CIR         | 1,000           |                                     |                   |
| NORMAN        | 2/27/2001 | S20616         | 3913 STONEWALL            | 25              |                                     |                   |
| NORMAN        | 3/2/2001  | S20616         | 1404 DENISON              | 50              | SEWER OBSTRUCTION                   |                   |
| NORMAN        | 3/6/2001  | S20616         | 1510 BEDFORD LANE         | 500             | SEWER OBSTRUCTION                   |                   |
| NORMAN        | 3/7/2001  | S20616         | 2029 BEAUMONT             | 200             | SEWER OBSTRUCTION                   |                   |
| NORMAN        | 3/7/2001  | S20616         | 200 S.E. VICKSBURG        | 30              | SEWER OBSTRUCTION                   |                   |
| NORMAN        | 3/7/2001  | S20616         | 2800 CHAUTAUQUA           | 50              | SEWER OBSTRUCTION                   |                   |
| NORMAN        | 3/17/2001 | S20616         | 1300 OAKHURST AVE         | 400             | SEWER OBSTRUCTION                   | MANHOLE           |
| NORMAN        | 3/19/2001 | S20616         | 1818 W LINDSEY            | 100             | SEWER OBSTRUCTION                   |                   |
| NORMAN        | 3/24/2001 | S20616         | 1501 E. LINDSAY ST        | 50              | SEWER OBSTRUCTION                   |                   |
| NORMAN        | 3/30/2001 | S20616         | 901 DEONNE CIR            | 200             | SEWER OBSTRUCTION                   |                   |
| NORMAN        | 4/11/2001 | S20616         | 629 SINCLAIR              | 50              | OVERFLOW                            |                   |
| NORMAN        | 4/17/2001 | S20616         | 2743 WINDING CREEK CIR.   | 20              | SEWER OBSTRUCTION                   |                   |
| NORMAN        | 4/17/2001 | S20616         | YORK L.S.                 | 300             | BLOCKAGE                            |                   |
| NORMAN        | 4/20/2001 | S20616         | 1240 NORTHCLIFF           | 75              | GREASE                              |                   |
| NORMAN        | 5/4/2001  | S20616         | 2900 S. CHAUTAUQUA        | 100             | OVERFLOW                            |                   |
| NORMAN        | 5/30/2001 | S20616         | OAKTREE APTS              | 1000            | OVERFLOWING MH DUE TO HEAVY<br>RAIN | MANHOLE           |
| NORMAN        | 5/30/2001 | S20616         | 12TH & LINDSEY ST         | 1500            | ROOTS                               | MANHOLE           |
| NORMAN        | 5/30/2001 | S20616         | W MAIN & W 48TH           | 500             | MH OVERFLOW DUE TO RAIN             | MANHOLE           |
| NORMAN        | 6/15/2001 | S20616         | 1125 E. ALAMEDA           | 50              | GREASE & PAPER                      |                   |
| NORMAN        | 6/16/2001 | S20616         | 200 W. DALE               | 100             | GREASE & PAPER                      |                   |
| NORMAN        | 6/18/2001 | S20616         | 500 W. TONHAWA ST.        | 40              | OBSTRUCTION                         |                   |

| Facility Name | Date       | Facility<br>ID | Location                             | Amount<br>(Gal) | Cause                   | Type Of<br>Source |
|---------------|------------|----------------|--------------------------------------|-----------------|-------------------------|-------------------|
| NORMAN        | 6/30/2001  | S20616         | 48TH AVE N.W. N. OF HERITAGE PL. DR. | 400             | COLLAPSED MAIN          |                   |
| NORMAN        | 7/7/2001   | S20616         | 4303 PRAIRIE CREEK DR.               | 40              | OBSTRUCTION             |                   |
| NORMAN        | 7/15/2001  | S20616         | 1631 N. CRAWFORD AVE                 | 20              | OBSTRUCTION             |                   |
| NORMAN        | 7/16/2001  | S20616         | TECUMSEH                             | 10,000          | PRESSURE LINE BROKE     |                   |
| NORMAN        | 7/18/2001  | S20616         | 202 STANTON DR                       | 50              | OBSTRUCTION             | PIPE              |
| NORMAN        | 7/20/2001  | S20616         | 3000 HARWICH CT.                     | 1,000           | OBSTRUCTION             | MANHOLE           |
| NORMAN        | 8/2/2001   | S20616         | NATIONAL & TECUMSEH                  | 500             | MAIN BREAK              | PIPE              |
| NORMAN        | 8/9/2001   | S20616         | 1200 E. BROOKS                       | 50              | OBSTRUCTION             |                   |
| NORMAN        | 8/13/2001  | S20616         | 3432 RAMBLING OAKS DR.               | 20              | OBSTRUCTION             |                   |
| NORMAN        | 9/17/2001  | S20616         | 1400 S.W. 28                         | 500             | OBSTRUCTION             |                   |
| NORMAN        | 9/18/2001  | S20616         | 1900 RENAISSANCE DR APT. BLDG 10     | 0               | OBSTRUCTION             |                   |
| NORMAN        | 9/20/2001  | S20616         | 708 STINSON                          | 700             | RAIN                    |                   |
| NORMAN        | 10/1/2001  | S20616         | 1214 WESTBROOK TERR.                 | 1,000           | BLOCKAGE                | MANHOLE           |
| NORMAN        | 10/10/2001 | S20616         | 1501 PARKVIEW TERR                   | 10,000          | RAIN                    |                   |
| NORMAN        | 10/10/2001 | S20616         | 704 STINSON                          | 10,000          | RAIN                    |                   |
| NORMAN        | 10/28/2001 | S20616         | 1633 WINDMILL                        | 750             | OVERFLOW                | MANHOLE           |
| NORMAN        | 11/4/2001  | S20616         | 911 BARBOUR                          | 30              | OBSTRUCTION             | MANHOLE           |
| NORMAN        | 11/21/2001 | S20616         | 1000 BLK CARLISLE CIR.               | 200             | OVERFLOW                | MANHOLE           |
| NORMAN        | 11/25/2001 | S20616         | ROLLING STONE & OAKHURST             | 5,000           | OVERFLOW                | MANHOLE           |
| NORMAN        | 12/1/2001  | S20616         | 710 RICHMOND AVE                     | 20              | OBSTRUCTION             |                   |
| NORMAN        | 12/6/2001  | S20616         | 12TH AVE N.E. & E. MAIN ST           | 50              | STOPPAGE                |                   |
| NORMAN        | 12/10/2001 | S20616         | HALRAY DR.                           | 50              | ROOTS & GREASE          |                   |
| NORMAN        | 12/12/2001 | S20616         | 640 WELSTON CIR                      | 20              | MAIN LINE CHOKED        |                   |
| NORMAN        | 12/18/2001 | S20616         | 515 ALAMEDA                          | 100             | GREASE & ROOTS          |                   |
| NORMAN        | 1/6/2002   | S20616         | DRAKE & CLASSEN                      | 75              | MHOVERFLOW              | MANHOLE           |
| NORMAN        | 1/7/2002   | S20616         | 2107 JACKSON                         | 2,500           | MH SURCHARGED           |                   |
| NORMAN        | 1/8/2002   | S20616         | N.E. 24TH AVE                        | 1,500           | MAIN HIT BY CONTRACTORS |                   |
| NORMAN        | 1/8/2002   | S20616         | 1119 LOIS ST                         | 25              | OBSTRUCTION             |                   |
| NORMAN        | 1/13/2002  | S20616         | 524 JEAN MARIE                       | 20              | СНОКЕ                   |                   |
| NORMAN        | 1/18/2002  | S20616         | 2312 CAROLYN                         | 100             | СНОКЕ                   |                   |
| NORMAN        | 1/19/2002  | S20616         | 1037 MONTGOMERY                      | 25              | СНОКЕ                   |                   |
| NORMAN        | 1/27/2002  | S20616         | 1250 36TH AVE N.W.                   | 100             | СНОКЕ                   | MANHOLE           |
| NORMAN        | 1/27/2002  | S20616         | 1210 WYANDOTTE                       | 75              | СНОКЕ                   | MANHOLE           |
| NORMAN        | 1/31/2002  | S20616         | 1915 CRAWFORD                        | 30              | СНОКЕ                   | MANHOLE           |
| NORMAN        | 2/11/2002  | S20616         | ELMWOOD & COLLEGE                    | 1,500           | СНОКЕ                   | MANHOLE           |
| NORMAN        | 2/15/2002  | S20616         | 237 CHALMETTE                        | 300             | СНОКЕ                   |                   |
| NORMAN        | 2/15/2002  | S20616         | 3526 RAMBLING OAKS                   | 80              | СНОКЕ                   |                   |

| Facility Name | Date       | Facility<br>ID | Location                   | Amount<br>(Gal) | Cause                | Type Of<br>Source |
|---------------|------------|----------------|----------------------------|-----------------|----------------------|-------------------|
| NORMAN        | 3/3/2002   | S20616         | 3926 PINETREE CIR          | 30              | СНОКЕ                | PIPE              |
| NORMAN        | 3/4/2002   | S20616         | 1521 GREENBRIAR DR.        | 1,000           | CHOKE                |                   |
| NORMAN        | 3/5/2002   | S20616         | 905 CANTERBURY             | 100             | CHOKE                |                   |
| NORMAN        | 3/6/2002   | S20616         | 3926 PINE TREE CIR         | 100             | OBSTRUCTION          |                   |
| NORMAN        | 3/11/2002  | S20616         | 1631 N. CRAWFORD           | 1,000           | OVERFLOW             | MANHOLE           |
| NORMAN        | 3/13/2002  | S20616         | 704 TERRY DR.              | 500             | OBSTRUCTION          | MANHOLE           |
| NORMAN        | 3/14/2002  | S20616         | 1300 MCGEE                 | 100             | OBSTRUCTION          |                   |
| NORMAN        | 3/21/2002  | S20616         | 2107 JACKSON               | 700             | OBSTRUCTION          |                   |
| NORMAN        | 3/23/2002  | S20616         | 421 CRIPPLE CREEK          | 200             | OBSTRUCTION          |                   |
| NORMAN        | 3/25/2002  | S20616         | 5201 DEERHURST             | 65              | GREASE               | PIPE              |
| NORMAN        | 3/29/2002  | S20616         | 711 TERRY DR               | 200             | OBSTRUCTION          |                   |
| NORMAN        | 3/31/2002  | S20616         | 2107 JACKSON               | 250             | OVERFLOW             | MANHOLE           |
| NORMAN        | 4/1/2002   | S20616         | 3212 POCOSSET              | 3,600           | DEBRIS               |                   |
| NORMAN        | 4/10/2002  | S20616         | 1037 MONTGOMERY CIRCLE     | 50              | OBSTRUCTION          |                   |
| NORMAN        | 4/14/2002  | S20616         | 2900 12TH AVE N.E.         | 150             | MAIN BREAK           |                   |
| NORMAN        | 4/14/2002  | S20616         | 2221 PARKLAND WAY          | 35              | OVERFLOW             | MANHOLE           |
| NORMAN        | 5/6/2002   | S20616         | LINDSEY & PICKARD          | 50              | ROOT                 |                   |
| NORMAN        | 5/7/2002   | S20616         | 100 12TH AVE N.E.          | 200             | OBSTRUCTION          | MANHOLE           |
| NORMAN        | 5/13/2002  | S20616         | 1404 DENISON ST            | 25              | OBSTRUCTION          |                   |
| NORMAN        | 6/14/2002  | S20616         | WESTWOOD GOLF COURSE       | 150             | OVERFLOW             | MANHOLE           |
| NORMAN        | 8/2/2002   | S20616         | 2800 LOCKWOOD              | 2,500           | OVERFLOW             | MANHOLE           |
| NORMAN        | 9/30/2002  | S20616         | 2743 WINDING CREEK         | 250             | GREASE               | MANHOLE           |
| NORMAN        | 10/26/2002 | S20616         | STEEPLE CHASE              | 150             | OVERFLOW             | MANHOLE           |
| NORMAN        | 10/31/2002 | S20616         | 704 TERRY CIRCLE           | 2.5             | OBSTRUCTION          | MANHOLE           |
| NORMAN        | 11/6/2002  | S20616         | 3216 COVE HOLLOW           | 100             | OBSTRUCTED MAIN      |                   |
| NORMAN        | 11/10/2002 | S20616         | 1300 BLK REGENT            | 20              | GREASE & ROOTS       |                   |
| NORMAN        | 11/18/2002 | S20616         | 816 RUSSELL CIR.           | 20              | ROOTS & TOILET PAPER |                   |
| NORMAN        | 11/20/2002 | S20616         | 710 LONG CIR               | 100             | OVERFLOW             | MANHOLE           |
| NORMAN        | 11/20/2002 | S20616         | 2900 CHAUTAUQUA            | 50              | OVERFLOW             | MANHOLE           |
| NORMAN        | 11/24/2002 | S20616         | 2800 CHAUTAUQUA            | 50              | GREASE               | MANHOLE           |
| NORMAN        | 11/25/2002 | S20616         | BERRY RD. & GREENBRIAR DR. | 250             | ROOTS                | MANHOLE           |
| NORMAN        | 12/2/2002  | S20616         | 314 SKYLARK                | 50              | GREASE               |                   |
| NORMAN        | 12/9/2002  | S20616         | 2601 S. CLASSEN, LOT 28-B  | 1,000           | OVERFLOW             | MANHOLE           |
| NORMAN        | 12/10/2002 | S20616         | 941 JONA KAY               | 250             | OVERFLOW             | MANHOLE           |
| NORMAN        | 12/11/2002 | S20616         | 305 WOODSIDE               | 450             | OVERFLOW             | MANHOLE           |
| NORMAN        | 12/14/2002 | S20616         | 202 JASON                  | 100             | OBSTRUCTION          |                   |
| NORMAN        | 12/17/2002 | S20616         | 1910 CHEROKEE LN.          | 25              | OBSTRUCTION          |                   |

| Facility Name | Date      | Facility<br>ID | Location                  | Amount<br>(Gal) | Cause           | Type Of<br>Source |
|---------------|-----------|----------------|---------------------------|-----------------|-----------------|-------------------|
| NORMAN        | 1/10/2003 | S20616         | POSTAL L.S.               | 8,000           | RAGS            | LIFT STATION      |
| NORMAN        | 1/11/2003 | S20616         | 1612 NORTHCLIFFE          | 50              | OBSTRUCTED      |                   |
| NORMAN        | 1/11/2003 | S20616         | 2743 WINDING CREEK CIR.   | 50              | OBSTRUCTED      |                   |
| NORMAN        | 1/20/2003 | S20616         | 305 WOODSIDE DR.          | 20              | OBSTRUCTION     |                   |
| NORMAN        | 1/24/2003 | S20616         | 900 S. CRAWFORD           | 200             | OVERFLOW        | MANHOLE           |
| NORMAN        | 2/14/2003 | S20616         | 1909 BEVERLY HILLS        | 10              | OBSTRUCTION     | MANHOLE           |
| NORMAN        | 2/22/2003 | S20616         | 500 ED NOBLE PARKWAY      | 200             | OBSTRUCTION     |                   |
| NORMAN        | 2/25/2003 | S20616         | 36TH N.W. & TECUMSEH RD.  | 10,000          | GREASE          |                   |
| NORMAN        | 3/7/2003  | S20616         | 1223 E. LOUISANA          | 50              | OBSTRUCTION     |                   |
| NORMAN        | 3/13/2003 | S20616         | 2829 REDWOOD DR.          | 20              | OBSTRUCTION     | MANHOLE           |
| NORMAN        | 3/14/2003 | S20616         | 2814 CYNTHIA CIR.         | 25              | OBSTRUCTION     |                   |
| NORMAN        | 3/16/2003 | S20616         | 1223 E. LOUISIANA         | 50              | OBSTRUCTION     |                   |
| NORMAN        | 3/22/2003 | S20616         | 501 GARLAND               | 20              | OBSTRUCTION     | MANHOLE           |
| NORMAN        | 3/23/2003 | S20616         | 2201 LAFAYETTE            | 10              | OBSTRUCTION     | MANHOLE           |
| NORMAN        | 3/30/2003 | S20616         | 1223 E. LOUISANA          | 250             | BROKEN MAIN     | MANHOLE           |
| NORMAN        | 4/14/2003 | S20616         | 501 DAKOTA                | 50              | OBSTRUCTION     | MANHOLE           |
| NORMAN        | 4/20/2003 | S20616         | 1000 BLK MEADOW RIDGE RD. | 20              | OBSTRUCTION     | MANHOLE           |
| NORMAN        | 4/30/2003 | S20616         | 1321 SUPERIOR             | 50              | OBSTRUCTION     |                   |
| NORMAN        | 5/3/2003  | S20616         | 2907 WILLOW CREEK         | 100             | OBSTRUCTION     | MANHOLE           |
| NORMAN        | 5/16/2003 | S20616         | 300 HAL MULDROW DR.       | 100             | GREASE          |                   |
| NORMAN        | 6/12/2003 | S20616         | 400 BLK. N. UNIVERSITY    | 100             | OBSTRUCTION     | MANHOLE           |
| NORMAN        | 6/16/2003 | S20616         | 2601 S. BERRY RD.         | 150             | GREASE & ROOTS  | MANHOLE           |
| NORMAN        | 6/20/2003 | S20616         | 1812 RIDGEWOOD DR.        | 15              | OBSTRUCTION     | MANHOLE           |
| NORMAN        | 7/8/2003  | S20616         | 2821 CEDARCREST           | 2,000           | BROKEN MAIN     | PIPE              |
| NORMAN        | 7/11/2003 | S20616         | 2340 HEATHERFIELD         | 100             | OBSTRUCTION     | MANHOLE           |
| NORMAN        | 8/11/2003 | S20616         | 2803 WOODBRIAR            | 250             | GREASE          | MANHOLE           |
| NORMAN        | 8/15/2003 | S20616         | 817 BARBOUR               | 20              | OBSTRUCTION     | MANHOLE           |
| NORMAN        | 8/15/2003 | S20616         | 305 WOODSIDE              | 500             | OBSTRUCTION     | MANHOLE           |
| NORMAN        | 9/1/2003  | S20616         | WWTP                      | 11,500          | COLLAPSED LINE  |                   |
| NORMAN        | 9/3/2003  | S20616         | 1125 SHADOWLAKE           | 20,000          | RUPTURED PIPE   | PIPE              |
| NORMAN        | 9/4/2003  | S20616         | 515 W. DAWS               | 75              | OBSTUCTION      | MANHOLE           |
| NORMAN        | 9/5/2003  | S20616         | 300 BEACON                | 20              | OBSTRUCTION     | MANHOLE           |
| NORMAN        | 9/15/2003 | S20616         | 630 SINCLAIR              | 500             | GREASE & STICKS | MANHOLE           |
| NORMAN        | 9/17/2003 | S20616         | 423 S. FLOOD              | 200             | CRACKED PIPE    | PIPE              |
| NORMAN        | 9/20/2003 | S20616         | 1713 SANDALWOOD           | 10              | OBSTRUCTION     | MANHOLE           |
| NORMAN        | 9/24/2003 | S20616         | 1720 ROLLING STONE        | 75              | BLOCKAGE        |                   |
| NORMAN        | 10/5/2003 | S20616         | 24TH AVE. N.E. & ROBINSON | 100             | L.S. DOWN       | MANHOLE           |

| Facility Name | Date       | Facility<br>ID | Location                         | Amount<br>(Gal) | Cause                          | Type Of<br>Source |
|---------------|------------|----------------|----------------------------------|-----------------|--------------------------------|-------------------|
| NORMAN        | 10/18/2003 | S20616         | 2312 CAROLYN                     | 30              | GREASE                         | MANHOLE           |
| NORMAN        | 10/29/2003 | S20616         | 300 CHALMETTE                    | 50              | OBSTRUCTION                    |                   |
| NORMAN        | 11/18/2003 | S20616         | 3100 RIDGECREST                  | 3,500           | OBSTRUCTION                    | MANHOLE           |
| NORMAN        | 11/18/2003 | S20616         | BOYD & EMELYN                    | 500             | OBSTRUCTION                    | PIPE              |
| NORMAN        | 11/21/2003 | S20616         | 24TH AVE. S.E. & ALAMEDA         | 1,700           | CONTRACTOR HIT MAIN            | PIPE              |
| NORMAN        | 11/30/2003 | S20616         | 1139 MERRYMEN GREEN              | 3               | OBSTRUCTION                    | MANHOLE           |
| NORMAN        | 12/5/2003  | S20616         | 1819 ROLLINGSTONE                | 200             | BLOCKAGE                       | MANHOLE           |
| NORMAN        | 12/8/2003  | S20616         | ROYAL OAKS L.S.                  | 2,000           | PUMP FAILURE                   | LIFT STATION      |
| NORMAN        | 12/22/2003 | S20616         | SHADOW LAKE ADDITION             | 3,000           | MAIN CUT BY CONTRACTOR         | PIPE              |
| NORMAN        | 1/2/2004   | S20616         | 2301 24TH AVE S.W.               | 21              | OBSTRUCTION                    | MANHOLE           |
| NORMAN        | 1/6/2004   | S20616         | 2743 WINDING CREEK CIR           | 50              | OBSTRUCTION                    | MANHOLE           |
| NORMAN        | 1/10/2004  | S20616         | WYLIE RD. & BROOKS ST.           | 100             | OBSTRUCTION                    | MANHOLE           |
| NORMAN        | 1/13/2004  | S20616         | 2312 CAROLYN CT.                 | 20              | OBSTRUCTION                    | MANHOLE           |
| NORMAN        | 1/18/2004  | S20616         | 1700 BLK. OF RIDGEMONT           | 50              | OBSTRUCTION                    | MANHOLE           |
| NORMAN        | 1/24/2004  | S20616         | 1925 ROBIN RIDGE                 | 30              | OBSTRUCTION                    | MANHOLE           |
| NORMAN        | 1/25/2004  | S20616         | 1736 CLASSEN BLVD.               | 10              | OBSTRUCTION                    |                   |
| NORMAN        | 2/1/2004   | S20616         | 3600 BLK. OF BLACKHAWK           | 60              | OBSTRUCTION                    | MANHOLE           |
| NORMAN        | 2/3/2004   | S20616         | 1910 CHEROKEE LANE               | 100             | GREASE                         | MANHOLE           |
| NORMAN        | 2/10/2004  | S20616         | 1908 SHELBY CT.                  | 5               | GREASE & ROOTS                 | MANHOLE           |
| NORMAN        | 2/10/2004  | S20616         | HIGH MEADOWS & HIGH TRAILS       | 50              | OBSTRUCTION                    | MANHOLE           |
| NORMAN        | 2/16/2004  | S20616         | 1303 OAKHURST                    | 800             | OBSTRUCTION                    | MANHOLE           |
| NORMAN        | 2/21/2004  | S20616         | 2014 SADDLEBACK                  | 300             | L.S. DOWN                      | LIFT STATION      |
| NORMAN        | 2/22/2004  | S20616         | 1718 OAKCLIFF RD.                | 25              | GREASE & PAPER                 | MANHOLE           |
| NORMAN        | 3/7/2004   | S20616         | 700 BLK. OF BLACK HAWK           | 10              | OBSTRUCTION                    | MANHOLE           |
| NORMAN        | 3/7/2004   | S20616         | 1700 BLK. OF CHARLES             | 7               | OBSTRUCTION                    | MANHOLE           |
| NORMAN        | 3/14/2004  | S20616         | PICKARD & HOOVER                 | 20              | OBSTRUCTION                    | MANHOLE           |
| NORMAN        | 3/15/2004  | S20616         | 2401 BUTLER DR.                  | 10              | GREASE                         | MANHOLE           |
| NORMAN        | 3/16/2004  | S20616         | 444 S. FLOOD                     | 20              | PAPER & STICKS                 |                   |
| NORMAN        | 4/12/2004  | S20616         | 2100 BLK. BROOKS ST.             | 20              | GREASE & ROOTS                 | MANHOLE           |
| NORMAN        | 4/12/2004  | S20616         | 300 BLK VICKSBURG                | 375             | OBSTRUCTION                    | MANHOLE           |
| NORMAN        | 4/17/2004  | S20616         | 1830 LAKEHURST DR.               | 5               | ROOTS                          | MANHOLE           |
| NORMAN        | 4/21/2004  | S20616         | 3212 POCASSET                    | 32              | OBSTRUCTION                    | MANHOLE           |
| NORMAN        | 6/20/2004  | S20616         | 1300 BLK OF LOUISIANA            | 75              | OBSTRUCTION                    | MANHOLE           |
| NORMAN        | 7/4/2004   | S20616         | 205 WOODSIDE                     | 50              | GREASE                         | MANHOLE           |
| NORMAN        | 7/9/2004   | S20616         | ROYAL OAKS L.S 6000 COALBROOK DR | 250             | GREASE                         | LIFT STATION      |
| NORMAN        | 7/19/2004  | S20616         | HALL PARK L.S.                   | 12,049          | L.S. DISCONNECTED BY O.G. & E. | LIFT STATION      |
| NORMAN        | 7/22/2004  | S20616         | ROYAL OAKS L.S.                  | 5,000           |                                |                   |

| Facility Name | Date       | Facility<br>ID | Location                     | Amount<br>(Gal) | Cause               | Type Of<br>Source |
|---------------|------------|----------------|------------------------------|-----------------|---------------------|-------------------|
| NORMAN        | 7/25/2004  | S20616         | 3009 ED NOBLE PARKWAY        | 500             | GREASE              | MANHOLE           |
| NORMAN        | 7/31/2004  | S20616         | 711 TERRY DR.                | 20              | ROOTS               | MANHOLE           |
| NORMAN        | 8/10/2004  | S20616         | 635 WELSTON CIR.             | 10              | OBSTRUCTION         |                   |
| NORMAN        | 8/18/2004  | S20616         | 192 ROBIN RIDGE RD.          | 300             | SAND                | MANHOLE           |
| NORMAN        | 8/22/2004  | S20616         | 1717 DAISY LN.               | 40              | ELECTRICAL PROBLEMS | MANHOLE           |
| NORMAN        | 8/24/2004  | S20616         | 1601 CHAMBLEE                | 400             | GREASE              | MANHOLE           |
| NORMAN        | 8/24/2004  | S20616         | 1200 BLK. OF COLLEGE ST.     | 500             | GREASE              | MANHOLE           |
| NORMAN        | 8/26/2004  | S20616         | 903 W. EUFAULA               | 20              | OBSTRUCTION         |                   |
| NORMAN        | 8/31/2004  | S20616         | 116 N. CARTER                | 200             | BROKEN LINE         | PIPE              |
| NORMAN        | 9/4/2004   | S20616         | 925 HOOVER                   | 200             | OBSTRUCTION IN LINE |                   |
| NORMAN        | 9/7/2004   | S20616         | 413 S. LAHOMA                | 20              | CONTRACTOR ERROR    | PIPE              |
| NORMAN        | 9/8/2004   | S20616         | 1325 E. LINDSEY - LAUNDRAMAT |                 | BLOCKAGE            | PIPE              |
| NORMAN        | 9/10/2004  | S20616         | 300 BLK. N. COCKREL          | 10              | ROOTS & GREASE      | MANHOLE           |
| NORMAN        | 9/19/2004  | S20616         | 1712 CINDERELLA              | 20              | BLOCKAGE            |                   |
| NORMAN        | 9/20/2004  | S20616         | 2605 BELKNAP                 | 15              | OBSTRUCTION         |                   |
| NORMAN        | 9/22/2004  | S20616         | 1202 N. FLOOD                | 30              | BLOCKAGE            | PIPE              |
| NORMAN        | 9/22/2004  | S20616         | 1427 CHERRYSTONE             | 35              | OBSTRUCTION         | MANHOLE           |
| NORMAN        | 9/23/2004  | S20616         | 1600 ANN BRANDON ST.         | 200             | OBSTRUCTION         | MANHOLE           |
| NORMAN        | 9/26/2004  | S20616         | 810 RUSSELL CIR.             | 20              | OBSTRUCTION         | PIPE              |
| NORMAN        | 9/28/2004  | S20616         | 1125 SHADOWLAKE RD.          | 100             | LINE BREAK          | PIPE              |
| NORMAN        | 10/3/2004  | S20616         | 1616 ALAMEDA, BLDG E. APT 7  | 5               | OBSTRUCTION         |                   |
| NORMAN        | 10/3/2004  | S20616         | 1805 RIDGEWOOD DR.           | 5               | OBSTRUCTION         |                   |
| NORMAN        | 10/3/2004  | S20616         | 2601 S. BERRY RD.            | 50              | OBSTRUCTION         | MANHOLE           |
| NORMAN        | 10/4/2004  | S20616         | 1718 DENNISON                | 20              | OBSTRUCTION         |                   |
| NORMAN        | 10/12/2004 | S20616         | 514 W. COMANCHE              | 20              | DEBRIS              |                   |
| NORMAN        | 10/12/2004 | S20616         | 425 W. EUFAULA               | 25              | DEBRIS              |                   |
| NORMAN        | 10/12/2004 | S20616         | 314 SKYLARK CT.              | 300             | OBSTRUCTION         | MANHOLE           |
| NORMAN        | 10/12/2004 | S20616         | 501 W. EUFAULA               | 50              | DEBRIS              |                   |
| NORMAN        | 10/13/2004 | S20616         | 2601 S. BERRY RD.            | 50              | OBSTRUCTION         | MANHOLE           |
| NORMAN        | 10/21/2004 | S20616         | PLANT                        | 2,000           | CONTRACTOR HIT LINE | MANHOLE           |
| NORMAN        | 10/22/2004 | S20616         | 2701 9TH AVE. N.E.           | 5               | OBSTRUCTION         |                   |
| NORMAN        | 10/27/2004 | S20616         | SHAWDOWLAKE & N.E. 12TH AVE  | 10              | MALFUNCTION         | MANHOLE           |
| NORMAN        | 11/1/2004  | S20616         | 4200 N. HAMPTON              | 20              | GREASE              |                   |
| NORMAN        | 11/9/2004  | S20616         | 1616 ALAMEDA ST PINES APTS.  | 150             | OBSTRUCTION         | MANHOLE           |
| NORMAN        | 11/12/2004 | S20616         | 817 HAYES ST.                | 50              | OBSTRUCTION         | MANHOLE           |
| NORMAN        | 11/20/2004 | S20616         | ROBINSON & PETERS            | 75              | GREASE              | MANHOLE           |
| NORMAN        | 11/24/2004 | S20616         | 1802 E. LINDSAY              | 50              | OBSTRUCTION         | MANHOLE           |

| Facility Name | Date       | Facility<br>ID | Location                                               | Amount<br>(Gal) | Cause                                | Type Of<br>Source |  |  |
|---------------|------------|----------------|--------------------------------------------------------|-----------------|--------------------------------------|-------------------|--|--|
| NORMAN        | 11/27/2004 | S20616         | 705 GRILL                                              | 25              | OBSTRUCTION                          | MANHOLE           |  |  |
| NORMAN        | 12/2/2004  | S20616         | 4711 7TH AVE. N.E.                                     | 20,000          | <b>OBSTRUCTION &amp; BROKEN MAIN</b> | PIPE              |  |  |
| NORMAN        | 12/4/2004  | S20616         | 2906 RAIN TREE CIR.                                    | 30              | OBSTRUCTION                          | MANHOLE           |  |  |
| NORMAN        | 12/17/2004 | S20616         | 800 BARBOUR                                            | 15              | STOPPAGE                             |                   |  |  |
| NORMAN        | 12/22/2004 | S20616         | 213 CHALMETTE DR.                                      | 600             | CONTRACTOR ERROR                     | PIPE              |  |  |
| NORMAN        | 12/26/2004 | S20616         | 4412 BALMORAL CT.                                      | 20              | OBSTRUCTION                          | MANHOLE           |  |  |
| NORMAN        | 12/28/2004 | S20616         | 1305 QUAIL HOLLOW DR.                                  | 800             | GREASE                               | MANHOLE           |  |  |
| NORMAN        | 1/3/2005   | S20616         | 508 ROSEWOOD DR.                                       | 15              | ROOTS                                | MANHOLE           |  |  |
| NORMAN        | 1/5/2005   | S20616         | 1231 BARKLEY                                           | 200             | OBSTRUCTION                          | MANHOLE           |  |  |
| NORMAN        | 1/13/2005  | S20616         | 201 E. HINES                                           | 20              | PRIVATE SERVICE LINE                 | PIPE              |  |  |
| NORMAN        | 1/15/2005  | S20616         | 1238 NORTHCLIFF                                        |                 |                                      |                   |  |  |
| NORMAN        | 1/19/2005  | S20616         | 1829 CHERRY STONE                                      | 100             | OBSTRUCTION                          | MANHOLE           |  |  |
| NORMAN        | 1/19/2005  | S20616         | 5201 DEERHURST DR.                                     |                 |                                      |                   |  |  |
| NORMAN        | 1/23/2005  | S20616         | 1826 ROLLING STONE                                     |                 |                                      |                   |  |  |
| NORMAN        | 1/25/2005  | S20616         | 1251 ALAMEDA ST. IN ALBERTSON'S MALL                   | 100             | OBSTRUCTION                          | MANHOLE           |  |  |
| NORMAN        | 1/27/2005  | S20616         | 201 W. HIMES 20 SERVICE LINE TIED TO<br>ABANDONED MAIN |                 | PIPE                                 |                   |  |  |
| NORMAN        | 1/27/2005  | S20616         | 603 TERRACE PL.                                        | 3               | OBSTRUCTION                          | MANHOLE           |  |  |
| NORMAN        | 1/30/2005  | S20616         | 1923 TWISTED OAKS - TURNBURY APTS.                     | 50              | OBSTRUCTION                          |                   |  |  |
| NORMAN        | 1/31/2005  | S20616         | 1921 SHELBY CT.                                        | 200             | OBSTRUCTION                          | MANHOLE           |  |  |
| NORMAN        | 2/1/2005   | S20616         | 3400 W. MAIN                                           | 50              | DEBRIS                               | MANHOLE           |  |  |
| NORMAN        | 2/8/2005   | S20616         | 1214 W. LINDSAY                                        | 50              | OBSTRUCTION                          | PIPE              |  |  |
| NORMAN        | 2/9/2005   | S20616         | 1214 WINDSOR WAY                                       | 5               | OBSTRUCTION                          | MANHOLE           |  |  |
| NORMAN        | 2/13/2005  | S20616         | 2526 BRENTWOOD DR.                                     | 5               | OBSTRUCTION                          | MANHOLE           |  |  |
| NORMAN        | 2/14/2005  | S20616         | WOODED AREA E. END OF CEDAR LN.                        | 5,000           | OBSTRUCTION                          | MANHOLE           |  |  |
| NORMAN        | 2/15/2005  | S20616         | 339 WOODCREST DR.                                      | 20              | ROOTS & PAPER                        |                   |  |  |
| NORMAN        | 2/15/2005  | S20616         | 2517 HOLLYWOOD                                         | 25              | OBSTRUCTION                          | MANHOLE           |  |  |
| NORMAN        | 2/22/2005  | S20616         | 4413 NEWPORT                                           | 30              | BROKEN SERVICE LINE                  | PIPE              |  |  |
| NORMAN        | 2/23/2005  | S20616         | 2100 BLK. N. PORTER                                    | 10              | OBSTRUCTION                          | MANHOLE           |  |  |
| NORMAN        | 2/24/2005  | S20616         | 325 GEORGE L. CROSS                                    | 20              | OBSTRUCTION                          | MANHOLE           |  |  |
| NORMAN        | 2/25/2005  | S20616         | INDUSTRIAL BLVD. ROCK CREEK RD. 5,000 CONTRACTOR ERROR |                 | MANHOLE                              |                   |  |  |
| NORMAN        | 2/25/2005  | S20616         | 1932 GRASSLAND DR. 50 OBSTRUCTION                      |                 | OBSTRUCTION                          | MANHOLE           |  |  |
| NORMAN        | 3/2/2005   | S20616         | 1023 COLLEGE AVE OBSTRUCTION                           |                 | OBSTRUCTION                          |                   |  |  |
| NORMAN        | 3/2/2005   | S20616         | 1600 ANN BRANDON                                       | 50              | OBSTRUCTION                          | MANHOLE           |  |  |
| NORMAN        | 3/8/2005   | S20616         | 252 WATERFRONT                                         | 10              | OBSTRUCTION                          | MANHOLE           |  |  |
| NORMAN        | 3/10/2005  | S20616         | 3720 W. ROBINSON                                       | 125             | OBSTRUCTION                          | MANHOLE           |  |  |
| NORMAN        | 3/14/2005  | S20616         | 300 HAL MULDROW DR.                                    | <10             | OBSTRUCTION                          | MANHOLE           |  |  |

| Facility Name | Date       | Facility<br>ID | Location                                          | Amount<br>(Gal) | Cause                                 | Type Of<br>Source |
|---------------|------------|----------------|---------------------------------------------------|-----------------|---------------------------------------|-------------------|
| NORMAN        | 3/17/2005  | S20616         | 401 E. BOYD                                       | 2               | BROKEN LINE                           | MANHOLE           |
| NORMAN        | 3/26/2005  | S20616         | 2014 SADDLEBACK DR.                               | 300             | LIFT STATION DOWN                     | LIFT STATION      |
| NORMAN        | 3/27/2005  | S20616         | 1710 TELSTAR                                      | 10              | OBSTRUCTION                           | MANHOLE           |
| NORMAN        | 4/1/2005   | S20616         | 314 SKYLARK CT.                                   | 100             | OBSTRUCTION                           | MANHOLE           |
| NORMAN        | 4/2/2005   | S20616         | 412 KANSAS ST.                                    | 10              | OBSTRUCTION                           |                   |
| NORMAN        | 4/7/2005   | S20616         | 1801 TIFFANY DR.                                  | 25              | OBSTRUCTION                           | MANHOLE           |
| NORMAN        | 4/18/2005  | S20616         | 2410 WILDWOOD                                     | 20              | OBSTRUCTION                           |                   |
| NORMAN        | 4/18/2005  | S20616         | 2145 MELROSE CT. #125                             | 25              | OBSTRUCTION                           |                   |
| NORMAN        | 5/1/2005   | S20616         | 746 ASP                                           | 100             | OBSTRUCTION                           | PIPE              |
| NORMAN        | 5/8/2005   | S20616         | 1022 QUANAH PARK TRAIL                            | 200             | OBSTRUCTION                           | MANHOLE           |
| NORMAN        | 5/9/2005   | S20616         | 505 GRILL AVE                                     | 30              | OBSTRUCTION                           | MANHOLE           |
| NORMAN        | 5/9/2005   | S20616         | 2101 W. TECUMSEH                                  | 50              | OBSTRUCTION                           |                   |
| NORMAN        | 5/11/2005  | S20616         | 1913 OAK CREEK RD.                                | 25              | OBSTRUCTION                           | MANHOLE           |
| NORMAN        | 5/16/2005  | S20616         | ROYAL OAKS L.S.                                   | 150             | OBSTRUCTION                           | MANHOLE           |
| NORMAN        | 5/24/2005  | S20616         | OYAL OAKS L.S S.E. 24TH & ALAMEDA 300 OBSTRUCTION |                 | MANHOLE                               |                   |
| NORMAN        | 5/30/2005  | S20616         | 2101 WESTWOOD DR. 1,500 BLOCKLAGE                 |                 | MANHOLE                               |                   |
| NORMAN        | 6/1/2005   | S20616         | YORK L.S 4600 24TH AVE N.W.                       | 5,000           | ELECTRICAL FAILURE/ LIGHTNING         | LIFT STATION      |
| NORMAN        | 6/7/2005   | S20616         | 718 N. PORTER                                     | 75              | OBSTRUCTION                           |                   |
| NORMAN        | 7/8/2005   | S20616         | 2898 GLEN OAKS - CLEARWATER L.S.                  | 1,000           | PUMP FAILURE                          | LIFT STATION      |
| NORMAN        | 8/22/2005  | S20616         | 1200 BLK. S. ELM                                  | 200             | OBSTRUCTION                           | MANHOLE           |
| NORMAN        | 8/28/2005  | S20616         | 1433 BROOKDALE DR.                                | 120             | OBSTRUCTION                           | MANHOLE           |
| NORMAN        | 9/1/2005   | S20616         | 1717 DAISY LN.                                    | 50              | OVERLOAD                              | MANHOLE           |
| NORMAN        | 9/7/2005   | S20616         | 501 E. ALAMEDA                                    |                 | CONTRACTOR ERROR                      |                   |
| NORMAN        | 9/7/2005   | S20616         | YORK L.S 4600 N.W. 24TH AVE                       |                 | LIFT STATION FOUND IN OFF<br>POSITION | LIFT STATION      |
| NORMAN        | 9/24/2005  | S20616         | 821 E. FRANK                                      | 4               | OBSTRUCTION                           | MANHOLE           |
| NORMAN        | 10/8/2005  | S20616         | 2901 OAK TREE                                     | 200             | OBSTRUCTION                           | MANHOLE           |
| NORMAN        | 10/8/2005  | S20616         | 3212 CADDO LN.                                    | 25              | OBSTRUCTION                           | MANHOLE           |
| NORMAN        | 10/23/2005 | S20616         | 3841 WAVERLY CT.                                  | 25              | CLEANOUT                              |                   |
| NORMAN        | 10/29/2005 | S20616         | GRIFFIN PARK AT 12TH AVE. N.E. & ROBINSON         | 100             | MALFUNCTION                           | LIFT STATION      |
| NORMAN        | 10/30/2005 | S20616         | 1500 BLK. OF CAMBRIDGE                            | 5               | BLOCKAGE                              | MANHOLE           |
| NORMAN        | 10/31/2005 | S20616         |                                                   |                 | OBSTRUCTION                           | MANHOLE           |
| NORMAN        | 11/3/2005  | S20616         | 619 E. BOYD                                       | 10              | OBSTRUCTION                           |                   |
| NORMAN        | 11/4/2005  | S20616         | 1711 HOLLIDAY DR.                                 | 10              | OBSTRUCTION                           | MANHOLE           |
| NORMAN        | 11/7/2005  | S20616         | HUGHBERT & FINDLAY AVE.                           | 1,000           | CONTRACTOR ERROR                      | MANHOLE           |
| NORMAN        | 11/11/2005 | S20616         | HAVENBROOK & N.W. 36TH                            | 5,000           | CONTRACTOR ERROR                      | MANHOLE           |
| NORMAN        | 11/14/2005 | S20616         | 317 EDGE BROOK LN.                                | 900             | OBSTRUCTION                           | MANHOLE           |

J:\planning\TMDL\Bacteria TMDLs\Parsons\2007\4 Canadian River(15)\Canadian\_FINAL\_081508.doc

| Facility Name | Date       | Facility<br>ID | Location                            | Amount<br>(Gal) | Cause                       | Type Of<br>Source |  |
|---------------|------------|----------------|-------------------------------------|-----------------|-----------------------------|-------------------|--|
| NORMAN        | 11/21/2005 | S20616         | 499 SANDPIPER LN SUTTON L.S.        | 1,200           | MALFUNCTION                 | MANHOLE           |  |
| NORMAN        | 11/22/2005 | S20616         | 600 WEBSTER AVE.                    | 40              | BLOCKAGE                    |                   |  |
| NORMAN        | 11/23/2005 | S20616         | 1901 OAKHURST AVE                   | 400             | OBSTRUCTION                 | MANHOLE           |  |
| NORMAN        | 12/10/2005 | S20616         | 2919 WILLOW CREEK DR.               | 25              | OBSTRUCTION                 | MANHOLE           |  |
| NORMAN        | 12/11/2005 | S20616         | 825 RICHMOND DR.                    | 20              | CITY MAIN CHOKED            | MANHOLE           |  |
| NORMAN        | 12/15/2005 | S20616         | 1118 N. BERRY RD.                   | 25              | BLOCKAGE                    |                   |  |
| NORMAN        | 12/21/2005 | S20616         | 1116 PINEWOOD                       | 20              | OBSTRUCTION                 |                   |  |
| NORMAN        | 12/21/2005 | S20616         | 2918 QUEENSTON                      | 20              | OBSTRUCTION                 |                   |  |
| NORMAN        | 12/22/2005 | S20616         | 1801 TIFFANY                        | 250             | OBSTRUCTION                 | MANHOLE           |  |
| NORMAN        | 12/27/2005 | S20616         | ROYAL OAKS L.S 598 COALBROOK DR.    | 55              | LIFT STATION WAS TURNED OFF | MANHOLE           |  |
| NORMAN        | 12/28/2005 | S20616         | 2900 CHAUTAUQUAH                    | 50              | OBSTRUCTION                 | MANHOLE           |  |
| NORMAN        | 12/29/2005 | S20616         | 3921 PRESTON CT.                    | 20              | OBSTRUCTION                 | MANHOLE           |  |
| NORMAN        | 1/3/2006   | S20616         | 4110 MORRISON CT. CHERRY CREEK PARK |                 |                             |                   |  |
| NORMAN        | 1/7/2006   | S20616         | 2125 ALLENHURST                     | 100             | OBSTRUCTION                 | MANHOLE           |  |
| NORMAN        | 1/7/2006   | S20616         | 1303 OAKHURST AVE.                  | 70              | OBSTRUCTION                 |                   |  |
| NORMAN        | 1/11/2006  | S20616         | 625 W. COMANCHE                     | 25              | OBSTRUCTION                 |                   |  |
| NORMAN        | 1/16/2006  | S20616         | 1631 N. CRAWFORD                    | 100             | OBSTRUCTION                 | MANHOLE           |  |
| NORMAN        | 1/16/2006  | S20616         | 1212 S. BERRY RD.                   | 20              | OBSTRUCTION                 | PIPE              |  |
| NORMAN        | 1/17/2006  | S20616         | 1308 NORTHERN HILLS DR.             | 1,200           | OBSTRUCTION                 | MANHOLE           |  |
| NORMAN        | 1/25/2006  | S20616         | 105-119 TIMBERDELL                  | 50              | OBSTRUCTION                 |                   |  |
| NORMAN        | 2/6/2006   | S20616         | 1819 ROLLING STONE DR.              | 10              | OBSTRUCTION                 | MANHOLE           |  |
| NORMAN        | 2/7/2006   | S20616         | 1237 OAKHURST AVE.                  | 30              | OBSTRUCTION                 | MANHOLE           |  |
| NORMAN        | 2/7/2006   | S20616         | 1640 EISENHOWER RD.                 | 5               | RAGS                        | MANHOLE           |  |
| NORMAN        | 2/9/2006   | S20616         | 2743 WINDINGCREEK CIR.              | 1,000           | OBSTRUCTION                 | MANHOLE           |  |
| NORMAN        | 2/12/2006  | S20616         | 1616 FARMINGTON RD.                 | 10              | OBSTRUCTION                 | MANHOLE           |  |
| NORMAN        | 2/12/2006  | S20616         | 1000 MOCKINGBIRD LN.                | 10              | BLOCKAGE                    |                   |  |
| NORMAN        | 2/16/2006  | S20616         | 1315 ATLANTA CIR.                   | 1               | OBSTRUCTION                 |                   |  |
| NORMAN        | 2/28/2006  | S20616         | 1706 OSAGE WAY                      | 40              | OBSTRUCTION                 |                   |  |
| NORMAN        | 2/28/2006  | S20616         | 1416 LAKECREST                      | 5               | OBSTRUCTION                 |                   |  |
| NORMAN        | 3/16/2006  | S20616         | 3127 WALNUT RD.                     | 35              | OBSTRUCTION                 | MANHOLE           |  |
| NORMAN        | 3/20/2006  | S20616         | 200 VICKSBURG AVE                   | 50              | OBSTRUCTION                 | MANHOLE           |  |
| NORMAN        | 3/22/2006  | S20616         | 2400 S. CLASSEN BLVD.               | 100             | OBSTRUCTION                 | MANHOLE           |  |
| NORMAN        | 3/24/2006  | S20616         | 1801 CANDLEWOOD                     | 20              | OBSTRUCTION                 | MANHOLE           |  |
| NORMAN        | 3/28/2006  | S20616         | 4501 W. MAIN                        | 6,000           | CONTRACTOR ERROR            | MANHOLE           |  |
| NORMAN        | 3/31/2006  | S20616         | 1819 ROLLINGSTONE DR.               | 100             | OBSTRUCTION                 | MANHOLE           |  |
| NORMAN        | 3/31/2006  | S20616         | 332 ST. CLAIRE                      | 75              | OBSTRUCTION                 | MANHOLE           |  |
| NORMAN        | 4/1/2006   | S20616         | 2212 TWISTED OAKS DR.               | 20              | OBSTRUCTION                 | MANHOLE           |  |

| Facility Name | Date      | Facility<br>ID | Location                                 | Amount<br>(Gal) | Cause             | Type Of<br>Source |
|---------------|-----------|----------------|------------------------------------------|-----------------|-------------------|-------------------|
| NORMAN        | 4/2/2006  | S20616         | 2829 REDWOOD DR.                         | 50              | STICKS            | MANHOLE           |
| NORMAN        | 4/11/2006 | S20616         | 929 CRUCE ST.                            | 1               | OBSTRUCTION       |                   |
| NORMAN        | 4/12/2006 | S20616         | 1213 CEDAR CREEK                         | 1               | LINE STOPPAGE     | PIPE              |
| NORMAN        | 4/20/2006 | S20616         | 804 RICHMOND DR.                         | 20              | ROOT CUT          | MANHOLE           |
| NORMAN        | 4/24/2006 | S20616         | 2024 FROST LN.                           | 20              | GARBAGE           | MANHOLE           |
| NORMAN        | 4/26/2006 | S20616         | 2606 BELKNAP AVE                         | 2               | OBSTRUCTION       |                   |
| NORMAN        | 4/27/2006 | S20616         | 1030 W. BOYD                             | 75              | OBSTRUCTION       |                   |
| NORMAN        | 5/5/2006  | S20616         | 409 MERCEDES                             | 3               | OBSTRUCTION       |                   |
| NORMAN        | 5/7/2006  | S20616         | 2743 WINDING CREEK CIR                   | 35              | OBSTRUCTION       | MANHOLE           |
| NORMAN        | 5/9/2006  | S20616         | 631 & 629 SINCLAIR DR.                   | 25              | OBSTRUCTION       |                   |
| NORMAN        | 5/14/2006 | S20616         | 1223 LOUISIANA                           | 20              | BLOCKAGE          | MANHOLE           |
| NORMAN        | 5/15/2006 | S20616         | 705 RIDGECREST CT.                       | 150             | OBSTRUCTION       |                   |
| NORMAN        | 5/24/2006 | S20616         | 102 CRAWFORD CT.                         | 10              | OVERFLOW          |                   |
| NORMAN        | 5/29/2006 | S20616         | 1713 DAISY LN.                           | 500             | BROKEN FORCE MAIN | LIFT STATION      |
| NORMAN        | 6/1/2006  | S20616         | 1125 ELM AVE.                            | 50              | BLOCKAGE          |                   |
| NORMAN        | 6/2/2006  | S20616         | 1125 ELM AVE.                            | 25              | BLOCKAGE          |                   |
| NORMAN        | 6/9/2006  | S20616         | 709 N. PETERS AVE                        | 2               | OBSTRUCTION       |                   |
| NORMAN        | 6/14/2006 | S20616         | 1713 PARKVIEW TERR.                      | 20              | ROOTS             | MANHOLE           |
| NORMAN        | 6/23/2006 | S20616         | 1840 WINDING RIDGE                       | 30              | OBSTRUCTION       | MANHOLE           |
| NORMAN        | 7/3/2006  | S20616         | 2120 CRESTMONT ST.                       | 500             | GREASE            | MANHOLE           |
| NORMAN        | 7/11/2006 | S20616         | 1120 W. ROBINSON                         | 5               | OBSTRUCTION       |                   |
| NORMAN        | 7/17/2006 | S20616         | 302 WILLOW CREEK CIR.                    | 4               | GREASE            | MANHOLE           |
| NORMAN        | 7/25/2006 | S20616         | 1308 REGENT ST.                          | 20              | OBSTRUCTION       |                   |
| NORMAN        | 7/27/2006 | S20616         | 638 WELLSTON CIR                         | 75              | OBSTRUCTION       | MANHOLE           |
| NORMAN        | 8/5/2006  | S20616         | ROBINSON & BROOKHAVEN BLVD.              | 50              | OBSTRUCTION       | MANHOLE           |
| NORMAN        | 8/15/2006 | S20616         | YORK L.S 4600 24TH AVE. N.W.             | 1,500           | POWER FAILURE     | LIFT STATION      |
| NORMAN        | 8/15/2006 | S20616         | 917 MCCALL ST.                           | 5               | OBSTRUCTION       |                   |
| NORMAN        | 8/17/2006 | S20616         | 2112 W. BROOKS                           | 20              | OBSTRUCTION       |                   |
| NORMAN        | 8/24/2006 | S20616         | 101 CRESTLAND DR HILLCREST ESTATES APTS. | 30              | OBSTRUCTION       |                   |
| NORMAN        | 8/30/2006 | S20616         | 2821 SHADOW LAKE RD.                     | 1,200           | COLLAPSED MAIN    | PIPE              |
| NORMAN        | 9/4/2006  | S20616         | 420 LONE OAK DR.                         | 1,000           | AIR RELEASE VALVE | MANHOLE           |
| NORMAN        | 9/4/2006  | S20616         | 1401 OAK CREST DR.                       | 20              | OBSTRUCTION       | MANHOLE           |
| NORMAN        | 9/6/2006  | S20616         | 2100 W. MAIN                             | 50              | OBSTRUCTION       |                   |
| NORMAN        | 9/8/2006  | S20616         | 1914 CHERRY STONE                        | 50              | OBSTRUCT          |                   |
| NORMAN        | 9/12/2006 | S20616         | 1209 W. LINDSEY                          | 30              | GREASE            | MANHOLE           |
| NORMAN        | 9/15/2006 | S20616         | 2601 S. BERRY RD.                        | 200             | OBSTRUCTION       | MANHOLE           |
| NORMAN        | 9/16/2006 | S20616         | 1018 MISSOURI                            | 50              | CONTRACTOR ERROR  | MANHOLE           |

| Facility Name | Date       | Facility<br>ID | Location                                   | Amount<br>(Gal) | Cause              | Type Of<br>Source |
|---------------|------------|----------------|--------------------------------------------|-----------------|--------------------|-------------------|
| NORMAN        | 9/19/2006  | S20616         | 2100 W. RECUMSEH RD.                       | 30              | LEAKING            | LIFT STATION      |
| NORMAN        | 9/27/2006  | S20616         | 1129 CADDELL LN.                           | 100             | OBSTRUCTION        |                   |
| NORMAN        | 10/30/2006 | S20616         | 2606 AKASHIA CT.                           |                 | OBSTRUCTION        |                   |
| NORMAN        | 11/4/2006  | S20616         | 2422 WEATHERFORD DR.                       | 10              | BLOCKAGE           |                   |
| NORMAN        | 11/7/2006  | S20616         | 2916 CASTLEWOOD DR.                        | 700             | OBSTRUCTION        | MANHOLE           |
| NORMAN        | 11/12/2006 | S20616         | 1315 MCGEE ST.                             | 8               | OBSTRUCTION        |                   |
| NORMAN        | 11/13/2006 | S20616         | 2200 NASHVILLE DR.                         | 10              | OBSTRUCTION        |                   |
| NORMAN        | 11/17/2006 | S20717         | 505 EMERALD WAY                            | 10              | OBSTRUCTION        |                   |
| NORMAN        | 11/18/2006 | S20616         | 740 DEBARR AVE.                            | 100             | OBSTRUCTION        |                   |
| NORMAN        | 11/21/2006 | S20616         | 2504 DAKOTA ST.                            | 100             | OBSTRUCTION        | MANHOLE           |
| NORMAN        | 12/4/2006  | S20616         | 744 ELM ST.                                | 5               | OBSTRUCTION        |                   |
| NORMAN        | 12/11/2006 | S20616         | E. TECUMSEH AVE. & 12TH AVE. N.E. IN FIELD | 10,000          | VALVE MALFUNCTION  | LIFT STATION      |
| NORMAN        | 12/12/2006 | S20616         | 637 WELSTON                                | 5               | OBSTRUCTION        |                   |
| NORMAN        | 12/13/2006 | S20616         | 315 S. LAHOMA                              | 20              | OBSTRUCTION        |                   |
| NORMAN        | 12/14/2006 | S20616         | 1357 DORCHESTER DR.                        | 20              | OBSTRUCTION        |                   |
| NORMAN        | 12/18/2006 | S20616         | 2601 QUEENSTON AVE.                        | 5               | OBSTRUCTION        |                   |
| NORMAN        | 12/26/2006 | S20616         | 500 W. TONHAWA ST.                         | 20              | DEBRIS & VANDALISM | PIPE              |
| NORMAN        | 12/26/2006 | S20616         | 2700 BLK. S. PICKARD AVE.                  | 250             | OBSTRUCTION        | MANHOLE           |
| NORMAN        | 1/5/2007   | S20616         | 1717 ROLLINGSTONE DR.                      | 50              | OBSTRUCTION        | MANHOLE           |
| NORMAN        | 1/5/2007   | S20616         | 417 COLLEGE ST.                            | 55              | OBSTRUCTION        |                   |
| NORMAN        | 1/6/2007   | S20616         | 1811 BARRINGTON                            | 50              | OBSTRUCTION        | MANHOLE           |
| NORMAN        | 1/10/2007  | S20616         | 3225 COVE HOLLOW CT.                       | 100             | OBSTRUCTION        | MANHOLE           |
| NORMAN        | 1/10/2007  | S20616         | 2132 CRESTMONT                             | 50              | OBSTRUCTION        | MANHOLE           |
| NORMAN        | 1/12/2007  | S20616         | 2220 WYANDOTTE WAY                         | 20              | OBSTRUCTION        |                   |
| NORMAN        | 1/12/2007  | S20616         | E. OF JENKINS S. OF HWY 9                  | 20              | CONTRACTOR ERROR   | MANHOLE           |
| NORMAN        | 1/20/2007  | S20616         | 740 DEBARR AVE.                            | 25              | OBSTRUCTED         |                   |
| NORMAN        | 1/25/2007  | S20616         | 1529 HOLLYWOOD                             | 35              | OBSTRUCTION        | MANHOLE           |
| NORMAN        | 1/28/2007  | S20616         | 1022 QUANAH PARKER TR.                     | 100             | OBSTRUCTED         | MANHOLE           |
| NORMAN        | 1/29/2007  | S20616         | 711 TERRY ST.                              | 20              | OBSTRUCTION        | MANHOLE           |
| NORMAN        | 2/5/2007   | S20616         | 1215 OAKHURST AVE.                         | 50              | OBSTRUCTION        | MANHOLE           |
| NORMAN        | 2/7/2007   | S20616         | E. ROBINSON & N. PETERS                    | 100             | OBSTRUCTION        | MANHOLE           |
| NORMAN        | 2/15/2007  | S20616         | 1614 EISENHOWER RD.                        | 2               | OBSTRUCTION        | MANHOLE           |
| NORMAN        | 2/18/2007  | S20616         | 1217 S. BERRY RD.                          | 30              | OBSTRUCTED         | MANHOLE           |
| NORMAN        | 2/21/2007  | S20616         | 2731 WOODBRIAR DR.                         | 20              | GREASE             | MANHOLE           |
| NORMAN        | 2/21/2007  | S20616         | 339 WOODCREST                              | 25              | OBSTRUCTION        |                   |
| NORMAN        | 2/25/2007  | S20616         | 711 TERRY DR.                              | 15              | OBSTRUCTION        | MANHOLE           |
| NORMAN        | 2/25/2007  | S20616         | 1481 E. ALAMEDA                            | 75              | OBSTRUCTION        | MANHOLE           |

| Facility Name                   | Date       | Facility<br>ID | Location                       | Amount<br>(Gal) | Cause                             | Type Of<br>Source |  |  |
|---------------------------------|------------|----------------|--------------------------------|-----------------|-----------------------------------|-------------------|--|--|
| NORMAN                          | 3/3/2007   | S20616         | 200 BLK. N. LAHOMA             | 50              | OBSTRUCTED                        | PIPE              |  |  |
| NORMAN                          | 3/4/2007   | S20616         | 1826 ROLLING STONE DR.         | 5               | OBSTRUCTION                       |                   |  |  |
| NORMAN                          | 3/5/2007   | S20616         | 1038 CRUCE ST.                 | 10              | OBSTRUCTION                       | MANHOLE           |  |  |
| NORMAN                          | 3/7/2007   | S20616         | 1200 FRANKLIN RD.              | 75              | VALVE MALFUNCTION                 | PIPE              |  |  |
| NORMAN                          | 3/12/2007  | S20616         | 2928 OAK TREE AVE.             | 1,500           | VANDALISM                         | MANHOLE           |  |  |
| NORMAN                          | 3/17/2007  | S20616         | 36TH AVE. & HIDDEN HILLS RD.   | 100             | OBSTRUCTED                        | MANHOLE           |  |  |
| NORMAN                          | 3/18/2007  | S20616         | 2743 WINDING CREEK CIR.        | 10              | OBSTRUCTION                       | MANHOLE           |  |  |
| NORMAN                          | 3/18/2007  | S20616         | 2908 CITY VIEW DR.             | 250             | OBSTRUCTION                       | MANHOLE           |  |  |
| NORMAN                          | 3/20/2007  | S20616         | 707 24TH AVE SW                | 47              | OBSTRUCTION                       | MANHOLE           |  |  |
| NORMAN                          | 3/28/2007  | S20616         | 2200 N. PORTER                 | 50              | OBSTRUCTION                       | MANHOLE           |  |  |
| NORMAN                          | 4/2/2007   | S20616         | 1620 GLENN BO DR.              | 100             | OBSTRUCTION                       | MANHOLE           |  |  |
| NORMAN                          | 4/2/2007   | S20616         | 629 SINCLAIR DR.               |                 |                                   |                   |  |  |
| NORMAN                          | 4/4/2007   | S20616         | 620 SMALLEY DR.                | OVERFLOW        | MANHOLE                           |                   |  |  |
| NORMAN                          | 4/7/2007   | S20616         | 1711 SURREY PL.                |                 |                                   |                   |  |  |
| NORMAN                          | 4/11/2007  | S20616         | 1419 PECAN AVE. 30 OBSTRUCTION |                 | MANHOLE                           |                   |  |  |
| NORMAN                          |            | S20616         | 746 ASP                        |                 |                                   |                   |  |  |
| NORMAN                          |            | 020616         |                                |                 |                                   |                   |  |  |
| NORMAN                          |            | S20616         |                                |                 |                                   |                   |  |  |
| NORMAN OK UTILITY<br>LINE MAINT | 12/14/1997 | 20616          | 634 WELSTON CIR.               | 250             | CONSTRUCTION DEBRIS IN<br>MANHOLE |                   |  |  |
| NORMAN OK UTILITY<br>LINE MAINT | 12/14/1997 | 20616          | 1631 CRAWFORD                  | 400             | OBSTRUCTION IN MANHOLE            |                   |  |  |
| NORMAN UTILITY<br>LINE MAINT.   | 1/18/1998  | 20616          | 1615 BEAUMONT                  | 500             | UNKNOWN                           |                   |  |  |
| NORMAN UTILITY<br>LINE MAINT.   | 1/19/1998  | 20616          | 1419 PECAN                     | 50              | OBSTRUCT IN LINE                  |                   |  |  |
| NORMAN WWTP                     | 3/2/1998   | 20616          | EAST OF WWTP                   | 500             | CHOKED SEWER MAIN                 |                   |  |  |
| NORMAN WWTP                     | 3/16/1998  | 20616          | 1342 TARMAN CIR                | 100             | RAINWATER                         |                   |  |  |
| NORMAN WWTP                     | 3/16/1998  | 20616          | 927 CHAUTAUQUA                 | 100             | RAIN WATER                        |                   |  |  |
| NORMAN WWTP                     | 3/16/1998  | 20616          | 1125 ALAMEDA                   | 1800            | RAIN WATER                        |                   |  |  |
| NORMAN WWTP                     | 3/16/1998  | 20616          | 12TH & ALAMEDA (PIZZA HUT)     | 1800            | RAINWATER                         |                   |  |  |
| NORMAN WWTP                     | 3/16/1998  | 206116         | 206 S. UNIVERSITY              | 200             | RAIN WATER                        |                   |  |  |
| NORMAN WWTP                     | 3/16/1998  | 20616          | 1214 BARKLEY                   | 300             | RAIN WATER                        |                   |  |  |
| NORMAN WWTP                     | 3/16/1998  | 20616          | 206 FORMAN CIR                 | 300             | RAIN WATER                        |                   |  |  |
| NORMAN WWTP                     | 3/16/1998  | 20616          | 216 FOREMAN CIR                | 300             | RAIN WATER                        |                   |  |  |
| NORMAN WWTP                     | 3/16/1998  | 20616          | 3220 MARSHALL AVE              | 300             | RAIN WATER                        |                   |  |  |
| NORMAN WWTP                     | 3/16/1998  | 20616          | 501 CORONADO                   | 300             | RAIN WATER                        |                   |  |  |

| Facility Name | Date       | Facility<br>ID | Location                                                                 | Amount<br>(Gal)                                           | Cause                                  | Type Of<br>Source |  |  |
|---------------|------------|----------------|--------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------|-------------------|--|--|
| NORMAN WWTP   | 3/16/1998  | 20616          | 1338 TARMAN CIR                                                          | 300                                                       | RAIN WATER                             |                   |  |  |
| PUCELL        | 2/3/1998   | 20622          | SW CORNER OF HWY 39 & 77                                                 |                                                           | OBSTRUCTION IN MANHOLE                 |                   |  |  |
| PURCELL       | 2/6/1995   | S20622         | BEHIND FORD GARAGE                                                       | 200                                                       | PIPE JOINT LEAK OFF LIFT<br>STATION    |                   |  |  |
| PURCELL       | 8/29/1995  | S20622         | LAGOON OUTFALL LINE                                                      | 3000                                                      | REPAIR IN AREA DAMAGED LINE            |                   |  |  |
| PURCELL       | 12/18/1995 | S20622         | LIFT STATION                                                             | 50000                                                     | LIFT STATION DOWN                      |                   |  |  |
| PURCELL       | 1/9/1996   | S20622         | 2000 BLK N. GREEN                                                        | 3000                                                      | SEWER LINE STOPPAGE THROUGH<br>MANHOLE |                   |  |  |
| PURCELL       | 8/22/1996  | S20622         | 1700 WEST ADAMS                                                          |                                                           | ELECTRICAL PROBLEM AT LIFT<br>STATION  |                   |  |  |
| PURCELL       | 2/18/1997  | S20622         | 1700 WEST ADAMS                                                          |                                                           |                                        |                   |  |  |
| PURCELL       | 5/21/1997  | S20622         | MANHOLE WEST SIDE OF PLANT                                               |                                                           | PUMP MALFUNCTIONS                      |                   |  |  |
| PURCELL       | 2/5/1998   | 20622          | WEST END OF BOB-0-LINK LANE, PURCELL                                     | T END OF BOB-0-LINK LANE, PURCELL OBSTUCTION INSEWER LINE |                                        |                   |  |  |
| PURCELL       | 2/14/1998  | S20622         | S. OF OLD DEPOT EAST END OF MAIN ST.                                     |                                                           |                                        |                   |  |  |
| PURCELL       | 2/20/1998  | S20622         | 21 BROOKSIDE DR.                                                         |                                                           | GREASE                                 |                   |  |  |
| PURCELL       | 2/20/1998  | S20622         | MH N. OF CALDWELL BANKERS REAL ESTATE ON N. GREEN AVE.                   |                                                           | GREASE                                 |                   |  |  |
| PURCELL       | 7/14/1998  | S20622         | HWY 74; MH ON N. SIDE OF HWY ACROSS FROM<br>WESTBROOK ADDITION           | 500                                                       |                                        |                   |  |  |
| PURCELL       | 11/23/1998 | S20622         | N. GREEN AVE. N. OF BRAUMS                                               | 1,000                                                     | OBSTRUCTION                            |                   |  |  |
| PURCELL       | 3/25/1999  | S20622         | L.S. ON SOUTH 10TH ST.                                                   | 5,000                                                     | L.S. MALFUNCTION                       |                   |  |  |
| PURCELL       | 4/19/1999  | S20622         | WILLOWCREEK CIR. & 9TH                                                   | 200                                                       | OBSTRUCTION                            |                   |  |  |
| PURCELL       | 4/27/1999  | S20622         | 1518 S. GREEN IN PASTURE                                                 | 1,000                                                     | OBSTRUCTION                            |                   |  |  |
| PURCELL       | 5/22/1999  | S20622         | MH S.E. OF CHURCH & MOBILE HOME PARK OFF<br>HWY 74                       |                                                           | DEBRIS                                 |                   |  |  |
| PURCELL       | 5/24/1999  | S20622         | TIMBERLAKE & 9TH ON WEST SIDE OF 9TH                                     |                                                           | OBSTRUCTION                            |                   |  |  |
| PURCELL       | 6/29/1999  | S20622         | S. OF WALNUT CREEK E. SIDE OF GREEN AVE. IN PASTURE                      | 1,500                                                     | STOPPED MAIN                           |                   |  |  |
| PURCELL       | 7/2/1999   | S20622         | 7TH ST. ALLEY AT 1ST PRESBYTERIAN CHURCH & SUNSET ESTATES                |                                                           | GREASE                                 |                   |  |  |
| PURCELL       | 7/2/1999   | S20622         | HARRISON & POLK ST.                                                      |                                                           | GREASE                                 |                   |  |  |
| PURCELL       | 7/10/1999  | S20622         | 2ND MH S. OF DEPOT HILL ON WEST SIDE OF RR<br>TRACKS 10,000 POWER OUTAGE |                                                           |                                        |                   |  |  |
| PURCELL       | 7/10/1999  | S20622         | 1 1/2 BLKS S. OF OLD DEPOT 5,000 PUMP STATION FAILURE                    |                                                           |                                        |                   |  |  |
| PURCELL       | 7/14/1999  | S20622         | BOBOLINK ST. 300,000 POWER FAILURE                                       |                                                           |                                        |                   |  |  |
| PURCELL       | 10/3/1999  | S20622         | 1213 DOUGLAS ST. OBSTRUCTION                                             |                                                           |                                        |                   |  |  |
| PURCELL       | 10/6/1999  | S20622         | 600 BLK OF 6TH ST                                                        | 500                                                       | OBSTRUCTION                            |                   |  |  |
| PURCELL       | 11/7/1999  | S20622         | 820 S. SANTE FE                                                          |                                                           | POWER FAILURE                          |                   |  |  |

J:\planning\TMDL\Bacteria TMDLs\Parsons\2007\4 Canadian River(15)\Canadian\_FINAL\_081508.doc

| Facility Name | Date       | Facility<br>ID | Location                                     | Amount<br>(Gal)         | Cause               | Type Of<br>Source |  |  |
|---------------|------------|----------------|----------------------------------------------|-------------------------|---------------------|-------------------|--|--|
| PURCELL       | 11/19/1999 | S20622         | HWY 74 & I-35                                | 200                     | GREASE              |                   |  |  |
| PURCELL       | 12/2/1999  | S20622         | 1ST MH S. OF DEPOT HILL ALONG THE RR TRACKS  | 2,000                   |                     |                   |  |  |
| PURCELL       | 12/5/1999  | S20622         | DUMP ST. AT CHANDLER RV PARK                 | 2,000                   | OBSTRUCTION         |                   |  |  |
| PURCELL       | 1/16/2000  | S20622         | WILLOW CREEK CIR.                            |                         | OBSTRUCTION         |                   |  |  |
| PURCELL       | 1/18/2000  | S20622         | MH AT VAN BUREN & SANTA FE                   | 200                     | OBSTRUCTION         |                   |  |  |
| PURCELL       | 2/11/2000  | S20622         | MH W. OF I-35 AT LAKE SPILLWAY               |                         | ROOTS               |                   |  |  |
| PURCELL       | 2/23/2000  | S20622         | 7TH & POLK IN ALLEY                          | 4000                    | OBSTRUCTION         |                   |  |  |
| PURCELL       | 2/28/2000  | S20622         | MH E. OF 9TH ST. AT ELEMENTARY SCHOOL GYM    | 750                     | OBSTRUCTION         |                   |  |  |
| PURCELL       | 4/7/2000   | S20622         | OAKRIDGE & I-35 MH                           | 200                     | OBSTRUCTION         |                   |  |  |
| PURCELL       | 5/2/2000   | S20622         | DELTA HEAD START ON FOX ST.                  | 25                      | OBSTRUCTION         |                   |  |  |
| PURCELL       | 5/26/2000  | S20622         | 117 S. 3RD                                   | 250                     | OBSTRUCTION         |                   |  |  |
| PURCELL       | 10/2/2000  | S20622         | N. GREEN AVE.                                | 800                     | GREASE              |                   |  |  |
| PURCELL       | 10/3/2000  | S20622         | 9TH & LUGLENA                                | LUGLENA 250 OBSTRUCTION |                     |                   |  |  |
| PURCELL       | 10/5/2000  | S20622         | #12 LUGLENA                                  |                         |                     |                   |  |  |
| PURCELL       | 10/9/2000  | S20622         | #12 LUGLENA - MH BEHIND HOUSE                | 500                     | GREASE              |                   |  |  |
| PURCELL       | 10/11/2000 | S20622         | 1104 GRANT/ LUGLENA                          | 30                      | OBSTRUCTION         |                   |  |  |
| PURCELL       | 10/26/2000 | S20622         | 415 N. SANTE FE                              | 40                      | RAINS               |                   |  |  |
| PURCELL       | 11/27/2000 | S20622         | MH AT 800 BLK OF NORTH 6 ST                  | 350                     | GREASE              |                   |  |  |
| PURCELL       | 12/10/2000 | S20622         | 902 GRANT                                    | 250                     | ROOTS               |                   |  |  |
| PURCELL       | 12/26/2000 | S20622         | WWP                                          | 200,000                 | PUMPS DOWN          |                   |  |  |
| PURCELL       | 1/14/2001  | S20622         | L.S. #3                                      | 20,000                  | ELECTRICAL PROBLEMS |                   |  |  |
| PURCELL       | 1/22/2001  | S20622         | GRADE SCHOOL                                 | <100                    | BLOCKAGE            |                   |  |  |
| PURCELL       | 2/10/2001  | S20622         | 800 WILLOWCREEK DR.                          | 50,000                  | GREASE              |                   |  |  |
| PURCELL       | 2/16/2001  | S20622         | 100 BLK E. JEFFERSON                         | 1,000                   | GREASE              |                   |  |  |
| PURCELL       | 2/16/2001  | S20622         | 800 WILLOW CREEK DR                          | 500                     | GREASE              |                   |  |  |
| PURCELL       | 2/19/2001  | S20622         | 100 BLK E. MAIN                              | 2,000                   | GREASE & SILT       |                   |  |  |
| PURCELL       | 5/18/2001  | S20622         | W. ADAMS ST.                                 | 3,000                   | POWER FAILURE       |                   |  |  |
| PURCELL       | 5/28/2001  | S20622         | W. ADAMS                                     | 4,000                   | ELECTRICAL PROBLEMS |                   |  |  |
| PURCELL       | 6/3/2001   | S20622         | #3 L.S. ON BOTH SIDES I-35                   | 9,000                   | MOTOR FAILURE       | LIFT STATION      |  |  |
| PURCELL       | 6/5/2001   | S20622         | 1517 S. GREEN                                | 300,000                 | GREASE              |                   |  |  |
| PURCELL       | 6/22/2001  | S20622         | 1800 W. ADAMS                                | 75,000                  | GREASE              |                   |  |  |
| PURCELL       | 7/30/2001  | S20622         | MAS-TEC 74 HWY 997                           | 5,000                   | GREASE              | MANHOLE           |  |  |
| PURCELL       | 9/2/2001   | S20622         | 1801 W. ADAMS                                | 500                     | PUMP FAILURE        | MANHOLE           |  |  |
| PURCELL       | 10/11/2001 | S20622         | S. CANADIAN ST.                              |                         | MALFUNCTION         | LIFT STATION      |  |  |
| PURCELL       | 1/21/2002  | S20622         | PASTURE N. OF WWTP                           | 10,000                  | GREASE              |                   |  |  |
| PURCELL       | 2/4/2002   | S20622         | 512 N. 7TH                                   | 150                     | GREASE & ROOTS      |                   |  |  |
| PURCELL       | 3/5/2002   | S20622         | N. 9TH & TIMBERLAKE & 9TH & WILLOW CREEK DR. | 500                     | GREASE              | MANHOLE           |  |  |

| Facility Name | Date       | Facility<br>ID | Location                                | Amount<br>(Gal)      | Cause                 | Type Of<br>Source |  |
|---------------|------------|----------------|-----------------------------------------|----------------------|-----------------------|-------------------|--|
| PURCELL       | 4/5/2002   | S20622         | HALLMARK TP                             | 400                  | GREASE                | MANHOLE           |  |
| PURCELL       | 6/3/2002   | S20622         | BOTTOM OF HILL                          | 5,000                | GREASE                |                   |  |
| PURCELL       | 10/20/2002 | S20622         | 206 E. MAIN                             | 1,000                | L.S. FAILURE          | MANHOLE           |  |
| PURCELL       | 10/20/2002 | S20622         | 810 S. SANTE FE                         | 100,000              | L.S. FAILURE          | MANHOLE           |  |
| PURCELL       | 10/21/2002 | S20622         | N. 9TH & WILLOWCREEK                    | 1,000                | GREASE                | MANHOLE           |  |
| PURCELL       | 10/29/2002 | S20622         |                                         | 1,000                | GREASE                |                   |  |
| PURCELL       | 11/27/2002 | S20622         | S. CANADIAN L.S.                        | 1,500                | MALFUNCTION           | LIFT STATION      |  |
| PURCELL       | 12/11/2002 | S20622         | MCKUNDY L.S.                            | 150,000              | MALFUNCTION           | LIFT STATION      |  |
| PURCELL       | 1/2/2003   | S20622         | 9TH & HALLMARK DR.                      | 50                   | ROOTS                 | MANHOLE           |  |
| PURCELL       | 2/1/2003   | S20622         | 912 LUGENA                              | 100                  | BLOCKAGE              | MANHOLE           |  |
| PURCELL       | 3/17/2003  | S20622         | 100 BLK. E. MAIN                        |                      |                       |                   |  |
| PURCELL       | 7/17/2003  | S20622         | W. ADAMS PAST WWTP                      | 500                  | L.S. MALFUNCTION      | MANHOLE           |  |
| PURCELL       | 8/19/2003  | S20622         | WWTP                                    | 100,000 L.S. FAILURE |                       |                   |  |
| PURCELL       | 1/14/2004  | S20622         | ACKERMAN CONSTRUCTION                   | 100                  | BLOCKAGE              | MANHOLE           |  |
| PURCELL       | 2/10/2004  | S20622         | BEHIND PLANTS & THINGS ON 220TH ST.     | 25,000               | GREASE                | MANHOLE           |  |
| PURCELL       | 2/13/2004  | S20622         | #5 BROOKSIDE                            | 2,000                | GREASE                | MANHOLE           |  |
| PURCELL       | 4/8/2004   | S20622         | EAST OF I-35 BY WALNUT CREEK IN PASTURE | 470,000              | PUMP FAILURE          | LIFT STATION      |  |
| PURCELL       | 4/15/2004  | S20622         | 1220 CHAMPION                           | 50                   | ROOTS & GREASE        |                   |  |
| PURCELL       | 4/16/2004  | S20622         | I-35 &                                  | 3,000                | PUMP FAILURE          |                   |  |
| PURCELL       | 4/21/2004  | S20622         | 9TH & LAGLENA                           | 6,000                | GREASE                |                   |  |
| PURCELL       | 8/21/2004  | S20622         | 612 N. 6TH                              | 600                  | GREASE                | MANHOLE           |  |
| PURCELL       | 8/28/2004  | S20622         | 1729 BROOKSIDE                          | 500                  | GREASE                | MANHOLE           |  |
| PURCELL       | 9/28/2004  | S20622         | 1200 N. KNIGHT                          | 50                   | GREASE                | PIPE              |  |
| PURCELL       | 10/8/2004  | S20622         | GREEN AVE. & 6TH ON W. MONROE           | 300                  | GREASE                | MANHOLE           |  |
| PURCELL       | 10/18/2004 | S20622         | 9TH & LINCOLN AVE.                      | 200                  | GREASE                | PIPE              |  |
| PURCELL       | 11/27/2004 | S20622         | 912 N. 7TH                              | 100                  | GREASE                | PIPE              |  |
| PURCELL       | 1/19/2005  | S20622         | 1930 S. GREEN                           | 800                  | GREASE                | MANHOLE           |  |
| PURCELL       | 2/9/2005   | S20622         | PLANT AT 9TH & LUGLENA                  | 500                  | GREASE & ROOTS        | MANHOLE           |  |
| PURCELL       | 2/14/2005  | S20622         | 9TH & WILLOWCREEK CIR.                  | 900                  | ROOTS                 | MANHOLE           |  |
| PURCELL       | 3/17/2005  | S20622         | 1201 N. 4                               | 50                   | GREASE                | MANHOLE           |  |
| PURCELL       | 4/11/2005  | S20622         | BEHIND 809 BONNIE ST.                   | 100                  | PAPER TOWELS & GREASE | MANHOLE           |  |
| PURCELL       | 5/6/2005   | S20622         | S. OF CITY LAKE DAM                     | 1,000                | GREASE                | MANHOLE           |  |
| PURCELL       | 5/31/2005  | S20622         | S. OF CITY LAKE DAM                     | 2,000                | GREASE & ROOTS        | MANHOLE           |  |
| PURCELL       | 7/4/2005   | S20622         | 1729 BROOKSIDE                          | 500                  | GREASE                | MANHOLE           |  |
| PURCELL       | 7/19/2005  | S20622         | #5 BROOK SIDE DR.                       | 1,000                | GREASE & ROOTS        | MANHOLE           |  |
| PURCELL       | 10/7/2005  | S20622         | 620 S. CANADIAN                         | 25                   | GREASE                | PIPE              |  |
| PURCELL       | 10/23/2005 | S20622         | 301 N. 8TH                              | 300                  | GREASE                | PIPE              |  |

| Facility Name | Date       | Facility<br>ID | Location                                     | Amount<br>(Gal) | Cause                    | Type Of<br>Source |
|---------------|------------|----------------|----------------------------------------------|-----------------|--------------------------|-------------------|
| PURCELL       | 10/30/2005 | S20622         | 301 N. 8TH                                   | 500             | GREASE                   | PIPE              |
| PURCELL       | 11/7/2005  | S20622         | 209 E. JEFFERSON                             | 200             | GREASE                   | MANHOLE           |
| PURCELL       | 11/16/2005 | S20622         | 315 N. 7TH                                   | 1,000           | ROOTS & GREASE           | MANHOLE           |
| PURCELL       | 12/9/2005  | S20622         | 610 N. 6TH                                   | 500             | GREASE                   | MANHOLE           |
| PURCELL       | 12/30/2005 | S20622         | E. OF CITY LAKE                              | 1,000           | ROOTS                    | MANHOLE           |
| PURCELL       | 1/1/2006   | S20622         | 912 N. 7TH                                   | 100             | ROOTS, RAGS & GREASE     | PIPE              |
| PURCELL       | 2/2/2006   | S20622         | 9TH & LUGLENA N. OF GRANT ST.                | 1,500           | GREASE                   | MANHOLE           |
| PURCELL       | 2/15/2006  | S20622         | 1200 BLK. W. ADAMS                           |                 | L.S. DOWN                | MANHOLE           |
| PURCELL       | 2/28/2006  | S20622         | 9TH & LINCOLN                                | 300             | GREASE                   | PIPE              |
| PURCELL       | 3/3/2006   | S20622         | BETWEEN THE SPILLWAY OF THE CITY LAKE & I-35 | 15,000          | GREASE                   | MANHOLE           |
| PURCELL       | 3/29/2006  | S20622         | S.E. CORNER OF 9TH & WILLOW CREEK CIR.       | 250             | ROOTS                    | MANHOLE           |
| PURCELL       | 6/26/2006  | S20622         | 1030 LUGLENA                                 | 1,000           | GREASE                   | MANHOLE           |
| PURCELL       | 7/27/2006  | S20622         | N.E. OF CITY LAKE DAM                        | 5,000           | ROOTS & GREASE           | MANHOLE           |
| PURCELL       | 7/31/2006  | S20622         | W. OF SHERRI CLASSICS & HARD CASTLE 700      | 1,500           | ROOTS                    | PIPE              |
| PURCELL       | 8/10/2006  | S20622         | S. 39 HWY ON GREEN AVE.                      | 1,000           | GREASE                   | PIPE              |
| PURCELL       | 10/30/2006 | S20622         | W. OF FAIRMONT DR. S. OF CHANDLER            | 800             | GREASE                   | MANHOLE           |
| PURCELL       | 11/3/2006  | S20622         | 2128 S. GREEN                                | 700             | GREASE                   | PIPE              |
| PURCELL       | 11/22/2006 | S20622         | 800 BLK. BROOKSIDE DR.                       | 1,000           | GREASE                   | MANHOLE           |
| PURCELL       | 11/25/2006 | S20622         | 908 N. 7TH                                   | 400             | ROOTS & GREASE           | MANHOLE           |
| PURCELL       | 12/4/2006  | S20622         | N. OF CITY RV PARK                           | 500             | GREASE & ROOTS           | MANHOLE           |
| PURCELL       | 12/8/2006  | S20622         | 1500 BLK. HARDCASTLE BLVD.                   | 500             | ROOTS                    | MANHOLE           |
| PURCELL       | 12/9/2006  | S20622         | 105 W. MADISON                               | 300             | GREASE                   | PIPE              |
| PURCELL       | 12/14/2006 | S20622         | #5 BROOKE SIDE DR. REAR OF PROPERTY          | 1,000           | GREASE & ROOTS           | MANHOLE           |
| PURCELL       | 1/2/2007   | S20622         | W. OF 9TH ST. N. OF GRANT                    | 10,000          | GREASE                   | MANHOLE           |
| PURCELL       | 2/6/2007   | S20622         | E. SIDE OF CITY GOLF COURSE                  | 200             | ROOTS                    | MANHOLE           |
| PURCELL       | 2/15/2007  | S20622         | N.W. CORNER OF HALLMARK TP                   | 300             | GREASE                   | MANHOLE           |
| PURCELL       | 3/22/2007  | S20622         | RV PARK                                      | 500             | GREASE                   | MANHOLE           |
| PURCELL       |            | S20622         | 9TH & LINCOLN                                |                 | GREASE                   |                   |
| PURCELL       |            | S20622         | BEHIND RV PARK                               | 2,500           |                          |                   |
| PURCELL       |            | S20622         | WEST ADAMS                                   | 30,000          | L.S. DOWN                | LIFT STATION      |
| PURCELL       |            | S20622         |                                              | 5,000           | CONTROL PANEL            |                   |
| PURCELL       |            | S20622         | 9TH & WILLOWCREEK 50                         |                 | GREASE                   | MANHOLE           |
| PURCELL       |            | S20622         | 8TH & COMANCHE                               | 500             |                          |                   |
| PURCELL       |            | S20622         | 6TH & VAN BUREN                              | 500             | GREASE                   |                   |
| PURELL        | 4/24/1998  | 20622          | NW OF WOODBROOK ADD                          |                 | PIPE BECAME DISCONNECTED |                   |
| STRATFORD     | 11/23/2004 | S20625         | 500 BLK E. STATE                             |                 |                          | MANHOLE           |
| UNION CITY    | 6/24/1999  | S20609         | LAGOONS                                      |                 | LEAK IN LAGOON           |                   |

| Facility Name | Date       | Facility<br>ID | Location An                 |     | Cause                               | Type Of<br>Source |
|---------------|------------|----------------|-----------------------------|-----|-------------------------------------|-------------------|
| UNION CITY    | 11/12/2003 | S20609         | 410 PARK DR.                | 10  | GREASE                              | PIPE              |
| UNION CITY    | 5/2/2005   | S20609         | HWY 152 & HWY 81 103 HWY 81 | 650 | BLOCKAGE                            | MANHOLE           |
| WAYNE         | 12/16/1991 | S20623         | INFALL LINE TO EAST LAGOON  |     | HEAVY RAINFALL AND LINE<br>STOPPAGE |                   |
| WAYNE         | 12/16/1991 | S20623         | WEST LAGOON                 |     | HEAVY RAINFALL AND GOT TOO<br>FULL  |                   |
| WAYNE         | 1/7/1993   | S20623         | EAST FLOW THROUGH LAGOON    | 0   | DIKE LEAKING                        |                   |
| WAYNE         | 6/28/2000  | S20623         | N. OF TOWN                  |     | HOLE IN LINE                        |                   |
| WAYNE(WEST)   | 3/5/1993   | S20623         | WEST LAGOON ON WEST SIDE    |     | HEAVY RAINFALL FOR TWO<br>MONTHS    |                   |
| WAYNE(WEST)   | 5/11/1993  | S20623         | WEST LAGOON                 | 0   | HEAVY RAINS                         |                   |

### APPENDIX C ESTIMATED FLOW EXCEEDANCE PERCENTILES

|                                | OK520600010010-001AT   | OK520600010060P   | OK520600020170B   | OK520600030030E   | OK520610010010-            | OK520610010080G   | OK520610010180G   | OK520610020120G   | OK520610020150-            | OK520610030080G             | OK520800010010-       |
|--------------------------------|------------------------|-------------------|-------------------|-------------------|----------------------------|-------------------|-------------------|-------------------|----------------------------|-----------------------------|-----------------------|
| WQ Station                     | Canadian River         | Factory Creek     | Julian Creek      | Spring Brook      | 001AT<br>Canadian<br>River | Willow Creek      | Bishop Creek      | Buggy Creek       | 001AT<br>Canadian<br>River | Walnut Creek-<br>North Fork | 001AT<br>Little River |
| WBID Segment                   | OK520600010010_00      | OK520600010060_00 | OK520600020170_00 | OK520600030030_00 | OK520610010010_05          | OK520610010080_00 | OK520610010180_00 | OK520610020120_00 | OK520610020150_10          | OK520610030080_00           | OK520800010010_00     |
| USGS Gage Reference            | 07231500 &<br>07231000 | 07328180          | 07328180          | 07229427          | 07229200                   | 07328180          | 07328180          | 07328180          | 07228500                   | 07328180                    | 07231000              |
| Watershed Area (sq. mile)      | 139.3                  | 7.5               | 16.4              | 62.6              | 270.3                      | 23.7              | 14.4              | 102.7             | 223.6                      | 64.6                        | 126.0                 |
| NRCS Curve Number              | 61.2                   | 61.5              | 63.0              | 68.5              | 68.4                       | 71.0              | 76.7              | 69.4              | 71.9                       | 65.6                        | 61.8                  |
| Average Annual Rainfall (inch) | 41.5                   | 41.4              | 39.4              | 40.5              | 38.2                       | 39.9              | 37.8              | 33.9              | 33.1                       | 35.4                        | 41.7                  |
| Percentile                     | Q (cfs)                | Q (cfs)           | Q (cfs)           | Q (cfs)           | Q (cfs)                    | Q (cfs)           | Q (cfs)           | Q (cfs)           | Q (cfs)                    | Q (cfs)                     | Q (cfs)               |
| 0                              | 132,900                | 155               | 339               | 114               | 71,000                     | 487               | 297               | 2,115             | 42,100                     | 1,330                       | 31,600                |
| 1                              | 15,721                 | 28                | 60                | 95                | 9,532                      | 87                | 61                | 434               | 5,086                      | 273                         | 6,154                 |
| 2                              | 10,945                 | 14                | 31                | 76                | 5,645                      | 45                | 38                | 266               | 2,488                      | 167                         | 4,202                 |
| 3                              | 8,108                  | 11                | 25                | 64                | 3,938                      | 36                | 24                | 168               | 1,654                      | 106                         | 3,020                 |
| 4                              | 6,541                  | 9.0               | 20                | 50                | 3,090                      | 28                | 18                | 122               | 1,250                      | 77                          | 2,350                 |
| 5                              | 5,576                  | 7.9               | 17                | 40                | 2,664                      | 25                | 15                | 105               | 1,040                      | 66                          | 1,940                 |
| 6                              | 4,968                  | 7.3               | 16                | 34                | 2,246                      | 23                | 13                | 91                | 891                        | 57                          | 1,595                 |
| 7                              | 4,425                  | 6.9               | 15                | 29                | 1,982                      | 22                | 12                | 84                | 800                        | 53                          | 1,340                 |
| 8                              | 4,071                  | 6.4               | 14                | 23                | 1,720                      | 20                | 12                | 78                | 708                        | 49                          | 1,200                 |
| 9                              | 3,781                  | 6.1               | 13                | 20                | 1,579                      | 19                | 11                | 73                | 641                        | 46                          | 1,078                 |
| 10                             | 3,438                  | 5.6               | 12                | 14                | 1,430                      | 18                | 10                | 67                | 580                        | 42                          | 966                   |
| 11                             | 3,140                  | 5.2               | 11                | 13                | 1,340                      | 16                | 9.6               | 64                | 531                        | 40                          | 883                   |
| 12                             | 2,926                  | 4.8               | 11                | 12                | 1,230                      | 15                | 8.6               | 57                | 493                        | 36                          | 802                   |
| 13                             | 2,699                  | 4.5               | 10                | 12                | 1,130                      | 14                | 8.2               | 55                | 454                        | 34                          | 739                   |
| 14                             | 2,513                  | 4.2               | 9.2               | 11                | 1,080                      | 13                | 7.8               | 52                | 426                        | 33                          | 674                   |
| 15                             | 2,357                  | 4.0               | 8.7               | 10                | 1,030                      | 13                | 7.4               | 49                | 400                        | 31                          | 609                   |
| 16                             | 2,235                  | 3.9               | 8.5               | 9                 | 974                        | 12                | 7.1               | 46                | 371                        | 29                          | 564                   |
| 17                             | 2,090                  | 3.7               | 7.8               | 9                 | 920                        | 11                | 6.9               | 45                | 350                        | 28                          | 505                   |
| 18                             | 1,950                  | 3.5               | 7.6               | 8                 | 872                        | 11                | 6.3               | 41                | 332                        | 26                          | 457                   |
| 19                             | 1,837                  | 3.3               | 7.2               | 7.4               | 823                        | 10                | 6.1               | 39                | 315                        | 25                          | 420                   |
| 20                             | 1,711                  | 3.1               | 6.7               | 7.3               | 800                        | 9.7               | 5.9               | 38                | 300                        | 24                          | 376                   |
| 21                             | 1,617                  | 3.0               | 6.5               | 7.1               | 753                        | 9.4               | 5.5               | 35                | 280                        | 22                          | 342                   |
| 22                             | 1,509                  | 2.9               | 6.3               | 6.7               | 713                        | 9.0               | 5.3               | 34                | 268                        | 21                          | 315                   |
| 23                             | 1,417                  | 2.8               | 6.1               | 6.7               | 687                        | 8.7               | 5.1               | 32                | 253                        | 20                          | 288                   |
| 24                             | 1,321                  | 2.7               | 5.8               | 6.4               | 657                        | 8.4               | 4.9               | 31                | 244                        | 19                          | 263                   |
| 25                             | 1,236                  | 2.6               | 5.6               | 6.1               | 638                        | 8.1               | 4.7               | 29                | 231                        | 19                          | 242                   |
| 26                             | 1,151                  | 2.5               | 5.4               | 6.0               | 607                        | 7.7               | 4.5               | 28                | 221                        | 18                          | 222                   |
| 27                             | 1,089                  | 2.3               | 4.9               | 5.3               | 600                        | 7.1               | 4.3               | 27                | 211                        | 17                          | 202                   |
| 28                             | 1,026                  | 2.2               | 4.7               | 5.2               | 580                        | 6.8               | 4.1               | 25                | 201                        | 16                          | 185                   |
| 29                             | 961                    | 2.2               | 4.5               | 4.9               | 560                        | 6.5               | 3.9               | 24                | 193                        | 15                          | 171                   |
| 30                             | 908                    | 2.1               | 4.5               | 4.6               | 532                        | 6.5               | 3.7               | 22                | 185                        | 14                          | 155                   |
| 31                             | 849                    | 1.9               | 4.3               | 4.3               | 515                        | 6.1               | 3.5               | 21                | 176                        | 13                          | 143                   |
| 32                             | 802                    | 1.8               | 4.0               | 3.9               | 500                        | 5.8               | 3.3               | 20                | 167                        | 12                          | 131                   |
| 33                             | 751                    | 1.7               | 3.8               | 3.9               | 488                        | 5.5               | 3.3               | 20                | 160                        | 12                          | 122                   |
| 34                             | 696                    | 1.6               | 3.6               | 3.6               | 465                        | 5.2               | 3.1               | 18                | 150                        | 11                          | 114                   |

### Appendix C Estimated Flow Exceedance Percentiles

|                                | OK520600010010-001AT   | OK520600010060P   | OK520600020170B   | OK520600030030E   | OK520610010010-<br>001AT | OK520610010080G   | OK520610010180G   | OK520610020120G   | OK520610020150-<br>001AT | OK520610030080G             | OK520800010010-<br>001AT |
|--------------------------------|------------------------|-------------------|-------------------|-------------------|--------------------------|-------------------|-------------------|-------------------|--------------------------|-----------------------------|--------------------------|
| WQ Station                     | Canadian River         | Factory Creek     | Julian Creek      | Spring Brook      | Canadian<br>River        | Willow Creek      | Bishop Creek      | Buggy Creek       | Canadian<br>River        | Walnut Creek-<br>North Fork | Little River             |
| WBID Segment                   | OK520600010010_00      | OK520600010060_00 | OK520600020170_00 | OK520600030030_00 | OK520610010010_05        | OK520610010080_00 | OK520610010180_00 | OK520610020120_00 | OK520610020150_10        | OK520610030080_00           | OK520800010010_00        |
| USGS Gage Reference            | 07231500 &<br>07231000 | 07328180          | 07328180          | 07229427          | 07229200                 | 07328180          | 07328180          | 07328180          | 07228500                 | 07328180                    | 07231000                 |
| Watershed Area (sq. mile)      | 139.3                  | 7.5               | 16.4              | 62.6              | 270.3                    | 23.7              | 14.4              | 102.7             | 223.6                    | 64.6                        | 126.0                    |
| NRCS Curve Number              | 61.2                   | 61.5              | 63.0              | 68.5              | 68.4                     | 71.0              | 76.7              | 69.4              | 71.9                     | 65.6                        | 61.8                     |
| Average Annual Rainfall (inch) | 41.5                   | 41.4              | 39.4              | 40.5              | 38.2                     | 39.9              | 37.8              | 33.9              | 33.1                     | 35.4                        | 41.7                     |
| Percentile                     | Q (cfs)                | Q (cfs)           | Q (cfs)           | Q (cfs)           | Q (cfs)                  | Q (cfs)           | Q (cfs)           | Q (cfs)           | Q (cfs)                  | Q (cfs)                     | Q (cfs)                  |
| 35                             | 655                    | 1.6               | 3.6               | 3.3               | 450                      | 5.2               | 2.9               | 17                | 144                      | 11                          | 107                      |
| 36                             | 624                    | 1.5               | 3.4               | 3.2               | 433                      | 4.8               | 2.9               | 17                | 137                      | 11                          | 100                      |
| 37                             | 587                    | 1.5               | 3.4               | 2.8               | 419                      | 4.8               | 2.7               | 15                | 130                      | 9.7                         | 93                       |
| 38                             | 556                    | 1.4               | 3.1               | 2.5               | 400                      | 4.5               | 2.7               | 15                | 125                      | 9.7                         | 88                       |
| 39                             | 526                    | 1.4               | 3.1               | 2.4               | 394                      | 4.5               | 2.7               | 15                | 118                      | 9.7                         | 83                       |
| 40                             | 494                    | 1.3               | 2.9               | 2.2               | 380                      | 4.2               | 2.5               | 14                | 110                      | 8.9                         | 78                       |
| 41                             | 475                    | 1.3               | 2.9               | 1.8               | 365                      | 4.2               | 2.5               | 14                | 103                      | 8.6                         | 74                       |
| 42                             | 448                    | 1.2               | 2.7               | 1.6               | 352                      | 3.9               | 2.4               | 13                | 98                       | 8.2                         | 69                       |
| 43                             | 420                    | 1.2               | 2.7               | 1.4               | 344                      | 3.9               | 2.3               | 12                | 91                       | 7.9                         | 65                       |
| 44                             | 399                    | 1.2               | 2.7               | 1.3               | 335                      | 3.9               | 2.3               | 12                | 86                       | 7.5                         | 62                       |
| 45                             | 376                    | 1.1               | 2.5               | 1.1               | 324                      | 3.5               | 2.2               | 11                | 80                       | 7.2                         | 58                       |
| 46                             | 355                    | 1.1               | 2.5               | 1.0               | 314                      | 3.5               | 2.1               | 11                | 76                       | 6.7                         | 55                       |
| 47                             | 342                    | 1.1               | 2.2               | 1.0               | 302                      | 3.2               | 2.0               | 10                | 72                       | 6.4                         | 52                       |
| 48                             | 321                    | 1.0               | 2.2               | 0.9               | 290                      | 3.2               | 1.9               | 9.4               | 68                       | 5.9                         | 49                       |
| 49                             | 305                    | 1.0               | 2.2               | 0.9               | 280                      | 3.2               | 1.8               | 9.0               | 65                       | 5.7                         | 46                       |
| 50                             | 284                    | 1.0               | 2.1               | 0.8               | 271                      | 3.1               | 1.8               | 8.4               | 61                       | 5.3                         | 44                       |
| 51                             | 271                    | 0.94              | 2.1               | 0.76              | 260                      | 3.0               | 1.7               | 8.1               | 59                       | 5.2                         | 41                       |
| 52                             | 257                    | 0.91              | 2.0               | 0.73              | 253                      | 2.9               | 1.7               | 7.8               | 55                       | 5.0                         | 39                       |
| 53                             | 248                    | 0.88              | 1.9               | 0.70              | 248                      | 2.8               | 1.6               | 7.6               | 52                       | 4.8                         | 37                       |
| 54                             | 237                    | 0.85              | 1.8               | 0.66              | 236                      | 2.7               | 1.6               | 7.1               | 50                       | 4.5                         | 35                       |
| 55                             | 226                    | 0.82              | 1.8               | 0.63              | 226                      | 2.6               | 1.5               | 6.9               | 47                       | 4.4                         | 33                       |
| 56                             | 216                    | 0.79              | 1.7               | 0.60              | 220                      | 2.5               | 1.5               | 6.4               | 45                       | 4.1                         | 32                       |
| 57                             | 205                    | 0.76              | 1.7               | 0.57              | 210                      | 2.4               | 1.4               | 6.0               | 42                       | 3.8                         | 30                       |
| 58                             | 196                    | 0.73              | 1.6               | 0.56              | 200                      | 2.3               | 1.4               | 5.6               | 40                       | 3.6                         | 28                       |
| 59                             | 187                    | 0.70              | 1.5               | 0.53              | 192                      | 2.2               | 1.3               | 5.2               | 38                       | 3.3                         | 27                       |
| 60                             | 180                    | 0.67              | 1.5               | 0.50              | 185                      | 2.1               | 1.3               | 4.9               | 36                       | 3.1                         | 25                       |
| 61                             | 172                    | 0.64              | 1.4               | 0.47              | 175                      | 2.0               | 1.2               | 4.6               | 34                       | 3.0                         | 24                       |
| 62                             | 166                    | 0.61              | 1.3               | 0.47              | 168                      | 1.9               | 1.2               | 4.5               | 32                       | 2.9                         | 23                       |
| 63                             | 159                    | 0.58              | 1.3               | 0.44              | 160                      | 1.9               | 1.2               | 4.2               | 30                       | 2.7                         | 22                       |
| 64                             | 151                    | 0.56              | 1.2               | 0.44              | 153                      | 1.8               | 1.1               | 3.8               | 29                       | 2.4                         | 20                       |
| 65                             | 142                    | 0.53              | 1.2               | 0.42              | 149                      | 1.7               | 1.1               | 3.4               | 28                       | 2.2                         | 19                       |
| 66                             | 135                    | 0.51              | 1.1               | 0.39              | 140                      | 1.6               | 1.0               | 3.2               | 26                       | 2.1                         | 18                       |
| 67                             | 128                    | 0.49              | 1.1               | 0.39              | 135                      | 1.5               | 1.0               | 2.9               | 25                       | 1.9                         | 17                       |
| 68                             | 119                    | 0.46              | 1.0               | 0.38              | 130                      | 1.5               | 0.96              | 2.7               | 24                       | 1.7                         | 16                       |
| 69                             | 110                    | 0.45              | 1.0               | 0.37              | 123                      | 1.4               | 0.92              | 2.4               | 22                       | 1.5                         | 15                       |
| 70                             | 102                    | 0.42              | 0.90              | 0.36              | 120                      | 1.3               | 0.90              | 2.2               | 21                       | 1.5                         | 14                       |
| 71                             | 95                     | 0.39              | 0.85              | 0.36              | 114                      | 1.2               | 0.88              | 2.1               | 20                       | 1.4                         | 13                       |
| 72                             | 89                     | 0.37              | 0.81              | 0.35              | 110                      | 1.2               | 0.84              | 1.8               | 19                       | 1.2                         | 12                       |

| WQ Station                     | OK520600010010-001AT   | OK520600010060P   | OK520600020170B   | OK520600030030E   | OK520610010010-<br>001AT | OK520610010080G   | OK520610010180G   | OK520610020120G   | OK520610020150-<br>001AT | OK520610030080G             | OK520800010010-<br>001AT |
|--------------------------------|------------------------|-------------------|-------------------|-------------------|--------------------------|-------------------|-------------------|-------------------|--------------------------|-----------------------------|--------------------------|
|                                | Canadian River         | Factory Creek     | Julian Creek      | Spring Brook      | Canadian<br>River        | Willow Creek      | Bishop Creek      | Buggy Creek       | Canadian<br>River        | Walnut Creek-<br>North Fork | Little River             |
| WBID Segment                   | OK520600010010_00      | OK520600010060_00 | OK520600020170_00 | OK520600030030_00 | OK520610010010_05        | OK520610010080_00 | OK520610010180_00 | OK520610020120_00 | OK520610020150_10        | OK520610030080_00           | OK520800010010_00        |
| USGS Gage Reference            | 07231500 &<br>07231000 | 07328180          | 07328180          | 07229427          | 07229200                 | 07328180          | 07328180          | 07328180          | 07228500                 | 07328180                    | 07231000                 |
| Watershed Area (sq. mile)      | 139.3                  | 7.5               | 16.4              | 62.6              | 270.3                    | 23.7              | 14.4              | 102.7             | 223.6                    | 64.6                        | 126.0                    |
| NRCS Curve Number              | 61.2                   | 61.5              | 63.0              | 68.5              | 68.4                     | 71.0              | 76.7              | 69.4              | 71.9                     | 65.6                        | 61.8                     |
| Average Annual Rainfall (inch) | 41.5                   | 41.4              | 39.4              | 40.5              | 38.2                     | 39.9              | 37.8              | 33.9              | 33.1                     | 35.4                        | 41.7                     |
| Percentile                     | Q (cfs)                | Q (cfs)           | Q (cfs)           | Q (cfs)           | Q (cfs)                  | Q (cfs)           | Q (cfs)           | Q (cfs)           | Q (cfs)                  | Q (cfs)                     | Q (cfs)                  |
| 73                             | 82                     | 0.35              | 0.76              | 0.34              | 102                      | 1.1               | 0.80              | 1.5               | 18                       | 1.0                         | 11                       |
| 74                             | 76                     | 0.33              | 0.72              | 0.34              | 98                       | 1.0               | 0.80              | 1.5               | 17                       | 1.0                         | 10                       |
| 75                             | 71                     | 0.30              | 0.65              | 0.33              | 93                       | 0.97              | 0.78              | 1.4               | 16                       | 0.93                        | 10                       |
| 76                             | 66                     | 0.28              | 0.61              | 0.33              | 88                       | 0.87              | 0.74              | 1.1               | 15                       | 0.75                        | 8.9                      |
| 77                             | 61                     | 0.25              | 0.54              | 0.32              | 84                       | 0.77              | 0.73              | 1.0               | 15                       | 0.66                        | 8.0                      |
| 78                             | 55                     | 0.23              | 0.49              | 0.31              | 79                       | 0.73              | 0.69              | 0.70              | 14                       | 0.49                        | 7.3                      |
| 79                             | 50                     | 0.21              | 0.45              | 0.31              | 74                       | 0.65              | 0.69              | 0.70              | 13                       | 0.49                        | 6.7                      |
| 80                             | 46                     | 0.19              | 0.43              | 0.30              | 68                       | 0.61              | 0.65              | 0.42              | 13                       | 0.31                        | 6.1                      |
| 81                             | 41                     | 0.17              | 0.38              | 0.30              | 62                       | 0.55              | 0.63              | 0.28              | 12                       | 0.22                        | 5.6                      |
| 82                             | 37                     | 0.14              | 0.31              | 0.29              | 58                       | 0.45              | 0.61              | 0.14              | 11                       | 0.13                        | 5.1                      |
| 83                             | 34                     | 0.12              | 0.27              | 0.29              | 53                       | 0.39              | 0.59              | 0                 | 11                       | 0.02                        | 4.5                      |
| 84                             | 31                     | 0.10              | 0.22              | 0.29              | 50                       | 0.32              | 0.59              | 0                 | 10                       | 0.02                        | 4.0                      |
| 85                             | 27                     | 0.09              | 0.20              | 0.28              | 47                       | 0.29              | 0.59              | 0                 | 9.5                      | 0.02                        | 3.3                      |
| 86                             | 25                     | 0.08              | 0.18              | 0.27              | 43                       | 0.26              | 0.59              | 0                 | 8.8                      | 0.02                        | 2.7                      |
| 87                             | 21                     | 0.06              | 0.13              | 0.27              | 40                       | 0.19              | 0.59              | 0                 | 8.2                      | 0.02                        | 2.3                      |
| 88                             | 19                     | 0.05              | 0.11              | 0.26              | 36                       | 0.16              | 0.59              | 0                 | 7.6                      | 0.02                        | 1.9                      |
| 89                             | 16                     | 0.03              | 0.07              | 0.25              | 33                       | 0.10              | 0.59              | 0                 | 6.8                      | 0.02                        | 1.6                      |
| 90                             | 14                     | 0.02              | 0.04              | 0.23              | 30                       | 0.06              | 0.59              | 0                 | 6.0                      | 0.02                        | 1.2                      |
| 91                             | 12                     | 0.01              | 0.02              | 0.21              | 28                       | 0.03              | 0.59              | 0                 | 5.3                      | 0.02                        | 0.93                     |
| 92                             | 10                     | 0                 | 0                 | 0.19              | 24                       | 0                 | 0.59              | 0                 | 4.8                      | 0.02                        | 0.61                     |
| 93                             | 8.0                    | 0                 | 0                 | 0.19              | 21                       | 0                 | 0.59              | 0                 | 4.3                      | 0.02                        | 0.40                     |
| 94                             | 6.2                    | 0                 | 0                 | 0.18              | 19                       | 0                 | 0.59              | 0                 | 3.6                      | 0.02                        | 0.20                     |
| 95                             | 4.6                    | 0                 | 0                 | 0.18              | 16                       | 0                 | 0.59              | 0                 | 2.9                      | 0.02                        | 0.10                     |
| 96                             | 2.5                    | 0                 | 0                 | 0.15              | 13                       | 0                 | 0.59              | 0                 | 2.0                      | 0.02                        | 0                        |
| 97                             | 1.0                    | 0                 | 0                 | 0.15              | 11                       | 0                 | 0.59              | 0                 | 1.0                      | 0.02                        | 0                        |
| 98                             | 0.08                   | 0                 | 0                 | 0.15              | 8.8                      | 0                 | 0.59              | 0                 | 0                        | 0.02                        | 0                        |
| 99                             | 0                      | 0                 | 0                 | 0.15              | 5.5                      | 0                 | 0.59              | 0                 | 0                        | 0.02                        | 0                        |
| 100                            | 0                      | 0                 | 0                 | 0.15              | 0.75                     | 0                 | 0.59              | 0                 | 0                        | 0.02                        | 0                        |

#### Appendix C General Methodology for Estimating Flow at WQM Stations

Flows duration curve will be developed using existing USGS measured flow where the data exist from a gage on the stream segment of interest, or by estimating flow for stream segments with no corresponding flow record. Flow data to support flow duration curves and load duration curves will be derived for each Oklahoma stream segment in the following priority:

- i) In cases where a USGS flow gage occurs on, or within one-half mile upstream or downstream of the Oklahoma stream segment.
  - a. If simultaneously-collected flow data matching the water quality sample collection date are available, these flow measurements will be used.
  - b. If flow measurements at the coincident gage are missing for some dates on which water quality samples were collected, the gaps in the flow record will be filled, or the record will be extended, by estimating flow based on measured streamflows at a nearby gage. First, the most appropriate nearby stream gage is identified. All flow data are first log-transformed to linearize the data because flow data are highly skewed. Linear regressions are then developed between 1) daily streamflow at the gage to be filled/extended, and 2) streamflow at all gages within 95 miles that have at least 300 daily flow measurements on matching dates. The station with the best flow relationship, as indicated by the highest rsquared value, is selected as the index gage. R-squared indicates the fraction of the variance in flow explained by the regression. The regression is then used to estimate flow at the gage to be filled/extended from flow at the index station. Flows will not be estimated based on regressions with r-squared values less than 0.25, even if that is the best regression. In some cases, it will be necessary to fill/extend flow records from two or more index gages. The flow record will be filled/extended to the extent possible based on the best index gage (highest rsquared value), and remaining gaps will be filled from the next best index gage (second highest r-squared value), and so forth.
  - c. Flow duration curves will be based on measured flows only, not on the filled or extended flow time series calculated from other gages using regression.
  - d. On a stream impounded by dams to form reservoirs of sufficient size to impact stream flow, only flows measured after the date of the most recent impoundment will be used to develop the flow duration curve. This also applies to reservoirs on major tributaries to the stream.
- ii) In the case no coincident flow data are available for a stream segment, but flow gage(s) are present upstream and/or downstream without a major reservoir between, flows will be estimated for the stream segment from an upstream or downstream gage using a watershed area ratio method derived by delineating subwatersheds, and relying on the National Resources Conservation Service (NRCS) runoff curve numbers and antecedent rainfall condition. Drainage subbasins will first be delineated for all impaired 303(d)-listed WQM stations, along with all USGS flow stations located in the 8-digit HUCs with impaired streams. Parsons will then

identify all the USGS gage stations upstream and downstream of the subwatersheds with 303(d) listed WQM stations.

- a. Watershed delineations are performed using ESRI Arc Hydro with a 30 m resolution National Elevation Dataset (NED) digital elevation model, and National Hydrography Dataset (NHD) streams. The area of each watershed will be calculated following watershed delineation.
- b. The watershed average curve number is calculated from soil properties and land cover as described in the U.S. Department of Agriculture (USDA) Publication *TR-55: Urban Hydrology for Small Watersheds*. The soil hydrologic group is extracted from NRCS STATSGO soil data, and land use category from the 2001 National Land Cover Dataset (NLCD). Based on land use and the hydrologic soil group, SCS curve numbers are estimated at the 30-meter resolution of the NLCD grid as shown in Table 7. The average curve number is then calculated from all the grid cells within the delineated watershed.
- c. The average rainfall is calculated for each watershed from gridded average annual precipitation datasets for the period 1971-2000 (Spatial Climate Analysis Service, Oregon State University, http://www.ocs.oregonstate.edu/prism/, created 20 Feb 2004).

|                                 | Curve number for hydrologic soil group |     |     |     |  |  |  |  |
|---------------------------------|----------------------------------------|-----|-----|-----|--|--|--|--|
| NLCD Land Use Category          | Α                                      | В   | С   | D   |  |  |  |  |
| 0 in case of zero               | 100                                    | 100 | 100 | 100 |  |  |  |  |
| 11 Open Water                   | 100                                    | 100 | 100 | 100 |  |  |  |  |
| 12 Perennial Ice/Snow           | 100                                    | 100 | 100 | 100 |  |  |  |  |
| 21 Developed, Open Space        | 39                                     | 61  | 74  | 80  |  |  |  |  |
| 22 Developed, Low Intensity     | 57                                     | 72  | 81  | 86  |  |  |  |  |
| 23 Developed, Medium Intensity  | 77                                     | 85  | 90  | 92  |  |  |  |  |
| 24 Developed, High Intensity    | 89                                     | 92  | 94  | 95  |  |  |  |  |
| 31 Barren Land (Rock/Sand/Clay) | 77                                     | 86  | 91  | 94  |  |  |  |  |
| 32 Unconsolidated Shore         | 77                                     | 86  | 91  | 94  |  |  |  |  |
| 41 Deciduous Forest             | 37                                     | 48  | 57  | 63  |  |  |  |  |
| 42 Evergreen Forest             | 45                                     | 58  | 73  | 80  |  |  |  |  |
| 43 Mixed Forest                 | 43                                     | 65  | 76  | 82  |  |  |  |  |
| 51 Dwarf Scrub                  | 40                                     | 51  | 63  | 70  |  |  |  |  |
| 52 Shrub/Scrub                  | 40                                     | 51  | 63  | 70  |  |  |  |  |
| 71 Grasslands/Herbaceous        | 40                                     | 51  | 63  | 70  |  |  |  |  |
| 72 Sedge/Herbaceous             | 40                                     | 51  | 63  | 70  |  |  |  |  |
| 73 Lichens                      | 40                                     | 51  | 63  | 70  |  |  |  |  |
| 74 Moss                         | 40                                     | 51  | 63  | 70  |  |  |  |  |
| 81 Pasture/Hay                  | 35                                     | 56  | 70  | 77  |  |  |  |  |
| 82 Cultivated Crops             | 64                                     | 75  | 82  | 85  |  |  |  |  |
| 90-99 Wetlands                  | 100                                    | 100 | 100 | 100 |  |  |  |  |

 Table C-1
 Runoff Curve Numbers for Various Land Use Categories and Hydrologic Soil

 Groups

d. Flow at the ungaged site is calculated from the gaged site. The NRCS runoff curve number equation is:

$$Q = \frac{(P - I_a)^2}{(P - I_a) + S}$$
(1)

where:

Q = runoff (inches) P = rainfall (inches) S = potential maximum retention after runoff begins (inches) I<sub>a</sub> = initial abstraction (inches)

If P < 0.2, Q = 0. Initial abstraction has been found to be empirically related to S by the equation

$$I_a = 0.2*S$$
 (2)

Thus, the runoff curve number equation can be rewritten:

$$Q = \frac{(P - 0.2S)^2}{P + 0.8S}$$
(3)

S is related to the curve number (CN) by:

$$S = \frac{1000}{CN} - 10$$
 (4)

e. First, S is calculated from the average curve number for the gaged watershed. Next, the daily historic flows at the gage are converted to depth basis (as used in equations 1 and 3) by dividing by its drainage area, then converted to inches. Equation 3 is then solved for daily precipitation depth of the gaged site,  $P_{gaged}$ . The daily precipitation depth for the ungaged site is then calculated as the precipitation depth of the gaged site multiplied by the ratio of the long-term average precipitation in the watersheds of the ungaged and gaged sites:

$$P_{ungaged} = P_{gaged} \left( \frac{M_{ungaged}}{M_{gaged}} \right)$$
(5)

where M is the mean annual precipitation of the watershed in inches. The daily precipitation depth for the ungaged watershed, along with the average curve number of the ungaged watershed, are then used to calculate the depth equivalent daily flow Q of the ungaged site. Finally, the volumetric flow rate at

the ungaged site is calculated by multiplying by the area of the watershed of the ungaged site and converted to cubic ft..

- f. If any flow measurements are available on the stream segment of interest, the projected flows will be compared to the measured flows on each date. If there is poor agreement, projections will be repeated with a simpler approach, using only the watershed area ratio and the gaged site (thereby eliminating the influence of differences in curve number and precipitation between the gaged and ungaged stream watersheds). If this simpler approach provides better agreement with existing data, the projected flows based on the simpler approach will be used.
- iii) In the rare case where no coincident flow data are available for a WQM station <u>and</u> no gages are present upstream or downstream, flows will be estimated for the WQM station from a gage on an adjacent watershed of similar size and properties, via the same procedure described above for upstream or downstream gages.

### APPENDIX D STATE OF OKLAHOMA ANTIDEGRADATION POLICY

#### Appendix D State of Oklahoma Antidegradation Policy

#### 785:45-3-1. Purpose; Antidegradation policy statement

- (a) Waters of the state constitute a valuable resource and shall be protected, maintained and improved for the benefit of all the citizens.
- (b) It is the policy of the State of Oklahoma to protect all waters of the state from degradation of water quality, as provided in OAC 785:45-3-2 and Subchapter 13 of OAC 785:46.

#### 785:45-3-2. Applications of antidegradation policy

- (a) Application to outstanding resource waters (ORW). Certain waters of the state constitute an outstanding resource or have exceptional recreational and/or ecological significance. These waters include streams designated "Scenic River" or "ORW" in Appendix A of this Chapter, and waters of the State located within watersheds of Scenic Rivers. Additionally, these may include waters located within National and State parks, forests, wilderness areas, wildlife management areas, and wildlife refuges, and waters which contain species listed pursuant to the federal Endangered Species Act as described in 785:45-5-25(c)(2)(A) and 785:46-13-6(c). No degradation of water quality shall be allowed in these waters.
- (b) Application to high quality waters (HQW). It is recognized that certain waters of the state possess existing water quality which exceeds those levels necessary to support propagation of fishes, shellfishes, wildlife, and recreation in and on the water. These high quality waters shall be maintained and protected.
- (c) Application to beneficial uses. No water quality degradation which will interfere with the attainment or maintenance of an existing or designated beneficial use shall be allowed.
- (d) Application to improved waters. As the quality of any waters of the state improve, no degradation of such improved waters shall be allowed.

#### 785:46-13-1. Applicability and scope

- (a) The rules in this Subchapter provide a framework for implementing the antidegradation policy stated in OAC 785:45-3-2 for all waters of the state. This policy and framework includes three tiers, or levels, of protection.
- (b) The three tiers of protection are as follows:
  - (1) Tier 1. Attainment or maintenance of an existing or designated beneficial use.
  - (2) Tier 2. Maintenance or protection of High Quality Waters and Sensitive Public and Private Water Supply waters.
  - (3) Tier 3. No degradation of water quality allowed in Outstanding Resource Waters.
- (c) In addition to the three tiers of protection, this Subchapter provides rules to implement the protection of waters in areas listed in Appendix B of OAC 785:45. Although Appendix B areas are not mentioned in OAC 785:45-3-2, the framework for

protection of Appendix B areas is similar to the implementation framework for the antidegradation policy.

- (d) In circumstances where more than one beneficial use limitation exists for a waterbody, the most protective limitation shall apply. For example, all antidegradation policy implementation rules applicable to Tier 1 waterbodies shall be applicable also to Tier 2 and Tier 3 waterbodies or areas, and implementation rules applicable to Tier 2 waterbodies shall be applicable also to Tier 3 waterbodies.
- (e) Publicly owned treatment works may use design flow, mass loadings or concentration, as appropriate, to calculate compliance with the increased loading requirements of this section if those flows, loadings or concentrations were approved by the Oklahoma Department of Environmental Quality as a portion of Oklahoma's Water Quality Management Plan prior to the application of the ORW, HQW or SWS limitation.

#### 785:46-13-2. Definitions

The following words and terms, when used in this Subchapter, shall have the following meaning, unless the context clearly indicates otherwise:

"Specified pollutants" means

- (A) Oxygen demanding substances, measured as Carbonaceous Biochemical Oxygen Demand (CBOD) and/or Biochemical Oxygen Demand (BOD);
- (B) Ammonia Nitrogen and/or Total Organic Nitrogen;
- (C) Phosphorus;
- (D) Total Suspended Solids (TSS); and
- (E) Such other substances as may be determined by the Oklahoma Water Resources Board or the permitting authority.

# 785:46-13-3. Tier 1 protection; attainment or maintenance of an existing or designated beneficial use

- (a) General.
  - (1) Beneficial uses which are existing or designated shall be maintained and protected.
  - (2) The process of issuing permits for discharges to waters of the state is one of several means employed by governmental agencies and affected persons which are designed to attain or maintain beneficial uses which have been designated for those waters. For example, Subchapters 3, 5, 7, 9 and 11 of this Chapter are rules for the permitting process. As such, the latter Subchapters not only implement numerical and narrative criteria, but also implement Tier 1 of the antidegradation policy.
- (b) Thermal pollution. Thermal pollution shall be prohibited in all waters of the state. Temperatures greater than 52 degrees Centigrade shall constitute thermal pollution and shall be prohibited in all waters of the state.
- (c) Prohibition against degradation of improved waters. As the quality of any waters of the state improves, no degradation of such improved waters shall be allowed.

# 785:46-13-4. Tier 2 protection; maintenance and protection of High Quality Waters and Sensitive Water Supplies

- (a) General rules for High Quality Waters. New point source discharges of any pollutant after June 11, 1989, and increased load or concentration of any specified pollutant from any point source discharge existing as of June 11, 1989, shall be prohibited in any waterbody or watershed designated in Appendix A of OAC 785:45 with the limitation "HQW". Any discharge of any pollutant to a waterbody designated "HQW" which would, if it occurred, lower existing water quality shall be prohibited. Provided however, new point source discharges or increased load or concentration of any specified pollutant from a discharge existing as of June 11, 1989, may be approved by the permitting authority in circumstances where the discharge or increased load or concentration of the permitting authority that such new discharge or increased load or concentration would result in maintaining or improving the level of water quality which exceeds that necessary to support recreation and propagation of fishes, shellfishes, and wildlife in the receiving water.
- (b) General rules for Sensitive Public and Private Water Supplies. New point source discharges of any pollutant after June 11, 1989, and increased load of any specified pollutant from any point source discharge existing as of June 11, 1989, shall be prohibited in any waterbody or watershed designated in Appendix A of OAC 785:45 with the limitation "SWS". Any discharge of any pollutant to a waterbody designated "SWS" which would, if it occurred, lower existing water quality shall be prohibited. Provided however, new point source discharges or increased load of any specified pollutant from a discharge existing as of June 11, 1989, may be approved by the permitting authority in circumstances where the discharger demonstrates to the satisfaction of the permitting authority that such new discharge or increased load will result in maintaining or improving the water quality in both the direct receiving water, if designated SWS, and any downstream waterbodies designated SWS.
- (c) Stormwater discharges. Regardless of subsections (a) and (b) of this Section, point source discharges of stormwater to waterbodies and watersheds designated "HQW" and "SWS" may be approved by the permitting authority.
- (d) Nonpoint source discharges or runoff. Best management practices for control of nonpoint source discharges or runoff should be implemented in watersheds of waterbodies designated "HQW" or "SWS" in Appendix A of OAC 785:45.

# 785:46-13-5. Tier 3 protection; prohibition against degradation of water quality in outstanding resource waters

(a) General. New point source discharges of any pollutant after June 11, 1989, and increased load of any pollutant from any point source discharge existing as of June 11, 1989, shall be prohibited in any waterbody or watershed designated in Appendix A of OAC 785:45 with the limitation "ORW" and/or "Scenic River", and in any waterbody located within the watershed of any waterbody designated with the limitation "Scenic River". Any discharge of any pollutant to a waterbody designated "ORW" or "Scenic River" which would, if it occurred, lower existing water quality shall be prohibited.

- (b) Stormwater discharges. Regardless of 785:46-13-5(a), point source discharges of stormwater from temporary construction activities to waterbodies and watersheds designated "ORW" and/or "Scenic River" may be permitted by the permitting authority. Regardless of 785:46-13-5(a), discharges of stormwater to waterbodies and watersheds designated "ORW" and/or "Scenic River" from point sources existing as of June 25, 1992, whether or not such stormwater discharges were permitted as point sources prior to June 25, 1992, may be permitted by the permitting authority; provided, however, increased load of any pollutant from such stormwater discharge shall be prohibited.
- (c) Nonpoint source discharges or runoff. Best management practices for control of nonpoint source discharges or runoff should be implemented in watersheds of waterbodies designated "ORW" in Appendix A of OAC 785:45, provided, however, that development of conservation plans shall be required in sub-watersheds where discharges or runoff from nonpoint sources are identified as causing or significantly contributing to degradation in a waterbody designated "ORW".
- (d) LMFO's. No licensed managed feeding operation (LMFO) established after June 10, 1998 which applies for a new or expanding license from the State Department of Agriculture after March 9, 1998 shall be located...[w]ithin three (3) miles of any designated scenic river area as specified by the Scenic Rivers Act in 82 O.S. Section 1451 and following, or [w]ithin one (1) mile of a waterbody [2:9-210.3(D)] designated in Appendix A of OAC 785:45 as "ORW".

#### 785:46-13-6. Protection for Appendix B areas

- (a) General. Appendix B of OAC 785:45 identifies areas in Oklahoma with waters of recreational and/or ecological significance. These areas are divided into Table 1, which includes national and state parks, national forests, wildlife areas, wildlife management areas and wildlife refuges; and Table 2, which includes areas which contain threatened or endangered species listed as such by the federal government pursuant to the federal Endangered Species Act as amended.
- (b) Protection for Table 1 areas. New discharges of pollutants after June 11, 1989, or increased loading of pollutants from discharges existing as of June 11, 1989, to waters within the boundaries of areas listed in Table 1 of Appendix B of OAC 785:45 may be approved by the permitting authority under such conditions as ensure that the recreational and ecological significance of these waters will be maintained.
- (c) Protection for Table 2 areas. Discharges or other activities associated with those waters within the boundaries listed in Table 2 of Appendix B of OAC 785:45 may be restricted through agreements between appropriate regulatory agencies and the United States Fish and Wildlife Service. Discharges or other activities in such areas shall not substantially disrupt the threatened or endangered species inhabiting the receiving water.
- (d) Nonpoint source discharges or runoff. Best management practices for control of nonpoint source discharges or runoff should be implemented in watersheds located within areas listed in Appendix B of OAC 785:45.

# APPENDIX E STORM WATER PERMITTING REQUIREMENTS AND PRESUMPTIVE BEST MANAGEMENT PRACTICES (BMPS) APPROACH

# Appendix E

# Storm water permitting Requirements and Presumptive Best Management practices (BMP) Approach

## A. BACKGROUND

The National Pollutant Discharge Elimination System (NPDES) permitting program for stormwater discharges was established under the Clean Water Act as the result of a 1987 amendment. The Act specifies the level of control to be incorporated into the NPDES stormwater permitting program depending on the source (industrial versus municipal stormwater). These programs contain specific requirements for the regulated communities/facilities to establish a comprehensive stormwater management program (SWMP) or storm water pollution prevention plan (SWPPP) to implement any requirements of the total maximum daily load (TMDL) allocation. [See 40 CFR §130.]

Storm water discharges are highly variable both in terms of flow and pollutant concentration, and the relationships between discharges and water quality can be complex. For municipal stormwater discharges in particular, the current use of system-wide permits and a variety of jurisdiction-wide BMPs, including educational and programmatic BMPs, does not easily lend itself to the existing methodologies for deriving numeric water quality-based effluent limitations. These methodologies were designed primarily for process wastewater discharges which occur at predictable rates with predictable pollutant loadings under low flow conditions in receiving waters.

EPA has recognized these problems and developed permitting guidance for stormwater permits. [See "Interim Permitting Approach for Water Quality-Based Effluent Limitations in Stormwater Permits" (EPA-833-D-96-00, Date published: 09/01/1996)] Due to the nature of storm water discharges, and the typical lack of information on which to base numeric water quality-based effluent limitations (expressed as concentration and mass), EPA recommends an interim permitting approach for NPDES storm water permits which is based on BMPs. "The interim permitting approach uses best management practices (BMPs) in first-round storm water permits, and expanded or better-tailored BMPs in subsequent permits, where necessary, to provide for the attainment of water quality standards." (*ibid.*)

A monitoring component is also included in the recommended BMP approach. "Each storm water permit should include a coordinated and cost-effective monitoring program to gather necessary information to determine the extent to which the permit provides for attainment of applicable water quality standards and to determine the appropriate conditions or limitations for subsequent permits." (*ibid.*)

This approach was further elaborated in a guidance memo issued in 2002. [See Memorandum from Robert Wayland, Director of OWOW and James Hanlon, Director of OWM to Regional Water Division Directors: "Establishing Total Maximum Daily Load (TMDL) Wasteload Allocations (WLAs) for Storm Water Sources and NPDES Permit requirements Based on Those WLAs " (Date published: 11/22/2002)] "The policy outlined in this memorandum affirms the appropriateness of an iterative, adaptive management BMP

approach, whereby permits include effluent limits (e.g., a combination of structural and nonstructural BMPs) that address storm water discharges, implement mechanisms to evaluate the performance of such controls, and make adjustments (i.e., more stringent controls or specific BMPs) as necessary to protect water quality. ..... If it is determined that a BMP approach (including an iterative BMP approach) is appropriate to meet the storm water component of the TMDL, EPA recommends that the TMDL reflect this." This TMDL adopts the EPA recommended approach and relies on appropriate BMPs for implementation. No numeric effluent limitations are required or anticipated for municipal stormwater discharge permits.

### **B.** SPECIFIC SWMP/SWPPP REQUIREMENTS

As noted in Section 3 of this report, Oklahoma Pollutant Discharge Elimination System (OPDES)-permitted facilities and non-point sources (e.g., wildlife, agricultural activities and domesticated animals, land application fields, urban runoff, failing onsite wastewater disposal system, and domestic pets) could contribute to exceedances of the water quality criteria. In particular, stormwater runoff from the Phase 1 and 2 municipal separate storm sewer systems (MS4s) is likely to contain elevated bacteria concentrations. Permits for these discharges must comply with the provisions of this TMDL. Table E-1 provides a list of Phase 1 and 2 MS4s that are affected by this bacteria TMDL report.

Agricultural activities and other nonpoint sources of bacteria are unregulated. Voluntary measures and incentives should be used and encouraged wherever possible and such sources should strive to attain the reduction goals established in this TMDL.

The provisions of this appendix apply only to OPDES/NPDES regulated stormwater discharges. Regulated CAFOs within the watershed operate under NPDES permits issued and overseen by EPA. In order to comply with this TMDL, those CAFO permits in the watershed and their associated management plans must be reviewed. Further actions to reduce bacteria loads and achieve progress toward meeting the specified reduction goals must be implemented. This provision will be forwarded to EPA, as the responsible permitting agency, for follow up.

| ENTITIES | PHASE 1 OR<br>PHASE 2 MS4 | DATE ISSUED | NOTES |
|----------|---------------------------|-------------|-------|
|          | Phase 2 MS4               |             |       |
|          | Phase 2 MS4               |             |       |

| Table E-1 | . MS4 Permits affected | by this bacteria | TMDL Report |
|-----------|------------------------|------------------|-------------|
|-----------|------------------------|------------------|-------------|

To ensure compliance with the TMDL requirements under the permit, stormwater permittees must develop strategies designed to achieve progress toward meeting the reduction goals established in the TMDL. Relying primarily upon a Best Management Practices (BMP) approach, permittees should take advantage of existing information on BMP performance and select a suite of BMPs appropriate to the local community that are expected to result in progress toward meeting the reduction goals established in the TMDL. The permittee should provide guidance on BMP installation and maintenance, as well as a monitoring and/or inspection schedule.

Table E–2 provides a summary description of some BMPs with reported effectiveness in reducing bacteria. Permittees may choose different BMPs to meet the permit requirements, as long as the permittees demonstrate that these practices will result in progress toward attaining water quality standards.

As noted above, when a BMP approach is selected a coordinated monitoring program is necessary to establish the effectiveness of the selected BMPs and demonstrate progress toward attaining water quality standards. The monitoring results should be used to refine bacteria controls in the future. Individual permittees could participate in a coordinated program if there is one in the area or they could develop their own program.

After EPA approval of the final TMDL, existing small MS4 permittees will be notified of the TMDL provisions and schedule. The re-issued permit will contain general provisions addressing this TMDL. Industrial stormwater permittees are not expected to be a significant source of bacteria but if any are identified, similar actions will be required. Compliance with the following provisions will constitute compliance with the requirements of this TMDL.

### 1. Develop A Bacteria Reduction Plan

Permittees shall submit an approvable Bacteria Reduction Plan to the DEQ within 12 months of notification. Unless disapproved by the Director within 60 days of submission, the plan shall be approved then implemented by the permittee. This plan shall, at a minimum, include the following:

- a. Consideration of ordinances or other regulatory mechanisms to require bacteria pollution control, as well enforcement procedures for noncompliance;
- b. Evaluation of the existing SWMP in relation to TMDL reduction goals;
- c. Educational programs directed at reducing bacterial pollution;
- d. Investigation and implementation of BMPs that prevent additional storm water bacteria pollution associated with new development and re-development;
- e. Implementation of BMPs applicable to bacteria. Table E-2 below presents summary information on some BMPs that should be considered. Permittees are not limited to BMPs on this list and should select BMPs appropriate to the local community that are expected to meet all or part of the reduction goals established in the TMDL.
- f. Modifications to the dry weather field screening and illicit discharge detection and elimination provisions of the SWMP to consider storm water sampling and other measures intended to specifically identify bacterial pollution sources and high priority areas for bacteria reductions.
- g. Periodic evaluation of the effectiveness of the bacteria reduction plan to ensure progress toward attainment of water quality standards.
- h. An implementation schedule leading to modification of the SWMP and full implementation of the plan within 3 years of notification.

#### 2. Develop Or Participate In A Bacteria Monitoring Program

Permittees may participate in a coordinated regional bacteria monitoring program or develop their own individual program. The monitoring program should be designed to establish the effectiveness of the selected BMPs and demonstrate progress toward the reduction goals of the TMDL and eventual attainment of water quality standards.

- a. Within 18 months of notification, the permittee shall prepare and submit to the DEQ either a TMDL monitoring schedule or a commitment to participate in a coordinated regional monitoring program. The schedule or program shall include:
  - (1) A detailed description of the goals, monitoring, and sampling and analytical methods;
  - (2) A list and map of the selected TMDL monitoring sites;
  - (3) The frequency of data collection to occur at each station or site;
  - (4) The parameters to be measured, as appropriate for and relevant to the TMDL;
  - (5) A Quality Assurance Project Plan that complies with EPA requirements [EPA Requirements for QA Project Plans (QA/R-5)]
- b. The monitoring program shall be fully implemented within 3 years of notification.

### 3. Annual Reporting

The permittee shall include a TMDL implementation report as part of their annual report. The TMDL report shall include the status and actions taken by the permittee to implement the TMDL. The TMDL report shall document relevant actions taken by the permittee that affect MS4 storm water discharges to the waterbody segment that is the subject of the TMDL. This TMDL report also shall identify the status of any applicable TMDL implementation schedule milestones.

| BEST MANAGEMENT PRACTICE                                                                                                                                                                                                                                                                                                                                                                                                                                           | IMPAIRMENT<br>SOURCE |       | REPORTED<br>EFFICIENCY         | NOTE                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|--------------------------------|-------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AGRICULTURE          | URBAN |                                |                         |
| <b>Animal waste management</b> : A planned system designed to manage liquid and solid waste from livestock and poultry. It improves water quality by storing and spreading waste at the proper time, rate and location.                                                                                                                                                                                                                                            | Х                    |       | 75 % <sup>1</sup>              |                         |
| Artificial wetland/rock reed microbial filter:<br>Long shallow hydroponic plant/rock filter system<br>that treats polluted waste and wastewater. It<br>combines horizontal and vertical flow of water<br>through the filter (filled with aquatic and semi-<br>aquatic plants and microorganisms) and provides a<br>high surface area of support media, such as rocks or<br>crushed stone.                                                                          | X                    | X     |                                |                         |
| <b>Compost facility</b> : Treating organic agricultural wastes in order to reduce the pollution potential to surface and ground water. The composting facility must be constructed, operated and maintained without polluting air and/or water resources.                                                                                                                                                                                                          | X                    | X     |                                | DEQ<br>permit<br>needed |
| <b>Conservation landscaping</b> : The placement of vegetation in and around stormwater management BMPs. Its purpose is to help stabilize disturbed areas, enhance the pollutant removal capabilities of storm water BMP, and improve the overall aesthetics of a storm water BMP.                                                                                                                                                                                  |                      | X     |                                |                         |
| <b>Detention pond/basin</b> : Detention<br>ponds/basins maintain a permanent pool of water in<br>addition to temporarily detaining storm water. The<br>permanent pool of water enhances the removal of<br>many pollutants. These ponds fill with stormwater<br>and release most of it over a period of a few days,<br>slowly returning to its normal depth of water.                                                                                               | X                    | х     | $25_{51\%^3}\%^1$ , $40\%^2$ , |                         |
| <b>Diversions/earthen embankments</b> : 1).<br>Diversions -Establishing a channel with a<br>supporting ridge on the lower side constructed along<br>the general land slope which improves water quality<br>by directing nutrient and sediment laden water to<br>sites where it can be used or disposed of safely. 2).<br>Earthen embankment- A raised impounding<br>structure made from compacted soil. It is<br>appropriate for use with infiltration, detention, | Х                    | Х     |                                |                         |

## Table E-2.Some BMPs Applicable to Bacteria

| BEST MANAGEMENT PRACTICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IMPAIRMENT<br>SOURCE |       | REPORTED<br>EFFICIENCY                                     | NOTE |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|------------------------------------------------------------|------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AGRICULTURE          | URBAN |                                                            |      |
| extended-detention or retention facilities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |       |                                                            |      |
| <b>Drain Inlet Inserts</b> : A proprietary BMP that<br>is generally easily installed in a drain inlet or catch<br>basin to treat storm water runoff. Three basic types<br>of inlet insert are available, the tray type, bag type<br>and basket type. The tray type allows flow to pass<br>through filter media residing in a tray located<br>around the perimeter of the inlet.                                                                                                                                                                                                                                                                      |                      | X     | 5% <sup>2</sup>                                            |      |
| <b>Drip irrigation</b> : An irrigation method that<br>supplies a slow, even application of low-pressure<br>water through polyethylene tubing running from<br>supply line directly to a plant's base. Water soaks<br>into the soil gradually, reducing runoff and<br>evaporation (i.e., salinity). Transmission of nutrients<br>and pathogens spread by splashing water and wet<br>foliage created by overhead sprinkler irrigation is<br>greatly reduced. Weed growth is minimized, thereby<br>reducing herbicide applications. Vegetable farming<br>and virtually every type of landscape situation can<br>benefit from the use of drip irrigation. | Х                    | X     |                                                            |      |
| <b>Fencing</b> : A constructed barrier to livestock, wildlife or people. Standard or conventional (barbed or smooth wire), suspension, woven wire, or electric fences shall consist of acceptable fencing designs to control the animal(s) or people of concern and meet the intended life of the practice.                                                                                                                                                                                                                                                                                                                                          | Х                    |       | 75 % <sup>1</sup>                                          |      |
| <b>Filtration (e.g., sand filters)</b> : Intermittent<br>sand filters capture, pre-treat to remove sediments,<br>store while awaiting treatment, and treat to remove<br>pollutants (by percolation through sand media) the<br>most polluted stormwater from a site. Intermittent<br>sand filter BMPs may be constructed in<br>underground vaults, in paved trenches within or at<br>the perimeter of impervious surfaces, or in either<br>earthen or concrete open basins.                                                                                                                                                                           | Х                    | X     | 30 % <sup>1</sup> , 55% <sup>2</sup> ,<br>51% <sup>3</sup> |      |
| <b>Infiltration Basin</b> : A vegetated open<br>impoundment where incoming stormwater runoff is<br>stored until it gradually infiltrates into the soil<br>strata. While flooding and channel erosion control<br>may be achieved within an infiltration basin, they<br>are primarily used for water quality enhancement.                                                                                                                                                                                                                                                                                                                              |                      | X     | 50 % <sup>1</sup>                                          |      |
| <b>Infiltration Trench</b> : A shallow, excavated trench backfilled with a coarse stone aggregate to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      | Х     | 50 % <sup>1</sup>                                          |      |

| BEST MANAGEMENT PRACTICE                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IMPAIRMENT<br>SOURCE |       | REPORTED<br>EFFICIENCY | NOTE |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|------------------------|------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AGRICULTURE          | URBAN |                        |      |
| create an underground reservoir. Stormwater runoff<br>diverted into the trench gradually infiltrates into the<br>surrounding soils from the bottom and sides of the<br>trench. The trench can be either an open surface<br>trench or an underground facility.                                                                                                                                                                                                                     |                      |       |                        |      |
| <b>Irrigation water management</b> : The process<br>of determining and controlling the volume,<br>frequency, and application rate of irrigation water in<br>a planned, efficient manner. An irrigation system<br>adapted for site conditions (soil, slope, crop grown,<br>climate, water quantity and quality, etc.) must be<br>available and capable of applying water to meet the<br>intended purpose(s).                                                                       | Х                    | X     |                        |      |
| <b>Lagoon pump out</b> : A waste treatment<br>impoundment made by constructing an embankment<br>and/or excavating a pit or dugout in order to<br>biologically treat waste (such as manure and<br>wastewater) and thereby reduce pollution potential<br>by serving as a treatment component of a waste<br>management system.                                                                                                                                                       | Х                    | x     |                        |      |
| Land-use conversion: BMPs that involve a change in land use in order to retire land contributing detrimentally to the environment. Some examples of BMPs with associated land use changes are: Conservation Reserve Program (CRP) - cropland to pasture; Forest conservation - pervious urban to forest; Forest/grass buffers - cropland to forest; pasture; Tree planting - cropland/pasture to forest; and Conservation tillage – conventional tillage to conservation tillage. | X                    | X     |                        |      |
| Limit livestock access: Excluding livestock<br>from areas where grazing or trampling will cause<br>erosion of stream banks and lowering of water<br>quality by livestock activity in or adjacent to the<br>water. Limitation is generally accomplished by<br>permanent or temporary fencing. In addition,<br>installation of an alternative water source away<br>from the stream has been shown to reduce livestock<br>access.                                                    | X                    |       |                        |      |
| <b>Litter control</b> : Litter includes larger items and<br>articulates deposited on street surfaces, such as<br>paper, vegetation residues, animal feces, bottles and<br>broken glass, plastics and fallen leaves. Litter-<br>control programs can reduce the amount of                                                                                                                                                                                                          |                      | Х     |                        |      |

| BEST MANAGEMENT PRACTICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IMPAIRMENT<br>SOURCE |       | REPORTED<br>EFFICIENCY | NOTE |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|------------------------|------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AGRICULTURE          | URBAN |                        |      |
| deposition of pollutants by as much as 50%, and<br>may be an effective measure of controlling pollution<br>by storm runoff.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |       |                        |      |
| <b>Livestock water crossing facility</b> : Providing<br>a controlled crossing for livestock and/or farm<br>machinery in order to prevent streambed erosion<br>and reduce sediment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Х                    |       | 100 % <sup>1</sup>     |      |
| <b>Manufactured BMP systems</b> : Structural measures which are specifically designed and sized by the manufacturer to intercept storm water runoff and prevent the transfer of pollutants downstream. They are used solely for water quality enhancement in urban and ultra-urban areas where surface BMPs are not feasible.                                                                                                                                                                                                                                                                                                                                        | Х                    | x     |                        |      |
| <b>Onsite treatment system installation</b> :<br>Conventional onsite wastewater treatment and<br>disposal system (onsite system) consists of three<br>major components: a septic tank, a distribution box,<br>and a subsurface soil absorption field (consisting of<br>individual trenches). This system relies on gravity to<br>carry household waste to the septic tank, move<br>effluent from the septic tank to the distribution box,<br>and distribute effluent from the distribution box<br>throughout the subsurface soil absorption field. All<br>of these components are essential for a conventional<br>onsite system to function in an acceptable manner. |                      | X     |                        |      |
| <b>Porous pavement</b> : An alternative to conventional pavement, it is made from asphalt (in which fine filler fractions are missing) or modular or poured-in concrete pavements. Its use allows rainfall to percolate through it to the sub-base, providing storage and enhancing soil infiltration that can be used to reduce runoff and combined sewer overflows. The water stored in the sub-base then gradually infiltrates the subsoil.                                                                                                                                                                                                                       |                      | X     | 50 % <sup>1</sup>      |      |
| <b>Proper site selection for animal feeding</b><br><b>facility</b> : Establishing or relocating confined feeding<br>facilities away from environmentally vulnerable<br>areas such as sinkholes, streams, and rivers in order<br>to reduce or eliminate the amount of pollutant<br>runoff reaching these areas.                                                                                                                                                                                                                                                                                                                                                       | X                    |       |                        |      |
| Rain garden /bio-retention basin: Rain gardens are landscaped gardens of trees, shrubs, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | X     | 40 % <sup>1</sup>      |      |

| BEST MANAGEMENT PRACTICE                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IMPAIRMENT<br>SOURCE |       | REPORTED<br>EFFICIENCY | NOTE                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|------------------------|------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AGRICULTURE          | URBAN |                        |                                                |
| plants located in commercial or residential areas in<br>order to treat storm water runoff through temporary<br>collection of the water before infiltration. They are<br>slightly depressed areas into which storm water<br>runoff is channeled by pipes, curb openings, or<br>gravity.                                                                                                                                                                                        |                      |       |                        |                                                |
| <b>Range and pasture management</b> : Systems of practices to protect the vegetative cover on improved pasture and native rangelands. It includes practices such as seeding or reseeding, brush management (mechanical, chemical, physical, or biological), proper stocking rates and proper grazing use, and deferred rotational systems.                                                                                                                                    | Х                    |       | 50 % <sup>1</sup>      |                                                |
| <b>Retention ponds/basins Retention basin</b> : A storm water facility that includes a permanent pool of water and, therefore, is normally wet even during non-rainfall periods. Inflows from storm water runoff may be temporarily stored above this permanent pool.                                                                                                                                                                                                         | Х                    | X     | 32 % <sup>1</sup>      |                                                |
| <b>Riparian Buffer Zone</b> : A protection method<br>used along streams to reduce erosion,<br>sedimentation, and the pollution of water from<br>agricultural non-point sources.                                                                                                                                                                                                                                                                                               | Х                    | X     | 43 – 57 % <sup>1</sup> | Forested<br>buffer w/o<br>incentive<br>payment |
| <b>Septic system pump-out</b> : A typical septic<br>system consists of a tank that receives waste from a<br>residence or business, and a drain field or<br>subsurface absorption system consisting of a series<br>of percolation lines for the disposal of the liquid<br>effluent. Solids (sludge) that remain after<br>decomposition by bacteria in the tank must be<br>pumped out periodically.                                                                             |                      | x     | 5 % <sup>1</sup>       |                                                |
| Sewer line maintenance/sewer flushing:<br>Sewer flushing during dry weather is designed to<br>periodically remove solids that have deposited on<br>the bottom of the sewer and the biological slime that<br>grows on the walls of combined sewers during<br>periods of low-flow. Flushing is especially<br>necessary in sewer systems that have low grades<br>which has resulted in velocities during low-flow<br>periods that fall below those needed for self-<br>cleaning. |                      | X     |                        |                                                |
| Stream bank protection and stabilization (e.g., riprap, gabions): Stabilizing shoreline areas                                                                                                                                                                                                                                                                                                                                                                                 | Х                    | X     | 40 - 75 % <sup>1</sup> | 40 % w/o<br>fencing;                           |

| BEST MANAGEMENT PRACTICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IMPAIRMENT<br>SOURCE |       | <b>REPORTED</b><br>EFFICIENCY | NOTE                                             |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|-------------------------------|--------------------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AGRICULTURE          | URBAN |                               |                                                  |  |
| that are being eroded by landscaping, constructing<br>bulkheads, riprap revetments, gabion systems, or<br>establishing vegetation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |       |                               | 75 % w/<br>fencing                               |  |
| <b>Terrace</b> : An earth embankment, or a combination ridge and channel, constructed across the field slope. Terraces can be used when there is a need to conserve water, excessive runoff is a problem, and the soils and topography are such that terraces can be constructed and farmed with reasonable effort.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Х                    | X     |                               |                                                  |  |
| <b>Vegetated filter strip</b> : A densely vegetated<br>strip of land engineered to accept runoff from<br>upstream development as overland sheet flow. It<br>may adopt any naturally vegetated form, from<br>grassy meadow to small forest. The purpose of a<br>vegetated filter strip is to enhance the quality of<br>stormwater runoff through filtration, sediment<br>deposition, infiltration and absorption.                                                                                                                                                                                                                                                                                                                                                                    | X                    | Х     |                               |                                                  |  |
| Waste system/storage (e.g., lagoons, litter shed): Waste treatment lagoons biologically treat liquid waste to reduce the nutrient and BOD content. Lagoons must be emptied and their contents disposed of properly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Х                    | Х     | 80 - 100 % <sup>1</sup>       |                                                  |  |
| Water treatment (e.g., disinfection,<br>flocculation, carbon filter system) Water<br>treatment: Physical, chemical and/or biological<br>processes used to treat concentrated discharges.<br>Physical-chemical processes that have been<br>demonstrated to effectively treat discharge include<br>sedimentation, vortex separation, screening (e.g.,<br>fine-mesh screening), and sand-peat filters.<br>Chemical additives used to enhance separation of<br>particles from liquid include chemical coagulants<br>such as lime, alum, ferric chloride, and various<br>polyelectrolytes. Biological processes that have<br>been demonstrated to effectively treat discharges<br>include contact stabilization, biodiscs, oxidation<br>ponds, aerated lagoons, and facultative lagoons. | X                    | X     |                               |                                                  |  |
| Wetland development/enhancement: The construction of a wetland for the treatment of animal waste runoff or storm water runoff. Wetlands improve water quality by removing nutrients from animal waste or sediments and nutrients from storm water runoff.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Х                    | Х     | 30 %1                         | Including<br>creation<br>and<br>restora-<br>tion |  |

<sup>1</sup> Sources: BMP Efficiencies Chesapeake Bay Watershed Model (Phase IV) August 1999; Draft FC and Nitrate TMDL IP for Dry River (2001); EPA (1998); EPA (1999b); Novotny (1994); Storm Water Best

Management Practice Categories and Pollutant Removal Efficiencies (2003); USDA (2003); DCR (1999); DEQ/DCR (2001).

<sup>2</sup> Barrett, M.E., Complying with the Edwards Aquifer Rules: Technical Guidance on Best Management Practices, Texas Natural Resource Conservation Commission Report RG-348, June, (1999).

<sup>3</sup> Watershed Protection Techniques. Vol 3. No. 1, 1999

## Appendix F

### **Response to Comments**

#### A. Comments from Oklahoma Department of Agriculture, Food, and Forestry

- A1. Section 3.1: NPDES-Permitted Facilities, last sentence of the third paragraph (p. 3-1); and 3.1.4. Concentrated Animal Feeding Operations, first sentence of the second paragraph (p. 3-9): It appears that CAFOs were unfairly singled out as "significant" sources of Pollution, and may have the potential to cause "serious" impact to water quality.... It is suggested that the words "significant" and "serious" be removed from these sentences.
- Response A#1: The sentence was changed to: "CAFOs are designated by USEPA as one of the significant sources of pollution, and may have the potential to cause serious impacts to water quality if not managed properly."
- A2. Table 3-4. NPDES-Permitted CAFOs in Study Areas (p. 3-10), last 2 columns: Buggy Creek watershed is located in Caddo, Canadian and Grady Counties, not in Hughes County; Canadian River watershed 520610020150\_10 is located in Canadian and Grady Counties, not in McClain and Seminole Counties. Little River watershed is not located in Grady County.
- Response A#2: Table 3-4 was updated
- A3. Section 3.2.2: Non-Permitted Agricultural Activities and Domesticated Animals, last paragraph, lines 2, 3 and 4 of page 3-14: Table 3-9 is for licensed swine operations in Hughes County inventoried by ODAFF, not for poultry operations. As a matter of fact, there are no registered poultry operations in the study areas. The sentences: "For informational purpose....last updated on April 17, 2004" should be deleted. The next sentence should be read as: "Table 3-9 lists an estimated number of animal feeding operations (AFO) within selected watershed(s) for which data are available".
- Response A#3: The sentence was changed to: "For informational purposes, data on animal feeding operations provided by ODAFF are summarized in Table 3-9"
- A4. Section 3.3: Summary of Bacteria Sources, the last four sentences of the last paragraph (p. 3-20): Since no registered poultry operations are located in the study areas (Caddo, Canadian, Grady, Hughes, McClain and Seminole counties), the amount of poultry litter produced in the areas is insignificant. These four generic sentences excerpted from Shoal Creek Study Area in Missouri, where poultry litter is abundant, may be irrelevant to this report.
- Response A#4: We agree that poultry litter in the study area is insignificant. The reference to Shoal Creek further explains the impacts the manure handling practices and the structure of manure may have on bacteria level in streams. No change was made.
- A5. Section 5.8, Reasonable Assurances: Table 5-19, p. 5-29: the web-site address of Water Quality and other Environmental Management Programs of Oklahoma Department of Agriculture, Food and Forestry should be: http://www.oda.state.ok.us/aems-home.htm.
- Response A#5: Suggested change was made.

Canadian\_FINAL\_081508.doc

#### B. Comments from Bernard Keeth, Norman, Oklahoma

B1. I was appalled at the article in Saturday's Oklahoman, "S. Canadian River Germs Make Swimming Risky". I strongly disagree with the statement that "Pollution standards should be based on actual use of the water" and "areas not often used for swimming should not have to meet the same requirements as rivers that are popular swimming holes". This is WRONG!!! All public waters should be held to the same standards. The key word here is PUBLIC!!!

Response B#1: This report is based on Oklahoma's Water Quality Standards, which are designed to protect both existing and designated beneficial uses. All waters which are assigned the Primary Body Contact Recreation use must meet the same standards, regardless of the degree of actual use. The report does include a discussion of possible approaches to revise the water quality standards but unless such changes are made in the future, the existing standards must be met.

### C. Comments from Aaron Milligan, City of Norman, Storm Water Pollution Control

- C1. Table 2-2, and Appendix A, page A-6 of the Study shows that 4 samples for FC were analyzed for Bishop Creek, all of which were collected in 1997 from the same location. Considering the potential for significant requirements on the City to reduce bacteria in Bishop Creek, we are concerned about the small sample size, number of sample locations and time period. Will sampling be ongoing during development of the TMDL? Will additional sites be sampled? Will the City of Norman be allowed to submit sample data for consideration in development of the TMDL?
- Response C#1: Normally, ten is the minimum number of samples required to determine the impairment status of a stream. Bishop Creek is an exception. There are only four fecal coliform samples in Bishop Creek but three of them are above the standards. Even if six additional samples were collected and they all met standards, there still would be 30% of the samples violating standards and the stream would still be considered impaired. This assessment is in accord with the adopted Use Support Assessment Protocols (OAC785:46). No additional sampling was conducted as part of the TMDL development. Since the TMDL is already developed, there is no opportunity to submit additional data for consideration in development of the TMDL. Additional sampling is part of the implementation requirements for regulated MS4 discharges such as the City of Norman. See Appendix E of the report.

### **D.** Staff Identified Changes

- D1. Appendix E: Storm water permitting Requirements and Presumptive Best Management practices (BMP) Approach was added to the report.
- D2. City of Minco's sewage facility was added to the active continuous point discharge list in section 3.1.

Canadian\_FINAL\_081508.doc